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The optimally doped and underdoped region of thlemodel at largeN (N is the number of spin compo-
nenty is governed by the competition af-wave superconductivitfSC) and a d-charge-density wave
(d-CDW). The partial destruction of the Fermi surface by th€DW and the resulting density of states are
discussed. Furthermoresaxis conductances for incoherent and coherent tunneling are calculated, considering
both an isotropic and an anisotropic in-plane momentum dependence of the hopping matrix element between
the planes. The influence of self-energy effects on the conductances is also considered using a model where the
electrons interact with a dispersionless, low-lying branch of bosons. We show that available tunneling spectra
from break junctions are best explained by assuming that they result from incoherent tunneling with a strongly
anisotropic hopping matrix element of the form suggested by band structure calculations. The conductance
spectra are then characterized by one single peak which evolves continuously from the superconducting to the
d-CDW state with decreasing doping. The intringi@xis tunneling spectra are, on the other hand, best
explained by coherent tunneling. Calculated spectra show at low temperatures two peaks due to SC and
d-CDW. With increasing temperature the BCS-like peak moves to zero voltage and vanidhesxatctly as
in experiment. Our results thus can explain why break junction and intrinsic tunneling spectra are different
from each other. Moreover, they support a scenario of two competing order parameters in the underdoped
region of highT, superconductors.
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I. INTRODUCTION materials'? On the other hand, strongly overdoped samples
show only one sharp peak with properties as expected from
One important topic in higf=, superconductors is the BCS theonf
question of how many order parameters are needed for a It is tempting to associate the two peaks observed in the
proper description of the optimally doped and underdopeaptimally doped and the underdoped region with the SC and
cases. One scenario assumes that only the superconductithg: pseudogap, as has been done in some of the above refer-
order parameter is relevant. The decrease in the transitiognces. In the following we will investigate whether the
temperaturd, is then caused by fluctuations of its phase andwidely accepted-J model supports such a picture. To this
the pseudogayp is locally just the superconducting gap. A seend we will present calculations for the conductance based
ond scenario assumes that the physics in the underdoped apd at-J model where the two spin components have been
optimally doped region is mainly determined by the compe-generalized tdN components and the leading diagrams at
tition of the superconducting order parameter with a seconthrgeN are taken into account. As discussed in detail in Ref.
one in the particle-hole channel. Examples could be the ant6 the phase diagram in this limit has a quantum critical
tiferromagnetics- andd-charge-density wave or stripe order point (QCP) separating aff=0 the normal phase at large
parameters. dopings from ad-CDW state at lower dopings if supercon-
Many experiments such as angle-resolved photoemissionjuctivity is omitted. Allowing also for superconductivity the
or tunneling in break junctiods® suggest that there is only QCP separates a pure superconducting state from a ground
one energy scale related with the gap and that this scalstate containing both superconductivity andi-£DW. The
increases monotonically with decreasing doping. Recent inproperties at optimal doping and in the underdoped regime
trinisc c-axis tunneling spectra in several cuprdté¥seem are mainly determined by the competition between supercon-
to modify this picture. Optimally doped or underdoped ductivity and thed-CDW. This model thus represents an ex-
samples show at low temperatures two peaks for positive cimple for the above second scenario. Coexistence of SC and
negative voltages. The peak at larger voltages stays esse@DW states as well as a partial gapping of the Fermi surface
tially at the same position, but becomes broader with increasn the pure CDW state have already been discussed
ing temperature. With decreasing doping it moves towardgreviously!’-?° for instance, as a model for intermetallic
larger voltages. Though this peak behaves similar to the oneompounds of the A15 crystal structure.
seen in tunneling in break junctions, it has recently been
argued that heating effects could seriously affect this Il. DENSITY OF STATES AND FERMI SURFACE
peak!*15> The peak at smaller voltages moves towards zero IN THE PRESENCE OF SC AND d-CDW
voltage with increasing temperature, hereby loses intensity
and vanishes &.. Heating effects should be unimportant for ~ The CDW order parameter, appropriate for thimodel
the behavior of this peak. Intrinsic tunnel spectra of this kindat largeN, is given by® (k) ==i/2NcZq, J(k = 0)(C},Cqiq0)-
have been found both for double layer and single layed is the Heisenberg coupling!,¢ are creation and annihila-
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tion operators for electrons under the constraint that double
occupancies of lattice sites are exclud§djs the number of
primitive cells,{---) denotes an expectation value, aQds

the wave vector of the CDW. Keeping only the instantaneous
term in the effective interaction, the superconducting order £ 0.05
parameter isA(k)=1/2N24(J(k-q)—Vc(k—)){CqiC_q))-

As shown in Ref. 16 it is in general necessary to include the
Coulomb potentiaM in order to stabilize the CDW with
respect to phase separation. In the presence of the two orde

t=0.35 -
J=0.3
V,=0.06 -

0.03

er paramete

parameters the operator§g! €. Gl.q.Cxo, ) are B
coupled leading to the following Green's function matftx:  © o.02 .
z-dl) -AG) -ivk) O oo ]
12k -Ak) z+ek) 0 id(k)
Glzk) =| _ — |, 0.00 = : !
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(k) _ zmelk) —Alk) temperature T
0 —-id(k) —Ak) z+ek)

1 FIG. 1. Order parameted andA as a function of temperature
1) in units oft for the dopingsé=0.114 and 0.078.

e(k) is the one-particle energy,
1 shows the temperature dependencéaind A, calculated

(k) == (8t + ad)(cogk,) + cogky)) with t’/t=-0.35 andJ/t=0.3. In the following we take as
— 2t' 5 cogk)cogk,) - , energy unit, as length unit the Ia_ttice constant Qf the square
lattice, and also seét=1. A repulsive nearest-neighbor Cou-
with lomb interaction was also included witl/t=0.06. Accord-
ing to Fig. 1 the temperature dependence of the order param-
a= 1/chq cogq,)f(e(q)). eters is mean-field-like sufficiently away frod. Near &

. . . . - the two order parameters strongly interact with each other.
f is the Fermi functiong the doping away from half-filling, For instance, for the slightly underdoped casessf0.114
w arenormalized chemical potentiakndt’ are nearest- and .o increase ofs at low temperatures is accompanied b'y a
second-nearest-neighbor hopping amplitudes complex e rease ofb so that the “total gapyAZ+d? is rather con-
frequency, anck=k-Q. The lattice constant of the square stant at low temperatures.
lattice has been set to 1. Figure 2 contains densities of states #%0.114 andT
Expressing the expectation values in the order parameteesp, The thin dotted line denotes the density for vanishing
by Gy and using Eq(1) one obtains two coupled equations order parameters. It shows a logarithmic divergence due to
for the order parameters. In the interesting doping region théne van Hove singularity. The latter lies for the chosen pa-
order parameters have-wave symmetry,®(k)=®y4(k),  rameters just below the Fermi energy which corresponds to
A(k)=Ayqy(k), with y4(k)=(cogk,) —cogky))/2. The equa-
tions for A and® read then

20-Vow v FELK)YK)
TN Ekglﬂm(a(k)—wk))
X (P(K)(A2+ ®2) = (E,(K) = e(K)) (E,(K) + e(K)),
)

density

4
A F(EL(K)) ¥i(K)
" chk 21 Mg ol Ea(K) = Eg(K))

X (Y2(K)(AZ + ?) = (Eo(K) + e(k))(Eq(K) + e(K)).
&)

V¢ is the expansion coefficient of the Coulomb potential in 0 . ;

. ; . -0.2 -0.1 0.0 0.1 0.2
the d-wave channel with the basis functian andE (k) are frequency
the four poles 0fG4(z,k) in the z plane. At zero temperature
& decreases monotonically with increasifigvhereas\ first FIG. 2. (Color onling Density of states fodd=A=0 (dotted
increases, passes then through a maximurf, &t0.15 and  line), ®+0,A=0 (long-dashed ling ®=0,A #0 (dashed—dotted

finally decreases again, as shown in Fig. 1 of Ref. 21. Figuréne), ® #0,A # 0 (solid line) for T=0 and6=0.114.
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zero energy. The long-dashed curve describes the case whe
the correct finite value fo® has been used, bt has been
set to zero. This density shows a strongly asymmetric gaf
structure with a strong peak on the low and a weaker, split
peak at the high-energy side. A closer analysis shows that thi
lower peak of this doublet comes frok points near the
antinodal pointsX and Y. States near these points are
coupled by thed-CDW and their energies are shifted by the
formation of thed-wave gap. This explains why this peak
moves upwardsgsee the dashed and solid lines in Fig.ir2

the presence of an additional BCS gap. In contrast to that, the
upper peak of the doublet originates frdmstates on the
boundaries of the reduced Brillouin zone near the points
(wl2-8,712-6) and equivalent points witld< /2. Their
energies are mainly determined by the one-particle energie
near this point relative to the Fermi energy and thus less

6=0.114

density

sensitive to the formation of the gap. This explains why the -0.2 -0.1 0.0 0.1 0.2
position of this higher peak of the doublet is unchanged by frequency

the BCS gap, see the dashed and solid lines in Fig. 2. The

density is everywhere nonzero in tleCDW state, in par- FIG. 3. (Color onling Density of states fof=0 (solid line),

ticular, at the Fermi energy. This can be understood from thd =0.007(dashed ling T=0.011(dotted ling, and 5=0.114.
condition for states at the Fermi energy in a pdr€DW
state, namelyp?(k) = (k) e(k +Q). This equation can be ful-  One important feature of the coexising SC aCDW
filled also fork points away from the diagonal, which means state is that the two gaps have different locationk Bpace:
that a remnant Fermi surface survives id-&€DW, but notin ~ The CDW gap mainly resides near thé and Y points,
a d-SC state. The asymmetry of the density with respect tavhereas the SC gap is most effective near the remnant Fermi
zero energy is caused by the asymmetric bare density due turface of thed-CDW state, i.e., near the diagonal. This be-
the proximity of the van Hove singularity and the fact that comes clear by looking at the Fermi lines as a functiodof
e(k—Q) #—€(k) in the presence of thg hopping term. The in the absence of superconductivity. Since a fiditémplies
finite density of states at the Fermi energy allows one ta doubling of the elementary cell we have plotted Fermi lines
lower further the ground state energy by introducing a superin Fig. 5 in the reduced zone scheme, e.g., the new Brillouin
conducting gap. The density of states becomes then strictlyone(BZ) is bounded by a straight line between the points
zero at the Fermi level and the additiomddwave gap is X=(w,0) andY=(0,w). The line corresponding td#=0 de-
rather symmetric with respect to the Fermi energy. The rescribes the usual normal state Fermi line in the reduced Bril-
sulting density of states for this cae# 0,A+ 0 is given by  louin zone for the parametet$/t=0.35 andJ/t=0.3. For
the solid line in Fig. 2. Comparing this line with the dotted— ®=0.02 the Fermi line consists of a long arc around the
dashed line, which corresponds to a pure SC statd ,A
# 0, one recognizes that the inner part of the gap structure
looks like a reduced SC gap with weakly developed edges, at
least on the low-energy side. Figure 3 shows the density of
states for6=0.114 and three different temperatures. These
temperatures are low enough so that the main gap edges do
not change much becaus®?+A? is nearly constant. How-
ever, the opening of the SC gap in the inner part of the gap
structure can clearly be seen as a function of temperature.
Figures 2 and 3 illustrate the fact that the total gap is not
just one singled-wave gap with an amplitude given by the
square root of the sum of the square of the two gaps. Instead,
the SC and CDW gaps interact with each other, however in
such a way that their individual structures can still be seen in
the density of states. This is also apparent in the density plots
for three different dopings in Fig. 4. The upper and lower
panels illustrate the difference between the density of states
for a SC and a-CDW gap, respectively. Some features of
the individual gaps are still present in the middle panel of
Fig. 4 which describes the case of coexisting SC &u@DW
gaps. We find in contrast to Ref. 22 that our self-consistently

density

_ _ _ 03 02 -01 00 01 02
calculated order parameters yield for all considered dopings frequency

and hopping parameters densities where the SC gap lies in-

side thed-CDW gap. FIG. 4. Density of states for three different dopingsTatO.
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3t ' ‘ 9 3p ' H We make the following ansatz for the averaged squared
©=0. ©=0.02 tunneling matrix element:
2 1 2r . .
F <TiqTerg = =B AOAUDAK ) A"
1 I I X NeSi-q o (Nead g + g(k = ). (5
0 o ] , 3 0 o 1 2 \3‘ The form factorsy(k) determine which electrons in the BZ
: ‘ : . : ‘ are mainly involved in the tunneling process. Results from
S L. ©=0.04 | St ©=0.06 | band structure calculatioffssuggest the ansatz
2t 12+ . y(k) =1 -u+u/2|cogk,) — cogk,)|, (6)
o | i | with O<u=1. The parametau interpolates between the iso-
tropic caseu=0 and the strongly anisotropic casel. The
\ \ latter is typical for tunneling within a double layer of CyO
0y 1 5 3 Y9 1 5 3 planes, whereas tunneling between layers in different el-
a, q, ementary cells may include also an isotropic component. The

first term in the angle brackets in E¢) accounts for coher-
FIG. 5. Fermi lines af'=0 for four values ford in the absence ent scattering with strength. The second term in the angle

of superconductivity fors=0.114. brackets describes incoherent scattering wiggsea smooth

function of the momentum. One may distinguish two cases
diagonal ending at the new boundary of the BZ and twofor the momentum dependence @f In the case of strong
pieces near th& and Y points. This means that the region !0calized scattereg may be assumed to be completely inde-
around the hot spots becomes first gapped. Increagitige ~ Pendent on momentum. If long-ranged random fields are
arc becomes shorter and the gapped region around the hefesentg is large(smal) mainly at smalllargey momentum
spots larger. The finite density of states at the Fermi energjfansfers. The momentum dependence dius can be mod-
in the CDW state is mainly due to this arc. Allowing also for €lled by
SC the arc becomes gapped and the Fermi line shrinks to one _ 20142
point on the diagonal. The coexistence of SC and CDW thus glk) =g exd- [k*/A%, (7)
becomes possible because the SC state can lower the frig@@ere the momentun interpolates from isotropic to for-

energy by introducing a gap along the remnant Fermi lines ofyarg scattering, described by large and small valuesifor
the d-CDW state, in particular, along the arc around the di'respectively.

agonal. Since the case of coherent scattering can be obtained from
that of incoherent scattering by replacingby 4m/A? and
ll. CONDUCTANCE taking the limit A — 0 we will first consider incoherent scat-
tering. Using Eq(5) and restricting the momenta to the re-
duced BZ because of the cell doubling due todh@DW we
obtain for the tunnel current

Using lowest-order perturbation theory in the interlayer
hopping the quasiparticle-axis current] between supercon-
ducting layergSIS junction is given by?

t] =~ ("
WV =dmess S <TToy > IndV) = 4me 52 (k) (@) j do(f(w) = f(w+eV)
Ck,q,k’,q’ Cc k’q —%
” x| gk -7 Asig 1ea/(K 0+ €
X.f_m do(f(w) - f(w +eV) [g( q)“z’l vz o+ eV)
X Au(k'k,0 + eVA1(qg’, o). (@) XArizr 2@, 0) + 9k =G~ Q)(Ay(k,0 +eV)
In Eq. (4) Tyq denotes the hopping matrix element between X Ags(T, w) +A33(E,w+ eV)AL(G, ) |. (8)
states with momentk andq in adjacent layers anek--->

an average over quenched disordas the Fermi functiony

the applied voltage, and using the Nambu representatign, The tilde on the momenta indicates that these momenta lie in
the spectral function of the element 11 of th& 2 Green’s  the reduced BZ. The spectral functioAg depend then only
function matrix. The momenta in the above formula refer toon one momentum and can be assumed to be periodic with
the original (large) BZ. As a result, the spectral function respect to the reduced BZ. The same is true for the form
depends on two momenta in the CDW state because mdactors y but not for the functiong which originates from
menta are conserved only up to the wave vedrThe  impurity potentials. To make the expression fifl/) inde-
differential conductanc&(V), which is the main quantity of pendent of the choice for the reduced BZ we also translate
interest in the following, is defined as the first derivativelof back the momentum appearinggrio the reduced BZ. Equa-
with respect tov. tion (8) then becomes
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t 120 T

2 o0

nPIRAEACY j do(f(w) - f(w +eV)) 50178
G| -

xg(k —P(An(K, 0 +eV) + Agsk, 0 + eV))

X (A11(q, w) + Azx(q, w))

+ 2715k, @ + V) Agy(, 0)]. (9)

The first contribution in the square brackets on the right-
hand side describeswave, the second ondwave scatter-
ing. Their relative importance is controlled by the parameter

Jinc(V) =4me

o
(=]

S
o

inc
(=}

o]
o

conductance G
n
(=]

0
A in the functiong. If g is independent of the transferred 180
momentum Eq(9) simplifies to
120
JInc(V) = 4megt: f do(f(w) - f(w +eV)p(w +eVip(w), 60
o . .
10 0.0 0.1 0.2
(10 voltage eV

with the weighted density

1 B 5 B FIG. 6. Incoherent-axis conductance calculated far0, A
P(w) = N—E Y(K)(Ag1(K, w) + Agg(k, w)). (11) =, T=0,J=0.3,t'=-0.35, and three different dopings.
C

K the folding of the large CDW shoulder at negative frequen-

Finally, we define a dimensionless incoherent conductanceies with the BCS peak and the two splitted CDW shoulders
Ginc by at positive frequencies, respectively. The BCS gap itself is
_ 2 12 seen only as a broad and weak structure at low energies.

Gine = 9 Jnc(V)/ 3 VI(ATeGL /") 12 Some of the features in Fig. 6 agree with the tunneling %x-

For a SIN junction one usually assumes thas indepen-  periments, e.g., the monotonic increase of the dominant
dent of momentum. Its current is then obtained from@&q)  high-frequency peak with decreasing doping and the appear-
by identifying one of the two densities with that of the nor- ance of more than one peak in the optimally and underdoped
mal metalp,, which can be assumed to be constant. Thecases. However, several details of these curves are not found
resulting dimensionless conductance of a SIN junction bein the experiments: The peak in the overdoped case is much
comes then at not too high temperatures, too broad compared to that in the intrinisieaxis tunneling

_ ~ spectra of Ref. 6, the lower peak in the underdoped cases is
Gsin(V) = tpup(eV). (13) caused by the relaxation of electronic states around the CDW
Since we will mainly consider SIS junctions in the following gap to states near the arcs or the nearby BCS gap and thus
conductance will always refer to SIS junctions unless it isdoes not approach zero gt as in intrinsic tunneling spectra.
stated otherwise. Similar conclusions are reached, following Ef3), by com-

The simplest case of incoherent scattering corresponds f@aring the experimental conductance curves of SIN
u=0 and A=, i.e., where the averaged tunneling matrix junctions$** with the densities of Fig. 4. The monotonic in-
element is independent of all momenta. Using the densitiesrease of the distance between the two main peaks with de-
of Fig. 4 the resulting conductance curves are shown in Figereasing doping occurs in both cases but the experiment does
6. In the pure superconducting stgtepper panglthe con-  not show the asymmetry of the theoretical conductance curve
ductance shows a broad peak near the gagvBich decays in the underdoped case as well as the additional structures
rapidly towards larger but rather slow towards smaller enerobtained in the region of coexisting SC addCDW.
gies. The conductance is positive for all frequencies, espe- Things change substantially if the form factgik) with a
cially also above &, which is intimately connected to the nonzero value fou is taken into account. Assuming still a
presence of the large and rather constant density of statesomentum-independent functigithe tunnel current is now
outside of the gap region. In tlteCDW casglower panel in  to be calculated from the weighted dengitas given by Egs.

Fig. 6) the conductance curve has two peaks. The higher andLO) and (11). Figure 7 show$(w) for the extreme aniso-
dominant one is due to the CDW gag2In contrast to the tropic caseu=1 for three different dopings. Most of the
superconductor the&-CDW state hagneglecting the tiny background contribution to the density has been removed. In
BCS gap at the doping=0.077 a finite density of states at the over- and under-doped cagapper and lower panels in
and near the Fermi energy along the arcs. The folding oFig. 7) p consists of just two rather symmetric peaks with
these states with one of the CDW edges causes the loweespect taw=0 which are related to the superconducting and
peak at about the energp. Well above @ the curve is d-CDW gaps, respectively. In the slightly underdoped re-
again rather constant and partly slightly negative. In thegime, where SC and-CDW coexist,p is still rather sym-
weakly underdoped cagmiddle panel in Fig. Bthe conduc- metric with respect ta=0 and consists of two peaks and, in
tance curve shows essentially two peaks. They arise due feetween, two shoulders. The peaks at large energies are

024518-5



A. GRECO AND R. ZEYHER PHYSICAL REVIEW B70, 024518(2004
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frequency 0.0 0.2

0.1
voltage eV

FIG. 7. Weighted densitp as a function of frequency fof

=0, J=0.3, »=0.004,t' =-0.35, and three different dopings FIG. 8. Incoherent-axis conductance calculated far1, A
=, T=0, t"=-0.35, and three different dopings.

dominant, their frequencies are roughly given by
+2\D?+ A% i.e., they describe the “total” gap of the two region towards higher voltages. The reason for this negative
components. The two shoulders at smaller frequencies aresistance becomes clear from a comparison of Figs. 4 and 7.
related to the SC gap, which can be concluded from theiMost of the rather constant background density in Fig. 4 has
temperature dependence and magnitude of their energidseen removed by the anisotropic form factor. However, just
Their low intensities can also be easily understood: The BC$his constant background density is responsible for a positive
gap resides on the arcs near the diagonal. The form factor and structureless conductance outside of the gap region.
with u=1 suppresses heavily the tunneling of states in thisSimilar considerations apply to the underdoped cadse
region. It is also interesting to note that only the lower peak=0.077. The anisotropic form factor sharpens up somewhat
of the split high-energy-CDW edge in Fig. 4 for5=0.114 the high voltage peak and suppresses the lower peak at
survives in the corresponding weighted density in Fig. 7.around ® because the states near the arcs can no longer
This can easily be understood by noting that the lowercontribute much. At the same time the conductance shows a
(highen peak of the doublet is due fo states near the anti- well-pronounced dip aboved? with large negative values
nodal(nodal points and thus unaffecteéduppressexby the  due to the eliminated background density of states. Similar
form factor. statements hold for the slightly underdoped case. Here the

The curves forp look in many respects similar to the lower peak at around\+®, which was in Fig. 6 still the
experimental SIN conductance curves. In both cases, theirongest one, is suppressed but still visible.
spectra are dominated by two pronounced peaks lying rather The above calculations show that an incoherent tunneling
symmetrically with respect tawv=0 and whose separation model with a momentum independent functigiis not able
increases monotonically with decreasing doping. Theséo produce a peak in the coexistence region which moves
peaks evolve iip very smoothly from a SC todCDW state  towards zero voltage iT approached .. We therefore have
passing through a region where both order parameters coegiso studied finite values fak in the Gaussian in Eq.7).
ist. The agreement can be further improved if one introduce&xperimental evidence for strong forward scattering in the
a phenomenological damping in the theoretical curves. Thaveraged squared tunneling matrix element has recently been
peaks are then broadened and the low-energy structures fiound from the temperature dependence of ¢hexis pen-
5=0.114 become invisible. The dip on the high-energy sidegtration depth in YBzCu;0g.,.2% Using the isotropic form
of the main peaks in the experimental spectra is, howevefactor u=0 and A=7/8 Fig. 9 shows the conductance for
missing inp indicating the presence of self-energy effectsthree different dopings &i=0. The spectra are dominated by
beyond a constant damping. a peak at approximately the frequencies®®+A2. This

Performing the frequency integral in E¢LO) with the  peak reflects the doping dependence of the “total” gap which
weighted densitie® one obtains the curves of Fig. 8. The increases monotonically with decreasing doping. In the up-
main effect of the inclusion of the anisotropic form facters per panel the gap describes a superconducting gap, in the
with u=1 is the suppression of the small quasiparticle excilower panel ad-CDW gap and in the middle panel a combi-
tations near the nodal regions. This means in the overdopethtion of both.
cases=0.178 that the slowly decaying tail of the main peak The doping dependence of the main peak in Fig. 9 agrees
towards lower voltages seen in the upper panel of Fig. 6 isvell with experimental SIS spectra, see, for instance, Figs. 1
substantially suppressed making the peak much sharper. Tla@d 2 in Ref. 5, though the dips above the main line are more
dip above A is also more pronounced than in Fig. 6 and thepronounced than in the experiment. Also negative conduc-
conductance assumésmall) negative values over a wide tances are only very rarely observed experimentally. In the
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0.00 0.05 0.10 0.15 0.20
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-80 .
0.0 0.1 0.2 . . ]
voltage eV FIG. 10. (Color onling Incoherentc-axis conductance for five

temperatures using a Gaussian distributed hopping matrix element
FIG. 9. Incoherent-axis conductance calculated for isotropic With width A=7/8. Increasing temperatures correspond to curves
u=0 form factors, a momentum cutoff=/8, T=0, J=0.3,t"  With energetically decreasing low-energy peaks.
=-0.35, and three different dopings
peak, which seems not to be affected much by heating ef-
fects, also moves towards zero frequency with increasing
perature and vanishes n@arWe would like to point out
at this BCS-like peak can be seen in incoherent scattering

slightly underdoped regime@niddle panel in Fig. the two

order parameters coexist. The conductance shows in this ¢
besides the dominating high-frequency peak a peak near tq
superconducting part of the gap. This peak moves towar . . . ]
smaller frequencies with increasing temperature and vanisheglIy for a rather isotropic form factoy. Otherwise, the tun

at T.. The exact energy position of this peak is somewha{“e”n.g of electrpns near the nodal direction, where the SC
belocvv the superconducting part of the gagh. ZThis can gap is located, is too much suppressed. Another prerequisite

easily be understood from Figs. 2 and 3: Due to the interace that the averaged tunneling matrix element must be

tion between the two gaps part of the BCS shoulder has beejj o9y momentum dependent causing strong forward scat-
removed by thel-CDW so that the superconducting part of €nng.

the gap appears smaller than the canonical value£oiThis w Bseségﬁfa;ﬂgo;ifn?iEﬂgﬁimg dHéetgucﬁ:g?étrz??uﬁﬁ;ﬁ?ﬂm al-
reduced gap exhibits the expected temperature dependencgy. : ) oh . 9
riginating from the first term in the parantheses in Ej.

as can be seen from Fig. 3. The spectra in Fig. 9 exhibi L ) B
well-pronounced dips at energies somewhat above the magé{‘:g 'ng'l\i'gtnet%rig;iav:é;h giEusqLerziglrizgd bYNcad g
coh

peaks. These dips, which are also seen in tunneling spect
from break junctions, have been associated with self-energy
effects due to the coupling to some bogénie would like

to stress that no self-energy effects have been taken into

1 - 0
Jeo(V) = 4mreat N—Z ‘y4(k)f do(f(w) - f(w +eV)
account in calculating Fig. 9. Simple model calculations in- Ck ”

dicate that one finds easily a dip in SIS spectra if the size of X > Az 1ea0 (K0 + VAL 0 105K, ).

the region above 2 where spectral weight piles up because 17201 ’ ’

of the formation of the gap is comparable or smaller than the (14)
gap.

Figure 10 shows the temperature dependence of the inco- . : .
herent conductance fa5=0.114 andA=7/8. The position The corresponding coherent dimensionless conduct@gge

of the dominating higher peak is practically temperature iniS defined by

dependent for the temperatures shown in the figure. On the

other hand, Fig. 1 indicates that both order parameters vary Geon= @ JeoH V)0 VI(Ame?at] It?). (15

in the considered temperature interval. One concludes from

this that the higher peak reflects the total gap which is rathelf the superconducting order parameter is zero, Eg.re-
independent of temperature. In contrast to that, the loweduces to a X2 matrix. Calculating explicitly the spectral
peak depends strongly on temperature. It moves towards zefonctions from this matrix and performing the frequency in-
frequency with increasing temperature, loses spectral weightegration in the above integral one finds then that the sum
and vanishes with vanishing. Intrinsic c-axis tunneling overi,i’ yields zero without any further approximation. One
spectra in various cuprates show essentially the same fe#ius obtains the important result that coherent tunneling is
tures as in Fig. 10. In particular, the observed low-frequencyero in a pured-CDW.
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[52]
o
conductance G,

conductance G,
o

=100 L 1 L
0.00 0.05 0.10 0.15 0.20

voltage eV

0.0 0.1 0.2
voltage eV FIG. 12. (Color onling Coherentc-axis conductance for aniso-
tropic u=1 form factors,J=0.3, t'=-0.35, =0.01, and various
FIG. 11. Coherentc-axis conductance for anisotropig=1 temperatures labeled according to decreasing maxima.
form factors,T=0, J=0.3,t'=-0.35, #=0.01, and three different

dopingss. energy part drops dramatically with temperature and van-

Figure 11 shows the coherent conductance derl, T  iShes at T=0.0081. This again demonstrates that
=0, and three different dopings. The spectral functions wer&ontributions from thed-CDW can only be seen in the con-
obtained from the Green’s functions using the frequemcy _dUC'[anCG |f.the SupeI’C(_)ndUCtlng Order parameter IS f|n|te, l.e.,
+iz with 7=0.01. In the overdoped and slightly underdopedin the coexistence regime.
case the curves are similar to those in Fig. 9. In particular,
corresponding curves have negative conductances above the IV. SELF-ENERGY EFFECTS
main peak caused by the restriction to small momentum
transfers in the tunneling process. Fbr0.114 both curves According to angle-resolved photoemission experiments
show besides the main peak associated with the total gapthe generic spectral function in the superconducting state
second peak at smaller energies with BCS properties. Howgonsists of a well-pronounced peak followed by a dip and a
ever, one should note that Fig. 9 was calculated witt0 ~ hump towards larger energiésn concordance with that the
whereas Fig. 11 withu=1. It is somewhat surprising that €lectron dispersion shows a kink between 30 and 70 meV
coherent tunneling shows still the BCS peak though mosbelow the Fermi energdy. These features occur throughout
electrons near the nodal direction are prevented from tunnethe underdoped, optimally doped and the overdoped regime.
ing due to the employed strongly anisotropic form factor.Most of these properties can be reproduced in a model where
The dominance of small energy features in coherent tunnethe electrons interact with a boson brar@hich may be a
ing also is present in the underdoped cas®.077 where the Phonon or a spin fluctuatiori®*°In the following we as-
tiny BCS gap causes a sharp structure at very low energie§Ume a dispersionless boson branch with a constant dimen-
One important feature in Fig. 11 is related to the absolutéionless coupling.. In the presence of SC artiCDW the
values for the conductance depicted along yhaxis. The inverse of the electronic 44 Green’s functiorG(z,k) sat-
coherent conductance drops dramatically with decreasintgfies
doping. Going to smaller doping values one finds that, 1 -1
becomes zero if the superconducting order parameter van- Gz k) =Gy (zk) ~%(zk), (16)
ishes in agreement with the above analytic result. CoherenyhereG;' is given by Eq.(1) and3 is the self-energy. Be-
tunneling is nonzero in case of a pure superconductor asause the boson-mediated interaction is momentum indepen-
shown by the upper panel in Fig. 11. However, it is zero fordent in our model>, has only diagonal elements and it is
a pured-CDW state and the-CDW gap can only be probed 3,,=3,,=3,.=3,, with
in the presence of superconductivity. If the identification of

the pseudogap phase withrdeCDW is correct coherent tun- g? ‘ 2wos(E)T(E,)

neling should vanish in the pseudogap phase. (@)=~ N_z 2 —E2- )] E-E
Figure 12 illustrates the dependence of the coherent con- o} \e=t((Z-B)" = wp) B#a( o~ Ep)

ductance on temperature fér-0.114. With increasing tem- b= w)s(z—wg)  b(wg)s(z+ w)

perature the position of the low-energy peak and its intensity + WS\Z7 W)  Dlwo)SZ¥ @o) | (17)

decrease and approach zero at arotird.0081 where the Ha(z— wo— E,) Ha (z+ wg—E,)

superconducting order parameter vanishes. The position of
the high-energy peak as well as the dip are rather indeperg® is related tox by g?=\wo/(2N(0)), where N(0) is the
dent of temperature but the intensity of the whole high-density of states for one spin direction anglthe frequency
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FIG. 14. SIN conductances with self-energy correctionsTor

=0, u=1, wy=0.065,%=0.004,\=1, and three dopings.

FIG. 13. Real(dotted ling and imaginary(solid line) parts of
the self-energy folf=0, wy=0.065,%=0.004, anch=1.

of the bosonE, denote the four poles d&©, b the Bose
function, andN, is two times the number of allowed mo-

mentak. s(z) is given by
S(2) = 22(Z2 - (€(k) + é(k — Q))/2 — AX(k) — D?(k)).
(18)

in the SIN spectra is solely caused by the interaction with the
bosons it may thus be difficult to determine precisely the
boson energy from it.

The solid and dashed lines in Fig. 15 are conductance
curves for incoherent tunneling with and without self-energy
effects, respectively. The bosons do not contribute to the
nondiagonal self-energy because of the assumed momentum-
independent coupling to the electrons. As a result, the bosons
diminish both the SC and treCDW gaps via their diagonal

Figure 13 shows the real and imaginary parts of the retardegelf-energies. Consequently, the main peak moves towards

self-energy211(w+izn) at T=0. The curves for different dop-

lower frequencies but, considered as a function of doping,

ings look rather similar. The gap near the Fermi energy conthis peak increases monotonically with decreasing doping as

sists of the phonon energy plus tdevave gap of the SC
and/ord-CDW state. The panels in the figure illustrate the
very smooth transition from a SC to &CDW gap with
decreasing doping, passing also very smoothly through the
coexistence region of SC awdCDW. We used in this and in

all the following figures the value 1 for the dimensionless
coupling constank. This value corresponds to a change of
the slope of the electron dispersion at the kink by a factor of
2 in rough agreement with the photoemission data.

Figure 14 shows the SIN conductance usingukd anis-
tropic hopping form factor and including self-energy effects.
It is instructive to compare this figure with the analogous
Fig. 7 where self-energy effects have been omitted. The BCS
structure seen in Fig. 7 fa¥=0.114 has practically vanished
in Fig. 14. The main effect of the self-energy is to move
spectral weight from the main peaks to the sidebands. In the
pure superconducting state &t 0.178 the sidebands consist
of a clear dip and hump whereas in the two other cases the
dip-hump feature is less pronounced. Both dip and hump
move monotonically towards larger voltages with decreasing
doping. The position of the dip in a pure superconductor is
approximately half of the gap plus the boson energy. This
rule also holds in the-CDW and the mixed states. The exact

conductance G,

60 ' — T

40 /

60 I 50077 N\ 1

30 AV \ 1
0 (——~ \ 5
=
\ 4

-30 /
\/

—-60 L 1 1
0.00 0.05 0.10 0.15 0.20
voltage eV

FIG. 15. Incoherent conductances wigvlid line) and without

differences between the main peaks and the dip, howevegdashed ling self-energy corrections folf=0, u=1, A=», wq
fluctuate between 0.065 and 0.087 in Fig. 14. Though the dip0.065,%=0.004,\=1, and three dopings.
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in Figs. 14 and 15 are similar to those published in Refs. 28

300 r Il\| 8=0.178 1 and 31.
| /1 j
100 /fk/./\_ V. CONCLUSIONS
-100 V7 1 The t-J model exhibits in the employed largedimit a
f |// d-CDW phase at lower dopings besides the superconducting
300 r 1 ‘, : : phase which is a natural candidate for the pseudogap phase

observed in the cuprates. The density of states in the pure
d-CDW state is strongly reduced near the Fermi level but
still everywhere finite. This means that only part of the Fermi
lines of the normal state are destroyed by th€DW and

that the remaining Fermi lines form arcs around the nodal
direction ending at the boundaries of the reduced Brillouin
zone. With decreasing doping the length of the arcs becomes
shorter. The ground state energy of th€ DW can be low-
ered by introducing a-wave superconducting gap near the
arcs which explains the occurrence of a coexistence region of
SC andd-CDW. Because the two gaps are well separated in
k-space(the d-CDW gap resides near the antinodal, the su-
perconducting gap near the nodal direcjié@atures of the
individual gaps survive even in the coexistence regime.

In order to test the applicability of the above picture to
uprates we have calculated coherent and incoherent conduc-
tances and compared them with experimental spectra from
$reak junctions and intrinsic tunneling spectroscopy. We find
ood evidence that the tunneling matrix element between
yers is strongly anisotropic, suppressing tunneling of elec-
rfons near the nodal direction, which is in agreement with
Pand structure arguments. Incoherent tunneling thus probes
. . mainly electrons near the maximal gap at ¥nandY points.

If the experimental SIS spectra correspond to incohere his gap transforms in a very smooth way from a supercon-

tunneling the boson energy cannot be obtained from the di : : )
tance between the main peak and dip. Since the inc:oheresﬁjfuc’[mg gap at large dopings tocCDW gap at small dop

) . . gs passing continuously through the coexistence regime.
tShIS'speﬁtrumtlsSItge fold;ng of th?dShIN spgctru'm 'ml enerdQYCalculated incoherent conductances thus fit best to the ob-
€ Inconheren  SPectrum could have, In principle, a diq, qq spectra from break junctions which are characterized
when the Iower_mal_n peal_<_|s multiplied by the dip at IOOSItIVeby one peak moving monotonically to larger voltages with
voltages and this dip position would be equa! to the full galOdecreasing doping. We find that coherent tunneling is only
plus the boson energy. .The upper panel of Fig. 15, hoyveye onzero for a nonvanishing superconducting order param-
shows that the folding in energy does not lead to a dip jus

. ; . ter. BelowT, it shows in spite of the anisotropic tunneling
below the maximum of the sideband. The main effect of thematrix element two peaks which can be associated with SC

self-energy in Fig._ 15 is to Shif.t _spectral weight from th_e nd d-CDW. The appearance of a low-energy peak in the
main peak to the sideband consisting of a broad hump whic alculated coherent tunneling spectrum, which moves to O if

.monoto.nically_moves tpwards larger vqltages with d_ecrea T, is approached from below, is unique for intrinsic tunnel-
:ng dopmg. Th|skhuryt1rp1) 'tidue to thg folding of t%ml():upaed_ ing spectra. From this we conclude that tunneling in stacked,
ower main peax wi gunoccupiegi upper sidebands in intrinsic junctions is dominated by coherent tunneling and

Perent conductance cunves with and without seftenergy o2 {1e appearance of the low-energy peak related to super-
) i - C ivi Is with i -
fects, respectively. We have omitted curves for the strongl gonductivity supports models with two competing order pa

. ameters in the underdoped region. Including self-energy ef-
underdoped casé=0.077 because they are smaller by WOtacts due to the coupling of electrons to a dispersionless

orde'rs of magnitude dug to _the smaliness of the SUPETCONLL<on branch as suggested by ARPES removes part of the
ducting order parameter in this case. Self-energy effects shi

i : N gions of negative resistances and also creates sidebands
the main peaks to smaller energies, diminish somewhat tl’&h

. . . hich, at least in the case of SIN junctions, resemble those
regions of negative conductance, and create weak sideban ich have been measured
Figures 7 and 14-16 suggest that self-energy effects and thus '
the nature of the boson spectrum appear more clear cut in the
SIN than in the SIS spectra. For instance, the dip in the SIN
spectrum is soley caused by self-energy effects whereas that The authors thank Secyt and the BMBProject ARG
in the SIS spectrum is present even in the absence of ar§9/007% for financial support and A. Yurgens and V.M. Kras-
self-energy. The curves for the purely superconducting caseov for useful discussions.

conductance G,
|

_60 L 1 1
000 005 0.0 045 0.20
voltage eV

FIG. 16. Coherent conductances witplid line) and without
(dashed ling self-energy corrections fof=0, u=1, wy=0.065,
=0.004,\=1, and two dopings.

in the case without self-energy. Figure 15 also illustrates that
the distance between the dip and the main peak is similar i
the curves with and without self-energy effects and thus i
rather unrelated with the boson energy. For instancej at
=0.178 the distance between the dip and the main peak
0.020 and 0.018 in the case with and without seh‘-energyt
respectively, and thus much smaller than the boson energy
0.065.
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