Ni₃AlB: A bridge between superconductivity and ferromagnetism

Izumi Hase*

Nanoelectronics Research Institute AIST, Tsukuba, 305-8568, Japan (Received 12 December 2003; revised manuscript received 26 April 2004; published 30 July 2004)

The electronic energy band structures of anti-perovskite-type intermetallic compound Ni₃AlB have been calculated within the local-density approximation Ferromagnetism does not appear even though the lattice is more expanded than nondoped Ni₃Al. We found that the Fermi surfaces of Ni₃AlB resemble those of MgCNi₃, which is known to be a superconductor with T_c =8 K, and a good candidate of unconventional superconductor.

DOI: 10.1103/PhysRevB.70.033105

PACS number(s): 71.20.Lp, 74.25.Jb, 71.18.+y

Recently discovered MgCNi₃ (Ref. 1) has stimulated intensive studies, because it contains large proportion of Ni, which is a typical ferromagnetic element. The superconductivity near ferromagnetism is realized in such as $ZrZn_2$ (T_c ~0.3 K),² UGe₂ (T_c ~1 K),³ and Sr₂RuO₄ (T_c ~1.5 K),⁴ and are now regarded as unconventional superconductivity with spin-triplet pairing. Like these compounds, MgCNi₃ is near ferromagnetism. Band calculation suggests that only 12% substitution of Na for Mg give rise to ferromagnetism.⁵ MgCNi₃ has about an order of magnitude higher $T_{\rm c}$ (=8.5 K) than these compounds. Hence it is very important that whether MgCNi₃ has the same mechanism of superconductivity as these compounds or not. However, the mechanism of superconductivity in MgCNi₃ is still unclear. Tunneling spectroscopy indicates a zero-bias anomaly (clear peak ⁶ or a very high conductance ⁷), which suggests a finite density of states at the Fermi level in the superconducting state (i.e, literally a gapless state). On the other hand, superconductivity is found even in the polycrystalline sample,¹ contrary to the case of ZrZn₂, UGe₂, and Sr₂RuO₄. Moreover, the nuclear magnetic resonance (NMR) experiment shows a clear Hebel-Slichter peak in ¹³C relaxation rate.⁸ These results suggest, literally, that the symmetry of the superconducting gap is simple *s*-wave. Band structure calculation shows that electron-phonon interaction in MgCNi₃ is moderately strong,⁹ and suggests that MgCNi₃ is in the strong-coupling regime.

On the other hand, Ni₃Al has attracted much attention because of its unique mechanical properties in the past three decades. Moreover, this compound shows a typical itinerant weak ferromagnetism, and because of its simple crystal structure, extensive theoretical studies are developed. It is noteworthy that the above-mentioned ZrZn₂ also shows a typical itinerant weak ferromagnetism. Recently, in order to realize strong ferromagnetism by lattice expansion, several forms of chemical doping were tried. Contrary to the simple expectation, while all of the Ni₃AlX_v (X=B,C,N,H) compounds show a lattice expansion, none of them show ferromagnetism.¹⁰ However, this result invokes another interest: Ni₃Al is a weak ferromagnet, and so is ZrZn₂. Then how about Ni₃AlX_v, in which the magnetic moment is depressed, but could it be superconducting or not? Moreover, stoichiometric Ni₃AlX has the same crystal structure as MgCNi₃, and especially Ni₃AlB is isoelectronic with MgCNi₃. In this paper we performed a band calculation of Ni₃AlB, and report

FIG. 1. Band structure of (a) MgCNi₃, (b) Ni₃AlB, and (c) Ni₃Al.

that the electronic structure of Ni_3AlB has many common features with MgCNi₃. Thus Ni_3AlB can be a crucial link between weak ferromagnetism and superconductivity.

The scheme we used in our calculations is the standard full-potential augmented plane wave (FLAPW) method. The present energy-band calculation was performed using the computer code KANSAI-94 and TSPACE.¹¹ For the exchange-correlation potential we adopted the local-density approximation (LDA), according to Gunnarson and Lundqvist.¹² The lattice constant a is systematically varied and the corresponding total energy is calculated. Muffin-tin (MT) radii are set to 0.41a for Al/Mg, 0.21a for B/C, and 0.29a for Ni, where a denotes the lattice constant. The absolute value of the total energy slightly depends on the MT radii but the equibilium a and the bulk modulus are hardly changed. Plane wave basis functions are used with a wave vector $|\mathbf{k}+\mathbf{G}| < K_{\text{max}} = 3.60(2\pi/a)$, where **k** is a wave vector in the Brillouin zone and G is a reciprocal-lattice vector, and resulted in about 400 LAPWs. The self-consistent potentials are calculated at 56 k-points in the irreducible Brillouin zone (IBZ, 1/48th of the BZ). The density of states (DOS) are deduced from the eigenstates at 165 points in the same IBZ by the ordinary tetrahedron method. The optimized lattice parameter *a* is 3.778 Å for MgCNi₃, 3.765 Å for Ni₃AlB, and 3.526 Å for Ni₃Al. The calculated bulk modulus B using a Murnaghan equation of state is 210 GPa for MgCNi₃, 241 GPa for Ni₃AlB, and 216 GPa for Ni₃Al. These values are in good agreement with calculations for Ni₃Al,^{13,14} but significantly different from the calculated value for MgCNi₃ by Hayward et al.,¹⁵ who used the LMTO technique.

The energy band dispersions of MgCNi₃, Ni₃AlB, and Ni₃Al are shown in Fig. 1 along the principal symmetry axes in the Brillouin zone. Obtained band structures of MgCNi₃ and Ni₃Al are similar to previous calculations.^{5,9,13-18} As expected, the overall shape of the bands in the valence region resembles between MgCNi₃ and Ni₃AlB. The main difference is the width of the valence band. The C-s bands in MgCNi₃ are far from the Ni-*d* bands and are "inactive," but the B-s bands in Ni₃AlB nearly touches the Ni-d and B-p manifold at the R-point. Moreover, the hybridization between Ni-d and B-p orbitals is stronger than that of Ni-d and C-p orbitals, and thus the valence bandwidth of Ni₃AlB is larger than that of MgCNi₃ as a whole. We present the total and partial density of states (MT-sphere-projected DOS) in Fig. 2. The Ni-*d* bandwidth is roughly estimated as 0.20 Ry in MgCNi₃ and 0.26 Ry in Ni₃AlB. The role of the B atom is crucial: Al-p orbitals play an important role in Ni₃Al, but in the presence of the B-atom, the energy of the extended Al-*p* orbitals goes up and becomes almost inactive near the Fermi level. The characteristic van-Hove singularity (vHS) peak just below the Fermi level (E_F) is smeared out in NiAl₃, probably due to the hybridization of Al-p bands. Strong *p-d* hybridization in Ni₃Al and its boron-doping effect is also discussed by Sun et al.¹⁹ for Ni₃AlB_{1/3}.

Total and partial density of states (MT-sphere-projected DOS) of MgCNi₃, Ni₃AlB, and Ni₃Al are shown in Fig. 2. The DOS at the Fermi level $D(E_F)$ is 78 [states/Ry] in MgCNi₃, 33 [states/Ry] in Ni₃AlB, and 75 [states/Ry] in Ni₃Al. Thus there is no room for itinerant ferromagnetism in

FIG. 2. Density of states (DOS) curve for (a) MgCNi₃, (b) Ni₃AlB, and (c) Ni₃Al (in states per Ry and per unit cell). For (a) and (b), Ni-*d* bandwidth is estimated by the two peaks marked by triangles.

Ni₃AlB. The Ni-*d* bands of MgCNi₃ and Ni₃AlB are narrow in energy, compared to that of NiAl₃, due to the expansion of the lattice and thus due to a decrease of direct Ni–Ni interactions. The shape of the DOS curve closely resembles between Ni₃AlB and MgCNi₃. However, since the peak just below the E_F (vHS peak) is higher in MgCNi₃, $D(E_F)$ is about twice as high in MgCNi₃ compared to Ni₃AlB. We found that the analogous compound Ni₃AlC also has a sharp vHS peak, and its sharpness is comparable to that of MgCNi₃.²⁰ Thus we conclude that the sharpness of the vHS peak is mainly determined by the hybridization between

FIG. 3. A perspective view of FSs of (a) MgCNi₃, (b) Ni₃AlB, and (c) Ni₃Al. Very small FSs (14th and 15th, which contains 0.001 and 0.002 holes, respectively) are not shown. The center of each cube is the Γ -point.

Ni-*d* and B/C-*p* orbitals. A similar smearing of the vHS peak is also found in MgBNi₃.¹⁷ We confirmed that the sharpness of this vHS peak is almost unchanged when the lattice constant *a* in MgCNi₃ and Ni₃AlC is contracted by 5%.

The Fermi surfaces (FSs) of MgCNi₃, Ni₃AlB, and Ni₃Al are shown in Fig. 3. As is expected by the resemblance of the band structure of MgCNi₃ and Ni₃AlB, the FSs also have common features in MgCNi₃ and Ni₃AlB. Ni₃Al has definitely different FSs due to the different number of valence electrons and the strong hybridization of Al-p orbitals to the main Ni-d bands, which is suppressed in MgCNi3 and Ni₃AlB. There are two Fermi surfaces (18th hole and 19th electron bands) in MgCNi₃ and Ni₃AlB, and both are predicted to be compensated metals. Each FS contains 0.25 holes and 0.25 electrons in MgCNi₃, and 0.40 holes and 0.40 electrons in Ni₃AlB, respectively. There are mainly three differences between the FSs of MgCNi₃ and Ni₃AlB: First, the hole band in MgCNi₃ has a rather complex shape but that in Ni₃AlB is very simple pill-shaped centered at the X points. Second, the "jungle-gym" along the first BZ boundary is thin in MgCNi₃ and fat in Ni₃AlB. Finally the DOS of the hole band has 65 [states/Ry] in MgCNi₃ and 16 [states/Ry] in Ni₃AlB. This means that the hole FS is quite heavy in MgCNi₃ but is light in Ni₃AlB. This is mainly due to the above-mentioned vHS peak, which gives a large DOS and large carrier mass when it is sharp.

A plausible theory which reconciles the two abovementioned literally inconsistent experimental results (Hebel-Slichter peak in NMR and zero-bias anomaly in tunneling spectra) is presented by Voelker and Sigrist.²¹ This theory is essentially a multiband theory first presented by Agterberg.²² They noticed that MgCNi₃ has essentially two Fermi surfaces (FSs), one is the pill-shaped hole FS centered at X points, and the other is the electron FS centered at Γ point. The superconducting gap on the warped hole band has an extraordinary "*d*-wave" symmetry, and it competes with the ordinary s-wave-like gap on the electron band. The topology of the FSs used on this model is the same in Ni₃AlB, and thus the same model will be also applicable if Ni₃AlB is superconducting.

Next we consider the electron-phonon interaction in Ni₃AlB. The estimated electron-phonon coupling constant λ_{ph} is 0.67 in MgBNi_3 and 1.36 in MgCNi_3, assuming a Debye temperature $\Theta_D = 300 \text{ K.}^{17}$ This value crucially depends on the Debye temperature Θ_D and may give an upper bound to λ_{ph} . If we just substitute $D(E_F)$ for Ni₃AlB and use the McMillan formula one would obtain $\lambda_{ph} = 0.33$ and T_c =0.07 K. If, however, hole doping is possible and E_F is just on the vHS peak, we obtain $D(E_F) = 99.4$ [states/Ry], λ_{ph} =1.02 and T_c =15 K. Such hole doping may be possible by Mg substitution for Al, and/or off-stoichiometry of B. Note that in MgBNi₃, E_F already settles on the vHS peak and further increase of $D(E_F)$ is not expected by small carrier doping.¹⁷ In MgCNi₃, due to the strong ferromagnetic spin fluctuation, T_c is depressed significantly.⁹ In the case of Ni₃AlB, due to stronger hybridization of B-p orbitals, spin fluctuations will be suppressed and a higher T_c can be expected.

Finally we discuss the formation energy of Ni₃AlB. Ni₃AlB_x is synthesized so far only below $x \sim 0.15$ using conventional solid-state reaction method.¹⁰ We estimate the formation energy of Ni₃Al and Ni₃AlB as the following equations:

$$E(\text{Ni}_3\text{Al}) = 3E(\text{Ni}) + E(\text{Al}) + \Delta E_1,$$
$$E(\text{Ni}_3\text{AlB}) = 3E(\text{Ni}) + E(\text{Al}) + E(\text{B}) + \Delta E_2$$
$$= E(\text{Ni}_3\text{Al}) + E(\text{B}) + \Delta E_3,$$

where E(A) denotes the total energy of A-compound per formula unit obtained by this *ab initio* calculation.²³ We obtain

 $\Delta E_1 = -0.121$ Ry/atom = -38 kcal/mol,

 $\Delta E_2 = -0.098$ Ry/atom = -31 kcal/mol,

 $\Delta E_3 = +0.023$ Ry/atom = +7.2 kcal/mol.

The value of ΔE_1 is in good agreement with previous calculation.¹⁸ We see that Ni₃AlB is much more stable than Ni+Al+B, but slightly less stable than Ni₃Al+B. Neverthe-

less, it is possible that Ni_3AlB is in a metastable state. Even if Ni_3AlB itself cannot be synthesized, it may be possible to synthesize Ni_3AlB_x with more boron content *x* than was synthesized so far. In that case, our discussions above may also be applicable.

In summary, the electronic energy band structure has been calculated for MgCNi₃, Ni₃AlB, and Ni₃Al by the FLAPW method within LDA. Due to the strong hybridization between Ni-*d* and B-*p* orbitals, the shape of Fermi surfaces of Ni₃AlB is quite different from that of Ni₃Al. The shape and topology of the FSs of Ni₃AlB resemble those of MgCNi₃, while $D(E_F)$ of Ni₃AlB is about half that of MgCNi₃.

We thank T. Kanomata and K. Koyama for giving us unpublished work and for enlightening discussions. Numerical computation was mainly performed at the Tsukuba Advanced Computing Center at the Agency of Industrial Science and Technology.

*Electronic address: i.hase@aist.go.jp

- ¹T. He, Q. Huang, A. P. Ramire, Y. Wang, K. A. Rega, N. Rogado, M. A. Hayward, M. K. Haas, J. S. Slusky, K. Inumara, H. W. Zandbergen, N. P. Ong, and R. J. Cava, Nature (London) **411**, 54 (2001).
- ²C. Pfiderer, M. Uhlarz, S. M. Hayden, R. Vollmer, H. von Lohneysen, N. R. Bernhoeft, and G. G. Lonzarich, Nature (London) **412**, 58 (2001).
- ³S. S. Saxena, P. Agarwal, K. Ahilan, F. M. Grosche, R. K. W. Haselwimmer, N. J. Steiner, E. Pugh, I. R. Walker, S. R. Julian, P. Monthoux, G. G. Lonzarich, A. Huxley, I. Sheikin, C. Braithwaite, and J. Flouquet, Nature (London) **406**, 587 (2000).
- ⁴Y. Maeno, H. Hashimoto, K. Yoshida, S. Nishizaki, T. Fujita, J. G. Bednorz, and F. Lichtenberg, Nature (London) **372**, 572 (1994).
- ⁵H. Rosner, R. Weht, M. D. Johannes, W. E. Pickett, and E. Tosatti, Phys. Rev. Lett. **88**, 027001 (2002).
- ⁶Z. Q. Mao, M. M. Rosario, K. D. Nelson, K. Wu, I. G. Deac, P. Schiffer, Y. Liu, T. He, K. A. Regan, and R. J. Cava, Phys. Rev. B **67**, 094502 (2003).
- ⁷G. Kinoda, M. Nishiyama, Y. Zhao, M. Murakami, N. Koshizuka, and T. Hasegawa, Jpn. J. Appl. Phys., Part 2 40, L1365 (2001).
- ⁸P. M. Singer, T. Imai, T. He, M. A. Hayward, and R. J. Cava, Phys. Rev. Lett. **87**, 257601 (2001).
- ⁹D. J. Singh and I. I. Mazin, Phys. Rev. B **64**, 140507(R) (2001). ¹⁰T. Kanomata (unpublished).
- ¹¹A. Yanase, Fortran Program For Space Group (TSPACE) (in

Japanese) (Shokabo, Tokyo, 1995).

- ¹²O. Gunnarson and B. I. Lundqvist, Phys. Rev. B 13, 4274 (1976).
- ¹³J. H. Xu, B. I. Min, A. J. Freeman, and T. Oguchi, Phys. Rev. B 41, 5010 (1990), and references therein.
- ¹⁴G. Y. Guo, Y. K. Wang, and L. S. Hsu, J. Magn. Magn. Mater. 239, 91 (2002).
- ¹⁵ M. A. Hayward, M. K. Haas, A. P. Ramirez, T. He, K. A. Regan, N. Rogado, K. Inumaru, and R. J. Cava, Solid State Commun. **119**, 491 (2001).
- ¹⁶S. B. Dugdale and T. Jarlborg, Phys. Rev. B 64, 100508(R) (2001).
- ¹⁷J. H. Shim, S. K. Kwon, and B. I. Min, Phys. Rev. B 64, 180510(R) (2001).
- ¹⁸B. I. Min, A. J. Freeman, and H. J. F. Jansen, Phys. Rev. B **37**, 6757 (1988).
- ¹⁹S. N. Sun, N. Kioussis, S. P. Lim, A. Gonis, and W. H. Gourdin, Phys. Rev. B **52**, 14 421 (1995).
- ²⁰I. Hase (unpublished).
- ²¹K. Voelker and M. Sigrist, cond-mat/0208367.
- ²²D. F. Agterberg, V. Barzykin, and L. P. Gor'kov, Phys. Rev. B **60**, 14 868 (1999); Europhys. Lett. **48**, 449 (1999).
- ²³We used the experimental lattice constants for the total-energy calculation of α -B, fcc-Al, fcc-Ni, and Ni₃Al. For Ni₃AlB we used the optimized lattice constant a=3.765 Å. The convergence of the total energy for the change of parameters (K_{max} , and the number of **k**-points) are ~10 mRy per formula unit.