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Considering helically periodic structures with a twist defect, we define the defect mode in unbounded media
and the scattering properties of bounded samples. The mode frequency, the lifetime of the defect mode, and the
spectral width of the transmittance and reflectance peaks are expressed by fully analytic and very simple
equations, the simplest ones appearing in the literature of photonic band gap materials. Our approach provides
a clear explanation of the interesting optical properties of lossless samples with a twist defect and shows that
the absorption greatly changes such properties, giving rise to unexpected effects. In particular, the total ab-
sorption within thick samples can decrease drastically when the absorption coefficient is increased beyond a
well defined value.

DOI: 10.1103/PhysRevB.70.033103 PACS number(s): 42.70.Qs, 42.70.Df

Cholesteric liquid crystals have been the object of intense
research during the last century for their interesting optical
properties and because they are the unique periodic struc-
tures admitting analytic solutions of Maxwell equations
based on very simple algebraic expressions.1 Recently it has
been possible to insert defects in cholestericlike structures,
thus obtaining a type of photonic band gap materials,2 which
are of increasing interest for applications in linear and non-
linear optics.2–7 In this paper, we develop a general theory
for helical samples with twist defects, which extends to these
structures the modal analysis given in Ref. 1 for perfectly
periodic cholesterics.

At the two sides of the defect plane the electromagnetic
field can be written as a superposition of the four eigenwaves
1± and 2± of the periodic structure without defects. We con-
sider here axial propagation of monochromatic light in a lo-
cally uniaxial medium, optically defined by the permittivity
and permeability tensorseoe andmom, whose optical axis is
everywhere orthogonal to the axisx3 and rotates uniformly
alongx3. The well-known propagation equation can be writ-
ten asda /dx3= isv /cdHa, where

a =1
e1

e2

h1

h2

2 ; H =1
0 − iq̃ 0 m2

iq̃ 0 − m1 0

0 − e2 0 − iq̃

e1 0 iq̃ 0
2 , s1d

e1, e2, and h1, h2 are the components of the vectorse
=seo/mod1/4E, andh=smo/eod1/4H in the rotating frame hav-
ing the axisx1 along the optical axis;ei andmi si =1,2d are
the principal values ofe andm, respectively;q̃=qc/v, where
q=2p /p andp is the helix pitch. Notice that the propagation
equation contains a constant system matrixH, an unique case
in the literature of periodic media. The eigenwaves are
ã1,2

± sx3d=a1,2
± exp sivn1,2

± x3/cd, where the time factor
exps−ivtd is omitted;ni

± si =1,2d are the eigenvalues ofH,
given by the dispersion relation

n1,2
2 = a1 + q̃2 7 Îa2q̃

2 + a3
2, s2d

with a1;se1m2+e2m1d /2, a2;2a1+e1m1+e2m2, a3;se1m2

−e2m1d /2; andai
± are the corresponding eigenvectors, which

are defined by the ratios of their components and will be
normalized to unit energy density. Their polarization state is
defined by the ratio

re ; e2/e1 = iq̃nsm1 + m2d/sm2n
2 + m1q̃

2 − e2m1m2d, s3d

where n is given by Eq.(2), and by the ratiorh;h2/h1,
which is obtained by exchangingei andmi in Eq. (3).

When ei and mi are realn2 is real and the wave vectors
vn/c are real or purely imaginary. Only the modes 1± show
a band gap forv within v1=qc/Îe1m1 and v2=qc/Îe2m2,
wheren1

± are purely imaginary andre, rh are real, as shown
by Eq. (3). Thus, the eigenmodesã1

± are linearly polarized,
with e± and h± parallel to the optic axisx1 for v=v1. By
increasingv from v1 to v2 (we assume herev1,v2) e+, h+

ande−, h− rotate byp /2 in opposite senses. For each mode
e,h remain parallel during the rotation only ife1/m1
=e2/m2. For different values ofei mi they make an anglec
=cos−1fs1+rerhds1+re

2d−1/2s1+rh
2d−1/2g, which plays a main

role for the properties of the defect mode. The dependence of
c on v and on the material parameters is shown in Fig. 1.

FIG. 1. c versusv /vo, wherec is the angle between the vectors
e and h for the modes 1±, vo=sv1+v2d /2, e2=3, m2=1, e1/e2

=1.31,m1/m2=1,1.1,1.2, and 1.3(dotted, dashed, dash-dotted, and
solid lines, respectively). The magnetic anisotropy plays here the
role of a control parameter for the anglec.
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Within the gap the polarization of the eigenmodesa2
± is

nearly circular.
We consider now a lossless medium between the planes

x3=−, andx3=, with a discontinuity plane atx3=0, where
the optical axes at the two sides of the plane make an angle
2f (twist angle). For x3,0 the electromagnetic field can be
written asfasx3d=a1

+ã1
++a1

−ã1
−+a2

+ã2
++a2

−ã2
−. For x3.0 it has

a similar expressionfbsx3d with ai
± substituted by coefficients

bi
± and ãi

± by functionsb̃i
±, obtained fromãi

± by applying a
2f rotation to the vectorse and h. Within the gap ofun-
bounded structures, namely, in the limit,→`, the coeffi-
cients of the exponentially diverging eigenmodes must be
zero sa1

+=b1
−=0d. The coefficientsa1

− and b1
+ define alocal-

ized component, which depends onx3 as exps−ux3u,d
−1d,

where,d
−1=vun1u /c, whereas the coefficientsa2

± andb2
± define

a nonlocalizedcomponent. The six nonzero coefficients must
satisfy four continuity conditions, sincefas0d= fbs0d. For any
v within the gap they admit solutions witha1

−=b1
+=1 and

ua2
+u= ua2

−u= ub2
+u= ub2

−u=msvd. The ratiorsvd=1/2m2 between
the square amplitudes of the localized and nonlocalized com-
ponents has an enhanced maximum for a given frequencyvd,
as shown in Fig. 2. This solution defines therefore a quasilo-
calized defect mode with defect frequencyvd.

The width of the functionrsvd depends strongly on the
anglec plotted in Fig. 1. It is easy to show that whenc=0
the defect frequency satisfies the relation

2f = tan−1resvdd + tan−1rhsvdd, s4d

and thatmsvdd=0, rsvd=dsv−vdd. In fact for v=v1 the
vectorsea,eb of the eigenwaves 1± at the two sides of the
defect plane make an angle 2f, because they are parallel to
the local optical axes. By increasingv they rotate in opposite
senses and become coincident at the bisector of the twist
angle, namely, for a valuevd such thatresvdd=tanf. For
c=0, rh=re and the continuity conditions admit a solution
with msvdd=0. ForcÞ0, msvd is everywhere different from
zero and such to makee andh parallel to the bisector of the
twist angle.

The lifetime t of the quasilocalized mode in actual
samples is given by the ratio between the electromagnetic
energy stored by the sample and the total power of the out-
going waves. It depends on the sample thickness 2, and on
the impedance mismatch at its boundaries. In the limit case
of perfect matching the external and internal waves coincide.
Thus, the defect mode represents the stationary internal field
generated by two waves with identical amplitudes incident at
both sides of the sample. It is easy to findts,d if we neglect
the contribution of the nonlocalized component to the stored
energy. Within the above approximations

rsvd < rsvddf1 + a2sv − vdd2g−1, s5d

FIG. 2. r versussv−vdd /vd, wherer is the ratio between the
square amplitudes of the localized and nonlocalized components
andvd is the defect frequency. The twist angle is 45°, the values of
ei, mi, and the symbols of the curves are the same as in Fig. 1. The
solid curve is only partially within the figure since its maximum is
equal to 1.183105.

FIG. 3. Comparison between the inverse rela-
tive line widths vd/Dv of the transmittance
curves versus 2, /,d computed numerically(stars
and circles for left and right circularly polarized
waves, respectively), and the value derived from
the quantityt=sDvd−1 given by Eq. (6) (solid
line), in a sample with twist angle of 2f=90°,
e1=3.1, e2=3, m1=m2=1 within isotropic media
with e=3.05.
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ts,d <
rsvdd,df1 − exps− 2,/,ddg

2vmf1 + rsvddexps− 2,/,ddg
, s6d

where vd is given by Eq. (4); rsvdd=1/sin2sc /2d; a
=rsvdd,d/ s2vmd;ts`d andvm=2c/Îse1+e2d / sm1+m2d. The
internal field generated by a single external wave is the su-
perposition of the quasilocalized defect mode and of nonlo-
calized modes, since Maxwell equations admit four indepen-
dent solutions. It is quasilocalized but strongly asymmetric,
in agreement with the simulations cited in Ref. 3. Its lifetime
is still approximately given by Eq.(6), which for a small
impedance mismatch at the sample boundaries can be used to
compute the spectral widthDv;t−1 of the transmittance and
reflectance curves for any practical purpose, as shown in Fig.
3.

Let us now discuss how the above properties change in
the presence of absorption, by assuming that at least one of
the material parametersei, mi is complex (an exhaustive

theory of lossy media is beyond the aim of this paper). Equa-
tions (1)–(3), which are still valid, show that the eigenvalues
ni of H and the componentsei, hi of its eigenvectors become

complex. Thus, also the eigenwavesã2
+ and b̃2

− diverge for
,→` and must be discarded. The continuity conditions give
four homogeneous equations in the four variablessai

−,bi
+d,

which admit no solutions in general. The defect frequencyvd
corresponds to thev-value which minimizes the determinant
of the coefficients and is still approximately given by Eq.(4),
whereas Eqs.(5) and (6) lose their validity even for very
small values of the absorption coefficients, as a consequence
of the changes induced by absorption ine andh, and of the
critical role of the anglec between such vectors. In particu-
lar, the scattering properties of the defect plane change dras-
tically, as shown in Fig. 4.

On the basis of the previous analysis it is possible to
clearly explain the results already found numerically3,5 and
experimentally,4,6 and to find optical properties of samples

FIG. 4. Comparison between
the scattering properties of a twist
defect in lossless(upper curves)
and lossy(lower curves) media.
The figure gives the square
moduli ti j and r ij of the elements
of the scattering matrix of the de-
fect plane, giving its transmission
(solid lines) and reflection proper-
ties (dotted lines) versus 108sv
−vdd /vd in a sample with twist
angle 2f=p /50, e1=3.6 andm1

=m2=1; the indicesi, j refer to
the incident and scattered waves;
t11 and r11 are plotted inam; t21,
t12, r21, and r12 in bm; t22 and r22

in cm, wherem=0 corresponds to
e2=3, and m=1 to e2=3
+2 i 10−7. Note thatt11 practically
coincides withr11, t12 with r12, t21

with r21 st21! t12d, and that the
small imaginary part decreases
drastically the height of the peaks.

FIG. 5. Transmittance(solid
lines) and reflectance (dotted
lines) versus 2, /,d for RC-RC
samd, RC-LC and LC-RC sbmd,
LC-LC scmd polarization of
samples with(upper curves,m=1)
and without(lower curves,m=0)
the twist defect. The parameters
are the same as in Fig. 3.

BRIEF REPORTS PHYSICAL REVIEW B70, 033103(2004)

033103-3



with twist defects, some of which are expected to have an
acoustic analog.8 Only a very few such properties are dis-
cussed here, by considering right-handed samples with small
impedance mismatch at their boundaries without(Fig. 5) and
with (Fig. 6) absorption. In these samples the eigenwaves 1
and 2 are excited by right and left circularly(RC and LC)
polarized waves, respectively.

Figure 5 shows that the twist defect drastically changes
the transmittance and reflectance curves of the sample.
Obviously, in the limit of vanishing thicknesss,→0d
the incident wave is in any case totally transmitted. By
increasing ,, the RC-RC transmittance curves decrease
and the reflectance curves increase, as expected. The twist
defect shifts by an order of magnitude the crossover length
,c where the two curves intersect because it greatly enhances
the amplitude of the eigenwave 1, as shown in Fig. 4sa0d.

It has more dramatic effects on the LC-LC curves[compare
Figs. 5(c0) with 5 (c1)]. For ,@,c the sample reflects totally
the LC waves, as suggested by the dotted curve of
Fig. 4 (c0). For ,<,c the LC-LC curves intersect and
mode-exchange peaks appear[Fig. 5 (b1)], as a consequence
of the scattering properties of the defect plane shown
in Fig. 4 (b0) and of the interference between the waves
reflected at the defect plane and at the sample boundaries.
The interesting effect found numerically by Kopp and
Genack,3 namely, the fact that the full curve of Fig. 5(a1)
and the dotted curve of Fig. 5(c1) cross, receives here a clear
explanation. An even more surprising effect of the twist de-
fect is that the LC-LC curves of Fig. 5(c1) become practi-
cally coincident with the RC-RC curves of Fig. 5(a1).

Figure 6 shows that in lossy media an increase of the
absorption parametere9 does not decrease but hugely in-
creases the transmittance(solid line), which goes from zero
to nearly one in thee9-interval where the reflection peak of
Fig. 4 (c0) disappears. An even more surprising effect con-
cerns the total absorption within the sample(dotted line). In
fact, in a largee9-interval an increase of the absorption pa-
rametere9 drastically decreases the absorbance, which be-
comes practically the same as in a sample without the twist
defect(dashed line). In this interval the peaks shown in Figs.
4(a)–4(c) practically disappear. This is an effect which over-
comes the well-known effects of dissipation.

In conclusion, the theory developed here:(i) explains the
scattering properties of lossless samples with a twist defect
already found numerically and allows us to find other prop-
erties;(ii ) shows that even a very small absorption destroys
the optical effects due to the presence of the defect, giving
rise to different and unexpected effects; and(iii ) provides a
solid basis for future research and applications since it evi-
dences the existence of very critical parameters and defines
frequency, lifetime, and spectral width of the defect mode by
fully analytic and very simple equations; to our knowledge
they are the simplest ones appearing in the literature of pho-
tonic band gap materials. For such reasons the interest of the
developed theory goes beyond the helical structures consid-
ered here.
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FIG. 6. LC-LC transmittance(solid line) and absorbance(dotted
line) versuse9 in a sample with,=6,d, twist angle ofp /50, e1

=3.6, e28=3+ie9, m1=m2=1. The dashed line gives the absorbance
in a sample with the same material parameters but without the twist
defect.
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