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The optimally doped and underdoped region of thet-J model at largeN (N is the number of spin compo-
nents) is governed by the competition ofd-wave superconductivity(SC) and a d-charge-density wave
(d-CDW). The partial destruction of the Fermi surface by thed-CDW and the resulting density of states are
discussed. Furthermore,c-axis conductances for incoherent and coherent tunneling are calculated, considering
both an isotropic and an anisotropic in-plane momentum dependence of the hopping matrix element between
the planes. The influence of self-energy effects on the conductances is also considered using a model where the
electrons interact with a dispersionless, low-lying branch of bosons. We show that available tunneling spectra
from break junctions are best explained by assuming that they result from incoherent tunneling with a strongly
anisotropic hopping matrix element of the form suggested by band structure calculations. The conductance
spectra are then characterized by one single peak which evolves continuously from the superconducting to the
d-CDW state with decreasing doping. The intrinsicc-axis tunneling spectra are, on the other hand, best
explained by coherent tunneling. Calculated spectra show at low temperatures two peaks due to SC and
d-CDW. With increasing temperature the BCS-like peak moves to zero voltage and vanishes atTc, exactly as
in experiment. Our results thus can explain why break junction and intrinsic tunneling spectra are different
from each other. Moreover, they support a scenario of two competing order parameters in the underdoped
region of high-Tc superconductors.
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I. INTRODUCTION

One important topic in high-Tc superconductors is the
question of how many order parameters are needed for a
proper description of the optimally doped and underdoped
cases. One scenario assumes that only the superconducting
order parameter is relevant. The decrease in the transition
temperatureTc is then caused by fluctuations of its phase and
the pseudogap is locally just the superconducting gap. A sec-
ond scenario assumes that the physics in the underdoped and
optimally doped region is mainly determined by the compe-
tition of the superconducting order parameter with a second
one in the particle-hole channel. Examples could be the an-
tiferromagnetic,s- andd-charge-density wave or stripe order
parameters.

Many experiments such as angle-resolved photoemission1

or tunneling in break junctions2–5 suggest that there is only
one energy scale related with the gap and that this scale
increases monotonically with decreasing doping. Recent in-
trinisc c-axis tunneling spectra in several cuprates6–13 seem
to modify this picture. Optimally doped or underdoped
samples show at low temperatures two peaks for positive or
negative voltages. The peak at larger voltages stays essen-
tially at the same position, but becomes broader with increas-
ing temperature. With decreasing doping it moves towards
larger voltages. Though this peak behaves similar to the one
seen in tunneling in break junctions, it has recently been
argued that heating effects could seriously affect this
peak.14,15 The peak at smaller voltages moves towards zero
voltage with increasing temperature, hereby loses intensity
and vanishes atTc. Heating effects should be unimportant for
the behavior of this peak. Intrinsic tunnel spectra of this kind
have been found both for double layer and single layer

materials.12 On the other hand, strongly overdoped samples
show only one sharp peak with properties as expected from
BCS theory.6

It is tempting to associate the two peaks observed in the
optimally doped and the underdoped region with the SC and
the pseudogap, as has been done in some of the above refer-
ences. In the following we will investigate whether the
widely acceptedt-J model supports such a picture. To this
end we will present calculations for the conductance based
on a t-J model where the two spin components have been
generalized toN components and the leading diagrams at
largeN are taken into account. As discussed in detail in Ref.
16 the phase diagram in this limit has a quantum critical
point (QCP) separating atT=0 the normal phase at large
dopings from ad-CDW state at lower dopings if supercon-
ductivity is omitted. Allowing also for superconductivity the
QCP separates a pure superconducting state from a ground
state containing both superconductivity and ad-CDW. The
properties at optimal doping and in the underdoped regime
are mainly determined by the competition between supercon-
ductivity and thed-CDW. This model thus represents an ex-
ample for the above second scenario. Coexistence of SC and
CDW states as well as a partial gapping of the Fermi surface
in the pure CDW state have already been discussed
previously,17–20 for instance, as a model for intermetallic
compounds of the A15 crystal structure.

II. DENSITY OF STATES AND FERMI SURFACE
IN THE PRESENCE OF SC AND d-CDW

The CDW order parameter, appropriate for thet-J model
at largeN, is given byFskd=−i /2Ncoqs Jsk −qdkc̃qs

† c̃q+Qsl.
J is the Heisenberg coupling,c̃†, c̃ are creation and annihila-
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tion operators for electrons under the constraint that double
occupancies of lattice sites are excluded,Nc is the number of
primitive cells, k¯l denotes an expectation value, andQ is
the wave vector of the CDW. Keeping only the instantaneous
term in the effective interaction, the superconducting order
parameter isDskd=1/2NcoqsJsk −qd−VCsk −qddkc̃q↑c̃−q↓l.
As shown in Ref. 16 it is in general necessary to include the
Coulomb potentialVC in order to stabilize the CDW with
respect to phase separation. In the presence of the two order
parameters the operatorssc̃k,↑

† , c̃−k,↓ , c̃k+Q,↑
† , c̃−k−Q,↓d are

coupled leading to the following Green’s function matrix:16

G0
−1sz,kd =1

z− eskd − Dskd − iFskd 0

− Dskd z+ eskd 0 iFsk̄d

iFskd 0 z− esk̄d − Dsk̄d

0 − iFsk̄d − Dsk̄d z+ esk̄d
2 ,

s1d

eskd is the one-particle energy,

eskd = − sdt + aJdscosskxd + cosskydd

− 2t8d cosskxdcosskyd − m,

with

a = 1/Ncoq
cossqxdfsesqdd.

f is the Fermi function,d the doping away from half-filling,
m a renormalized chemical potential,t andt8 are nearest- and
second-nearest-neighbor hopping amplitudes,z a complex

frequency, andk̄ =k −Q. The lattice constant of the square
lattice has been set to 1.

Expressing the expectation values in the order parameters
by G0 and using Eq.(1) one obtains two coupled equations
for the order parameters. In the interesting doping region the
order parameters haved-wave symmetry,Fskd=Fgdskd,
Dskd=Dgdskd, with gdskd=scosskxd−cosskydd /2. The equa-
tions for D andF read then

1 =
2sJ − VCd

Nc
o

k
o
a=1

4
fsEaskddgd

2skd
PbÞasEaskd − Ebskdd

3 sg2sk̄dsD2 + F2d − sEaskd − esk̄ddsEaskd + esk̄dd,

s2d

1 =
2J

Nc
o

k
o
a=1

4
fsEaskddgd

2skd
PbÞasEaskd − Ebskdd

3 sg2sk̄dsD2 + F2d − sEaskd + eskddsEaskd + esk̄dd.

s3d

VC is the expansion coefficient of the Coulomb potential in
the d-wave channel with the basis functiong, andEaskd are
the four poles ofG0sz,kd in thez plane. At zero temperature
F decreases monotonically with increasingd, whereasD first
increases, passes then through a maximum atd0,0.15 and
finally decreases again, as shown in Fig. 1 of Ref. 21. Figure

1 shows the temperature dependence ofF andD, calculated
with t8 / t=−0.35 andJ/ t=0.3. In the following we take as
energy unitt, as length unit the lattice constant of the square
lattice, and also set"=1. A repulsive nearest-neighbor Cou-
lomb interaction was also included withVC/ t=0.06. Accord-
ing to Fig. 1 the temperature dependence of the order param-
eters is mean-field-like sufficiently away fromd0. Near d0
the two order parameters strongly interact with each other.
For instance, for the slightly underdoped case ofd=0.114,
the increase ofD at low temperatures is accompanied by a
decrease ofF so that the “total gap”ÎD2+F2 is rather con-
stant at low temperatures.

Figure 2 contains densities of states ford=0.114 andT
=0. The thin dotted line denotes the density for vanishing
order parameters. It shows a logarithmic divergence due to
the van Hove singularity. The latter lies for the chosen pa-
rameters just below the Fermi energy which corresponds to

FIG. 1. Order parametersF andD as a function of temperature
in units of t for the dopingsd=0.114 and 0.078.

FIG. 2. (Color online) Density of states forF=D=0 (dotted
line), FÞ0,D=0 (long-dashed line), F=0,DÞ0 (dashed–dotted
line), FÞ0,DÞ0 (solid line) for T=0 andd=0.114.
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zero energy. The long-dashed curve describes the case where
the correct finite value forF has been used, butD has been
set to zero. This density shows a strongly asymmetric gap
structure with a strong peak on the low and a weaker, split
peak at the high-energy side. A closer analysis shows that the
lower peak of this doublet comes fromk points near the
antinodal pointsX and Y. States near these points are
coupled by thed-CDW and their energies are shifted by the
formation of thed-wave gap. This explains why this peak
moves upwards(see the dashed and solid lines in Fig. 2) in
the presence of an additional BCS gap. In contrast to that, the
upper peak of the doublet originates fromk states on the
boundaries of the reduced Brillouin zone near the points
sp /2−d ,p /2−dd and equivalent points withd!p /2. Their
energies are mainly determined by the one-particle energies
near this point relative to the Fermi energy and thus less
sensitive to the formation of the gap. This explains why the
position of this higher peak of the doublet is unchanged by
the BCS gap, see the dashed and solid lines in Fig. 2. The
density is everywhere nonzero in thed-CDW state, in par-
ticular, at the Fermi energy. This can be understood from the
condition for states at the Fermi energy in a pured-CDW
state, namely,F2skd=eskdesk +Qd. This equation can be ful-
filled also fork points away from the diagonal, which means
that a remnant Fermi surface survives in ad-CDW, but not in
a d-SC state. The asymmetry of the density with respect to
zero energy is caused by the asymmetric bare density due to
the proximity of the van Hove singularity and the fact that
esk −QdÞ−eskd in the presence of thet8 hopping term. The
finite density of states at the Fermi energy allows one to
lower further the ground state energy by introducing a super-
conducting gap. The density of states becomes then strictly
zero at the Fermi level and the additionald-wave gap is
rather symmetric with respect to the Fermi energy. The re-
sulting density of states for this caseFÞ0,DÞ0 is given by
the solid line in Fig. 2. Comparing this line with the dotted–
dashed line, which corresponds to a pure SC stateF=0,D
Þ0, one recognizes that the inner part of the gap structure
looks like a reduced SC gap with weakly developed edges, at
least on the low-energy side. Figure 3 shows the density of
states ford=0.114 and three different temperatures. These
temperatures are low enough so that the main gap edges do
not change much becauseÎF2+D2 is nearly constant. How-
ever, the opening of the SC gap in the inner part of the gap
structure can clearly be seen as a function of temperature.

Figures 2 and 3 illustrate the fact that the total gap is not
just one singled-wave gap with an amplitude given by the
square root of the sum of the square of the two gaps. Instead,
the SC and CDW gaps interact with each other, however in
such a way that their individual structures can still be seen in
the density of states. This is also apparent in the density plots
for three different dopings in Fig. 4. The upper and lower
panels illustrate the difference between the density of states
for a SC and ad-CDW gap, respectively. Some features of
the individual gaps are still present in the middle panel of
Fig. 4 which describes the case of coexisting SC andd-CDW
gaps. We find in contrast to Ref. 22 that our self-consistently
calculated order parameters yield for all considered dopings
and hopping parameters densities where the SC gap lies in-
side thed-CDW gap.

One important feature of the coexising SC andd-CDW
state is that the two gaps have different locations ink space:
The CDW gap mainly resides near theX and Y points,
whereas the SC gap is most effective near the remnant Fermi
surface of thed-CDW state, i.e., near the diagonal. This be-
comes clear by looking at the Fermi lines as a function ofF
in the absence of superconductivity. Since a finiteF implies
a doubling of the elementary cell we have plotted Fermi lines
in Fig. 5 in the reduced zone scheme, e.g., the new Brillouin
zone(BZ) is bounded by a straight line between the points
X=sp ,0d andY=s0,pd. The line corresponding toF=0 de-
scribes the usual normal state Fermi line in the reduced Bril-
louin zone for the parameterst8 / t=0.35 andJ/ t=0.3. For
F=0.02 the Fermi line consists of a long arc around the

FIG. 3. (Color online) Density of states forT=0 (solid line),
T=0.007(dashed line), T=0.011(dotted line), andd=0.114.

FIG. 4. Density of states for three different dopings atT=0.
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diagonal ending at the new boundary of the BZ and two
pieces near theX and Y points. This means that the region
around the hot spots becomes first gapped. IncreasingF the
arc becomes shorter and the gapped region around the hot
spots larger. The finite density of states at the Fermi energy
in the CDW state is mainly due to this arc. Allowing also for
SC the arc becomes gapped and the Fermi line shrinks to one
point on the diagonal. The coexistence of SC and CDW thus
becomes possible because the SC state can lower the free
energy by introducing a gap along the remnant Fermi lines of
the d-CDW state, in particular, along the arc around the di-
agonal.

III. CONDUCTANCE

Using lowest-order perturbation theory in the interlayer
hopping the quasiparticlec-axis currentJ between supercon-
ducting layers(SIS junction) is given by23

JsVd = 4pe
1

Nc
3 o

k,q,k8,q8

! TkqTk8q8
*

@

3E
−`

`

dv„fsvd − fsv + eVd…

3A11sk8k,v + eVdA11sqq8,vd. s4d

In Eq. (4) Tkq denotes the hopping matrix element between
states with momentak andq in adjacent layers and!¯@
an average over quenched disorder.f is the Fermi function,V
the applied voltage, and using the Nambu representation,A11
the spectral function of the element 11 of the 232 Green’s
function matrix. The momenta in the above formula refer to
the original (large) BZ. As a result, the spectral function
depends on two momenta in the CDW state because mo-
menta are conserved only up to the wave vectorQ. The
differential conductanceGsVd, which is the main quantity of
interest in the following, is defined as the first derivative ofJ
with respect toV.

We make the following ansatz for the averaged squared
tunneling matrix element:

!TkqTk8q8
*

@ = t'
2 gskdgsqdgsk8dgsq8d

3Ncdk−q,k8−q8sNcadk,q + gsk − qdd. s5d

The form factorsgskd determine which electrons in the BZ
are mainly involved in the tunneling process. Results from
band structure calculations24 suggest the ansatz25

gskd = 1 −u + u/2ucosskxd − cosskydu, s6d

with 0øuø1. The parameteru interpolates between the iso-
tropic caseu=0 and the strongly anisotropic caseu=1. The
latter is typical for tunneling within a double layer of CuO2
planes, whereas tunneling between layers in different el-
ementary cells may include also an isotropic component. The
first term in the angle brackets in Eq.(5) accounts for coher-
ent scattering with strengtha. The second term in the angle
brackets describes incoherent scattering whereg is a smooth
function of the momentum. One may distinguish two cases
for the momentum dependence ofg. In the case of strong
localized scatterer,g may be assumed to be completely inde-
pendent on momentum. If long-ranged random fields are
present,g is large(small) mainly at small(large) momentum
transfers. The momentum dependence ofg thus can be mod-
elled by

gskd = g · exps− uk2u/L2d, s7d

where the momentumL interpolates from isotropic to for-
ward scattering, described by large and small values forL,
respectively.

Since the case of coherent scattering can be obtained from
that of incoherent scattering by replacingg by 4p /L2 and
taking the limitL→0 we will first consider incoherent scat-
tering. Using Eq.(5) and restricting the momenta to the re-
duced BZ because of the cell doubling due to thed-CDW we
obtain for the tunnel current

JincsVd = 4pe
t'
2

Nc
2o

k̃q̃

g2sk̃dg2sq̃dE
−`

`

dvsfsvd − fsv + eVdd

3 Fgsk̃ − q̃d o
ii8=0,1

A1+2i,1+2i8sk̃,v + eVd

3A1+2i8,1+2isq̃,vd + gsk̃ − q̃ − Qd„A11sk̃,v + eVd

3A33sq̃,vd + A33sk̃,v + eVdA11sq̃,vd…G . s8d

The tilde on the momenta indicates that these momenta lie in
the reduced BZ. The spectral functionsAij depend then only
on one momentum and can be assumed to be periodic with
respect to the reduced BZ. The same is true for the form
factors g but not for the functiong which originates from
impurity potentials. To make the expression forJsVd inde-
pendent of the choice for the reduced BZ we also translate
back the momentum appearing ing to the reduced BZ. Equa-
tion (8) then becomes

FIG. 5. Fermi lines atT=0 for four values forF in the absence
of superconductivity ford=0.114.
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JincsVd = 4pe
t'
2

Nc
2o

k̃q̃

g2sk̃dg2sq̃dE
−`

`

dvsfsvd − fsv + eVdd

3gsk̃ − q̃df„A11sk̃,v + eVd + A33sk̃,v + eVd…

3„A11sq̃,vd + A33sq̃,vdd

+ 2A13sk̃,v + eVdA31sq̃,vdg. s9d

The first contribution in the square brackets on the right-
hand side describess-wave, the second oned-wave scatter-
ing. Their relative importance is controlled by the parameter
L in the functiong. If g is independent of the transferred
momentum Eq.(9) simplifies to

JincsVd = 4pegt'
2 E

−`

`

dv„fsvd − fsv + eVd…r̃sv + eVdr̃svd,

s10d

with the weighted density

r̃svd =
1

Nc
o
k̃

g2sk̃d„A11sk̃,vd + A33sk̃,vd…. s11d

Finally, we define a dimensionless incoherent conductance
Ginc by

Ginc = ] JincsVd/] V/s4pe2gt'
2 /t2d. s12d

For a SIN junction one usually assumes thatg is indepen-
dent of momentum. Its current is then obtained from Eq.(10)
by identifying one of the two densities with that of the nor-
mal metal r̃M which can be assumed to be constant. The
resulting dimensionless conductance of a SIN junction be-
comes then at not too high temperatures,

GSINsVd = t2r̃Mr̃seVd. s13d

Since we will mainly consider SIS junctions in the following
conductance will always refer to SIS junctions unless it is
stated otherwise.

The simplest case of incoherent scattering corresponds to
u=0 and L=`, i.e., where the averaged tunneling matrix
element is independent of all momenta. Using the densities
of Fig. 4 the resulting conductance curves are shown in Fig.
6. In the pure superconducting state(upper panel) the con-
ductance shows a broad peak near the gap 2D which decays
rapidly towards larger but rather slow towards smaller ener-
gies. The conductance is positive for all frequencies, espe-
cially also above 2D, which is intimately connected to the
presence of the large and rather constant density of states
outside of the gap region. In thed-CDW case(lower panel in
Fig. 6) the conductance curve has two peaks. The higher and
dominant one is due to the CDW gap 2F. In contrast to the
superconductor thed-CDW state has(neglecting the tiny
BCS gap at the dopingd=0.077) a finite density of states at
and near the Fermi energy along the arcs. The folding of
these states with one of the CDW edges causes the lower
peak at about the energyF. Well above 2F the curve is
again rather constant and partly slightly negative. In the
weakly underdoped case(middle panel in Fig. 6) the conduc-
tance curve shows essentially two peaks. They arise due to

the folding of the large CDW shoulder at negative frequen-
cies with the BCS peak and the two splitted CDW shoulders
at positive frequencies, respectively. The BCS gap itself is
seen only as a broad and weak structure at low energies.
Some of the features in Fig. 6 agree with the tunneling ex-
periments, e.g., the monotonic increase of the dominant
high-frequency peak with decreasing doping and the appear-
ance of more than one peak in the optimally and underdoped
cases. However, several details of these curves are not found
in the experiments: The peak in the overdoped case is much
too broad compared to that in the intrinisicc-axis tunneling
spectra of Ref. 6, the lower peak in the underdoped cases is
caused by the relaxation of electronic states around the CDW
gap to states near the arcs or the nearby BCS gap and thus
does not approach zero atTc as in intrinsic tunneling spectra.
Similar conclusions are reached, following Eq.(13), by com-
paring the experimental conductance curves of SIN
junctions3,4 with the densities of Fig. 4. The monotonic in-
crease of the distance between the two main peaks with de-
creasing doping occurs in both cases but the experiment does
not show the asymmetry of the theoretical conductance curve
in the underdoped case as well as the additional structures
obtained in the region of coexisting SC andd-CDW.

Things change substantially if the form factorgskd with a
nonzero value foru is taken into account. Assuming still a
momentum-independent functiong the tunnel current is now
to be calculated from the weighted densityr̃ as given by Eqs.
(10) and (11). Figure 7 showsr̃svd for the extreme aniso-
tropic caseu=1 for three different dopings. Most of the
background contribution to the density has been removed. In
the over- and under-doped cases(upper and lower panels in
Fig. 7) r̃ consists of just two rather symmetric peaks with
respect tov=0 which are related to the superconducting and
d-CDW gaps, respectively. In the slightly underdoped re-
gime, where SC andd-CDW coexist,r̃ is still rather sym-
metric with respect tov=0 and consists of two peaks and, in
between, two shoulders. The peaks at large energies are

FIG. 6. Incoherentc-axis conductance calculated foru=0, L
=`, T=0, J=0.3, t8=−0.35, and three different dopings.
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dominant, their frequencies are roughly given by
±2ÎF2+D2, i.e., they describe the “total” gap of the two
components. The two shoulders at smaller frequencies are
related to the SC gap, which can be concluded from their
temperature dependence and magnitude of their energies.
Their low intensities can also be easily understood: The BCS
gap resides on the arcs near the diagonal. The form factorg
with u=1 suppresses heavily the tunneling of states in this
region. It is also interesting to note that only the lower peak
of the split high-energyd-CDW edge in Fig. 4 ford=0.114
survives in the corresponding weighted density in Fig. 7.
This can easily be understood by noting that the lower
(higher) peak of the doublet is due tok states near the anti-
nodal(nodal) points and thus unaffected(suppressed) by the
form factor.

The curves forr̃ look in many respects similar to the
experimental SIN conductance curves. In both cases, the
spectra are dominated by two pronounced peaks lying rather
symmetrically with respect tov=0 and whose separation
increases monotonically with decreasing doping. These
peaks evolve inr̃ very smoothly from a SC to ad-CDW state
passing through a region where both order parameters coex-
ist. The agreement can be further improved if one introduces
a phenomenological damping in the theoretical curves. The
peaks are then broadened and the low-energy structures for
d=0.114 become invisible. The dip on the high-energy sides
of the main peaks in the experimental spectra is, however,
missing in r̃ indicating the presence of self-energy effects
beyond a constant damping.

Performing the frequency integral in Eq.(10) with the
weighted densitiesr̃ one obtains the curves of Fig. 8. The
main effect of the inclusion of the anisotropic form factorsg
with u=1 is the suppression of the small quasiparticle exci-
tations near the nodal regions. This means in the overdoped
cased=0.178 that the slowly decaying tail of the main peak
towards lower voltages seen in the upper panel of Fig. 6 is
substantially suppressed making the peak much sharper. The
dip above 2D is also more pronounced than in Fig. 6 and the
conductance assumes(small) negative values over a wide

region towards higher voltages. The reason for this negative
resistance becomes clear from a comparison of Figs. 4 and 7.
Most of the rather constant background density in Fig. 4 has
been removed by the anisotropic form factor. However, just
this constant background density is responsible for a positive
and structureless conductance outside of the gap region.
Similar considerations apply to the underdoped cased
=0.077. The anisotropic form factor sharpens up somewhat
the high voltage peak and suppresses the lower peak at
around F because the states near the arcs can no longer
contribute much. At the same time the conductance shows a
well-pronounced dip above 2F with large negative values
due to the eliminated background density of states. Similar
statements hold for the slightly underdoped case. Here the
lower peak at aroundD+F, which was in Fig. 6 still the
strongest one, is suppressed but still visible.

The above calculations show that an incoherent tunneling
model with a momentum independent functiong is not able
to produce a peak in the coexistence region which moves
towards zero voltage ifT approachesTc. We therefore have
also studied finite values forL in the Gaussian in Eq.(7).
Experimental evidence for strong forward scattering in the
averaged squared tunneling matrix element has recently been
found from the temperature dependence of thec-axis pen-
etration depth in YBa2Cu3O6+x.

26 Using the isotropic form
factor u=0 andL=p /8 Fig. 9 shows the conductance for
three different dopings atT=0. The spectra are dominated by
a peak at approximately the frequencies 2ÎF2+D2. This
peak reflects the doping dependence of the “total” gap which
increases monotonically with decreasing doping. In the up-
per panel the gap describes a superconducting gap, in the
lower panel ad-CDW gap and in the middle panel a combi-
nation of both.

The doping dependence of the main peak in Fig. 9 agrees
well with experimental SIS spectra, see, for instance, Figs. 1
and 2 in Ref. 5, though the dips above the main line are more
pronounced than in the experiment. Also negative conduc-
tances are only very rarely observed experimentally. In the

FIG. 7. Weighted densityr̃ as a function of frequency forT
=0, J=0.3, h=0.004,t8=−0.35, and three different dopingsd. FIG. 8. Incoherentc-axis conductance calculated foru=1, L

=`, T=0, t8=−0.35, and three different dopings.
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slightly underdoped regime(middle panel in Fig. 9) the two
order parameters coexist. The conductance shows in this case
besides the dominating high-frequency peak a peak near the
superconducting part of the gap. This peak moves toward
smaller frequencies with increasing temperature and vanishes
at Tc. The exact energy position of this peak is somewhat
below the superconducting part of the gap, 2D. This can
easily be understood from Figs. 2 and 3: Due to the interac-
tion between the two gaps part of the BCS shoulder has been
removed by thed-CDW so that the superconducting part of
the gap appears smaller than the canonical value for 2D. This
reduced gap exhibits the expected temperature dependence
as can be seen from Fig. 3. The spectra in Fig. 9 exhibit
well-pronounced dips at energies somewhat above the main
peaks. These dips, which are also seen in tunneling spectra
from break junctions, have been associated with self-energy
effects due to the coupling to some boson.2,5 We would like
to stress that no self-energy effects have been taken into
account in calculating Fig. 9. Simple model calculations in-
dicate that one finds easily a dip in SIS spectra if the size of
the region above 2D where spectral weight piles up because
of the formation of the gap is comparable or smaller than the
gap.

Figure 10 shows the temperature dependence of the inco-
herent conductance ford=0.114 andL=p /8. The position
of the dominating higher peak is practically temperature in-
dependent for the temperatures shown in the figure. On the
other hand, Fig. 1 indicates that both order parameters vary
in the considered temperature interval. One concludes from
this that the higher peak reflects the total gap which is rather
independent of temperature. In contrast to that, the lower
peak depends strongly on temperature. It moves towards zero
frequency with increasing temperature, loses spectral weight,
and vanishes with vanishingD. Intrinsic c-axis tunneling
spectra in various cuprates show essentially the same fea-
tures as in Fig. 10. In particular, the observed low-frequency

peak, which seems not to be affected much by heating ef-
fects, also moves towards zero frequency with increasing
temperature and vanishes nearTc. We would like to point out
that this BCS-like peak can be seen in incoherent scattering
only for a rather isotropic form factorg. Otherwise, the tun-
neling of electrons near the nodal direction, where the SC
gap is located, is too much suppressed. Another prerequisite
is that the averaged tunneling matrix element must be
strongly momentum dependent causing strong forward scat-
tering.

Besides incoherent tunneling the quasiparticle current al-
ways contains a contributionJcoh due to coherent tunneling,
originating from the first term in the parantheses in Eq.(5).
Jcoh is given by Eq.(8) with gsk −qd replaced byNcadk,q.
The explicit expression forJcoh thus becomes

JcohsVd = 4peat'
2 1

Nc
o

k̃

g4sk̃dE
−`

`

dvsfsvd − fsv + eVdd

3 o
ii8=0,1

A1+2i,1+2i8sk̃,v + eVdA1+2i8,1+2isk̃,vd.

s14d

The corresponding coherent dimensionless conductanceGcoh
is defined by

Gcoh= ] JcohsVd/] V/s4pe2at'
2 /t2d. s15d

If the superconducting order parameter is zero, Eq.(1) re-
duces to a 232 matrix. Calculating explicitly the spectral
functions from this matrix and performing the frequency in-
tegration in the above integral one finds then that the sum
over i , i8 yields zero without any further approximation. One
thus obtains the important result that coherent tunneling is
zero in a pured-CDW.

FIG. 9. Incoherentc-axis conductance calculated for isotropic
u=0 form factors, a momentum cutoffL=p /8, T=0, J=0.3, t8
=−0.35, and three different dopingsd.

FIG. 10. (Color online) Incoherentc-axis conductance for five
temperatures using a Gaussian distributed hopping matrix element
with width L=p /8. Increasing temperatures correspond to curves
with energetically decreasing low-energy peaks.
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Figure 11 shows the coherent conductance foru=1, T
=0, and three different dopings. The spectral functions were
obtained from the Green’s functions using the frequencyv
+ ih with h=0.01. In the overdoped and slightly underdoped
case the curves are similar to those in Fig. 9. In particular,
corresponding curves have negative conductances above the
main peak caused by the restriction to small momentum
transfers in the tunneling process. Ford=0.114 both curves
show besides the main peak associated with the total gap a
second peak at smaller energies with BCS properties. How-
ever, one should note that Fig. 9 was calculated withu=0
whereas Fig. 11 withu=1. It is somewhat surprising that
coherent tunneling shows still the BCS peak though most
electrons near the nodal direction are prevented from tunnel-
ing due to the employed strongly anisotropic form factor.
The dominance of small energy features in coherent tunnel-
ing also is present in the underdoped cased=0.077 where the
tiny BCS gap causes a sharp structure at very low energies.
One important feature in Fig. 11 is related to the absolute
values for the conductance depicted along they axis. The
coherent conductance drops dramatically with decreasing
doping. Going to smaller doping values one finds thatJcoh
becomes zero if the superconducting order parameter van-
ishes in agreement with the above analytic result. Coherent
tunneling is nonzero in case of a pure superconductor as
shown by the upper panel in Fig. 11. However, it is zero for
a pured-CDW state and thed-CDW gap can only be probed
in the presence of superconductivity. If the identification of
the pseudogap phase with ad-CDW is correct coherent tun-
neling should vanish in the pseudogap phase.

Figure 12 illustrates the dependence of the coherent con-
ductance on temperature ford=0.114. With increasing tem-
perature the position of the low-energy peak and its intensity
decrease and approach zero at aroundT=0.0081 where the
superconducting order parameter vanishes. The position of
the high-energy peak as well as the dip are rather indepen-
dent of temperature but the intensity of the whole high-

energy part drops dramatically with temperature and van-
ishes at T=0.0081. This again demonstrates that
contributions from thed-CDW can only be seen in the con-
ductance if the superconducting order parameter is finite, i.e.,
in the coexistence regime.

IV. SELF-ENERGY EFFECTS

According to angle-resolved photoemission experiments
the generic spectral function in the superconducting state
consists of a well-pronounced peak followed by a dip and a
hump towards larger energies.1 In concordance with that the
electron dispersion shows a kink between 30 and 70 meV
below the Fermi energy.27 These features occur throughout
the underdoped, optimally doped and the overdoped regime.
Most of these properties can be reproduced in a model where
the electrons interact with a boson branch(which may be a
phonon or a spin fluctuation).28–30 In the following we as-
sume a dispersionless boson branch with a constant dimen-
sionless couplingl. In the presence of SC andd-CDW the
inverse of the electronic 434 Green’s functionGsz,kd sat-
isfies

G−1sz,kd = G0
−1sz,kd − Ssz,kd, s16d

whereG0
−1 is given by Eq.(1) andS is the self-energy. Be-

cause the boson-mediated interaction is momentum indepen-
dent in our modelS has only diagonal elements and it is
S11=S22=S33=S44, with

S11szd = −
g2

Nc
o
k̃
So

a=1

4
2v0ssEadfsEad

ssz− Ead2 − v0
2dpbÞa

sEa − Ebd

+
bs− v0dssz− v0d

pa
sz− v0 − Ead

−
bsv0dssz+ v0d

pa
sz+ v0 − EadD . s17d

g2 is related tol by g2=lv0/ s2Ns0dd, where Ns0d is the
density of states for one spin direction andv0 the frequency

FIG. 11. Coherentc-axis conductance for anisotropicu=1
form factors,T=0, J=0.3, t8=−0.35, h=0.01, and three different
dopingsd.

FIG. 12. (Color online) Coherentc-axis conductance for aniso-
tropic u=1 form factors,J=0.3, t8=−0.35, h=0.01, and various
temperatures labeled according to decreasing maxima.
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of the boson.Ea denote the four poles ofGs0d, b the Bose
function, andNc is two times the number of allowed mo-

mentak̃. sszd is given by

sszd = 2zsz2 − se2skd + e2sk − Qdd/2 − D2skd − F2skdd.

s18d

Figure 13 shows the real and imaginary parts of the retarded
self-energyS11sv+ ihd at T=0. The curves for different dop-
ings look rather similar. The gap near the Fermi energy con-
sists of the phonon energy plus thed-wave gap of the SC
and/ord-CDW state. The panels in the figure illustrate the
very smooth transition from a SC to ad-CDW gap with
decreasing doping, passing also very smoothly through the
coexistence region of SC andd-CDW. We used in this and in
all the following figures the value 1 for the dimensionless
coupling constantl. This value corresponds to a change of
the slope of the electron dispersion at the kink by a factor of
2 in rough agreement with the photoemission data.

Figure 14 shows the SIN conductance using theu=1 anis-
tropic hopping form factor and including self-energy effects.
It is instructive to compare this figure with the analogous
Fig. 7 where self-energy effects have been omitted. The BCS
structure seen in Fig. 7 ford=0.114 has practically vanished
in Fig. 14. The main effect of the self-energy is to move
spectral weight from the main peaks to the sidebands. In the
pure superconducting state atd=0.178 the sidebands consist
of a clear dip and hump whereas in the two other cases the
dip-hump feature is less pronounced. Both dip and hump
move monotonically towards larger voltages with decreasing
doping. The position of the dip in a pure superconductor is
approximately half of the gap plus the boson energy. This
rule also holds in thed-CDW and the mixed states. The exact
differences between the main peaks and the dip, however,
fluctuate between 0.065 and 0.087 in Fig. 14. Though the dip

in the SIN spectra is solely caused by the interaction with the
bosons it may thus be difficult to determine precisely the
boson energy from it.

The solid and dashed lines in Fig. 15 are conductance
curves for incoherent tunneling with and without self-energy
effects, respectively. The bosons do not contribute to the
nondiagonal self-energy because of the assumed momentum-
independent coupling to the electrons. As a result, the bosons
diminish both the SC and thed-CDW gaps via their diagonal
self-energies. Consequently, the main peak moves towards
lower frequencies but, considered as a function of doping,
this peak increases monotonically with decreasing doping as

FIG. 13. Real(dotted line) and imaginary(solid line) parts of
the self-energy forT=0, v0=0.065,h=0.004, andl=1.

FIG. 14. SIN conductances with self-energy corrections forT
=0, u=1, v0=0.065,h=0.004,l=1, and three dopings.

FIG. 15. Incoherent conductances with(solid line) and without
(dashed line) self-energy corrections forT=0, u=1, L=`, v0

=0.065,h=0.004,l=1, and three dopings.
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in the case without self-energy. Figure 15 also illustrates that
the distance between the dip and the main peak is similar in
the curves with and without self-energy effects and thus is
rather unrelated with the boson energy. For instance, atd
=0.178 the distance between the dip and the main peak is
0.020 and 0.018 in the case with and without self-energy,
respectively, and thus much smaller than the boson energy of
0.065.

If the experimental SIS spectra correspond to incoherent
tunneling the boson energy cannot be obtained from the dis-
tance between the main peak and dip. Since the incoherent
SIS spectrum is the folding of the SIN spectrum in energy
the incoherent SIS spectrum could have, in principle, a dip
when the lower main peak is multiplied by the dip at positive
voltages and this dip position would be equal to the full gap
plus the boson energy. The upper panel of Fig. 15, however,
shows that the folding in energy does not lead to a dip just
below the maximum of the sideband. The main effect of the
self-energy in Fig. 15 is to shift spectral weight from the
main peak to the sideband consisting of a broad hump which
monotonically moves towards larger voltages with decreas-
ing doping. This hump is due to the folding of the(occupied)
lower main peak with the(unoccupied) upper sidebands in
Fig. 14. The solid and dashed lines in Fig. 16 represent co-
herent conductance curves with and without self-energy ef-
fects, respectively. We have omitted curves for the strongly
underdoped cased=0.077 because they are smaller by two
orders of magnitude due to the smallness of the supercon-
ducting order parameter in this case. Self-energy effects shift
the main peaks to smaller energies, diminish somewhat the
regions of negative conductance, and create weak sidebands.
Figures 7 and 14–16 suggest that self-energy effects and thus
the nature of the boson spectrum appear more clear cut in the
SIN than in the SIS spectra. For instance, the dip in the SIN
spectrum is soley caused by self-energy effects whereas that
in the SIS spectrum is present even in the absence of any
self-energy. The curves for the purely superconducting case

in Figs. 14 and 15 are similar to those published in Refs. 28
and 31.

V. CONCLUSIONS

The t-J model exhibits in the employed large-N limit a
d-CDW phase at lower dopings besides the superconducting
phase which is a natural candidate for the pseudogap phase
observed in the cuprates. The density of states in the pure
d-CDW state is strongly reduced near the Fermi level but
still everywhere finite. This means that only part of the Fermi
lines of the normal state are destroyed by thed-CDW and
that the remaining Fermi lines form arcs around the nodal
direction ending at the boundaries of the reduced Brillouin
zone. With decreasing doping the length of the arcs becomes
shorter. The ground state energy of thed-CDW can be low-
ered by introducing ad-wave superconducting gap near the
arcs which explains the occurrence of a coexistence region of
SC andd-CDW. Because the two gaps are well separated in
k-space(the d-CDW gap resides near the antinodal, the su-
perconducting gap near the nodal direction) features of the
individual gaps survive even in the coexistence regime.

In order to test the applicability of the above picture to
cuprates we have calculated coherent and incoherent conduc-
tances and compared them with experimental spectra from
break junctions and intrinsic tunneling spectroscopy. We find
good evidence that the tunneling matrix element between
layers is strongly anisotropic, suppressing tunneling of elec-
trons near the nodal direction, which is in agreement with
band structure arguments. Incoherent tunneling thus probes
mainly electrons near the maximal gap at theX andY points.
This gap transforms in a very smooth way from a supercon-
ducting gap at large dopings to ad-CDW gap at small dop-
ings passing continuously through the coexistence regime.
Calculated incoherent conductances thus fit best to the ob-
served spectra from break junctions which are characterized
by one peak moving monotonically to larger voltages with
decreasing doping. We find that coherent tunneling is only
nonzero for a nonvanishing superconducting order param-
eter. BelowTc it shows in spite of the anisotropic tunneling
matrix element two peaks which can be associated with SC
and d-CDW. The appearance of a low-energy peak in the
calculated coherent tunneling spectrum, which moves to 0 if
Tc is approached from below, is unique for intrinsic tunnel-
ing spectra. From this we conclude that tunneling in stacked,
intrinsic junctions is dominated by coherent tunneling and
that the appearance of the low-energy peak related to super-
conductivity supports models with two competing order pa-
rameters in the underdoped region. Including self-energy ef-
fects due to the coupling of electrons to a dispersionless
boson branch as suggested by ARPES removes part of the
regions of negative resistances and also creates sidebands
which, at least in the case of SIN junctions, resemble those
which have been measured.
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FIG. 16. Coherent conductances with(solid line) and without
(dashed line) self-energy corrections forT=0, u=1, v0=0.065,h
=0.004,l=1, and two dopings.
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