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By irradiating with a single ultrafast laser pulse a superconducting electrode of a Josephson junction, it is
possible to drive the quasiparticles(qp’s) distribution strongly out of equilibrium. The behavior of the Joseph-
son device can, thus, be modified on a fast time scale, shorter than the qp’s relaxation time. This could be very
useful, in that it allows fast control of Josephson charge qubits and, in general, of all Josephson devices. If the
energy released to the top layer contactS1 of the junction is of the order of,mJ, the coherence is not
degradated because the perturbation is very fast. Within the framework of the quasiclassical Keldysh Green’s
function theory, we find that the order parameter ofS1 decreases. We study the perturbed dynamics of the
junction, when the current bias is close to the critical current, by integrating numerically its classical equation
of motion. The optical ultrafast pulse can produce switchings of the junction from the Josephson state to the
voltage state. The switches can be controlled by tuning the laser light intensity, the pulse duration, and the bias
current of the Josephson junction.
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I. INTRODUCTION

The characteristic frequency in the dynamics of a Joseph-
son junction(JJ) is the so-called Josephson plasma frequency
vpJ (e.g., 10–100 GHz). Coupling of a JJ to a microwave
field leads to the well-known lock-in conditions, which show
up as Shapiro steps in the I/V characteristic. On the other
hand, photo-response to radiation in a superconductor in-
duces heat relaxation(bolometric effect1) and nonequilib-
rium generation of quasiparticles(qp).2,3 Both phenomena
are extensively studied since they are relevant for the fabri-
cation of fast and sensitive detectors. The models used are
phenomenological,4–8 mainly involving different tempera-
tures associated to separate distributions of electrons and
phonons out of equilibrium.

Recently, laser light with pulses of femtosecond duration
tcP s10−14 s,10−13 sd has become available as a source to
test the photo-response of a JJ(Ref. 7). Ultrafast pulses can
be extremely useful, in that they allow studying an unex-
plored regime in nonequilibrium superconductivity. Indeed,
photon absorption, by creating electron-holese-hd pairs at
very high energies, drives the qp energy distribution out of
equilibrium during the timetc. The qp nonequilibrium dis-
tribution depends on the energy relaxation time parametertE,
defined as the time by which a “hot” electron is thermalized
by repeated scatterings with other electrons or phonons. The
process involves generation of many qp’s during energy deg-
radation until the system relaxes back to the equilibrium dis-
tribution functionnosvd. This time scale is determined by the
electron-electron interaction timete-e and the electron-
phonon interaction timete-ph, which are strongly material
dependent,9 ranging from 4310−7 s for Al to 1.5310−10 s
for Nb. In this work we analyze the possibility that, keeping
temperature quite low, ultrashort laser radiation induces di-
rect switches out of the Josephson conduction state at zero
voltage due to coherent reduction of the critical currentJc.

There are many reasons for the switching from the zero to
the resistive state in a Josephson junction. Among these,
thermal escape,10 quantum tunneling,11 latching logic
circuits,12 and pulse-assisted escape.13 A clear-cut discrimi-
nation between different mechanisms can be difficult to
achieve. In our case quantum escape is ruled out because the
temperature is not expected to be low enough. Also, we as-
sume that there is no external circuit to induce switching and
reset of the zero voltage state as in latching logic elements.

Pulse-assisted escape is a generic term for a large class of
phenomena including, in principle, bolometric heating of the
junction, which is reset in relatively slow times.2 Production
of qp’s generated by x-ray radiation has been studied up to
recently.14,15A cascade follows, which increases the number
of excitations and lowers their energy down to the typical
phonon energyvD in a duration time, that is of the order of
nanoseconds. Subsequently, qp’s decay by heating the
sample. However, the power of the laser can be reduced
enough and both the substrate and the geometry can be cho-
sen such that the energy released by the radiation on the
junction can be small. On the other hand, appropriate experi-
mental conditions can make the time interval between two
pulses long enough so that the bolometric response is negli-
gible.

Generally speaking, junctions are more sensitive to
pulses, especially when their harmonic content is close to
vpJ; but this is not our case. In fact the laser carrier fre-
quencysV,100 THzd is quite high compared tovpJ and we
consider the caseV@tc

−1.vpJ.tE
−1, what implies that little

relaxation takes place during the duration of the pulse.tc
should also be shorter than the pair-breaking time" /Do
,1–5 ps. HereDo is the unperturbed gap parameter. Our
approach assumes that, on a time scale intermediate between
the pulse duration and the relaxation time,tE, the order
parameter of the irradiated superconductor is sensitive to the
nonequilibrium qp distribution, which modulates it coher-
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ently till it switches out of the zero voltage state.
To analyze the dynamics of the order parameter and how

the latter affects the Josephson current, we adopt a nonequi-
librium formalism based on quasiclassical Green’s
functions.16,17 The quasiclassical approach has been mostly
used in the past in connection with the proximity effect,17 as
well as with nonequilibrium due to other space inhomogene-
ity conditions.18 In this paper, its extension to nonequilibrium
in time is applied to a coherent response after an ultrafast
laser irradiation.

The quasiclassical approximation to the Gorkov equations
is obtained by averaging over the period of the optical fre-
quencyV, which is a fast time scale.19 Our equations include
the physics of the cascade process, which occurs when one
focuses on the kinetics of the qp diffusion. A kinetic-equation
approach to the steady-state nonequilibrium qp distribution,
including phonon scattering, has been developed in Ref. 21,
for light irradiation, mostly in the microwave range. The cas-
cade regime is extensively discussed in Ref. 15, however, it
will not be specifically addressed here.

Instead, if the switching of the irradiated superconductor
due to the ultrafast pulse takes place prior to the occurrence
of qp relaxation, an approximate solution of the dynamical
equations can be derived that describes an instantaneous re-
sponse of the order parameter.

We take a low-Tc JJ with ans-wave order parameter as
the reference case(e.g., a high-quality Nb or Al junction) and
T!Tc. The optical penetration depth of the laser lightld in
the topmost superconductor exposed to radiationS1 is as-
sumed to be shorter than its thickness, so that any modifica-
tion induced by the radiation field only involvesS1 itself2

[see Fig. 1]. In a small size JJ the spatial variation of the
order parameter along the lateral dimension ofS1 is not
taken into account, except when the qp diffusion process
cannot be ignored.

We consider just one pulse of the given durationtc, which
releases the energyE per pulse, by excitinge-h pairs and by
creating a nonequilibrium distribution of qp’s. A related di-
mensionless quantityq, as defined in Eq.(7), parametrizes
the strength of the perturbation due to the radiation. The
perturbation is assumed to be small so that only the lowest
order in the expansion inq is retained. This allows us to
derive a temporary reduction of the order parameterD in-
duced by the pulse, as shown in Fig. 2. We do not give a
detailed description for the relaxation of the nonthermal qp
distribution in the irradiated superconductor. The self-energy
terms corresponding to this process require further analysis.
According to the Eliashberg formulation9 these terms affect

the qp amplitudeZsvd introducing changes in the phonon
distribution and retardation in the response. Nevertheless, we
expect that these self-energy terms become effective only on
a longer time scale after the laser pulse. Our equations pin-
point a nonretarded evolution of the order parameter prior to
relaxation, which implies a reduction of the critical current.
This shows that the coherent modulation of the gap param-
eter can produce switching of the junction out of the Joseph-
son state.

The switches are studied numerically by solving the clas-
sical equation of motion of a current-biased JJ with currentJ
close to the critical curentJc, during the excitation process.
After the switching, the dissipation in not treated self-
consistently: a standard dissipation, typical of thermal equi-
librium, is assumed in the JJ dynamics by adding a conduc-
tance term in the numerical simulation. We stress that the
assumed model for dissipation determines the actual qp
branch of the I-V characteristics, but does not substantially
affect the switching probability. The switching from the Jo-
sephson state to the voltage state in the parameter space
sq,tc,J/Jcd is reported in Fig. 5. Interestingly, we find that
for fixed value of q and J/Jc there is an optimum pulse
duration to achieve the strongest sensitivity of the junction to
the switching process. We show that this is due to the way
how the nonequilibrium qp distribution affects the pairing in
S1. The paper is organized as follows.

In Sec. II we calculate the nonequilibrium qp distributions
immediately after the pulse, prior to relaxation. In Sec. III we
introduce the time-dependent quasiclassical Keldysh Green’s
functions formalism extended to the time domain, using the
general frame given in Appendix A. We calculate the correc-
tion to the single-particle propagators to first order inq. A
correction to the gap and to the Josephson critical current
follows due to the laser pulse. In Sec. IV the dynamics of the
JJ after the pulse is simulated numerically. Finally, a sum-
mary of our results is given in Sec. V.

Appendix A collects the formulas of the quasiclassical
approximation in the nonequilibrium Keldysh theory, which
are used in the core of the paper. In Appendix B we derive
the kinetic equation for the nonequilibrium distribution func-
tion, which drives the relaxation of the system. The equa-
tions of motion for the quasiclassical retarded Green’s func-
tion is reported in Appendix C, while the equation of motion
for the advanced and Keldysh Green’s function can be de-
rived in the same way.

II. THE NONEQUILIBRIUM QP DISTRIBUTION

A. Nonequilibrium electron-hole pair excitations induced
by optical irradiation

The optical frequenciessV,100 THzd building the
wavepacket of the laser pulse excitee−h pairs at high ener-
gies. As explained in the Introduction the nonequilibrium
arising from the alteration of the qp distribution has a relax-
ation timetE, which is long compared to the optical period:
VtE@1. In addition to this, the duration of the pulsetc
,vc

−1 is even shorter than the pair breaking time, so that we
expect that, in our case, dissipative phenomena do not affect
the coherence of the superconductor on the time scaletc.

FIG. 1. Sketch of the Josephson junction exposed to a laser
radiation pulse.
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qp’s are generated as if the metal were normal because
superconductivity doesn’t play any role in their excitation at
large energies. They propagate according to something very
much like the free-particle time-ordered Green’s functiongo
(from now on"=1):

go
Tsk;t − t8d ; − ikTfckstdck

†st8dgl

= − ie−ijst−t8dfs1 − nkdust − t8d

− nkus− t + t8dg. s1d

Herej is the qp energy with momentumk and is measured
from the chemical potentialm. nk is the qp distribution func-
tion. We assume thate−h symmetry is conserved in the ex-
citation process, so thatm is not altered with respect to its
equilibrium value.

The equation of motion for the Green’s functiong̃ in the
presence of the radiation field is:

Si
]

]t
−

1

2m
f¹W r −

e

c
AW srW,RW ,tdg2 + mDg̃srW,RW ,t,t8d = dsrddst − t8d,

s2d

rW is the relative space coordinate, whileRW is the center-of-
mass coordinate. The vector potential is a wave packet cen-
tered at frequencyV according to:

AW srW,RW ,td = o
±

o
pW

aW±spW ,RW ,tde7ispW·rW−Vtd. s3d

HereaW± are slowly varying “envelope” functions ofRW on the
size of the irradiated spot and on the time scaleV−1. We look
for solutions of Eq.(2) in the form:

g̃srW,RW ;t,t8d = gsrW,RW ;t,t8d + o
±

o
pW

g±spW ,RW ,t,t8de7ispW·rW−Vtd,

s4d

whereg and g± are slowly varying functions ofRW and t on
the same scales. A similar expansion can be done w.r.t. the
variable t8. Following Eq. (4), a decomposition of Eq.(2)
into harmonics arises.19 We define the zero-order harmonic
equation as the one that does not contain exponentialse±iVt.
By averaging over a periodV−1 we neglect harmonics of
order two or higher. This amounts to include only one-
photon excitation processes, with released energyE. Some
extra details can be found in Appendix A:

Si
]

]t
+

1

2m
¹r

2 +
e2

mc2 o
pW8,pW9

aW+spW8,RW ,tdaW−spW9,RW ,td

3eispW8−pW9d·rW + mDgsrW,RW ,t,t8d = dsrddst − t8d.

Fourier transforming w.r.t.rW srW→pW →jd we have:

Fi
]

]t
− S p2

2m
− mDGgspW ,RW ,t,t8d

+
e2

mc2 o
pW8,pW9

aW+spW8,RW ,tdaW−spW9,RW ,tdgspW8 − pW9 − pW ,RW ,t,t8d

= dst − t8d. s5d

The radiation field generates and annihilates high-energye
−h pairs. Hence we assume that the forcing term conserves
the total impulse,pW8+pW9,0, but pW8−pW9 transfers an energy
2j to the electrons. Therefore, we take the coupling term in
the Hamiltonian as:

e2

mc2aW+spW8,RW ,tdaW−spW9,RW ,td → q
vc

Îp
e−1

2
vc

2t2ds2j + j8ddspW8 + pW9d.

s6d

A Gaussian-shaped time dependence has been chosen for the
pulse with half-widthvc

−1, while the space dependence has
been neglected for simplicity. In Eq.(6) the dimensionless
quantity appears as follows:

q ,
e2

c

vD

V

«

mV2Ro
2 , s7d

whereRo is the laser spot[see Eq.(16)]. Here the number of
excited e−h pairs is ,V /vD, with vD the Debye energy.
Experiments2,7 show that the energy released by the pulse
can be very low, so that we will always expand inq. In fact,
while in the case of anrf radiationq,1, in the case of a
femtosecond laser pulseq,0.01–0.1, corresponding to a
fraction ofmJ released per pulse on the superconducting sur-
face of,100mm2.

The zero-order harmonic equation, Eq.(5), becomes

si]t − jdgsj;t,t8d + q
vc

Îp
e−1

2
vc

2t2gs− j;t,t8d = dst − t8d. s8d

To derive the nonequilibrium correction to the qp-
distribution function, the kinetic equation(B4) should be
solved. In place of this we proceed in this work in an heu-
ristic way. Our approach lacks mathematical rigor, but
singles out directly the role of the laser-inducede−h excita-
tions at frequenciessV−vc,V+vcd. Our result is valid in the
limit of large j’s and zero temperature, before relaxation
takes place.

We solve Eq.(8) for the retarded Green’s function for
t.0 and −t8,0+ by truncating the Dyson equation to lowest
order inq:

gRsj;t,t8d = go
Rsj;t − t8d − q

vc

Îp
E dt9go

Rsj;t,t9d

3e−1
2

vc
2t92

go
Rs− j;t9 − t8d

= go
Rsj;t − t8d + iq

vc

Îp
E

−`

+` dv

2p

e−ivt

v − j + i0+

3E
0+

+`

dteisv−jdte−1
2

vc
2t2, s9d
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wherego
Rsvd=hv−j+ i0+j−1 is the Fourier transform of the

retarded Green’s function. The time integral can be ex-
pressed in terms of the functionwfzg;e−z2

erfcs−izd. If we
now approximate Eq.(9) by evaluatingwfzg only at the pole
and use the the integral representation of the step function:

ustd =
eizt

2pi
E

−`

+`

dv
e−ivt

v − z
for Jmz, 0, s10d

the correctiondgRsj ,td to gR for j@0, which includes the
nonequilibrium qp’s distribution, is

dgRsj,t,0−d = −
q
Î2

e−isj−i0+dtwf− 2j/sÎ2vcdgustd. s11d

From Eq.(11) we obtain the time-ordered Green’s function
for t.0,t8=0−, andj.0

gsj,t . 0,0−d = s− ide−isj−i0+dtustdS1 −
q
Î2

rf2j/sÎ2vcdgD ,

s12d

with

rfxg ; e−x2 2
Îp
E

0

x

ds es
2
. s13d

rfxg increases linearly withx and it decreases slowly, as 1/x,
at large arguments. In Eq.(12) we have neglectedRefwg
becauseuju@0. Equation(12) is to be compared with the
free-propagating time-ordered Green’s function of Eq.(1) for
the same time arguments. Comparison yields the amount by
which the distribution function is driven out of the equilib-
rium:

dnsjd <
q
Î2

rf2j/sÎ2vcdg for uju @ Do. s14d

Note that the expression of Eq.(14) changes sign according
to sign hjj. This stems from the assumede−h symmetry. In
turn this implies that no charge imbalance occurs. Equation
(14) can be considered as the nonequilibrium distribution for
qp’s starting at the time of the pulset,0+.

In the absence of relaxation, a change in the available qp
density of states follows. BecausefgRsj ,vdg*= gAsj ,vd if v
is real, the correction to the density of statednsjd is:

dnsjd = −
1

p
sdgR − dgAdsj,0+d

<
q

pÎ2
rf2j/sÎ2vcdg for j . 0. s15d

The first stages of the relaxation process involve the inelastic
diffusion of qp’s in the medium that is qualitatively dis-
cussed in the next section.

B. Inelastic diffusion of the qp’s at initial times

Let us discuss shortly what was neglected in the deriva-
tion of the change in the equilibrium qp distributiondnsjd

given by Eq. (14). The single-particle Green’s function
gsp,R,t ,t8d is assumed to be a slowly varying function of
st+ t8d /2=t̄ and a fast-varying function oft− t8. Fourier trans-
forming w.r.t. the latter variable(see Appendix A) there is an
v dependence even in the stationary case(i.e., with no t̄
dependence). This v dependence is determined by the
frequency-dependent Eliashberge−ph couplinga2Fsvd and
is contained in thee−ph self-energyMe−phsvd.20 Accord-
ingly, the complex qp renormalization parameterZnsvd is
defined byf1−Znsvdgv=Me-phsvd. In our derivation we have
not included the self-energy, so that we are implicitly taking
Znsvd→1, what applies for largevs,Vd, prior to relaxation.

Moreover, because the system is in the superconducting
state, we should have dealt with the corresponding supercon-
ducting parameterZssvd. The latter is derived together with
the complex gap parameterDsv , t̄d with DsDo, t̄=0−d=Do

from the coupled Eliashberg equations(we drop the overline
on t in the following).

The procedure of averaging over the fast time scaleV−1

singles out two frequency components ofDsv ,td and
Zssv ,td: v=Do andv=V as a consequence retardation arises
from frequencies up to 10vD is neglected.V is so large that
Zs andZn do not differ sizeably. In fact, their real parts differ
by a quantity of the order ofsvDDo/V2d2lnsvD /Dod. DsV ,td
itself is expected to be so small that it can be neglected
altogether. Indeed, in connection with Eq.(A10) of Appendix
A we do not discuss the self-energy terms. Of course this
approximation breaks down on the time scale ofe-ph relax-
ation.

Let us now discuss thet dependence. The equation of

motion for the qp-distribution functionnsRW ,td is derived in
Appendix B, where we takenT=0 because we neglect charge
imbalance corrections.

In averaging over a few optical periods the kinetic equa-

tion for dnL, the electric fieldEW averages to zero. The qp

relaxation is governed by the collision integralIfnsRW ,td ; tg
which describes the inelastic processes. In Ref. 15 the cas-
cade of thee-h excitations due to inelastic scattering is stud-
ied in detail. Two stages occur. In the first stagee–e inter-
actions multiply the number of excited qp’s in the energy
range fromV to vD, which is taken as the cutoff energy of
the pairing interaction. This happens in a time interval short
w.r.t. the pulse durations,10−14 sd. In the second stage, a
much slower relaxation process, takes place, by which the
energy of the qp’s reachesD. This process involves electron-
phonon scattering on a time scale"vD

2 /D3,102 ns, which is
much larger than any time scale in our problem. Here we will
leave this stage aside. In the time interval we are concerned
with, we have little relaxation and the energies involved are
v@D.

According to Eq.(B2) the distribution function prior to
relaxation deviates from the equilibrium value by the quan-
tity dnL=−2dnsjd given by Eq. (14). There is no explicit
dependence onv in our correction because retardation is
nelgected. Still qp’s diffuse in space inside the junction over
a characteristic distanceRo,ÎDte-e, whereD is the diffu-
sion coefficient. Hence
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dnLsj,RW ,td = − 2
Ro

2

Ro
2 + Dt

dnsjdeh−R2/sRo
2+D

t dj . s16d

For relatively large timeste-ph@ t@Ro
2/D, we will ignore the

spatial dependence by puttingR=0. This is the first step of a
perturbative analysis of the nonequilibrium distribution func-
tions.

III. CHANGES OF THE SUPERCONDUCTIVE
PROPERTIES ON THE TIME SCALE vc

−1

A. The correction of the gap parameter

In this section we derive the Keldysh Green’s function in
the presence of both a time dependent gapDstd and of a
nonequilibrium qp distribution as given by Eq.(16). We as-
sume weak coupling superconductivity and we neglect here
the frequency dependence of thee-ph coupling parameterl.
This follows from the neglecting the retardation effects men-
tioned in Sec. II B on time scales much faster than thee
-ph relaxation time. From the Keldysh Green’s functionĝK

(where the hat denotes matrix representation in the Nambu
space, see Appendix A) we recalculate the gap self-
consistently, according to the formula

Dstd = −
ns0dl

4
E

−`

`

kfKspW /upW u,v,tdlvWF
dv. s17d

The average over the direction of the momenta on the Fermi
surface is indicated. The Keldysh Green’s function in ther-
mal equilibrium is

ĝo
K = tanh

bv

2
sĝR − ĝAd. s18d

Out of equilibrium we use the definition

ĝK = ĝRĥ − ĥĝA. s19d

However,ĥ defined in Appendix B is diagonal here because
we assume that no charge imbalance arises. Hence, up to first
order inq,

dĝK < nL
0sĝad

R − ĝad
A d + dnLsĝo

R − ĝo
Ad. s20d

Here nL
o=tanhsbv /2d is the equilibrium distribution.ĝad

R

-ĝad
A is introduced in Appendix C[see Eq.(C2)] and is dis-

cussed in the following.
We now first derive the contribution coming from the sec-

ond term of Eq.(20). We start from the outset using Eq.(16)
and performing the quasiclassical approximation. The latter
involves an energy integration as follows:

dnLsĝo
R − ĝo

Ad ;
i

p
E

−`

+`

fdjdnLsj,tdgfĝo
Rsj,v,td − ĝo

Asj,v,tdg.

s21d

Using the equilibrium BCS functional forms, the Green’s
functions appearing on the diagonal ofĝA/R are23

gRsj,vd =
uj

2

v − Ej + i0+ +
vj

2

v + Ej + i0+ , s22d

gAsj,vd =
uj

2

v − Ej − i0+ +
vj

2

v + Ej − i0+ . s23d

The equilibrium values foruj andvj are

uj
0 = F1

2
S1 +

j

E
DG1/2

, vj
0 = F1

2
S1 −

j

E
DG1/2

, s24d

with E=Îj2+ uDou2. From now on we will drop the subscript
in the equilibrium gap parameter(i.e., D;Do if no time de-
pendence is indicated explicitly). Because the factordnLsj ,td
appearing in Eq.(21), as given by Eq.(16) is odd w.r.t.j,
only the second term inu2 andv2 survives when the integral
in Eq. (21) is performed. Let us only consider the casev.D
and specialize Eq.(21) to its diagonal part. According to Eq.
(16) we have

RehdnL ·go
Rj = ReH−

Î2i

p
qstdE

−`

+`

dj
j

2E
rf2j/sÎ2vcdg

3S 1

v − E + i0+ −
1

v + E + i0+DJ
= − qstd2Î2rf2sv2 − uDu2d

1
2/sÎ2vcdg. s25d

Here we have defined the functionqstd as follows:

qstd = q
pRo

2

Ro
2 + Dt

. s26d

Doing similarly for gA and subtracting, the imaginary part
cancels

dnLsgo
R − go

Ad = − qstd4Î2rf2sv2 − uDu2d
1
2/sÎ2vcdg,

for v . D. s27d

Here the largest contribution of the nonequilibrium excita-
tions arises fromv,vc. On the other handvc can be larger
or smaller thanvD.

Now we evaluate the correction due toĝad
R -ĝad

A . In Appen-
dix C we show that an adiabatic solution of the motion equa-
tion of gR,A is possible, in the sense that the functional de-
pendence onv is the same as the equilibrium dependence;
but the gap parameter changes slowly with time[see Eq.
(C2)]

ĝad
RsAd = + s− d

M̂
Îsv ± i0+d2 − uDstdu2

s28d

with

M̂ = S v Dstd
− Dstd* − v

D . s29d

This functional form for theR/A functions is obtained if the
e-h symmetry is maintained and if one neglects the diffusion
in space-time, which will be mainly important at intermedi-
ate times.15

This adiabatic approximation in the advanced and re-
tarded Green’s functions allows us to write the Keldysh
propagator in the form:
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gK = gad
K − qstd4Î2rf2sv2 − uDu2d

1
2/sÎ2vcdg. s30d

To calculatefK we resort to the analogous of Eq.(C1), which
is valid for ĝK : fK=gKD /v. Hence we have

fK = fad
K − qstd4Î2

D

v
rf2sv2 − uDu2d

1
2/sÎ2vcdg for v @ D.

s31d

Now we insert Eq.(31) into Eq. (17) and consider the linear
correction to the gap of the irradiated contact according to

Dstd = D + dDstd.

Here dDstd is the correction to the unperturbed gap param-
eterD due to the radiation. In the limit of zero temperature,
up to first order inqstd andD /vD, dDstd is given by

dDstd
D

= −
qstd4Î2

lns2vD/Dd − 2 +OsD2/vD
2 d
E

D

vD dv

v
rf2sv2

− uDu2d
1
2/sÎ2vcdg. s32d

It is interesting to note that the correction arising from the
adiabatic dynamics has the role of renormalizing the cou-
pling qstd via the prefactor −flns2vD /Dd−2g−1. This prefac-
tor is negative because lns2vD /Dd.2. Therefore, Eq.(32)
shows that the gap of the irradiated superconductor is de-
creased due to the nonequilibrium distribution of the qp ex-
citations.

Equation(32) has the same structure as Eq. 14 of Ref. 21.
There is a striking difference however. The inverse square-
root singularity at the gap threshold, which shows up in Eq.
14 of Ref. 21, does not appear in Eq.(32).

The inverse square-root singularity originates from the
unperturbed density of states at the excitation threshold and
is usually present in nonstationary superconductivity.22 It is
responsible for retardation and oscillating tails. In our case,
the gap threshold plays a little role because we do not have
extensive pair-breaking and qp generation at energies,D.
Hence, just a tail,1/v survives in the integrand.

In Fig. 2 the variation of the gap immediately after the
pulsest,0d is plotted versus the inverse of the pulse dura-
tion vc in units ofD for different values ofvD. Our approxi-
mations are not valid when the pulse becomes too long(very
low values ofvc/D). For longer pulses the integrand in Eq.
(32) has a narrow peak lined up at the gap threshold. In this
case the inverse square-root singularity in the density of
states at the gap threshold is important and the adiabatic
approximation Eq.(30) breaks down.

For shorter pulses the peak becomes broader and is cen-
tered at largerv’s. If the integration range is small, the result
is quite sensitive to the location of the peak(see full line in
Fig. 2): most remarkably, a minimum appears in the curve
when the pulse is rather longsvc/vD,5d. By contrast, the
gap correction is rather flat w.r.t. changes ofvc whenvD /D
is larger(broken and dotted line in Fig. 2).

B. Correction to the Josephson current

In this subsection we derive the correction to the Joseph-
son current arising from the two terms of the anomalous
propagatorfsR,t ,t8d given by Eq.(31). Equations(30) and
(31) show that the nonequilibrium Keldysh Green’s functions
of the irradiated superconductor can be separated into two
terms. The first one is what we call the “adiabatic” contribu-
tion, while the second one is strongly dependent on the non-
equilibrium qp’s distribution function and is first order in
qstd. Within the linear response theory in the tunneling ma-
trix elementuTou2, the pair current at zero voltage is:

JsRW = 0,td = 2euTou2E
−`

`

dt8e2ieVst−t8d

sf.
1
†s0,t,t8df 2

As0,t8,td + f R
2
†s0,t,t8df 1

,s0,t8,tdd, s33d

whereuTou2 is assumed to be independent of energy, for sim-
plicity. The current of Eq.(33) is evaluated at the junction

site, defined byRW =0 and the irradiated superconducting layer
S1 is labeled by 1, while the superconductor unexposed to
radiationS2 is labeled by 2. The perturbed Josephson current
has an adiabatic termJadstd obtained by inserting the first
term of Eq.(31) into Eq.(33), plus a correctiondJstd arising
from the second term of Eq.(31). Using the definitionsfK

= f.+ f, and fR− fA= f.− f, and expanding to lowest order
in qstd the adiabatic critical current is

Jad = Jc
adstdsinswd, Jc

adstd =
p"D

2eRN
S1 +

dDstd
2D

D , s34d

whereRN is the normal resistence,D is the unperturbed gap
parameter of both contacts(assumingD1=Deiw andD2=D in
the absence of laser perturbation), anddDstd /D is given by
Eq. (32). Denoting bydfK the second term of Eq.(31) the
correctiondJstd is

FIG. 2. Variation of the gap immediately after the pulse versus
the inverse of duration of the pulsetc

−1=vc in units of D. Our
approximations break down for very low ratiosvc/D (long pulses).
On the other hand, largevc/D represent very short pulses; this
situation is unrealistic with the available optical devices.
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dJstd = euTou2E
−`

`

dvsfdfKsv + ieVdg1
†f2

Asv − ieVd

+ ffRsv + ieVdg2
†fdfKsv − ieVdg1d. s35d

At zero temperature andV=0, this gives

dJstd =
p"

eRN
E

−`

`

dv
uDu2qstd

v
rf2sv2 − uDu2d1/2/sÎ2vcdg

3S e−iw

Îsv + i0+d2 − uDu2
+

eiw

Îsv − i0+d2 − uDu2
D s36d

which is zero for parity. This conclusion holds because we
assume that no charge imbalance occurs. IfVÞ0 the contri-
butions to the integral evaluated in the complex plane are
finite. dJstd is a cosw-like correction. In the unperturbed
Josephson effect a cosw term only arises whenV.2D1. By
contrast, our calculation shows that a cosw term can arise in
the Josephson current with a small nonzero voltage in the
presence of an ultrafast laser pulse.

IV. CLASSICAL DYNAMICS OF THE IRRADIATED
JUNCTION

In this section we integrate the classical equation of mo-
tion of the irradiated junction numerically. Here we discuss
the possibility that the laser pulse induces switches of the
junction from the zero voltage state to the resistive state. The
characteristics of the Josephson junction for a finite voltage
is obtained within the RCSJ(resistively and capacitively
shunted junction) model.1 The phase of the superconductor
S2 is taken as the reference phase. In the absence of the
pulse, the junction is biased by a current constant in timeJb.
As discussed in the previous section, the pulse activates the
superconductorS1 by varying its gap dynamically in time.
Consequently, a voltageV arises at the junction, related to
the dynamics of the phase differencewstd. The latter solves
the differential equation

ẅ + Q0
−1ẇ +

Jc
adstd
Jc

o sinwstd = g, s37d

whereg=Jb/Jc
o andJc

o=sp"Dd / s2eRNd is Josephson critical
current of the unperturbed junction. The time-dependent
driving term is deduced from Eq.(34). We assumevpJ0.tE

−1

stE
−1sNbd,7 GHzd, where vpJ0 is the plasma frequency at

zero bias. This condition is satisfied for high-qualityNb
junctions, wherevpJ0 is in the range 40–120 GHz,24 but it
holds also if we take into account the dependence of the
plasma frequency ong: vpJ=vpJ0s1−g2d1/4. At g=0.98 the
term s1−g2d1/4=0.44; this still gives a large plasma fre-
quency for the given range. In any case the plasma frequency
changes marginally when the energy is degradated into heat
if q is small. Under this condition the relaxation process
occurs long after the switch to the resistive state.

In Eq. (37), Q0=vpJ0RswdC is the quality factor, where
Rswd is the junction intrinsic resistance, which is in general a
nonlinear function of the phase. The dissipativeQ0

−1ẇ term
includes thermal incoherent pair-breaking effects at equilib-

rium. In the simulation, we use both a constant junction re-
sistanceR and a patchwork model given by25

Q−1sẇd = Q0
−1vpJ

D

S ẇvpJ

D
DN

1 +S ẇvpJ

D
DN s38d

with N=16 andQ0
−1=0.636, which corresponds to a normal

resistance above the gapRN=svpJw0d / scJc
0d. In general we

ignore the direct dependence ofRswd on the phase. By the
way, Q should also depend on the energy that is released by
each single laser pulse due to the incoherent pair-breaking
process. However, under the hypothesis that this energy is
very low, we assume that the quality factor due to the opti-
cally induced normal resistance of the sample is constant
within the considered energy range.

Actually, in the presence of the pulse, the current contri-
bution of Eq.(35) should also be plugged into the lhs of Eq.
(37). This current term depends on the voltageV=ẇ. How-
ever, in view of the fact that in this work we are only con-
cerned with the switching of the junction out of the zero
voltage state, we do not derive the full dynamics of the phase
self-consistently.

In Fig. 3 we show the voltage just after the pulse for
different values of the released energy. The time evolution of
the voltage is sketched for some successfully induced
switches. The junction starts in the zero voltage state. At
vpJt=0+ it is irradiated by the laser pulse. There are few
oscillations at frequencyvpJ before the switching occurs,
followed by an overall increase of the oscillating voltage.
The largerq is, the faster the switch is. If no switch is in-
duced the junction remains in the zero voltage state—the
phase and the voltage are weakly perturbed by the radiation
and show decaying plasma oscillations around their equilib-
rium values.

FIG. 3. Voltage behavior in time for different energy released on
the sample and the quality factorQ=100. The voltage is normalized
to V0=vpJw0/c.
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In Fig. 4 we show the approach to the gap voltage for
different Q values and two different conductance models.
Except for the asymptotic trend, the curves forQ=10 (B)
andQ=100 (A) show a similar behavior. The nonlinear con-
ductance gives rise to a more pronounced shoulder in the
curve after the first increase of the voltage. The first phase
oscillations at frequencyvpJ are largely independent of the
dissipation model used.

The switching of the junction out of the zero voltage state
depends on the bias currentJb, on the released energy per
pulseq, and on the pulse duration. In Fig. 5 we sketch the
switching front in the parameter space(a) svc/D ,qd at fixed
g and (b) sg ,qd at fixed vc/D, for Q=100 andvD /D=10.
For each pointsq,vc/D ,gd we calculateJc

adstd from Eqs.
(34) and (32). Next we plug the result into the equation of
motion [Eq. (37)]. Numerical simulation of the dynamics
shows whether the junction is stable in the zero voltage state
or switches to a running state. The points of the curve mark
the frontier between the two behaviors. The full curve is just
a guide for the eye. The nonmonotonicity ofdDstd /D with
the pulse duration, appearing in Fig. 2 forces a similar be-

havior in Fig. 5(a). This means that the pulse duration can be
appropriately chosen in order to optimize the junction
switching with the laser field. Indeed, ifvc/D is of the order
of 5–15, a very small released energy is required for the
switching of the junction because the order parameter is
much depressed by the laser pulse in that range. Out of this
range, the shorter the pulse is, the larger the energy required
is. By contrast a slightly larger released energy is also re-
quired for longer pulsessvc/D,5d. This is because longer
pulses imply a more extended change in the qp distribution
up to higher energies. As a consequence the maximum of the
functionr of Eq. (32) contributes less to the correction of the
gap parameter. Nevertheless caution should be used in con-
sidering our results for longer pulses because of the ne-
glected relaxation effects.

V. CONCLUSION

The effect of an ultrafast laser pulse on the superconduct-
ing coherence at a Josephson junction allows studying an
unexplored regime in nonequilibrium superconductivity.
Nonequilibrium in superconductivity is usually addressed in
the context of one of the possible applications of Josephson
junctions, that is radiation and/or particle detectors. Highly
energetic radiation produces pair breaking and quasiparticles,
which, in turn, excites a large number of them in a cascade
process. Usually the setup is optimized such that the qp’s can
be collected and contribute to the current across the junction
with a sharp signal. Losses are due to degradation of the
released energy into heat during the relaxation process. To
achieve optimum performance, the Josephson current is usu-
ally suppressed by applying a magnetic field. This picture
has been discussed quantitatively by examining the quasi-
classical kinetic equation for the nonequilibrium qp distribu-
tion function.15

In this work we have concentrated on a quite different
time scale—one fixed by the duration of an ultrafast laser
pulse. While the relaxation process mentioned above takes
place on a time scale of 0.1–100 ns, we have considered a
laser perturbation lasting, at most, hundreds of femtosec-
onds. This type of tool can be quite valuable for future ap-
plications because fast pulses in flux and gate voltages are
extremely important when processing information in super-
conducting quantum computing devices(qubits).26 Indeed,
finite rise and fall times of pulses may result in a significant
error in dynamical computation schemes.27 The carrier fre-
quency of the laser is,100 T Hzand the optical radiation is
expected to produce manye−h pair excitations as would
occur in a normal metal. In our case, qp’s do not have
enough time to relax down to the typical phonon frequencies
s,vDd and to heat the sample before the stimulated switch-
ing occurs. We do not wish to collect qp’s either, which
requires a suitable geometry of the junction.

Instead, we have addressed the question of how the criti-
cal current for Josephson conductionJc can be coherently
affected by a laser-induced small perturbation with an unre-
laxed nonequilibrium distribution of qp’s, that is, before the
dissipative response sets in.

Using the quasiclassical approach to nonequilibrium
Keldysh Green’s functions, we have shown that if the tem-

FIG. 4. (Color online) Voltage behavior in time with different
quality factorsQ in the linear conductance model(A,B) and the
nonlinear conductance model(C) as given by Eq.(38). The voltage
is normalized toV0=vpJw0/c.

FIG. 5. Switching front in the parameter space(a) svc/D ,qd at
fixed current biasg=Jb/Jc

o and (b) sg ,qd at fixed vc/D, for Q
=100 andvD /D=10. The full curves have been added as a guide
for the eye; they mark the border between the zero voltage(Joseph-
son) state and the voltage state.q is the coupling strength due to the
laser pulse.
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perature is very low, then the order parameter of the irradi-
ated superconductor can respond adiabatically to a weak per-
turbing signal. A nonequilibrium distribution of qp’s is
generated and consequentlyJc is temporarily reduced[see
Eq. (34) and Fig. 2]. This reduction can drive switches of the
junction out of the zero voltage state. In our approach the
retardation effects, which arise from the frequency depen-
dence of thee−ph coupling a2Fsvd and from the actual
features ofe−ph relaxation processes, have been neglected.
They came into play on a time scale longer than the duration
of the laser pulse,vc

−1,tc. Indeed in the equation of motion
for the Keldysh Green’s function reported in Appendixes B
and C, the role of the frequency-dependent self-energy terms
has not been discussed.

The parameter, which is related to the energy released by
the radiation and describes the strength of the perturbation, is
q. In our case, the switches can be induced by pulses with
q,0.05, with relatively low values ofvc/D,10, by polar-
izing the junction very close to the critical current.

In experiments on laser-induced nonequilibrium effects in
superconductors2 or Josephson junctions,3 the released en-
ergy is of fewmJ, which corresponds to values ofq between
0.25 and 0.67 for the given laser spot dimension. In our case
for q=0.05 the switching occurs at 98% of the critical cur-
rent. Therefore, a coherent effect of the laser on the super-
conducting condensate is sufficiently large to be observed in
sensitive experiments monitoring the escape rate.10,11 These
experiments can appreciate very small variations of the criti-
cal current, if temperature is kept low and the released en-
ergy is sufficiently small, so that sizeable heating effects do
not occur.

We have also found a cosw contribution to the Josephson
conduction due to the presence of the excited qp’s[see Eq.
(36)]. This term, which will be examined in detail elsewhere,
vanishes at zeroV,T, provided excitations do not generate
charge imbalance. A similar term, proportional to the voltage
V, can also be derived in the BCS theory of Josephson
conduction,1 but it is identically zero as long asVø2D /e
because of the absence of qp’s at zero temperature. This is
not the case here, due to the presence of a nonequilibrium qp
distribution.

Our derivation of Eqs.(32), (34), and (36) assumes that
no charge imbalance is created by the perturbation. This is
because the radiation excitese−h pairs and the pulse dura-
tion is short enough so that pair breaking is very limited. The
absence of charge imbalance is a crucial approximation in
our solution scheme. This assumption allows us to keep the
unperturbed functional form of the quasiclassical Green’s
functions and to insert a time-dependent gap parameterDstd
in their expressions.Dstd follows the perturbation adiabati-
cally and is determined by the nonequilibriume−h pair dis-
tribution produced by the pulse. Charge imbalance correc-
tions should be reconsidered, but they are usually expected
to have a minor effect on the dynamics of the junction.

To complete the picture, we have simulated the classical
dynamics of the junction switching to the resistive state. This
picture is only valid over few periods 2p /vpJ on time dura-
tion less than the electron-phonon relaxation time.

Precursor oscillations can be seen in Fig. 3 at the Joseph-
son plasma frequencyvpJ. Most remarkably the duration of

the pulse can be optimized in order to induce controlled co-
herent switching at the minimum possible released energyE.
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APPENDIX A: QUASICLASSICAL TIME-DEPENDENT
GREEN’S FUNCTION APPROACH

The quasiclassical Green’s function solves the Eilenberger
form of the Gorkov equations in commutator form:17

fsĞ0
−1 − S̆ − D̆d,Ğg^ = 0. sA1d

The matrix Green’s functionĞ in the Keldysh space is

Ğ = SĜR ĜK

0̂ ĜA
D , sA2d

where, in turn,ĜR, ĜA, and ĜK are the retarded, advanced,
and Keldysh Green’s functions, respectively, in the Nambu
space:

ĜsA,R,Kd = S gsA,R,Kd f sA,R,Kd

− f sA,R,Kd† − gsA,R,Kd†D . sA3d

Here f is the anomalous propagator and its Keldysh compo-
nent defines the gap:

D =
ns0dl

4
E

−`

+`

dvkfKlvWF
. sA4d

The averageklvWF denotes angular averaging over the Fermi

surface. The gap matrixD̆ is defined as:

D̆ ;SD̂ 0

0 D̂
D, D̂ = S 0 − D

D* 0
D . sA5d

The self-energyS̆ includes elastic and inelastic scattering
with impurities and gives rise to relaxation processes. The
commutator is evaluated w.r.t. thê operation that implies
integration over the intermediate variables according to

Ğ0
−1

^ Ğ0 ;E d2Ğ0
−1s1,2dĞs2,18d, sA6d

where 1;srW1,t1d. The differential operatorĞ0
−1s1,2d is

Ğ0
−1s1,2d = Fis̆3]t1

−
1

2m
S¹W rW1

− i
e

c
s̆3AW s1dD2

+ sefs1d − mdĬGds1 − 2d. sA7d

Here
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s̆i ; Sŝi 0

0 ŝi
D, Ĭ ;S Î 0

0 Î
D , sA8d

whereŝisi =1,2,3d are the usual Pauli matrices andÎ the 2

32 unit matrix. The vector potentialAW s1d describes the laser
radiation field of frequencyV:

AW s1d = o
±

o
pW

aW±sp,tde7ispW·rW1−Vtd, sA9d

where aW± can be slowly varying “envelope” functions of
space, on the light spot sizeRo and on time, on the scaleV−1.
These are the reference space and time scales in the follow-
ing. In the frame of the quasiclassical approximation, the
original Green’s functionsGs1,2d;GsrW ,t ,rW8 ,t8d are as-

sumed to be slowly varying function of the coordinateRW

=srW+rW8d /2 while they oscillate fast as functions ofrW−rW8 on
the scale of the Fermi wavelengthlF. It is customary also to
rewrite the time dependence in terms of the new variablest̄
=st+ t8d /2 andt− t8 and to Fourier transform w.r.t.rW−rW8 and

t− t8, thus obtainingGspW ,v ,RW , t̄d. The motion equation for
the Keldysh component of Eq.(A1) reads

fĜ0
−1 − ResŜd − D̂,ĜKg^

= fŜK,ResĜdg^ +
i

2
hŜK,Âj^ −

i

2
hĜ,ĜKj^ , sA10d

where we have defined a quantity proportional to the density

of statesÂ= isĜR−ĜAd (not to be confused with the vector
potential), and written down the imaginary and the real part

of the self-energy,Ĝ= isŜR−ŜAd and ReŜ= 1
2sŜR+ŜAd, re-

spectively, as well as the real part of the retarded/advanced

Green’s functionReĜ= 1
2sĜR+ĜAd ({, } denotes the anti-

commutator). The next step is the gradient expansion of the
^ product(we drop the overline ont in the following):

Ĉ ^ B̂ = exp 1/2s]t
C]v

B − ]v
C]t

Bdexp 1/2s]p
C]R

B − ]R
C]p

BdĈB̂,

sA11d

(here]p
C stands for the gradient w.r.t. the impulse operating

on Ĉ), followed by the averaging of the result forupW u close to
pF, which is over the energiesp2/2m−m;j while the direc-
tion of pW , p̂, is untouched:

ĝsp̂,v,RW ,td =
i

p
E djĜspW ,v,RW ,td. sA12d

This is justified becauselF is much shorter both of the su-
perconducting correlation length and of the spatial range of
the laser spot(e−h symmetry is assumed). Eventuallyĝ de-
pends onp̂, v, R, t. The average of Eq.(A10) over all direc-
tions in the Fermi surface can be done if no external bias is
applied and anisotropies of the diffusion and relaxation pro-
cess are not expected. In the presence of radiation with op-
tical frequency it is customary to average out the fast oscil-
lating components with frequencyV (Ref. 28). Following
Eq. (3), we expand the Green’s functions similarly as fol-
lows:

ĝIsv,R,td = ĝsv,R,td + o
±

x̂±sv,R,tde±iVt. sA13d

Here ĝI sv ,R,td is assumed to be the slowly varying part on
the scale of the pulse durationtc, while x̂± are fast varying
ones. All these functions are slowly varying functions of
space as well, on the light spot size scale. A decomposition
of Eq. (A10) into harmonics arises. We are interested in the
zero-order harmonic equation, which shows a slow dynamics
that can be followed coherently by the irradiated supercon-
ductor. Leaving the self-energy terms in Eq.(A10) for the
moment aside and dropping the superscriptsKd, we obtain

ft3a+,x̂−g + ft3a−,x̂+g + fsvt̂3 − D̂d,ĝIg −
1

2
ht̂3,]tĝIj

+
1

2
h]tD̂,]vĝIj −

e2

2mc2]tA
2]vĝI = . . . , sA14d

where the ellipsis refers to the missing self-energy terms.
The first-order harmonic equations are

± iht3,x̂
±j + se/2mcVdfa±,ĝIg = 0. sA15d

They show that the first two terms in Eq.(A14) areOsV−1d
smaller than the others and can be neglected to the lowest
order. Hence the effective equations for the Green’s func-
tions are

fsvt̂3 − D̂d,ĝIg −
1

2
ht̂3,]tĝIj +

1

2
h]tD̂,]vĝIj −

e2

2mc2]tA
2]vĝI = . . .

sA16d

The last three terms in Eq.(A16) include the time-dependent
nonequilibrium dynamics, which is absent in the case of a
time independent approach. Retarded, advanced, and
Keldysh Green’s function all satisfy analogous equations.

APPENDIX B: KINETIC EQUATION FOR n„v ,r ,t…

One can linearize Eq.(A16) for Keldysh Green’s function

by posingĝK= ĝRĥ− ĥĝA. This yields the kinetic equation for
the distribution functionnsv ,R,td.21 We neglect any varia-
tion in space and concentrate on thet dependence here. The

distribution matrixĥ is defined starting from thenL and nT
functions according to:

ĥ = nL1̂ + nTŝ3 sB1d

or

ĥ = SnLsEd + nTsEd 0

0 nLsEd − nTsEd
D

; S1 − 2nsEd 0

0 2ns− Ed − 1
D . sB2d

The second equality defines the relation with the qp distribu-
tion functionnsEd. We always assumee−h symmetry, so that
nsEd+ns−Ed=1 andnT=0. In the equilibrium case, one has
nosEd=1/eE/T+1, so that
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nLsTd
o =

1

2
FtanhS E

2T
D + s− dtanhS E

2T
DG . sB3d

Substituting Eq.(19) into Eq.(A16), we get the kinetic equa-

tion for the distribution matrixĥ. In particular, in case there
is no charge imbalance, the equation for the longitudinal
componentnL is:15

]tnLTrfsĝRt̂3 − t̂3ĝ
Adg + ]vnLTrf]tD̂sĝR − ĝAdg

−
e2

2mc2]tA
2Trf]vnLsĝR − ĝAdg = − 4IfnLsvdg,

sB4d

where IfnLsvdg is a collision integral which regulates the
relaxation of the qp distribution toward equilibrium. Equa-
tion (B4) is fully discussed in Ref. 15.

APPENDIX C: EQUATION OF MOTION OF GR

We now write the equations Eq.(A16) explicitly for the
retarded Green’s functions. We label the matrix components
with si , jdsi , j =1,2d and drop the superscriptR everywhere.
The matrix elements of Eq.(A14) in the Nambu space be-
come:

s1,1d → ]tg − Df† + D * f + ]tD]vf† + ]tD * ]vf

+
e2

2mc2]tA
2]vg = . . .

s2,2d→]tg
†+Df†−D* f +]tD]vf†+]tD* ]vf

−
e2

2mc2]tA
2]vg†=. . .

s1,2d→2vf −Dg†−gD+]tD]vg†−]vg]tD

+
e2

2mc2]tA
2]vf =. . .

s2,1d→+2vf†−D* g−g†D* + ]tD* ]vg−]vg†]tD*

−
e2

2mc2]tA
2]vf†=. . .

The equilibrium result suggests that

f =
Dstd

v
g sC1d

solves Eqs.(1) and (2) except for terms~]tA
2, which de-

scribe the relaxation at later times. Let us assume that this
relation holds also in the nonequilibrium case. Then the for-
mal solution, follows adiabatically thet dependence of the
gap parameterD by keeping an equilibriumlike shape

gad =
v

Îv2 − uDu2std
, fad =

Dstd
Îv2 − uDu2std

. sC2d

This approximate solution is quite appealing because it sat-
isfies the equilibrium condition forD at t→`. However, it
neglects diffusion in spacetime, which will be mainly impor-
tant at later times w.r.t. the pulse duration.
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