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Coherent response of a lowF, Josephson junction to an ultrafast laser pulse
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By irradiating with a single ultrafast laser pulse a superconducting electrode of a Josephson junction, it is
possible to drive the quasiparticlegp’s) distribution strongly out of equilibrium. The behavior of the Joseph-
son device can, thus, be modified on a fast time scale, shorter than the gp’s relaxation time. This could be very
useful, in that it allows fast control of Josephson charge qubits and, in general, of all Josephson devices. If the
energy released to the top layer cont&it of the junction is of the order of-uJ, the coherence is not
degradated because the perturbation is very fast. Within the framework of the quasiclassical Keldysh Green’s
function theory, we find that the order parametersStf decreases. We study the perturbed dynamics of the
junction, when the current bias is close to the critical current, by integrating numerically its classical equation
of motion. The optical ultrafast pulse can produce switchings of the junction from the Josephson state to the
voltage state. The switches can be controlled by tuning the laser light intensity, the pulse duration, and the bias
current of the Josephson junction.
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[. INTRODUCTION There are many reasons for the switching from the zero to
the resistive state in a Josephson junction. Among these,
The characteristic frequency in the dynamics of a Josephthermal escap® quantum tunneling! latching logic
son junction(JJ) is the so-called Josephson plasma frequencyircuits 12 and pulse-assisted escdpe\ clear-cut discrimi-
wp; (€.9., 10-100 GHgz Coupling of a JJ to a microwave nation between different mechanisms can be difficult to
field leads to the well-known lock-in conditions, which show achieve. In our case quantum escape is ruled out because the
up as Shapiro steps in the I/V characteristic. On the othetemperature is not expected to be low enough. Also, we as-
hand, photo-response to radiation in a superconductor irsume that there is no external circuit to induce switching and
duces heat relaxatiotbolometric effect) and nonequilib-  reset of the zero voltage state as in latching logic elements.
rium generation of quasiparticlggp).>® Both phenomena Pulse-assisted escape is a generic term for a large class of
are extensively studied since they are relevant for the fabriphenomena including, in principle, bolometric heating of the
cation of fast and sensitive detectors. The models used ajanction, which is reset in relatively slow timésroduction
phenomenologicat;® mainly involving different tempera- of gp’s generated by x-ray radiation has been studied up to
tures associated to separate distributions of electrons andcently!*'>A cascade follows, which increases the number
phonons out of equilibrium. of excitations and lowers their energy down to the typical
Recently, laser light with pulses of femtosecond durationphonon energyop in a duration time, that is of the order of
7€ (10'*s,10"®s) has become available as a source tonanoseconds. Subsequently, gp's decay by heating the
test the photo-response of a@®kef. 7). Ultrafast pulses can sample. However, the power of the laser can be reduced
be extremely useful, in that they allow studying an unex-enough and both the substrate and the geometry can be cho-
plored regime in nonequilibrium superconductivity. Indeed,sen such that the energy released by the radiation on the
photon absorption, by creating electron-hg&eh) pairs at  junction can be small. On the other hand, appropriate experi-
very high energies, drives the gp energy distribution out ofmental conditions can make the time interval between two
equilibrium during the timer.. The gp nonequilibrium dis- pulses long enough so that the bolometric response is negli-
tribution depends on the energy relaxation time parameter gible.
defined as the time by which a “hot” electron is thermalized Generally speaking, junctions are more sensitive to
by repeated scatterings with other electrons or phonons. Thaulses, especially when their harmonic content is close to
process involves generation of many gp’s during energy degwy,;; but this is not our case. In fact the laser carrier fre-
radation until the system relaxes back to the equilibrium disquency({2~ 100 TH2 is quite high compared t@,; and we
tribution functionny(w). This time scale is determined by the consider the cas@ > rgl> wpy> rgl, what implies that little
electron-electron interaction time.. and the electron- relaxation takes place during the duration of the pulse.
phonon interaction timere ,,, Which are strongly material should also be shorter than the pair-breaking tifié,
dependent, ranging from 4x1077 s for Al to 1.5x10°s  ~1-5 ps. HereA, is the unperturbed gap parameter. Our
for Nb. In this work we analyze the possibility that, keeping approach assumes that, on a time scale intermediate between
temperature quite low, ultrashort laser radiation induces dithe pulse duration and the relaxation timerg, the order
rect switches out of the Josephson conduction state at zeparameter of the irradiated superconductor is sensitive to the
voltage due to coherent reduction of the critical curr&nt nonequilibrium gp distribution, which modulates it coher-
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the gp amplitudeZ(w) introducing changes in the phonon
distribution and retardation in the response. Nevertheless, we
expect that these self-energy terms become effective only on
a longer time scale after the laser pulse. Our equations pin-
< W point a nonretarded evolution of the order parameter prior to

I relaxation, which implies a reduction of the critical current.
S2 This shows that the coherent modulation of the gap param-
eter can produce switching of the junction out of the Joseph-

FIG. 1. Sketch of the Josephson junction exposed to a laseson state.

radiation pulse. The switches are studied numerically by solving the clas-
sical equation of motion of a current-biased JJ with curdent
ently till it switches out of the zero voltage state. close to the critical cureni., during the excitation process.

To analyze the dynamics of the order parameter and hovi\fter the switching, the dissipation in not treated self-
the latter affects the Josephson current, we adopt a nonequfionsistently: a standard dissipation, typical of thermal equi-
librium formalism based on quasiclassical Greenslibrium, is assumed in the JJ dynamics by adding a conduc-
functions!®1’” The quasic|assica| approach has been mostN(ance term in the numerical simulation. We stress that the
used in the past in connection with the proximity effécas ~ assumed model for dissipation determines the actual gp
well as with nonequilibrium due to other space inhomogenebranCh of the I-V characteristics, but does not substantially
ity conditions®8 In this paper, its extension to nonequilibrium affect the switching probability. The switching from the Jo-
in time is applied to a coherent response after an ultrafagiephson state to the voltage state in the parameter space
laser irradiation. (q,7.,J/J.) is reported in Fig. 5. Interestingly, we find that

The quasiclassical approximation to the Gorkov equation$or fixed value ofq and J/J; there is an optimum pulse
is obtained by averaging over the period of the optical fre-duration to achieve the strongest sensitivity of the junction to
quencyQ, which is a fast time scaf’.Our equations include the switching process. We show that this is due to the way
the physics of the cascade process, which occurs when of@w the nonequilibrium gp distribution affects the pairing in
focuses on the kinetics of the gp diffusion. A kinetic-equationSL. The paper is organized as follows.
approach to the steady-state nonequilibrium qp distribution, In Sec. Il we calculate the nonequilibrium gp distributions
including phonon scattering, has been developed in Ref. 2immediately after the pulse, prior to relaxation. In Sec. Il we
for light irradiation, mostly in the microwave range. The cas-introduce the time-dependent quasiclassical Keldysh Green’s
cade regime is extensively discussed in Ref. 15, however, functions formalism extended to the time domain, using the
will not be specifically addressed here. general frame given in Appendix A. We calculate the correc-

Instead, if the switching of the irradiated superconductoition to the single-particle propagators to first orderginA
due to the ultrafast pulse takes place prior to the occurrenceorrection to the gap and to the Josephson critical current
of gp relaxation, an approximate solution of the dynamica[fO”OWS due to the laser pulse. In Sec. IV the dynamics of the
equations can be derived that describes an instantaneous ¢ after the pulse is simulated numerically. Finally, a sum-
sponse of the order parameter. mary of our results is given in Sec. V.

We take a lowT, JJ with ans-wave order parameter as Appendix A collects the formulas of the quasiclassical
the reference cage.g., a high-quality Nb or Al junctiorand ~ approximation in the nonequilibrium Keldysh theory, which
T<T.. The optical penetration depth of the laser lightin ~ are used in the core of the paper. In Appendix B we derive
the topmost superconductor exposed to radiafitnis as- the kinetic equation for the nonequilibrium distribution func-
sumed to be shorter than its thickness, so that any modificdion, which drives the relaxation of the system. The equa-
tion induced by the radiation field only involvedl itself tions of motion for the quasiclassical retarded Green'’s func-
[see Fig. 1 In a small size JJ the spatial variation of the tion is reported in Appendix C, while the equation of motion
order parameter along the lateral dimensionSifis not  for the advanced and Keldysh Green’s function can be de-
taken into account, except when the gp diffusion processived in the same way.
cannot be ignored.

We consider just one pulse of the given duratigrwhich Il. THE NONEQUILIBRIUM QP DISTRIBUTION
releases the energyper pulse, by exciting-h pairs and by
creating a nonequilibrium distribution of qp’s. A related di-
mensionless quantity, as defined in Eq(7), parametrizes
the strength of the perturbation due to the radiation. The The optical frequencies({~100 TH2 building the
perturbation is assumed to be small so that only the lowestvavepacket of the laser pulse exo#teh pairs at high ener-
order in the expansion i is retained. This allows us to gies. As explained in the Introduction the nonequilibrium
derive a temporary reduction of the order parameten-  arising from the alteration of the gp distribution has a relax-
duced by the pulse, as shown in Fig. 2. We do not give ation time g, which is long compared to the optical period:
detailed description for the relaxation of the nonthermal qp(l7z>1. In addition to this, the duration of the pulsg
distribution in the irradiated superconductor. The self-energy~ mgl is even shorter than the pair breaking time, so that we
terms corresponding to this process require further analysiexpect that, in our case, dissipative phenomena do not affect
According to the Eliashberg formulatidthese terms affect the coherence of the superconductor on the time sgale

A. Nonequilibrium electron-hole pair excitations induced
by optical irradiation
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superconductivity doesn't play any role in their excitation at om M
large energies. They propagate according to something very
much like the free-particle time-ordered Green’s functign

gp’s are generated as if the metal were normal because| 4 p? -
gp.Rtt)

t s > AP RHA(F, RGP - ' - PR

(from now on#=1): me
g(k;t—t) = ~ i(T[eyOei(t)]) =at-t). ®
- _ie-ig(t-t')[(l —nYat-t) The radiation field generates and annihilates high-energy
—h pairs. Hence we assume that the forcing term conserves
-no(-t+t")]. (1) the total impulsep’ +p”~0, butp’—p” transfers an energy

2¢ to the electrons. Therefore, we take the coupling term in
Here & is the gp energy with momentutand is measured the Hamiltonian as:
from the chemical potentiak. n, is the gp distribution func- &2 o 1
ti_on.. We assume tha-h symmetry is con;erved in the ex- _cza(ﬁ,'R't)i(ﬁ”'R't) N q—;e—zwctzg(zg+ £op +p).
citation process, so that is not altered with respect to its M N

equilibrium value. (6)
The equation of motion for the Green’s functigrin the _ _
presence of the radiation field is: A Gaussian-shaped time dependence has been chosen for the

pulse with half-widthwgl, while the space dependence has
9 1 - e- - . been neglected for simplicity. In E@6) the dimensionless
(iﬁ - En[vr - EA(F' R )2+ ,U«)?J(F: Rt,t)=48r)st-t), quantity appears as follows:
) _Ceo_e_ )
c Q mO?R?
I is the relative space coordinate, whiReis the center-of- whereR; is the laser spotsee Eq(16)]. Here the number of
mass coordinate. The vector potential is a wave packet cemxcited e—h pairs is ~Q/wp, with wy the Debye energy.

tered at frequency) according to: Experimentd’ show that the energy released by the pulse
can be very low, so that we will always expandgnin fact,
,&(F R H=>> a(p R t)eii(ﬁ'f‘m) 3) while in the case of amf radiationg~1, in the case of a

femtosecond laser pulsg~0.01-0.1, corresponding to a
fraction of uJ released per pulse on the superconducting sur-
face of ~100Qun?.

I—|_ereéi are slovyly varying “envelope” _functions &t on the The zero-order harmonic equation, E§), becomes
size of the irradiated spot and on the time sdafé. We look

for solutions of Eq(2) in the form:

£ p

w2t2

(id- HYELL) +q%je‘% Fo- et t)=at-t). (8

R =g Ritt) + X E g*(p,Rt,t")e (P, To derive the nonequilibrium correction to the qp-
=P distribution function, the kinetic equatio(B4) should be
(4)  solved. In place of this we proceed in this work in an heu-

ristic way. Our approach lacks mathematical rigor, but
whereg andg* are slowly varying functions oR andt on  Singles out directly the role of the laser-induceeh excita-
the same scales. A similar expansion can be done w.r.t. tHins at frequencief) - w, 2+ ). Our resultis valid in the

variablet’. Following Eq.(4), a decomposition of Eq2)  limit of large &'s and zero temperature, before relaxation
into harmonics arise¥. We define the zero-order harmonic takes place. ' _
equation as the one that does not contain exponereidls We solve Eq.(8) for the retarded Green’s function for

By averaging over a periof~* we neglect harmonics of >0 and +’~0" by truncating the Dyson equation to lowest
order two or higher. This amounts to include only one-Ordering:

photon excitation processes, with released enéig$ome o
extra details can be found in Appendix A: &Lt =glEt-t) -g= f dt"gR(&;t,t")
N
d 1 e2 - - —lwzt"z R L4 ’
i—+——VZ+— > a(p . Rya(F,Rt Xe 2" go(= &5t —t')
(Iat 2m " mé 2 &P ROa(P"RY ’ Siot
p'.p do €

+oo
)
- i =g§(§;t—t’)+lq,—~°f mo—ri0
xg(P'-P >-f+M)g(F,R,t,t'):5(r)5(t—t'). N
+oo
o X f dte(Ote ot 9)
Fourier transforming w.r.tt (r—p— ¢ we have: o*
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where gi(w)={w-£+i0*}"* is the Fourier transform of the given by Eq.(14). The single-particle Green’s function
retarded Green’s function. The time integral can be exg(p,R,t,t") is assumed to be a slowly varying function of
pressed in terms of the functionv[z]ze‘22 erfo(—iz). If we  (t+t')/2=t and a fast-varying function d@f-t’. Fourier trans-
now approximate Eq9) by evaluatingn{z] only at the pole  forming w.r.t. the latter variablésee Appendix Athere is an
and use the the integral representation of the step functionw dependence even in the stationary céise., with not
dependence This o dependence is determined by the

at) = el—nf dw th for Jmz< 0, (10) frequency-dependent Eliashbezg ph coupling o’F(w) and

2m) .. 0=z is contained in thee—ph self-energyMe_p(w).2° Accord-

the correctiondgR(£,t) to gR for €50, which includes the NdlY, the complex gp renormalization parame&(w) is
nonequilibrium gp’s distribution, is defined by[1-Z,(w)]o=Mgpi(w). In our derivation we have

not included the self-energy, so that we are implicitly taking
SoR(E,,07) = — ie—i(g—iOJ')tW[_ 25/(\5%)]0(0. (11) Z,(w)— 1, what applies for Iarge)(~Q) . prior to relaxation. _
V2 Moreover, because the system is in the superconducting
) _ . . state, we should have dealt with the corresponding supercon-
From Eq.(11) we obtain the time-ordered Green's function y,cting parameteZ (). The latter is derived together with
for t>0,t'=0", and¢>0 the complex gap parameteX(w,t) with A(A,,t=0)=A,
~ I~ q = from the coupled Eliashberg equatiofwge drop the overline
g(&t>0,0) = (-i)e ¢ “H(t)( —sz[Zfl(w'ch)] : ont in the following).
v The procedure of averaging over the fast time s¢aié
(12) singles out two frequency components dfiw,t) and
with Z(w,1): o=A, andw=() as a consequence retardation arises
from frequencies up to 14, is neglected() is so large that
e X & ZsandZ, do not differ sizeably. In fact, their real parts differ
Pl =e™ ase (13) py a quantity of the order dfwpA,/Q2)2N(wp/Ag). A(Q,1)
itself is expected to be so small that it can be neglected
p[x] increases linearly witl and it decreases slowly, asxl./  altogether. Indeed, in connection with £4.10) of Appendix
at large arguments. In Eq12) we have neglecteRegfw] A we do not discuss the self-energy terms. Of course this
becausgg>0. Equation(12) is to be compared with the approximation breaks down on the time scalesqdh relax-
free-propagating time-ordered Green’s function of @gfor  ation.
the same time arguments. Comparison yields the amount by Let us now discuss thé dependence. The equation of
vyhich the distribution function is driven out of the equilib- motion for the gp-distribution function(ﬁyt) is derived in
num. Appendix B, where we take;=0 because we neglect charge
_ imbalance corrections.
() = %p[zgl(\s"ch)] for |g > A,. (14) In averaging over a few optical periods the kinetic equa-
V2 tion for éng, the electric fieldE averages to zero. The qp

Note that the expression of E¢L4) changes sign according relaxation is governed by the collision integih(R,t):t]

to sign{¢}. This stems from the assumeeth symmetry. In  \which describes the inelastic processes. In Ref. 15 the cas-

turn this implies that no charge imbalance occurs. Equatioade of thee-h excitations due to inelastic scattering is stud-

(14) can be considered as the nonequilibrium distribution foried in detail. Two stages occur. In the first stagee inter-

gp’s starting at the time of the pulse- 0. actions multiply the number of excited gp’s in the energy
In the absence of relaxation, a change in the available gpange from() to wp, which is taken as the cutoff energy of

density of states follows. Becaupg®(¢, w)*=g*(£,0) if @ the pairing interaction. This happens in a time interval short

is real, the correction to the density of staf(¢) is: w.r.t. the pulse duratioit~101*s). In the second stage, a
1 much slower relaxation process, takes place, by which the
(&) = - =(59R - 89 (£,0%) energy of the qp’s reacheés This process involves electron-
77 phonon scattering on a time scale3 /A%~ 10? ns, which is

q _ much larger than any time scale in our problem. Here we will
=~ 7p[2§/(v’2wc)] for £€>0. (15) leave this stage aside. In the time interval we are concerned
N2 with, we have little relaxation and the energies involved are

The first stages of the relaxation process involve the inelastie> A

diffusion of gp’s in the medium that is qualitatively dis-  According to Eq.(B2) the distribution function prior to
cussed in the next section. relaxation deviates from the equilibrium value by the quan-

tity on =-26n(¢) given by Eq.(14). There is no explicit
dependence om in our correction because retardation is
nelgected. Still gp’s diffuse in_space inside the junction over

Let us discuss shortly what was neglected in the derivaa characteristic distandg,~ VD 7., WhereD is the diffu-
tion of the change in the equilibrium gp distributi@gim(é) sion coefficient. Hence

B. Inelastic diffusion of the gp’s at initial times

024520-4



COHERENT RESPONSE OF A LOW; JOSEPHSON. PHYSICAL REVIEW B 70, 024520(2004

= RS -RoI(R+2) A u; 7
o (ERE)=-2 om(ée o . 16 W) = — + —. 23
(ERY=-2570 (=R} (1g) A e ey e S
For relatively large times ;> t> R%/D, we will ignore the  The equilibrium values fou; andv, are
spatial dependence by puttifg=0. This is the first step of a 1 £\ ]2 1 £\ ]2
perturbative analysis of the nonequilibrium distribution func- ug = [ (1 + —)] , vg = [-(1 - —)] ; (24)
tions. 2 E 2 E

with E=\&+|A|?. From now on we will drop the subscript
in the equilibrium gap parametéire., A=A, if no time de-
pendence is indicated explicijlyBecause the factain, (&,t)

A. The correction of the gap parameter appearing in Eq(21), as given by Eq(16) is odd w.r.t. ¢,
only the second term in? andv? survives when the integral
in Eq.(21) is performed. Let us only consider the case A
and specialize Eq21) to its diagonal part. According to Eq.
g16) we have

Ill. CHANGES OF THE SUPERCONDUCTIVE
PROPERTIES ON THE TIME SCALE wgl

In this section we derive the Keldysh Green’s function in.
the presence of both a time dependent gdp and of a
nonequilibrium gp distribution as given by E@.6). We as-
sume weak coupling superconductivity and we neglect her
the frequency dependence of teg@h coupling parametex.

This follows from the neglecting the retardation effects men-  9e{on_ - g5} = %e{— —Q(t)f dg—p[2§/(\ 200)]
tioned in Sec. Il B on time scales much faster than ¢he
-ph relaxation time. From the Keldysh Green’s functigh < 1 1 )}

(where the hat denotes matrix representation in the Nambu X\ — E+i0 wiE+i0"
space, see Appendix )Awe recalculate the gap self- @ v e :

consistently, according to the formula = 1=
’ ’ = - qV212p(2(0? - [AP) 2/ (200)].  (25)

A(t) = - V(O))\j (fK(ﬁ/|ﬁ|,w,t))ngw_ (17 Here we have defined the functigit) as follows:
The average over the direction of the momenta on the Fermi av =9 DL (26)
surface is indicated. The Keldysh Green’s function in ther- R
mal equilibrium is Doing similarly for g* and subtracting, the imaginary part
Bw cancels
aK _ AR _ AA
go =tanh—-(g"-g"). (18) ~ 1
° 2 oL (g5~ g5) = = aA(H4V2p[2(w? - [A]D)2/(\2w,)],
Out of equilibrium we use the definition for w > A. (27
nggRﬁ_ ﬁgA_ (199  Here the largest contribution of the nonequilibrium excita-

tions arises fromw ~ w.. On the other hand, can be larger
However, h defined in Appendix B is diagonal here becauseor smaller thanp.
we assume that no charge imbalance arises. Hence, up to first Now we evaluate the correction dued@-g4,. In Appen-

order inq, dix C we show that an adiabatic solution of the motion equa-
AK_ 0/AR AA AR AA tion of g** is possible, in the sense that the functional de-
89" =~ N (G54 = Gag) + (T — o) - (20) pendence omw is the same as the equilibrium dependence;

Here n?=tanHBw/2) is the equilibrium distribution.gf,  Put the gap parameter changes slowly with tifsee Eg.
-§4y is introduced in Appendix Gsee Eq(C2)] and is dis- (C2)]

cussed in the following. v

We now first derive the contribution coming from the sec- RP=+(-) (28)
ond term of Eq(20). We start from the outset using Ed.6) V(o £i0%)? = |A(1))?
and performing the quasiclassical approximation. The latter lith
involves an energy integration as follows:
i M—( ¢ Am) 29
(G5 - o) = ;f [déon (&,0][Fe(& w,t) = Go(&,0,1)]. -AD* -/’

(21) This functional form for theR/A functions is obtained if the
e-h symmetry is maintained and if one neglects the diffusion
Using the equilibrium BCS functional forms, the Green'’s in space-time, which will be mainly important at intermedi-

functions appearing on the diagonal gffR are?® ate timest®
) ) This adiabatic approximation in the advanced and re-
R - Ug Vg tarded Green’s functions allows us to write the Keldysh
g (§’ (J)) - s A+ st (22) - .
o—E;+i0"  w+E+i0 propagator in the form:
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K oK > 2 TS 0 | T T | |
9" = Gaa— A4 2p[2(0” - [A[)2/(V200)].  (30)
L — o,/A=10
To calculatef we resort to the analogous of B 1), which o @p/A=20
is valid for g¥: f<=g*A/w. Hence we have a I - 0 JA=30
-A I = 0.0 N L
<= K, - q(t)4V2—p[2(0? - |A]D) 2/(\2w,)] for > A. g‘ o
w OO ...................................
(31)
Now we insert Eq(31) into Eq.(17) and consider the linear
correction to the gap of the irradiated contact according to 02—,

o /A
A(t) = A+ SA(Y).
FIG. 2. Variation of the gap immediately after the pulse versus
Here SA(t) is the correction to the unperturbed gap param-he inverse of duration of the pulsg'=w in units of A. Our
eterA due to the radiation. In the limit of zero temperature, @PProximations break down for very low ratiag/A (long pulseg

up to first order ing(t) and A/ wp, SA(t) is given by Qn the qther han.d,' Iarge;c/A repr.esent very short' pulses; this
situation is unrealistic with the available optical devices.

SA(t) qt)42 Ddo
=- 2, 2 —pl2(w
A IN(2wp/A) =2 +O(AYwg) )y

B. Correction to the Josephson current

. - In this subsection we derive the correction to the Joseph-
_|A|2)§/(\;’2wc)]_ (32) son current arising from the two terms of the anomalous
propagatorf(R,t,t’) given by Eq.(31). Equations(30) and
It is interesting to note that the correction arising from the(31) show that the nonequilibrium Keldysh Green’s functions
adiabatic dynamics has the role of renormalizing the couof the irradiated superconductor can be separated into two
pling q(t) via the prefactor Hn(2wp/A)-2]7%. This prefac- terms. The first one is what we call the “adiabatic” contribu-
tor is negative because(Rwp/A)>2. Therefore, Eq(32)  tion, while the second one is strongly dependent on the non-
shows that the gap of the irradiated superconductor is dekquilibrium gp’s distribution function and is first order in
creased due to the nonequilibrium distribution of the gp exd(t). Within the linear response theory in the tunneling ma-
citations. trix element|T,|?, the pair current at zero voltage is:
Equation(32) has the same structure as Eq. 14 of Ref. 21.
There is a striking difference however. The inverse square-
root singularity at the gap threshold, which shows up in Eq.
14 of Ref. 21, does not appear in £§2).
The inverse square-root singularity originates from the
unperturbed density of states at the excitation threshold and (f>1(0,t,t')f /Z*(O,t',t) +f R;(O,t,t’)f T(0t,1), (33
is usually present in nonstationary superconductrfty. is
responsible for retardation and oscillating tails. In our casewhere|T,|2 is assumed to be independent of energy, for sim-
the gap threshold plays a little role because we do not havgiicity. The current of Eq(33) is evaluated at the junction

extensive palr-b_reakmg anq gp generation at energias site, defined byR=0 and the irradiated superconducting layer
Hence,_Just a ta'Fl_/“’_ SUrvives in the_mtegrgnd. Sl is labeled by 1, while the superconductor unexposed to
In Fig. 2 _the variation of the gap immediately after the radiationS2 is labeled by 2. The perturbed Josephson current
p_ulse(t_~ 0) 1S plotted Versus the inverse of the pulse d_ura'has an adiabatic terni®d(t) obtained by inserting the first
matiocs are notvalid when the pulse becames tog (oagy (o™ © EG(3D into £q.(33) pus a correctiodl() arising
. ; from the second term of Eq31). Using the definitions¥
low values ofw./A). For longer pulses the integrand in Eq. =f>+f< and fR-fA=f>~f< and expanding to lowest order
(32) has a narrow peak lined up at the gap threshold. In thiin q(t) the adiabatic critical current is
case the inverse square-root singularity in the density o
states at the gap threshold is important and the adiabatic
approximation Eq(30) breaks down. Jod= 329t)sin(p), J29(t) = @(1 +
For shorter pulses the peak becomes broader and is cen- ¢ ¢ 2eRy
tered at largew’s. If the integration range is small, the result
is quite sensitive to the location of the pe@ee full line in  whereRy is the normal resistencd, is the unperturbed gap
Fig. 2): most remarkably, a minimum appears in the curveparameter of both contactassumingA;=A€'¢ andA,=A in
when the pulse is rather lon@g./ wp<5). By contrast, the the absence of laser perturbatiopand SA(t)/A is given by
gap correction is rather flat w.r.t. changes«gfwhen wp/A Eq. (32). Denoting bysfX the second term of Eq31) the
is larger(broken and dotted line in Fig.)2 correctionsJ(t) is

o0

JR=0,t) = 26|T,2 J dt’ e?evi-t)

—o0

aw

2A ) - (39
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[

8J(t) = elT f do([5f(w +ieV) 5w —ieV)

+[fR(w +ieV) I 6w -ieV)]y).
At zero temperature and=0, this gives

© APt =
ﬂ de—q()p[z(wZ_ |A|2)1/2/(Vr2wc)]
eRyJ ()

(35

8J(t) =

( glie e ) 36
X| = + 36
V(w+i0M2- A2 (w—-i0%)2-|A2

which is zero for parity. This conclusion holds because we

assume that no charge imbalance occur¥.#f0 the contri-

butions to the integral evaluated in the complex plane are 0

finite. 8J(t) is a cosp-like correction. In the unperturbed
Josephson effect a cgsterm only arises whel > 2A*, By
contrast, our calculation shows that a gogerm can arise in

PHYSICAL REVIEW B 70, 024520(2004
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the Josephson current with a small nonzero voltage in the g 3. voltage behavior in time for different energy released on

presence of an ultrafast laser pulse.

IV. CLASSICAL DYNAMICS OF THE IRRADIATED
JUNCTION

In this section we integrate the classical equation of mo
tion of the irradiated junction numerically. Here we discuss
the possibility that the laser pulse induces switches of the
junction from the zero voltage state to the resistive state. The
characteristics of the Josephson junction for a finite voltage

is obtained within the RCSJresistively and capacitively

shunted junctiopnmodel! The phase of the superconductor

the sample and the quality fact@=100. The voltage is normalized
to V0: L()pJ(pol C.

rium. In the simulation, we use both a constant junction re-

sistancer and a patchwork model given By

(5]
A

Q) = Qg —— (39)
A, (m)
A

S2 is taken as the reference phase. In the absence of thgth N=16 andQ;'=0.636, which corresponds to a normal

pulse, the junction is biased by a current constant in tigne

resistance above the gﬂN:(prgpo)/(cJ‘c’). In general we

As discussed in the previous section, the pulse activates thignore the direct dependence Bfg) on the phase. By the

superconductofl by varying its gap dynamically in time.
Consequently, a voltag¥ arises at the junction, related to
the dynamics of the phase differengé). The latter solves

the differential equation

NPT (3!
o+ Qle+ CJO

c

sing(t) =y, (37)

where y=J,/32 and J2=(7AA)/(2eRy) is Josephson critical

current of the unperturbed junction. The time-dependen

driving term is deduced from E¢34). We assumev, ;> rgl
(72Y(Nb)~7 GH2), where wpy is the plasma frequency at
zero bias. This condition is satisfied for high-qualigb
junctions, wherew,y, is in the range 40-120 GHZ,but it

way, Q should also depend on the energy that is released by
each single laser pulse due to the incoherent pair-breaking
process. However, under the hypothesis that this energy is
very low, we assume that the quality factor due to the opti-

cally induced normal resistance of the sample is constant
within the considered energy range.

Actually, in the presence of the pulse, the current contri-
bution of Eq.(35) should also be plugged into the Ihs of Eq.
(37). This current term depends on the voltage ¢. How-
bver, in view of the fact that in this work we are only con-
cerned with the switching of the junction out of the zero
voltage state, we do not derive the full dynamics of the phase
self-consistently.

In Fig. 3 we show the voltage just after the pulse for

holds also if we take into account the dependence of th@jfferent values of the released energy. The time evolution of

plasma frequency ony: wy;=wpx(1-7?)Y4 At y=0.98 the

the voltage is sketched for some successfully induced

term (1-+%)4=0.44; this still gives a large plasma fre- switches. The junction starts in the zero voltage state. At
quency for the given range. In any case the plasma frequency, t=0* it is irradiated by the laser pulse. There are few
changes marginally when the energy is degradated into heakcillations at frequencyw,; before the switching occurs,
if g is small. Under this condition the relaxation processfollowed by an overall increase of the oscillating voltage.
occurs long after the switch to the resistive state. The largerq is, the faster the switch is. If no switch is in-

In Eq. (37), Qo=wp0R(¢)C is the quality factor, where duced the junction remains in the zero voltage state—the
R(¢) is the junction intrinsic resistance, which is in general aphase and the voltage are weakly perturbed by the radiation
nonlinear function of the phase. The dissipatg' term  and show decaying plasma oscillations around their equilib-
includes thermal incoherent pair-breaking effects at equilibrium values.
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' ! ' ] havior in Fig. %a). This means that the pulse duration can be
§ Eﬁ::i‘.?:iﬂii::ﬁigf}ﬁ" 1 appropriately chosen in order to optimize the junction
C Nonlinear conductance . switching with the laser field. Indeed, ./ A is of the order

of 5-15, a very small released energy is required for the
switching of the junction because the order parameter is
much depressed by the laser pulse in that range. Out of this
range, the shorter the pulse is, the larger the energy required
is. By contrast a slightly larger released energy is also re-
quired for longer pulsesw./A <5). This is because longer
pulses imply a more extended change in the gp distribution
up to higher energies. As a consequence the maximum of the
function p of Eq.(32) contributes less to the correction of the

| gap parameter. Nevertheless caution should be used in con-
100 sidering our results for longer pulses because of the ne-
glected relaxation effects.

10

VIV

01f |

FIG. 4. (Color onling Voltage behavior in time with different V. CONCLUSION

quality factorsQ in the linear conductance modéA,B) and the The eff f ltrafast | | h d
nonlinear conductance modgl) as given by Eq(38). The voltage . e effect of an ultrafast aser_pu S? on the supercqn uct-
is normalized t0Vo= wy o/ C. ing coherence at a Josephson junction allows studying an

unexplored regime in nonequilibrium superconductivity.
In Fig. 4 we show the approach to the gap voltage forNonequilibrium in superconductivity is usually addressed in
different Q values and two different conductance models.the context of one of the possible applications of Josephson
Except for the asymptotic trend, the curves @F10 (B)  junctions, that is radiation and/or particle detectors. Highly
andQ=100(A) show a similar behavior. The nonlinear con- energetic radiation produces pair breaking and quasiparticles,
ductance gives rise to a more pronounced shoulder in th&hich, in turn, excites a large number of them in a cascade
curve after the first increase of the voltage. The first phas@rocess. Usually the setup is optimized such that the gp’s can
oscillations at frequency,, are largely independent of the be collected and contribute to the current across the junction
dissipation model used. with a sharp signal. Losses are due to degradation of the
The switching of the junction out of the zero voltage statereleased energy into heat during the relaxation process. To
depends on the bias currefy, on the released energy per achieve optimum performance, the Josephson current is usu-
pulseq, and on the pulse duration. In Fig. 5 we sketch theally suppressed by applying a magnetic field. This picture
switching front in the parameter spa@ (w./A,q) at fixed has been discussed quantitatively by examining the quasi-
y and (b) (y,q) at fixed w./A, for Q=100 andwp/A=10.  classical kinetic equation for the nonequilibrium gp distribu-
For each point(q,w,/A,y) we calculated2d(t) from Egs. tion function®® o
(34) and (32). Next we plug the result into the equation of _ In this work we have concentrated on a quite different
motion [Eq. (37)]. Numerical simulation of the dynamics time scale_—one fixed b_y the duration of_an ultrafast laser
shows whether the junction is stable in the zero voltage statBulse. While the relaxation process mentioned above takes
or switches to a running state. The points of the curve marilace on a time scale of 0.1-100 ns, we have considered a
the frontier between the two behaviors. The full curve is jusf@ser perturbation lasting, at most, hundreds of femtosec-
a guide for the eye. The nonmonotonicity 8A(t)/A with ~ ©onds. This type of tool can be quite valuable for future ap-

the pulse duration, appearing in Fig. 2 forces a similar bePlications because fast pulses in flux and gate voltages are
extremely important when processing information in super-

010 T — 1 1010 conducting quantum computing devicegubits.?® Indeed,
3,/3.=0995 (I O © /A=10 ] finite ri 4 fall 1 £ oul it onif
0,081 10 Joos inite rise and fall times of pulses may result in a significant
kY 11b) Voltage State | error in dynamical computation schenfésThe carrier fre-
0.06|- o 10.06 guency of the laser is-100 T Hzand the optical radiation is
9 T Voltage State 14 expected to produce marg—h pair excitations as would
0041 r J0.04 occur in a normal metal. In our case, qp’s do not have
| " ] enough time to relax down to the typical phonon frequencies
0.021" 41 H0.02 ) )
I Josephson State || Josephson State \g | (~wp) and to heat the sample before the stimulated switch-
03350557 o5 o5 ° ing occurs. We do not wish to col!ect qp’s either, which
® /A 3/ requires a suitable geometry of the junction.
C [+

Instead, we have addressed the question of how the criti-
FIG. 5. Switching front in the parameter spa@ (v /A,q) at ~ Cal current for Josephson conductidpcan be coherently
fixed current biasy=J,/3° and (b) (y,q) at fixed wc/A, for Q affected by a laser-induced small perturbation with an unre-
=100 andwp/A=10. The full curves have been added as a guidelaxed nonequilibrium distribution of gp’s, that is, before the

for the eye; they mark the border between the zero voltdgseph-  dissipative response sets in.
son) state and the voltage statgis the coupling strength due to the Using the quasiclassical approach to nonequilibrium
laser pulse. Keldysh Green'’s functions, we have shown that if the tem-
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perature is very low, then the order parameter of the irradithe pulse can be optimized in order to induce controlled co-
ated superconductor can respond adiabatically to a weak peierent switching at the minimum possible released enérgy
turbing signal. A nonequilibrium distribution of qp’s is

generated and consequenfly is temporarily reducedsee

Eq.(34) and Fig. 3. This reduction can drive switches of the ACKNOWLEDGMENTS

junction out of the zero voltage state. In our approach the

retardation effects, which arise from the frequency depen- We are indebted to B. Altshuler, A. Barone, D. Bercioux,
dence of thee—ph coupling «°F(w) and from the actual L. N. Bulaevskii, F. Hekking, Yu. N. Ovchinnikov, G. Pepe,
features ofe—ph relaxation processes, have been neglectedand G. Schoen for useful discussions at various stages in the
They came into play on a time scale longer than the duratiopreparation of this paper.

of the laser pulserpc ~ 7.. Indeed in the equation of motion

for the Keldysh Green’s function reported in Appendixes B

and C, the role of the frequency-dependent self-energy terms AppENDIX A: QUASICLASSICAL TIME-DEPENDENT

has not been discussed. GREEN'S FUNCTION APPROACH
The parameter, which is related to the energy released by

the radiation and describes the strength of the perturbation, is The quasiclassical Green'’s function solves the Eilenberger
g. In our case, the switches can be induced by pulses witform of the Gorkov equations in commutator fot:
g~ 0.05, with relatively low values of./A ~ 10, by polar- . ...
izing the junction very close to the critical current. [(Ggl— 3 -A),Gl, =0. (A1)

In experiments on laser-induced nonequilibrium effects in
superconductofsor Josephson junctioristhe released en- The matrix Green's functiol in the Keldysh space is
ergy is of fewud, which corresponds to values gfbetween
0.25 and 0.67 for the given laser spot dimension. In our case GR GX
for g=0.05 the switching occurs at 98% of the critical cur-
rent. Therefore, a coherent effect of the laser on the super-

conducting condensate is sufficiently large to be observed ipvhere, in turn,GR, G*, and GX are the retarded, advanced,

sensitive experiments monitoring the escape tatéThese ‘and Keldysh Green’s functions, respectively, in the Nambu
experiments can appreciate very small variations of the critispace:

cal current, if temperature is kept low and the released en-
ergy is sufficiently small, so that sizeable heating effects do SARK) _( gARK fARK) )
not occur. T\ fARKT _ g(ARK)T
We have also found a cascontribution to the Josephson )

conduction due to the presence of the excited ggee Eq. Heref is the anomalous propagator and its Keldysh compo-
(36)]. This term, which will be examined in detail elsewhere, "€nt defines the gap:
vanishes at zer&,T, provided excitations do not generate WO\

f do <fK>

.. (A2)
0o G*

(A3)

charge imbalance. A similar term, proportional to the voltage A=
V, can also be derived in the BCS theory of Josephson

conductiont but it is identically zero as long ag<2A/e The averagd);- denotes angular averaging over the Fermi
because of the absence of gp’s at zero temperature. This Is

not the case here, due to the presence of a nonequilibrium cﬁyrface The gap matrik is defined as:

(A4)

distribution. 0 A
Our derivation of Eqs(32), (34), and(36) assumes that A= A A :< 0* B ) (A5)
no charge imbalance is created by the perturbation. This is 0 A A O

because the radiation excitesh pairs and the pulse dura-
tion is short enough so that pair breaking is very limited. TheThe self-energyE includes elastic and inelastic scattering
absence of charge imbalance is a crucial approximation imith impurities and gives rise to relaxation processes. The
our solution scheme. This assumption allows us to keep theommutator is evaluated w.r.t. the operation that implies
unperturbed functional form of the quasiclassical Green'sntegration over the intermediate variables according to
functions and to insert a time-dependent gap paranisigr
in their expressionsA(t) follows the perturbation adiabati- Gyl® Gy = f d2G3(1,26G(2,1), (AB)
cally and is determined by the nonequilibriter h pair dis-
tribution produced by the pulse. Charge imbalance correc- 1 )
tions should be reconsidered, but they are usually expectefinere 1= (fi,ty). The differential operatoB;'(1,2) is
to have a minor effect on the dynamics of the junction. . - 2
To complete the picture, we have simulated the classical G,X(1,2= |:IO'3ﬂt1 (V —-i- oSA(l))
dynamics of the junction switching to the resistive state. This
picture is only valid over few periods7# wp; on time dura-
tion less than the electron-phonon relaxation time. +(ep(1) - )l [8(1-2. (A7)
Precursor oscillations can be seen in Fig. 3 at the Joseph-
son plasma frequenay,;. Most remarkably the duration of Here
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. _ (& o)y (10 §(@,RY) =g(w,RY) + 2 ¥ (@R ™. (AL3)
g = ~ | I = ~ | (A8) - +
0 o 0 ]

R Hereg(w,R,t) is assumed to be the slowly varying part on
whereai(i=1,2,3 are the usual Pauli matrices ahdhe 2  the scale of the pulse duratiag, while x* are fast varying

X 2 unit matrix. The vector potential(1) describes the laser ©ones. All these functions are slowly varying functions of

radiation field of frequency: space as well, on the light spot size scale. A decomposition
R of EQ. (A10) into harmonics arises. We are interested in the

A1) =2, > a.(p,te B, (A9)  zero-order harmonic equation, which shows a slow dynamics

+ p that can be followed coherently by the irradiated supercon-

ductor. Leaving the self-energy terms in E&10) for the

where a, can be slowly varying “envelope” functions of moment aside and dropping the superséfiptve obtain

space, on the light spot sif, and on time, on the scaf@™.
These are the reference space and time scales in the follow- . . a1

ing. In the frame of the quasiclassical approximation, the [rsa, X1+ [ma, X ]+[(w73_A)19]_5{731(7t9}

original Green's functionsG(1,2) =G(r,t,f’,t') are as-

sumed to be slowly varying function of the coordindte +l{atA 9,8 - iatAz(g g=... (A14)
=(F+f")/2 while they oscillate fast as functions B’ on 2 “= 2m¢ “=

the ;cale of _the Fermi wavelepg)tlﬁ. Itis customary als_o_to where the ellipsis refers to the missing self-energy terms.
rewrite the time dependence in terms of the new variables 114 first-order harmonic equations are

=(t+t’)/2 andt—-t’ and to Fourier transform w.r.i—r" and

t-t’, thus obtainingG(j,,R,1). The motion equation for *i{7s, X"} + (€2mc)[a,,§] = 0. (A15)
the Keldysh component of EgA1) reads They show that the first two terms in EgA14) are O(Q1)
[éal_me(i) —A éK]® smaller than the others and can be neglected to the lowest

: . order. Hence the effective equations for the Green’s func-
- ~ | I~ - .
=[3XRe(G)], + E{EK’A}‘@ _ E{F,GK}®, (A1)  tions are

J U AN RPN -2 .
where we have defined a quantity proportional to the densit)l(“”?» —4A).41- 5{73“9@} * E{atA’ﬁwQ} - WatAzéwQ RS
of statesA=i(GR-G*) (not to be confused with the vector (A16)
potentia), and written down the imaginary and the real part
of the Se”:_energyf*:i(iR_iA) and ERei=%(iR+iA), re-  Thelast three terms in E¢A16) include the time-dependent

spectively, as well as the real part of the retarded/advancedPneauilibrium dynamics, which is absent in the case of a
, . S 1, ARL AA . time independent approach. Retarded, advanced, and
Green's functionReG=5(G"+G") ({, } denotes the anti-

. . . Keldysh Green’s function all satisfy analogous equations.
commutatoy. The next step is the gradient expansion of the
® product(we drop the overline onin the following):

é ® B= exp 1/2(7?(95, _ &2(9{3)6)('3 1/119%(92_ aﬁaﬁ)éé, APPENDIX B: KINETIC EQUATION FOR n(w,r,t)

(A11) One can linearize EqA16) for Keldysh Green'’s function

. . . by posing@“=gRh—-hg”. This yields the kinetic equation for
c

(heredy stands for the grad@nt w.r.t. the |mpulse operatingine gistribution functiom(w, R, t).21 We neglect any varia-

on C), followed by the averaging of the result @i close 0 tjon in space and concentrate on théependence here. The

tF_’F’ WTE“ js pver:he ﬁnggiqs?/Zm—,uzgwhile the direc- distribution matrixh is defined starting from the, andn;
lon of p, p, IS untouched: functions according to:

a2 i Aa 2 -

9(p.o.R Y =— f déG(p,w,R ). (A12) h=n1+no, (B1)
This is justified becauskg is much shorter both of the su- or
perconducting correlation length and of the spatial range of . (n.(E) +ny(E) 0
the laser spote—h symmetry is assumegdEventuallyg de- h= ( 0 n.(E) - n (E))
pends o, w, R, t. The average of EqA10) over all direc- L T
tions in the Fermi surface can be done if no external bias is 1-2n(E) 0
applied and anisotropies of the diffusion and relaxation pro- 0 on(-g) -1/
cess are not expected. In the presence of radiation with op-
tical frequency it is customary to average out the fast oscil-The second equality defines the relation with the gp distribu-
lating components with frequencf (Ref. 28. Following tion functionn(E). We always assume-h symmetry, so that
Eg. (3), we expand the Green’s functions similarly as fol- n(E)+n(-E)=1 andn;=0. In the equilibrium case, one has
lows: ny(E)=1/e¥T+1, so that

(B2)
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1 E E (2,2) = g +AfT=A* f+5,A0, fT+9A* 9, f
nm =2 tanl‘(—) + (- )tanl‘(—) ) (B3) d ‘ ‘
2 2T 2T &2 225 ot
- ——A%9,9"=
Substituting Eq(19) into Eq.(A16), we get the kinetic equa- 2mc™

tion for the distribution matrixh. In particular, in case there (1,2)—2wf-Ag'-gA+dAd,9"-3,90A
is no charge imbalance, the equation for the longitudinal

component,_ is:*® +ﬁatA207wf: .
m
AN TrL(G%73 = 0™ ]+ 9,n TrGAGR - 6] (2,1) = +2wfT-A*g-g'A* + gA* 9,9-d,9"0A*
¢ R g &
- R@AZTF[%”L(QR -] =-4[n (o], _m,;tAZ,waT: o
(B4) The equilibrium result suggests that

where I[n (w)] is a collision integral which regulates the f_@
relaxation of the qp distribution toward equilibrium. Equa- T 9
tion (B4) is fully discussed in Ref. 15.

(Cy

solves Eqgs(1) and (2) except for terms=g,A?, which de-
scribe the relaxation at later times. Let us assume that this
relation holds also in the nonequilibrium case. Then the for-
We now write the equations E¢A16) explicitly for the ~ mal solution, follows adiabatically the dependence of the
retarded Green’s functions. We label the matrix componentgap parameteA by keeping an equilibriumlike shape

APPENDIX C: EQUATION OF MOTION OF GR

with (i,j)(i,j=1,2 and drop the superscripeverywhere. A)
The matrix elements of EqA14) in the Nambu space be- Oad = % ad= T (C2)
come: Voo = |AJ4(t) Vo = |AJA(Y)

(1,1) - ag - AfT+A* £+ 9,40, fT+aA* o, f This approximate solution is quite appealing because it sat-
isfies the equilibrium condition foA att— . However, it
neglects diffusion in spacetime, which will be mainly impor-

+
tant at later times w.r.t. the pulse duration.

A% g=...
2m(,2 1 wg
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