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A variety of the I –V characteristics observed in a stack of intrinsic Josephson junctions is systematically
explained in terms of the dynamics of the localized rotating mode in the discrete nonlinear systems. We clarify
the effect of the capacitive coupling constant on theI –V characteristics, using the capacitively coupled Jo-
sephson junction model. The branch structure in theI –V characteristics changes from an assembly of equi-
distance branches to a single hysteresis-loop-like structure as the capacitive coupling constant increases. This
behavior is in accordance with experiments. We predict that dynamical transitions between collective rotating
states take place in the resistive state of a stack of intrinsic Josephson junctions in the strong capacitive
coupling regime. These transitions create step-like structure in theI –V characteristics, which is observed in
La1−xSrxCuO4−d.
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I. INTRODUCTION

Layered high-Tc superconductors can be considered as
naturally stacked Josephson junctions(intrinsic Josephson
junctions).1 The dynamics of the superconducting phase dif-
ferences in the intrinsic Josephson junctions have attracted a
great interest. It is well known that the phase differences in
the intrinsic Josephson junctions are affected by the induc-
tive coupling between junctions in the presence of a mag-
netic field and also by the charge-imbalance effect2 and the
phonon effect.3 Furthermore, since the superconducting lay-
ers forming the junctions are extremely thin in the intrinsic
Josephson junctions, a type of capacitive coupling appears
between the junctions, which originates from the breakdown
of the charge neutrality in thin superconducting layers as
discussed in Refs. 4 and 5. The capacitive coupling domi-
nates the phase dynamics of the intrinsic Josephson junctions
when no external magnetic field is applied and the charge
imbalancing effect can be neglected. A new model which
describes the phase dynamics of an array of capacitvely
coupled Josephson junctions(CCJJ) was proposed in Refs. 4
and 5. Thec-axis I –V characteristics of Bi-2212 under no
external magnetic field has been successfully analyzed on the
basis of this model.4–6

In this paper, we present a systematic study for the dy-
namics of the CCJJ model, focusing on the dependence of
the phase dynamics on the strength of the capacitive cou-
pling constant from weak to strong coupling regimes. The
charge imbalance effect is not considered in this paper. As
discussed in Ref. 6, this effect may be incorporated phenom-
enologically into our model by including a Drude-like damp-
ing term in the capacitive coupling constant, which describes
the relaxation of total charge. The effect is important for a
quantitativeanalysis of theI –V charactristics of a stack of
intrinsic Josephson junctions, but it cannot explain the large
difference in theI –V characteristics between Bi2Sr2CaCu2O8

sBi-2212d with a weak capacitive coupling constant and
La1−xSrxCuO4−d sLSCOd with a strong one. Then, the effect
is ignored in the present paper for theoretical clearness.7

It is known that the CCJJ model shows two types of
dynamics5,6,8 i.e., the plane-wave like propagating mode
called the longitudinal Josephson plasma4,5 and the localized
rotating-mode peculiar to the discrete nonlinear systems.9

Both modes have been detected in high-Tc superconductors,
namely the longitudinal Josephson plasma has been found in
the microwave absorption experiments in Bi-221210 and the
latter localized mode has been identified to be the origin of
the multiple-branch structure in theI –V characteristics of
Bi-2212.5,11 From this fact a stack of intrinsic Josephson
junctions is understood to be the realistic discrete nonlinear
system having the intrinsic localized excitation modes.
Hence, using the CCJJ model, one can study the dynamics of
both linear propagating mode and the nonlinear localized one
in detail, which is currently under intensive studies in non-
linear physics.12

There are two mechanisms which cause the localization in
dynamical systems. As is well known, phonons, conduction
electrons, etc. in low dimensional systems are localized by
the effect of randomly distributed disorders. The localization
of this kind originates from the lack of translational invari-
ance. There is another type of localization phenomena being
independent of disorders, which stems from the lattice dis-
creteness and the nonlinear interaction in a dynamidal
system.12 The localized mode of this kind is called the non-
linear localized mode or the discrete breathers.12 It has been
reported that these localized modes have been detected in
lattice-vibration modes13 and spin-wave excitations14 in
some crystal lattices and also in the phase-oscillation modes
in conventional Josephson junctions.15 However, these exci-
tations are rather special, and the experimental confirmations
are not easily accessible in these systems.

Recently, it has been recognized that the capacitive cou-
pling constant takes various values covering the weak to
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strong coupling regimes in high-Tc superconductors and also
in layered organic superconductors, that is, the capacitive
coupling is tunable in these systems. This fact indicates that
the systematic studies on the nonlinear localized modes are
possible under various values of the nonlinear coupling con-
stant in a stack of intrinsic Josephson junctions. Figure 1
shows roughly estimated values of the capacitive coupling
constanta defined asa=em2/sD in several high-Tc super-
conductors, wheree, m, s, andD are the dielectric constant
of the block layers, the charge screening length of the super-
conducting layers, the thickness of the superconducting, and
the insulating layers, respectively.4 For example, we finda
.0.1 in Bi2Sr2CaCu2O8 sBi-2212d, a.0.4 in
SmLa1−xSrxCuO4−d,

17 and a.1.0–3.0 in
La1−xSrxCuO4−d sLSCOd. These values were evaluated by
the analysis of the experimental data for thec-axis transport
or optical properties. From these results one understands that
Bi-2212 is in the weak-coupling regimesa!1.0d, whereas
LSCO is in the relatively strong-coupling regimesa.1d.
The I –V characteristics in the weak coupling regimes are
very different from that in the strong one, that is, they de-
pends strongly ona. Here, we briefly summarize the differ-
ence in theI –V characteristics between Bi-2212 and LSCO.
In Bi-2212 the multiple branch structure is commonly seen
in the I –V characteristics.20 The number of branches is un-
derstood to be nearly equal to the number of junctions. On
the other hand, the multiple branch structure is not seen in
LSCO and a single or a few hysteresis loops constitute the
I –V characteristics.18 The step-like structure with an almost
equal spacing, which is not seen in Bi-2212, is also observed
on the resistive branch in LSCO, indicating some dynamical
instabilities taking place at the steps.18

In this paper we present a systematic study on the nonlin-
ear localized modes covering both strong and weak coupling
regimes, using the CCJJ model. TheI –V characteristics is
investigated as a function of the capacitive coupling constant
a. We clarify the change in the dynamics of the localized
rotating modes as the coupling constant increases. It is also
shown that a series of dynamical transitions, as observed in
LSCO, takes place in the strong coupling regime. At the
transition points the collective motion of the localized rotat-
ing modes changes.

II. MODEL AND NUMERICAL SIMULATION

In the CCJJ model the dynamics of the gauge-invariant
phase differenceP,+1,,std s;u,+1−u,−f0/2pe,

,+1 Azdzd be-

tween,th ands,+1d-th superconducting layers is described
by the equation:

1

vp
2]t

2P,+1,,std +
b

vp
]tP,+1,,std + sinP,+1,,std

= afsin P,+2,,+1std − 2 sinP,+1,,std + sinP,,,−1stdg + I/ jc,

s1d

wherevp, jc, and I are, respectively, the plasma frequency,
the Josephson critical current, and the external dc current,
and b is related with the McCumber parameterbc as b
=1/Îbc.

5 Note that the CCJJ model is different from the
conventional RCSJ(resistively and capacitively shunted
junction) model only by the term includinga which gives
the coupling between junctions stemming from the charging
effect. We also notice that the dynamical system described by
Eq. (1) is equivalent to an array of nonlinearly coupled pen-
dulums. In deriving Eq.(1) we assume the relation between
the charge densityr, in ,th superconducting layer and the
scalar potentialw, as

FIG. 2. The branch structure in theI –V characteristics in four-
junction systems:(a) a=0.10, (b) a=1.00, and(c) a=10.0 The
periodic boundary condition is imposed.(d) Schematic view for the
two nonequivalent configurations in the periodic boundary condi-
tion in which two localized rotating modes are excited;(e) the a
dependence of the first branch.

FIG. 1. Estimated values of the capacitive coupling constanta
in high-Tc superconductors: Bi2Sr2CaCu2O8 sBi-2212d (Refs. 5 and
8), Tl2Ba2CaCu2O8 sTl-2212d (Ref. 16), Tl2Ba2CuO6 sTl-2201d
(Ref. 16), SmLa1−xSrxCuO4−d sSmLSCOd (Ref. 17),
La1−xSrxCuO4−d sLSCOd (Ref. 18), and YBa2CaCu3O7−d sd=0.3
,0.5d sYBCOd (Ref. 19). These values are roughly evaluated by
using material parameters(dielectric constant and lattice constant)
and (or) by the analysis of theI –V characteristics.
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r, = −
1

4ple
2Sw, +

f0

2pc

]u,

]t
D . s2d

The charger, given in Eq.(2), which induces the capacitive
coupling between junctions, cannot be neglected in the
present intrinsic Josephson junctions, though it is negligibly
small in conventional systems. In the presence ofr, the Jo-
sephson relation between voltageV,+1,, and time derivative
of the phase difference(rotating velocity) ]P,+1,, /]t is gen-
eralized as4,5

f0

2pc

]P,+1,,

]t
= af− V,,,−1 + s2 + 1/adV,+1,, − V,+2,,+1g.

s3d

Thus, the voltage in a junction site depends not only on the
on-site rotating velocity but also on those in the neighboring
junctions. In this paper we solve Eq.(1) in the range of
0.0,a,10.0 and examine how the dynamics of the phase
differences changes with varying the value ofa.

The numerical procedure is summarized as follows. First,
we solve Eq.(1) for various fixed values ofI and obtain the

FIG. 3. (Color online) (a) Voltage distribution(Ref. 21) in the first branch fora=0.10 anda=5.00. The periodic boundary condition is
imposed on the system withN=40; (b) distribution ofdP,+1,, / sdtd.

FIG. 4. (a) I –V characteristics for three dif-
ferent values ofa. TheI –V curves fora=3.0 and
5.0 are moved upward for avoiding the overlap.
Step-like structure appears at the positions indi-
cated by arrows;(b) the voltage dependence of
dV/dI. A few high peaks are clearly distinguish-
able, and their voltage positions are assigned as
Vg1, Vg2, andVg3 from the low voltage side;(c)
the a dependence ofVg1, Vg2, andVg3.
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time-dependent phase differences, using the fourth-order
Runge–Kutta algorithm. To avoid the boundary effect which
breaks the translational symmetry of the system, we adopt
the periodic boundary condition in the present calculations.
The voltage appearing in each junction,V,+1,,, is obtained
using the generalized Josephson relation given in Eq.(3),
from which one can acquire the current-biasedI –V charac-
teristics. In the numerical simulations we search all kinds of
stable rotating motion in this system under a fixed current
value I by running parallel simulations over more than 100
CPU for randomly selected initial conditions. After sufficient

long time, the system reaches a certain steady state depend-
ing on the initial condition. For example, in the case ofI
=0.5jc in a four-junction system the time-averaged total volt-
age converges on one of six values, depending on the initial
conditions in the weak coupling case, i.e.,a=0.1, as seen in
Fig. 2(a). When the time-averaged total voltages in the
steady states are plotted as a function of the bias current, one
obtains theI –V characteristics, as seen in Figs. 2(a)–2(c). In
the weak coupling regimesa,1d, the multiple branch struc-
ture with nearly equal spacing appears in theI –V character-
istics. In this case we have five resistive branches, though the
number of junctions is 4 in this system. The branches are
numbered from 1 to 5 in ascending order of voltages. In the
first branch the localized rotating mode appears on one of the
four junctions, while it appears on two sites in the second
and the third branches. As seen in Fig. 2(d), there are two
nonequivalent configurations in the case where the number
of rotating sites is two in the periodic boundary condition,
i.e., the confugurations in which alternate junctions or two
consecutive junctions are resistive. These two configurations
are not degenerate in the presence of the capacitive coupling
and then theirI –V curves weakly separate out and form a
pair. Such pairs of theI –V curves have been frequently ob-
served in the intrinsic Josephson junctions(Bi-2212).22

Let us next investigate the case with a larger value ofa.
As seen in Fig. 2(b), the resistive branches from 1 to 4 shift
towards the higher voltage side asa is increased. Further-
more, in the case ofa=10.0 all the branches reach the out-
ermost one as seen in Fig. 2(c). In this region all the junc-
tions are in the rotating state, that is, the localized rotating
state is not stable in the strong coupling region. TheI –V
characteristics similar to that given in Figs. 2(b) and 2(c)
have been observed in the intrinsic Josephson junction sys-
tems, as well.18 Let us now focus on the voltage shift in the
first branch with increase of the value ofa. Figure 2(e)
shows the shifts for three different values ofa. As seen in
this figure, the first hysteresis loop expands as the capacitive
coupling increases. This effect is understood in the following
way. Whena becomes larger, the number of charging super-
conducting layers near the rotating junction site is increased
(see below), that is, the charging energy in the system in-
creases with increasing the value of the capacitive coupling
constant. Then, the resistive branch shifts towards the higher
voltage side.

Let us next examine thea dependence of the isolated
localized rotating modes in more detail.8 Figure 3(a) shows
the spatial variation of the local voltage21 in the system com-
posed of 40 junctions in the weaksa=0.1d and strongsa
=5.0d coupling regions under a fixed bias current. In Fig.
3(b), we also plot the rotation velocity in this case, i.e., the
time average ofdP,+1,, / sdtd. From these figures one can see
that the rotating motion is confined within a single junction
site in both cases, but the voltage is not confined in the
rotating junction site but is widely distributed over many
junctions especially in the strong coupling case. This result
indicates that the voltage required to excite a localized rotat-
ing mode increases as the capacitive coupling becomes larger
[see Fig. 2(e)].8 Consequently, the switching probabilty from
an oscillating state to a localized rotating one is suppressed
in the strong coupling region. The multiple branch structure

FIG. 5. (a) I –V characteristics fora=3.0. The site distributions
of kdP,+1,, /dtl, (b) above, and(c) belowVg1, (d) belowVg2, and(e)
below Vg3.
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is, thus, hardly realized in the strong coupling region. This
result explains why the multiple branch structure is not ob-
served in LSCO with a larger value ofa.18

Next, we study the collective rotating states in which sev-
eral junctions are in the rotating state. We concentrate on the
outermost resistive branch in the CCJJ model. Uematsuet al.
found regular step-like structures in theI –V characteristics
in LSCO.18 They claim that this structure originates from the
resonance with the longitudinal Josephson plasma.18 To
clarify the origin we perform more elaborate simulations in a
system of 100 junctions under the periodic boundary condi-
tion. In these simulations, the current is decreased from
1.2j c to 0.0jc to simulate the experimental situations. Figure
4(a) shows theI –V curves for three different values ofa,
i.e., a=1.0, 3.0, and 5.0. The step-like structure appears at
the positions indicated by arrows on these curves. To make
the positions of the steps clear we also plotdV/dI in these
three cases in Fig. 4(b). We select three large peaks having
peak values bigger than 500 in each case in Fig. 4(b) and
denote the voltage values giving these peaks byVg1, Vg2, and
Vg3 in order of decreasing voltage. Thea dependence of
these voltages is presented in Fig. 4(c). AlthoughVg2 andVg3
show large fluctuations, these voltages are basically increas-
ing functions ofa and then the separations between the peak
voltages increase asa becomes larger. In order that these
steps are distinguishable in theI –V curves these voltage val-
ues must be well separated with each other, that is,a should
be large enough. This result is consistent with the experimen-
tal fact that the step-like structure is clearly seen in LSCO,
but is not in Bi-2212, sincea is large in LSCO but is very
small in Bi-2212.

Now, let us study what occurs at the steps in theI –V
characteristics. We focus on a typical case ofa=3.0 below.
Figure 5(a) shows theI –V characteristics in the case ofa
=3.0, in which the three steps are clearly seen. The spatial
distributions of the time-averaged velocitieskdP,+1,, /dtl
above and below the first stepVg1 are presented in Figs. 5(b)
and 5(c). Below Vg1 about a half of the junctions changes to
the nonrotating state. The average valueskdP,+1,, /dtl on the
junction sites being in the rotating state are sorted into ap-
proximately four values and show the glassy-like disribution.
We call this state the rotating rotor glass in which some
localized modes are closely overlapped and the others are
separated irregularly. The pattern ofkdP,+1,, /dtl is stable
until the current is decreased to the value giving the next step
at Vg2. Furthermore, we notice that the averageskdP,+1,, /dtl

in the rotating sites seen in Fig. 5(c) are larger than the value
in the homogeneous rotating state in Fig. 5(b). This is be-
cause the voltage appearing at the rotating sites compensates
the decrease at the nonrotating sites to keep the total voltage
nearly the same, which implies that the localization of energy
rapidly occurs at the instability point without a large mount
of energy relaxation. AtVg2 sVg3d the velocity pattern
changes from(c) to (d) [from (d) to (e)]. At these steps the
number of rotating sites is found to be decreased. This result
indicates that some of the rotating sites instantaneously ab-
sorb the energy of the other rotating sites at these steps. The
transitions between the rotating rotor glasses will be seen in
other measurements. For example, the spectrum of the Jo-
sephson emission is expected to change when one goes
through the steps.

III. SUMMARY

In summary, we performed numerical simulations for the
CCJJ model to clarify the origin of the variety observed in
the I –V characteristics of high-Tc cuprates. We studied the
behavior of the localized rotating modes for various values
of the coupling constanta and proved that the dynamics of
these localized modes primarily determines theI –V charac-
teristics. Since the energy required to excite the localized
rotating modes increases as the capacitive coupling in-
creases, several junctions collectively rotate. As a result, the
equidistant multiple-branch structure disappears in the strong
coupling systems. This result explains why the multiple
branch structure is not observed in LSCO. We also found that
the transitions between the dynamical states occur in the
current-decreasing process in the strong coupling regime. At
these transitions the spatial pattern of the rotating motion
changes and the system goes into the glassy phases. These
transitions create step-like structure in theI –V curves, which
has been observed in LSCO. We emphasize that a stack of
intrinsic Josephson junctions is the best system in which sys-
tematic studies on the localized rotating modes are possible.
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