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The high-Tc cuprates have a complex phase diagram with many competing phases. We propose a bosonic
effective quantum Hamiltonian based on the projected SOs5d model with extended interactions, which can be
derived from the microscopic models of the cuprates. The global phase diagram of this model is obtained using
mean-field theory and the quantum Monte Carlo simulation, which is possible because of the absence of the
minus sign problem. We show that this single quantum model can account for most salient features observed
in the high-Tc cuprates, with different families of the cuprates attributed to different traces in the global phase
diagram. Experimental consequences are discussed and theoretical predictions are presented.
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I. INTRODUCTION

At first glance, the phase diagram of the high transition
temperature superconducting(HTSC) cuprates has a striking
simplicity: there are only three universal phases in the phase
diagram of all HTSC cuprates: the antiferromagnetic(AF),
the superconducting(SC), and the metallic phases, all with
homogeneouscharge distributions. However, closer inspec-
tion shows a bewildering complexity of other possible
phases, which may or may not be universally present in all
HTSC cuprates. A large class of these phases have inhomo-
geneous charge distributions. Because of this complexity,
formulating a universal theory of HTSC is a great challenge.
The SOs5d theory unifies the AF and the SC order param-
eters into a single five-dimensional order parameter called
the superspin, and the effective quantum theory of the super-
spin naturally explains proximity between the AF and the SC
phases in the observed phase diagram.1 The Goldstone
modes of the superspin fluctuations can be identified with the
p resonance mode observed in the neutron scattering
experiments.2–16 This theory also predicts the AF vortex
state,1,17 which has recently been observed in a number of
experiments,18–26 Initially, the SOs5d theory was motivated
by the simplicity of the pure AF and SC states, however,
given the encouraging agreements with the experiments, it is
tempting to construct a unified theory of the global phase
diagram of the HTSC which addresses the more complex
inhomogeneous phases as well. Complexities can of course
be introduced phenomenologically into the Landau-
Ginzburg-type of theories by simply introducing more order
parameters. However, this type of approach necessarily lim-
its the predictive power of theory. The goal of this paper is to

present a single effective quantum model of the superspin
degree of freedom, which can be derived systematically from
the microscopic electron models, and can be investigated re-
liably both analytically and numerically. The global phase
diagram of this model is then compared with the experimen-
tally observed phase diagram of the HTSC cuprates.

When formulated on a coarse-grained lattice, with high
energy charge states projected out, the projected SOs5d
model describes five local superspin degrees of freedom per
plaquette.27 These five states are the spin singlet state at half-
filling, the spin triplet states at half-filling, and the singlet
d-wave hole pair state. Using the contractor renormalization
group (CORE) algorithm, Altman and Auerbach28 showed
that the projected SOs5d model can be systematically derived
from the microscopic electron models, and they also deter-
mined the parameters of the effective SOs5d model explicitly
from the microscopic interaction parameters(see also Ref.
29). Restricted within the subspace of these five local states,
the Hamiltonian describing their propagation and interaction
is completely expressed in terms of bosonic operators and
can be studied reliably by the quantum Monte Carlo(QMC)
calculations. The simplest form of the projected SOs5d
model has been studied extensively by the QMC method
both in two dimensions30–32 and in three dimensions.33 The
overall topology of the phase diagram, the scaling properties
near the multicritical point and the nature of the collective
excitations can be reliably obtained from the QMC method,
within the parameter regime of experimental interests.

The simplest form of the quantum SOs5d model describes
either the direct, first order transition from the AF to the SC
state, or two second order transitions with a uniform, inter-
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mediate AF/SC mix phase in between the pure AF and the
SC states.1,27 In the case of the direct first order transition as
a function of the chemical potential, the system at a fixed
density is phase separated. However, in the HTSC cuprates,
there are other forms of charge and spin ordered states. For
example, neutron scattering cross section in LSCO material
is peaked around sp±d ,pd and sp ,p±dd, where
d,1/8.34–36 STM experiments have revealed periodic
charge modulation with period close to four lattice
spacing,37,38 either near the vortex core or near surface im-
purities. In the latter case, alternative interpretation39–41

based on quasiparticle interference is also possible, and the
two points of views are summarized by Kivelsonet al.42

Motivated by these experiments, we extend the simplest
form of the projected SOs5d model to include extended in-
teractions among the five bosonic states. In fact, these ex-
tended interactions also arise naturally by carrying out the
CORE algorithm to extended ranges.

The projected SOs5d model with extended interactions
supports a more complex phase diagram. In particular, there
are insulating phases at fractional filling factors where the
charges form a lattice, usually commensurate with the under-
lying lattice. A crucial aspect of this model is that all charge
density wave states are formed by the Cooper pairs of the
holes, rather than the holes themselves.43 Throughout this
paper, we shall denote such states as the pair-density-wave
(PDW) states or pair checkerboard states. This distinction
has a profound experimental consequence, since the real
space periodicity of the former is larger than the latter by a
factor of Î2. This type of insulating PDW states is a conse-
quence of strong pairing and low superfluid density, a con-
dition which is naturally fulfilled in the underdoped cuprates,
but has not yet been unambiguously identified in other ex-
perimental systems before. The PDW state can either take
the form of stripes or checkerboards, depending on the ratios
of the extended interaction parameters in the model. Further-
more, PDW states with longer periodicity generally require
longer range interactions to stabilize. Based on this reason-
ing, a simple picture emerges for the global phase diagram of
underdoped cuprates. The phase diagram consists of islands
of insulating PDW states, each with a preferred rational fill-
ing fraction, immersed in the background of SC states(see
Fig. 4). The height of the Mott insulating PDW lobes varies
depending on the preferred filling fraction and the range of
extended interactions, but in principle, these insulating states
are all self-similar to each other, and similar to the parent AF
insulator at half-filling. There can be either a direct first order
transition or two second order phase transitions between the
SC state and the PDW state, with the possibility of an inter-
mediate “supersolid” phase, where both orders are present.

Based on our model, the bewildering complexity of the
cuprate phase diagram can be deduced from a simple prin-
ciple of the “Law of Corresponding States.” This concept is
borrowed from the work of Kivelson, Lee, and Zhang on the
global phase diagram of the quantum Hall effect,44 in fact,
our proposed phase diagram in Fig. 4 bears great similarity
to Fig. 1 of that reference. In the case of the QHE, the “Law
of Corresponding States” physically relatesall quantum
phase transitions at various filling fractions to asinglequan-
tum phase transition from then=1 integer state to the Hall

insulator. In recent years, this powerful mapping among the
different fractional states has been made more precise by the
derivation of the SLs2,Zd discrete modular group transfor-
mation from the Chern-Simons theory.45–47 Similarly, the
central idea of the current paper is to relate the fractional
Mott insulator to SC transition with the transition from the
AF Mott insulator at half-filling to SC state, which is already
well understood within the context of the original, simple
SOs5d theory. The construction of the Mott insulating states
at various fractional filling factors can be constructed from
the “Law of Corresponding States,” iteratedad infinitum, to
give a beautiful fractal structure of self-similar phases and
phase transitions, as presented in Fig. 4. The various differ-
ent compounds of the HTSC cuprates families have slightly
different microscopic parameters, and they correspond to dif-
ferent slices of this global phase diagram. The global phase
diagram provides a basic road-map to understand the com-
mon elements and differences among various HTSC com-
pounds.

This paper mainly focuses on the zero temperature global
phase diagram of the underdoped cuprates. However, it is
understood that the model is valid below the pseudogap tem-
perature, which we interpret as the temperature below which
the system can be effectively described by the collective
bosonic degrees of freedom, like the magnons and the hole
pairs. Therefore, it is implied that the pseudogap state is a
regime where the various ground states discussed here com-
pete with each other, and different experiments may access
different aspects of these competing states. The existence of
the pseudogap temperature gives the fundamental experi-
mental justification to investigate the global phase diagram
of the underdoped cuprates by a purely bosonic model. In the
future, we shall use the same model to investigate the mani-
festations of these competing states at finite temperature, in
the pseudogap regime. A comparison of the charge order
predicted by this work and the STM experiment in the
pseudogap regime has recently been reported in Ref. 48.

While this paper is presented within the logical context of
the SOs5d theory, some of the ideas and results bear intellec-
tual similarities to the previous theoretical works. The idea of
doped holes forming ordered stripes has been discussed ex-
tensively in Refs. 34 and 49–53. Although we focus more on
the charged ordered states in the forms of checkerboards of
hole pairs, they are conceptually related to stripes and can be
realized experimentally or theoretically depending on the mi-
croscopic parameters. The pseudogap temperature was iden-
tified as the formation temperature of Cooper pairs by Emery
and Kivelson.54 Our interpretation of the pseudogap tempera-
ture is more general, which also includes the formation of the
magnetic collective modes in addition to the holes pairs.
Vojta and Sachdev55 have discussed the phase diagram of
doped Mott insulator with various charge ordered insulating
states at rational fractions. More recently, Zhang, Demler,
and Sachdev have studied extensively the competition
among charge and spin order.56,57 Laughlin pointed out that
the small superfluid density in the underdoped regime is re-
sponsible for various charge ordering phenomena.58 Haaset
al.59 have noticed that the Wigner crystal state of the hole
pairs could be stabilized due to the competition of phase
separation and long ranged Coulomb interaction. Kim and
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Hor60 have discussed experiments at certain “magic” filling
fractions in terms of the commensurate Wigner crystal type
of order of the electrons, rather than the hole pairs discussed
in this paper. Restricted to the charge sector, the projected
SOs5d model is essentially the same as the hard-core quan-
tum boson model on a lattice, whose phase diagram has been
extensively studied.61–63

This paper is organized as follows: In Sec. II, the pro-
jected SOs5d model with extended interactions is presented.
The choice of parameters is discussed from the CORE algo-
rithm and phenomenology. The self-similarity of the insulat-
ing states and the classification of the quantum phase transi-
tions are then discussed in Sec. III. In Sec. IV, the global
phase diagram of the model is obtained within the mean field
theory. The low energy collective modes and their quantum
symmetry are then studied using a slave-boson approach. In
Sec. V, QMC simulation is carried out to compare with
mean-field results obtained in Sec. IV. The experimental con-
sequences and predictions are discussed in Sec. VI. Finally,
Sec. VII concludes our study.

II. HAMILTONIAN OF THE MODEL

The effective bosonic SOs5d model can be derived di-
rectly from the microscopic Hubbard model ort-J model,
through a renormalization group transformation called the
contractor renormalization(CORE) method.28,64To construct
bosonicquasiparticles from fermionic model, we divide the
lattice into effective sites containing anevennumber of sites.
In order to conserve the symmetry betweenx andy direction
in the system, a plaquette of 232 sites are typically
chosen.27,28 In their CORE study of the 2D Hubbard model,
Altman and Auerbach28 started from the spectrum of lowest-
energy eigenstates of the 232 plaquette for 0, 1, and 2 holes,
respectively (Fig. 1). The low energy eigenstates of the
Heisenberg plaquette can be determined easily. The nonde-
generate ground stateuVl (see Ref. 28 for a real-space rep-

resentation in terms of the microscopic states on a plaquette)
has energyE0=−2J and total spinS=0. This “RVB” like
singlet state will be the vacuum state of the effective bosonic
SOs5d model. The next set of energy eigenstates are three
triplet statesta

†uVl with energyEt=−J and total spin quantum
numberS=1. All other energy eigenstates of the Heisenberg
plaquette have energiesEù0 and can be neglected in the
low energy effective model. It should be noted that the op-
erator ta

† with spin 1 and charge 0 createhardcore bosons
because one cannot create more than one of them simulta-
neously on a single plaquette. The ground state of two holes
is a “Cooper”-like hole pair with internald-wave symmetry
with respect to the vacuum.

Using the CORE method and keeping only the five lowest
states(the singlet boson, the three magnonsta

† and the hole-
pair th

†), the effective Hamiltonian of these bosons can be
obtained as28,29,64

H = H0 + Hext, s1d

whereH0 is the Hamiltonian of the previously studied SOs5d
model containing only on-site interactions27,30,33

H0 = Dco
i

th
†sidthsid + Dso

a
o

i

ta
†sidtasid

− Jco
ki j l

fth
†sidths jd + H.c.g

− Jso
a

o
ki j l

fta
†sid + tasidgfta

†s jd + tas jdg, s2ad

andHext is the part containing extended interactions

Hext = FVco
ki j l

+ Vc8 o
kki j ll

Gnhsidnhs jd

− Jpo
a

o
ki j l

fth
†sidths jdta

†s jdtasid + H.c.g

+ Vpo
a

o
ki j l

fnhsidnas jd + nhs jdnasidg

+ o
ki j l

o
S=0,1,2

VSstit jdS
†stit jdS. s2bd

The model is subjected to the hard-core constraint

o
a

nasid + nhsid ø 1. s3d

Here,Dc andDs are the energy costs to create a hole-pair and
magnon, respectively.Jc and Js are the hopping terms of
hole-pairs and magnons.thsid and th

†sid are the annihilation
and creation operators of hole-pair on plaquettei. tasid and
ta
†sid are the annihilation and creation operators of magnon

on plaquettei for a=x,y,z. k¯l and kk¯ll denote nearest-
neighbor(nn) and next-nearest-neighbor(nnn), respectively.
nhsid= th

†sidthsid andnasid= ta
†sidtasid are the hole-pair density

and magnon density operators on plaquettei, respectively.
The hole-pair density ofnh per plaquette corresponds to
twice the real doping ofd holes per lattice site, i.e.,

FIG. 1. Illustration of the basic idea of the CORE method. To
implement the CORE method, first decompose the original lattice in
plaquettes, and then truncate the spectrum of a given plaquette to
five lowest states, i.e., the singlet, hole-pair and three magnon
states. An effective Hamiltonian for these bosons can then be deter-
mined using the CORE method. Left: local bosons in the original
lattice. Gray rectangle denotes the singlet RVB vacua, circles de-
note holes and the set of two parallel vertical arrows denote the
magnon. Right: local bosons on the lattice of plaquette. Leaflike
pattern denotes a locald-wave hole-pair on a plaquette. Canted
arrow denotes local magnon on a plaquette. The singlet RVB
vacuum is denoted by an empty site.
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d = nh/2. s4d

Finally, stit jdS
† creates two magnons simultaneously on

plaquettesi and j , which are coupled into total spinS. Hext
contains nn and nnn hole pair interactionsVc and Vc8, ex-
change hopping termsJp betweenta and th bosons, interac-
tion Vp between nn magnons and hole-pairs. The 4-magnon
interactionsV0,1,2 are important in the pure AF phase but we
can neglect them since we are mostly interested in the doped
phase where magnon density decreases. According to the
CORE calculation on 2-plaquettes and fixingJs=1 as the
unit of energy, one obtains from thet−J model
with J/ t.0.4 (relevant for cuprates):

Jc Jp Vc V0 V1 V2 Vp

2. −0.6 10 −1 −1 0.4 −3

For Jc,2, H0 is approximately SOs5d symmetric at the
mean field level.27,30,33

The CORE derivation of the SOs5d model (1) is only
approximate. It should also be borne in mind that thet-J and
the Hubbard models are also approximate models of the real
cuprates themselves. If one started from a different micro-
scopic model(for example, next-nearest-neighbor hopping,
extended Coulomb repulsion, etc.), one would have obtained
a similar effective Hamiltonian with different parameters.
Therefore, in this paper, we shall take the CORE parameters
as a guidance, and study the robust properties of the SOs5d
model with a more general set of parameters, as to reproduce
well-known results and compare directly with experiments.

At half-filling snh=0d, the model involves only the singlet
and the magnon, and the effective Hamiltonian containing
only Js andDs can be rewritten as

H = 2Jso
ki j l

ta
†sid + tasid

Î2

ta
†s jd + tas jd

Î2
+

Ds

2 o
i

Lab
2 sid, s5d

where fta
†sid+ tasidg /Î2 is the AF moment andLabsid is the

SOs3d symmetry generator27

Labsid = − ifta
†sidtbsid − tb

†sidtasidg. s6d

This model is similar to the nonlinears model
sNLsMd,65,66

H = rso
ki j l

mi
amj

a +
1

x
o

i

Si
2, s7d

wheremi
a is thea component of the AF moment andSi is the

angular moment on sitei. After rescaling of time using the
spin velocityc=Îrs/x and up to a prefactor, the Lagrangian
density of theNMsM can be cast in the usual form in the
continuum limit

LNLs =
1

g
s]xmd2 + gs]tmd2, s8d

where g,1/Îrsx is a dimensionless constant. This model
has been studied extensively.66 It has a transition towards a
disordered state atgc=1.45. From the computation of the
staggered moment, we can findg such that the original
Heisenberg value(0.3) of the AF moment is recovered:gH
=1.125. On the other hand, we know from mean-field calcu-
lations and QMC simulation that the disordered phase occurs
at Ds/Js=8. We then obtain the proportionality factor be-
tween g and 1/Îrsx. Using gH, we find that an effective
model for Heisenberg corresponds toDs/Js=4.8.

In most parts of this paper, we shall consider the simpli-
fied model withJp=Vp=0.

III. HEURISTIC ARGUMENT ON THE SELF-SIMILARITY
BETWEEN PAIR-DENSITY-WAVE (PDW) STATES

Let us ignore for a moment the magnons, and consider a
hard-core boson model with extended interactions. The phase
diagram61,62 of a hard-core boson model with nn interaction

FIG. 2. Phase diagram of a hard-core boson model with nearest-
neighbor interaction. There are one superfluid(SF) state and three
insulating states: zero-doping statesnh=0d, half-filled state snh

=1/2d, and fully occupied statesnh=1d. At the next level of the
hierarchy, longer ranged interactions lead to new insulating states
with nh=1/4 andnh=3/4, asshown in Fig. 3.

FIG. 3. Phase diagram of a hard-core boson model with nn and
nnn interactions. There are a superfluid(SF) state and five insulat-
ing states with doping0/4,1/4,2/4,3/4, and 4/4. At thenext level
of the hierarchy, new insulating states are developed at doping level
nh=1/8, nh=3/8, nh=5/8, andnh=7/8. This hierarchy construc-
tion can be iteratedad infinitum, to obtain a self-similar phase dia-
gram with insulating phases at doping levelp/2n, with integersp
andn, such that 0,p,2n.
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contains one superfluid state and three Mott-insulating states,
corresponding to zero-dopingsnh=0d, half-filling snh=1/2d,
and fully occupiedsnh=1d, as sketched in Fig. 2. The half-
filling state has checkerboard charge order. If one transforms
the hard-core boson model into an AF Heisenberg model, the
checkerboard order of the bosons simply corresponds to the
AF order of the Heisenberg spins. The following argument
assumes that the checkerboard order at half-filling is a basic
and robust form of order, such that it is repeated at all dif-
ferent levels of the hierarchy.

If we regard the empty sites of the half-filled checker-
board state as an inert background, we obtain a fully-
occupied Mott-insulating state on the coarse-grained lattice,
with lattice spacingÎ2a3Î2a. The nnn interaction on the
original lattice becomes the nn interaction on the coarse-
grained lattice, and a new half-filled checkerboard state can
be stabilized on the coarse-grained lattice. Such a state cor-
responds to dopingnh=1/4 on theoriginal lattice. Similarly,
we can regard the filled sites of the original half-filled check-
erboard lattice as an inert background, leaving with an empty
state on the coarse-grained lattice. A new checkerboard state
can again be stabilized on the coarse-grained lattice, which
corresponds to dopingnh=3/4 on theoriginal lattice. This
hierarchical procedure of forming a new daughter checker-
board state from two parent checkerboard state can obvi-
ously be iteratedad infinitum, to obtain a fractal-like, self-
similar phase diagram as shown in Fig. 3. It is interesting to
note that the nearest-neighbor interaction on the coarse-
grained lattice is just the next-nearest-neighbor interaction on
the original lattice. There is also the possibility that small
regions with coexisting SF and PDW orders(“supersolids”)
are present around the Mott-insulating lobes in the phase
diagram.62,63,67,68

Having presented the generic phase diagram for the
charge boson only, we consider now the inclusion of the
magnons in the full SOs5d with extended interactions. Gen-
erally, charge ordered insulating states also have AF order.
The nh=0 state of the charge boson corresponds to the un-
doped parent Mott insulator. Thenh=1/2 state of the charge
boson would correspond tod=1/4 doping for the cuprates,
which is probably at or beyond the limit of applicability of
our bosonic model. Therefore, the phase diagram of the hard-
core boson model in the range of 0,nh,1/2 from Fig. 3
would translate into a phase diagram of the cuprates in the
doping range of 0,d,1/4, as shown in Fig. 4. As we shall
show later, this phase diagram is supported by accurate QMC
calculations of the SOs5d model with extended interactions.
We expect that the insulating states ofd=1/16 and 1/8 are
AF ordered. Since the magnon density decreases with in-
creasing doping, thed=3/16 state may not be AF ordered.

The nature of the phase boundary between two different
phases shown in Fig. 4 requires careful characterization. We
can classify all phase transitions into two broad classes.
Class A describes transitions at fixed chemical potential,
typically at an effectively particle-hole symmetric point
around the tip of the Mott lobe. Class B describes transitions
where the chemical potential or the density is varied. Each
broad class is further classified into three types, 1, 2, and 1.5.
Generically, the phase transition between two ordered phases

can be either a single first-order transition or two second
order transitions, with a mixed state in between, where both
order parameters are nonzero. A third marginal possibility
occurs at a symmetric point, when these two second order
phase transitions collapse into a single one. In the context of
high Tc cuprates, these three types are shown in phase dia-
grams of Ref. 1 as Figs. 1(a)—1(c), respectively. This situa-
tion can be easily understood by describing the competition
in terms of a Landau-Ginzburg functional of two competing
order parameters,69 which is given by

F = 1
2r1f1

2 + 1
2r2f2

2 + u1f1
4 + u2f2

4 + 2u12f1
2f2

2, s9d

wheref1 andf2 are vector order parameters withN1 andN2
components, respectively. In the context of SOs5d theory,
N1=2 andN2=3, and we can viewf1

2 as a SC component of
the superspin vector, andf2

2 as the AF component of the
superspin vector. These order parameters are obtained by
minimizing the free energyF. By tuning r1, one can drive a
quantum phase transition from AF to SC. Foru12.Îu1u2,
the quantum phase transition from AF to SC is a single first
order transition of “type 1.” Foru12,Îu1u2, the transition
from AF to SC consists of two second order transitions, and
there is a finite range ofr1 where AF and SC coexist uni-
formly; the transition is of “type 2.” Foru12=Îu1u2, the
phase transition occurs at

r1

Îu1

=
r2

Îu2

, s10d

where the free energy takes the SOs5d symmetric form

F =
r1

Îu1

2
f̃2 + u12

2 f̃4 s11d

with

f̃2 =
f1

2

Îu1

+
f2

2

Îu2

. s12d

Since the free energy depends only onf̃, one order param-
eter can be smoothly rotated into the other without any en-
ergy cost. At this point, the chemical potential is held fixed,
but the SC order parameter and the charge density can
change continuously according the condition thatf̃2 is con-
stant. This is a special case intermediate between “type 1 and
2” transitions, where two second order phase transitions col-
lapse into one. This transition can only occur at an SOs5d
symmetric point. We thus classify it as “type 1.5.” The full
quantum SOs5d symmetry can only be realized in the class A
transition of “type 1.5.” On the other hand, the static, or
projected SOs5d symmetry can be realized in class B transi-
tions of “type 1.5.”

In HTSC cuprates, the charge gap at half-filling is very
large, of the order ofU,6 eV, it is not possible to induce
the “class A1” transition from the AF to the SC state by
conventional means. However, the charge gap in the frac-
tional insulating states is much smaller, of the order ofJc,
and it is possible to induce the “class A2” or “class A3”
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insulator to superconductor transition by applying
pressure70,71 or by applying a magnetic field.72,73

As the chemical potential or the doping level is varied, a
given system, roughly corresponding to a fixed value of the
quantum parameterJc/Vc, traces out different one dimen-
sional slices in this phase diagram, with typical slices B1,
B2, and B3 depicted in Fig. 4. The nature of the phase tran-
sition B1 is similar to that of the superspin-flop transition
discussed in Ref. 1. In this case, the phase transition from the
AF to the SC state can be further classified into “types 1, 1.5,
and 2,” with the last two cases leading to an AF/SC mixed
phase at the phase transition boundary. For lower values of
Jc/Vc, the trace B3 encounters thed=1/8 insulating phase.
The key signature of this type of phase transition is that the
SC Tc will display a pronounced minimum as the doping
variation traces through thed=1/8 insulating state. Mean-
while, the AF ordering[possibly at a wave vector shifted
from sp ,pd] will show reentrant behavior as doping is var-
ied. The phase transition around the fractional insulating
phases can again be classified into “types 1, 1.5, and 2,” with
possible AF/SC, AF/PDW, SC/PDW, and AF/PDW/SC
mixed phases.

We believe that the AF to SC transition in theYBCO,
BCCO, and theNCCOsystems corresponds to a “class B1”
transition. These systems only have an AF to SC transition,
which can be further classified into “types 1, 1.5, and 2,” but
they do not encounter additional statically ordered fractional

insulating phases. On the other hand, the phase transition in
the LSCOsystem, whereTc displays a pronounced dip atd
=1/8, corresponds to the “class B3” transition.

IV. MEAN-FIELD PHASE DIAGRAM OF THE MODEL

A. Four-sublattice ansatz and mean-field phase
diagram

Since the Hamiltonian(1) contains up to nnn interactions,
we can introduce the following four-sublattice ansatz within
mean field theory:

uCl = p
r,m

fem + hmth
†sm,rd + xmtx

†sm,rdguVl, s13d

where uVl is the singlet ground state,em,xm,hm are real
variational parameters,m=A,B,C,D denote the sites in a
unit cell, andr is the coordinate in the lattice of unit cells, as
sketched in Fig. 5. The mean-field energyEMF reads

FIG. 4. (Color) A typical global phase diagram of the cuprates in
the parameter space of chemical potential and the ratio of boson
hopping energy over Coulomb interaction energy. This phase dia-
gram shows self-similarity among the insulating PDW states at half-
filling and other rational filling fractions. There are two types of
superfluid-insulator transition. The quantum phase transition of
“class A” can be approached by varying the hopping energy, for
example, by applying a pressure and magnetic field at constant
doping. The quantum phase transition of “class B” can be realized
by changing the chemical potential or doping. There can be either a
direct first order phase transition or two second order phase transi-
tions between the SC state and the PDW state, with the possibility
of an intermediate “supersolid” phase, where both orders are
present. Different families of cuprates correspond to different traces
of “class B.” For example, we believeYBCOis B1-like,BSCOmay
be close to B2-like andLSCOis B3-like. The vertical dashed-dotted
line denotes a boundary in the overdoped region beyond which our
pure bosonic model becomes less accurate.

FIG. 5. The schematic plot of the unit cell of a quarter-filled
magnetic insulating state. The solid square denotes a plaquette of
the original lattice and the dashed-dotted square denotes a
2-plaquette by 2-plaquette unit cell.

FIG. 6. (Color online) The MF phase diagram obtained by mini-
mizing the energy functional(14) subjected to the hard-core con-
straint (15). Jp andVp are taken to be zero.
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4EMF

N
= DcshA

2 + hB
2 + hC

2 + hB
2d − 2JcfeAhA + eChCgfeBhB

+ eDhDg + DssxA
2 + xB

2 + xC
2 + xB

2d− 4JsfeAxA + eCxCg

3feBxB + eDxDg − 4JpfhAxA + hCxCgfhBxB + hDxDg

+ 2VcfhA
2 + hC

2gfhB
2 + hD

2 g+ 4Vc8fhA
2hC

2 + hB
2hD

2 g

+ 2VpsfhA
2 + hC

2gfxB
2 + xD

2 g + fhB
2 + hD

2 gfxA
2 + xC

2gd

s14d

with the hard-core constraint

hm
2 + xm

2 + em
2 = 1, m= A,B,C,D. s15d

Here,N/4 is the number of unit-cells andN is the number of
plaquettes.

By minimizing the energy functional(14) subjected to the
hard-core constraint(15), we obtain the mean-field ground
state for a given set of parameters. Figure 6 plots the mean-
field global phase diagram, forDs=4.8, Vc=4.1010, Vc8
=3.6329, andJp=Vp=0.

This phase diagram displays some rich features as ex-
pected. It has three insulating states: an undoped antiferro-
magnetic(AF) state, an insulating AF PDW state with hole-
pair densitynh=1/4 sd=1/8d and an insulating PDW state
with hole-pair densitynh=1/2 sd=1/4d. Besides these insu-
lating states, it also has a pure SC phase, a supersolid phase
and mix phases of coexisting AF and SC order.

In Figs. 7 and 8, we plot the doping dependence of SC
and AF orders for differentJc. If one follows a “class B1”
trace, such as the one with fixedJc=1.5, the doping depen-
dence of SC order mimics the behavior ofYBCOandBSCO
families with a underdoped regionnh,0.3 sd,0.15d and an
overdoped regionnh.0.3 sd.0.15d. If one follows a “class
B3” trace, such as the one with fixedJc=1.0, the SC order
displays a pronounced dip and the AF ordering is strongly
enhanced aroundnh=1/4 sd=1/8d. Therefore, the “class
B2” trace mimics the behavior of theLSCOfamily.

The doping dependence of charge order parameter is also
plotted in Fig. 9. It measures the charge modulation defined
by

PDW=
1

4o
m

unhsmd − nhu, s16d

wherenh is the average hole-pair density andm is summed
over A,B,C,D. While “class B1” trace shows no charge or-
dering in underdoped region, “class B3” trace displays a
clear signature of charge ordering aroundd=1/8.

FIG. 7. (Color online) Doping dependence of SC order param-
eter for differentJc. For smallJc, there is a dip around hole-pair
dopingnh=1/4 (real dopingd=1/8).

FIG. 8. (Color online) Doping dependence of AF order param-
eter for differentJc. For Jc.1.3, AF order decreases as doping
increases and vanishes aroundd=0.1.

FIG. 9. (Color online) Doping dependence of PDW order de-
fined for differenceJc. For Jc,1.3, a strong peak is present atnh

=1/4 or real dopingd=1/8.
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B. Slave-boson approach, effective Hamiltonian, and
dynamical SO„5… symmetry

The hard-core constraint(3) can also be enforced by in-
troducing a slave-bosonte

†sid for each lattice.27 The presence
of this boson indicates that the plaquettei is empty. The
hard-core condition(3) is then replaced by

Q̂sid = So
a

ta
†tasid + th

†thsid + te
†tesid − 1D = 0. s17d

This constraint can be enforced by introducing an additional
site dependent fieldlsid and adding to the Hamiltonian(1)
an additional term

Hl = − o
i

lsidQsid. s18d

Since in physical states one always has one and only one
boson per lattice sites, destruction(creation) of a boson
tasta

†d, a=x,y,z,h, must always be accompanied by creation
(destruction) of the empty bosonte

†sted. In this way, the whole
Hamiltonian takes the form

Hsb= Dco
i

th
†sidthsid + Dso

i

ta
†sidtasid

− Jco
ki j l

fth
†sidtesidte

†s jdths jd + H.c.g − Jso
ki j l

fta
†tesid

+ te
†tasidgfta

†tes jd + te
†tas jdg − o

i

lsidQsid + Hext.

s19d

By integrating out thel field in the partition function, one
automatically enforces the hard-core constraintQsid=0 on
each site. The saddle point approximation to(19) corre-
sponds to replacing the boson operators andl field with real
constants to minimize the energy. Within the four-sublattice
ansatz, this is equivalent to minimizing the energy functional
subjected to the hard-core constraint(15). After obtaining the
ground state, we can expand the boson operators around their
mean-field values and drop quartic terms in the Hamiltonian
(19) to yield an effective Hamiltonian of the boson operators
around the ground state.

We shall now study the checkerboard state characterized
by following mean-field solution:

hA = 1, xA = eA = hB = hC = hD = 0 s20d

for the simplified model withJp=Vp=0.
The saddle-point of the slave-boson Hamiltonian(19) can

be solved to yield

xD = xB = xC = 0, s21ad

eD = eB = eC = 1, s21bd

lD = lB = lC = 0, s21cd

lA = Dc, s21dd

for Ds/Jsù4Î2 and

xD = xB =Î 1

16
F8 −

Ds

Js

Î64Js
2 + Ds

2

16Js
2 + Ds

2G , s22ad

eD = eB =Î 1

16
F8 +

Ds

Js
Î64Js

2 + Ds
2

16Js
2 + Ds

2G , s22bd

xC =Î1

8
F4 −

Ds

Js

Î16Js
2 + Ds

2

64Js
2 + Ds

2G , s22cd

eC =Î1

8
F4 +

Ds

Js
Î16Js

2 + Ds
2

64Js
2 + Ds

2G , s22dd

lC =
Ds

2
− 2JsÎ64Js

2 + Ds
2

16Js
2 + Ds

2 , s22ed

lA = Dc, s22fd

lD = lB =
Ds

2
− 4JsÎ16Js

2 + Ds
2

64Js
2 + Ds

2 s22gd

for Ds/Jsø4Î2.
The bosons are then expanded around their mean-field

values as

thsm,rd = hm + b̂hsm,rd, s23ad

txsm,rd = xm + b̂xsm,rd, s23bd

tesm,rd = em + b̂esm,rd, s23cd

tysm,rd = b̂ysm,rd, s23dd

tzsm,rd = b̂zsm,rd. s23ed

Again, m=A,B,C,D andr is the coordinate in the coarse-
grained lattice of unit cells. Plug(23a)–(23e) into the slave-
boson Hamiltonian(19) and drop the quartic terms to yield
the quadratic effective Hamiltonian

Heff = E0 + Hh
eff + Hx

eff + Hy
eff + Hz

eff s24d

with E0 the mean-field ground state energy given by

E0 = 2NsDc − lBdxB
2 + NsDc − lCdxC

2 + 4NxCeCxBeB

s25ad

andHx
eff, Hh

eff, Hy
eff, andHz

eff,

Hx
eff = o

m=B,C,D
Fo

q

sDs − lmdb̂x
†b̂xsm,qd − o

q

lmb̂e
†b̂esm,qdG

− Jso
q

f4eBxBsb̂x
†sC,qdb̂esC,qd + H.c.d + B ↔ Cg

− 2Jso
q

feCfb̂x
†sC,qd + b̂xsC,− qdg + xCfb̂e

†sC,qd
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+ b̂esC,− qdgg3fcosqxseBfb̂x
†sB,− qd + b̂xsB,qdg

+ xBfb̂e
†sB,− qd + b̂esB,qdgd + cosqysB ↔ Ddg, s25bd

Hh
eff = o

q

sDc − lB + 2Vcdfb̂h
†b̂hsB,qd + b̂h

†b̂hsD,qdg + o
q

sDc

− lC + 4Vc8db̂h
†b̂hsC,qd+ o

q

sDs − Dcdb̂x
†b̂xsA,qd

− lAo
q

b̂e
†b̂esA,qd − Jso

q

8eBxBfb̂x
†sA,qdb̂esA,qd

+ b̂e
†sA,qdb̂xsA,qdg− 2JceBo

q

fcosqysb̂esA,qdb̂hsB,− qd

+ b̂h
†sB,− qdb̂e

†sA,qdd + cosqxsB ↔ Ddg

− 2JceBeCo
q

fcosqxsb̂h
†sC,qdb̂hsB,qd

+ b̂h
†sB,qdb̂hsC,qdd + cosqysB ↔ Ddg, s25cd

Ha
eff = o

q

sDs − lBdsb̂a
†b̂asB,qd + b̂a

†b̂asD,qdd

+ o
q

sDs − lCdb̂a
†b̂asC,qd + o

q

sDs − Dcdb̂a
†b̂asA,qd

− 2JseCeBo
q

fb̂a
†sC,qd + b̂asC,− qdgfcosqysb̂a

†sD,− qd

+ b̂asD,qdd + cosqxsD ↔ Bdg, a = y,z. s25dd

Here, the operatorsb̂sm,qd are the Fourier transforms of the

bosonic operatorsb̂sm,rd

b̂sm,qd = o
r

eiqrb̂sm,rd, m= A,B,C,D, s26d

where the summation ofr is over the lattice of unit cells.
This effective Hamiltonian has four decoupled parts,Hh

eff,
Hx

eff, Hy
eff, andHz

eff. Among these four decoupled parts,Hy
eff

and Hz
eff are just the Hamiltonian for the gapped magnetic

mode on sublattice A and gapless magnetic Goldstone modes
on sublattice B, C, and D due to the spontaneous symmetry
breaking of SO(3) spin symmetry. These two gapless Gold-
stone modes correspond to the gapless uniform rotation of
the AF ordering fromx direction toy or z direction.Hx

eff is
the Hamiltonian of gappedx-magnon mode on sublattice B,
C, and D due to the condensation ofx-magnons on these
sublattices. The remainingHh

eff is of great interest for it is the
Hamiltonian of the charge modes andx-magnon mode on
sublattice A.

Under the insulating lobe of checkerboard state, the
charge modes are gapped. The charge gapv0 is given by the
solution to the quartic equation of the form

v0
4 + C2v0

2 + C3 = 0, s27d

whereC2 andC4 are quadratic functions ofJc. This equation
is quartic because fields with momentumq and −q are
coupled and there aret†t† terms in the effective Hamiltonian.

The conditionC3=0 gives the lobe-shaped second order
phase boundary where one charge mode becomes soft and a
phase transition from the PDW state to the SC state occurs.
However, one must be careful since it is possible that the
system takes a first order transition before the charge mode
softens. This indeed happens for lower left part of the lobe,
where the PDW state takes a first order transition to an AF
+SC mixed state. In the following discussion, we assume the
tip and some of the left part of the lobe survive, as in the case
plotted in Fig. 6.

As one approaches the left part of the second order lobe
following a trajectory with constantJc, the energy cost of
removing hole-pair decreases and becomes zero at the phase
boundary. This observation leads to the conclusion that a
particlelike charge mode becomes soft on the left part of the
lobe. Similarly, one can argue that a holelike charge mode
becomes soft at the right part. At the tip, where the left part
and right part of the lobe meet, both particlelike and holelike
modes become soft. Consequently, an effective particle-hole
symmetry is dynamically restored. One can check thatC2
indeed vanishes at the tip of the lobe.

At the tip of the lobe, the speed of gapless charge modes
is determined by the interactionVc and Vc8. For appropriate
values ofVc and Vc8, the speed of the gapless charge mode
can be the same as the speed of the two gapless AF spin
wave modes. When quantum SOs5d symmetry is spontane-
ously broken to an SOs4d symmetry, there should be exactly
four degenerate gapless Goldstone bosons. This model shows
that such a dynamical symmetry is possible at the multi-
critical point around the tip of thed=1/8 lobe. Figure 10
plots the dispersions of four gapless modes at the tip of an
AF insulating checkerboard lobe in the phase diagram of
Fig. 6.

FIG. 10. (Color online) Dispersion of four gapless modes at a
quantum multicritical point, located tip of thed=1/8 checkerboard
lobe illustrated in Fig. 6. The two spin wave modes have exactly the
same dispersion due to the SOs3d symmetry of the AF moment. For
the parameters shown in the figure, these four modes have the same
speed at the multicritical point. These four modes correspond the
four Goldstone modes required by the quantum dynamical SOs5d
symmetry.
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V. PHASE DIAGRAM OBTAINED FROM QUANTUM
MONTE CARLO SIMULATION

A. Numerical simulation

Because of the bosonic nature, the minus-sign problem is
absent in the quantum SOs5d model. Therefore, simulations
can be carried out for systems with sizes much larger than
the ones available with fermionic QMC simulation in the
physically interesting region. The pioneering numerical
works30–33,74,75 show that the projected SOs5d model can
give a realistic description of the phase diagram of the HTSC
cuprates and account for many of their physical properties. In
this section, we shall present the simulation of the SOs5d
model with extended interactions using the stochastic series
expansion(SSE) method76–78 with operator-loop update.78

This quantum Monte Carlo method was shown to be very
efficient for simulations of hardcore bosonic systems.30,63,79

The overall topology of the phase diagram agrees well with
the mean field calculation presented in the previous section,
although the parameters are strongly renormalized.

From the values given in Sec. II, we see that we can
safely neglectJp which is rather small so that only remains
Jc andJs which are both positive. In this section,Jp=0.

In order to avoid the notorious sign problem in the quan-
tum Monte Carlo simulations of the SOs5d model with ex-
tended interactions, all off-diagonal terms should be positive.
On a square lattice with only nearest-neighbor nonzero off-
diagonal terms, the sign of these matrix elements can be
safely changed by a harmless unitary transformation acting
on hopping terms in only one of the sublattices.

For each simulation, the number of loops(or “worms”)
made during the loop operator update78 is calculated self-
consistently during the thermalization part, such that on av-
erage the number of vertices visited by worms during each
loop operator update is equal toCknl. Hereknl is the average
number of non-identity vertices in the operator string(see
Ref. 78) andC a proportionality constant, usually taken be-
tween 1 and 5(the largerC, the more autocorrelations be-
tween successive Monte Carlo configurations are reduced).

In order to plot the phase diagram, we should compute the
order parameters corresponding to AF, SC, and PDW phase.
We use the superfluid densityrc to locate SC phases. Indeed,
rc can be related to the winding numbers of the world-lines
which can be directly computed during the QMC
simulations.77,80 Here the winding number only involves the
charged particles, i.e., the hole pair hopping. We can take a
similar definition with the magnetic bosons to define the spin
stiffness.

It is straightforward to measure the density-density corre-
lations and their Fourier transform, the structure factors
Nsqx,qyd which indicate PDW phases

Nsqd =
1

L2o
i,r

expsiq · r dknhsidnhsi + r dl.

These quantities characterize the diagonal long-range order.
On finite clusters, the structure factor at the appropriate mo-
mentum diverges as the volume of the system in the ordered
phase, so that, by plottingNsqx,qyd /L2 vs 1/L (L is the linear

size of the system), a scaling analysis can demonstrate long
range order.

Due to the intrinsic complexity of the projected SOs5d
model and to the large number of interaction types, we re-
stricted the simulations to small lattices(434 up to 10
310 lattices) at low temperatures(typically b=10), to
mainly be in the ground state. Even using the powerful SSE
method, we found that for specific points in the phase dia-
gram (near phase boundaries for example), autocorrelation
times of different observables or tunneling times between
two neighboring phases can be long, decreasing the statisti-
cal precision. This sometimes prevents us from providing
definitive statements about the nature of phase transitions.
However, outside of these regions, we can clearly distinguish
the nature of the different phases.

B. Limiting cases

The pure projected SOs5d model corresponds toVc=Vc8
=Vp=0 andJc=2Js. This model has been studied with the
same technique.30 A first-order transition between AF and SC
phases was observed. It was already recognized that a small
Vc andVc8 were enough to turn this transition into a second-
order phase transition.

Another interesting case occurs when the triplet density
becomes small. In that limit, the model reduces to one type
of hard-core boson with hoppingJc and nearest and next-
nearest neighbor repulsionVc andVc8 respectively.

H = − Jco
ki j l

fth
†sidths jd + H.c.g + FVco

ki j l
+ Vc8 o

kki j ll
Gnhsidnhs jd

s28d

so that we can fixJc=1 as the energy unit. This model has
been extensively studied in Ref. 63 and some results have

FIG. 11. (Color online) The global phase diagram obtained by
QMC. The parameters used in simulation areDs=4.8, Vc=4.1010,
Vc8=3.6329, andJp=Vp=0. The lines are guides to the eye only.
The overall topology of the phase diagram agrees well with the
mean-field phase diagram of Fig. 6, although the parameters are
renormalized.
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been obtained with the same SSE method. Let us review a
few useful results.

1. Half-filling

The phase diagram at half-filling is well known and ex-
hibits solid phases with eithersp ,0d (stripe) or sp ,pd
(checkerboard) structures. In between exists a superfluid
phase with a nonzero superfluid densityrc. We recover the
same results as Hebertet al.:63 with our choice of interac-
tions, by varyingJc, we can drive the system from a super-
fluid toward asp ,0d (stripe) phase.

2. Away from half-filling

Away from half-filling, our grand-canonical algorithm is
able to check whether we are in a phase separated state or not
by looking at the histogram of the density during the simu-
lation. On general grounds, the presence of a double peak
structure shows the presence of true phase separation in the
system.

With our choice of parameters, we find that away from the
striped state, there is a phase, close to half-filling, where both
Ns0,pd /L2 (PDW order parameter) andrc are finite, that is a
supersolid phase. Moreover, there is no sign of phase sepa-
ration so that it is a true homogeneous phase, as claimed in
Ref. 63.

C. Global phase diagram

Now that the parameters are fixed, we can compute the
phase diagram for variousJc and chemical potentialDc (see
Fig. 11). In order to discuss these results, we plot in the
following most of the data as a function of dopingd=nh/2
which depends on the chemical potentialDc as shown in Fig.
12, but has no strong finite-size effects. Let us comment on
some results.

1. Large Jc

For all values ofJc, the superfluid density increases lin-
early with doping, for small doping, thus capturing a key
piece of the Mott physics. For largeJc (Jc=1.5 for example),
reducing hole density starting fromd=1/4, we have a
smooth decrease of superfluid density(see Fig. 13). At the
same time, magnon density increases and gives rise to AF.
Figure 14 shows typical data ofNsp ,0d /L2 which is the
PDW order parameter for various sizes. In order to get infor-
mation on the thermodynamic limit, we have performed a
finite-size scaling of our data, and it vanishes for all fillings.
We have a superconducting state for all dopings, with a pos-

FIG. 12. (Color online) d=nh/2 vs chemical potential forJc

=1.5 andJc=0.6. The presence of plateaux indicates incompressible
PDW phases. The finite size effects are rather small.

FIG. 13. (Color online) Superfluid density as a function of dop-
ing for variousJc. The “class B1” trace withJc=1.0 bears great
similarity with the famous domelike phase diagram of many cuprate
families. Also, the “class B3”-like trace withJcø0.8 has a pro-
nounced dip atd=1/8 as thephase diagram of theLSCO family
does.

FIG. 14. (Color online) Scaling ofsp ,0d PDW order parameter
fNsp ,0d /L2g for various sizes(L=6 to 12 from top to bottom) with
Jc=1.5. We checked that it extrapolates to 0 for alld.
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sible coexistence with AF at low-doping. When the doping
vanishes, we recover a pure AF phase.

2. Small Jc

For smallerJc, the long-range interactions between hole
pairs start to play a role.

a. Large doping. The first example is the appearance of a
sp ,0d PDW insulating phase atnh=1/2 sd=1/4d. Indeed,
close to this doping, the magnon density is very small so that
the model is similar to the single hardcore boson case. We
therefore recover a transition at fixednh=1/2 sd=1/4d as a
function of Jc between a superfluid phase(SC) and an insu-
lating stripe phase(with a finite PDW order and a vanishing
superfluid density). A finite-size scaling of the PDW order

parameter showing a finite value is shown in Fig. 15 fornh
=0.5 sd=0.25d and Jc=0.6. In Fig. 13, we see that below
Jc,1.3, the superfluid density vanishes atnh=1/2 sd=1/4d
in agreement with what has been found for the single-boson
model.63 Mean-field results find a higher valuesVc8 /2.1.8d.

b. Intermediate doping. A second example of the interac-
tion effect is given by the appearance of an insulating PDW
phase atnh=0.25sd=0.125d for low enoughJcsJcø0.7d. A
finite PDW order parameter andrc=0 are shown again in
Figs. 15 and 13 forJc=0.6. This state corresponds to a lo-
calization of one hole-pair every 4 sites, so that thisnh
=1/4 sd=1/8d checkerboard also possesses a finite
Nsp ,pd /L2 as shown in Fig. 16. We find that thisnh

=1/4sd=1/8d checkerboard is insulating, with a vanishing
superfluid density. However, it could be possible to have a
supersolid phase.81

For intermediate dopings 0.25,nh,0.5 s0.125,d
,0.25d and smallJc, we find a finite superfluid density and
possibly a finite PDW order, that is a supersolid region. We
checked that this phase is stable against phase separation. We
cannot be conclusive about its extension in the phase dia-
gram, due to the long autocorrelation time for some observ-
ables. This explains the large error bars in some parts of the
phase diagram. However, since we know that such a phase
exists and is stable close to half-filling, we can assume that it
has a finite extension. It would be interesting to check
whether this supersolid also exists for a single hard-core bo-
son model close tonh=1/4 sd=1/8d, which is much easier
to simulate. It is remarkable that forJc values close to the
transition, we see a dip in the superfluid density(Fig. 13),
which is due to the proximity to the insulating state.

3. Magnetic properties

As shown in Fig. 17, the spin stiffness shows a monotonic
decrease with chemical potential(or doping) so that it is
difficult to locate precisely where it vanishes. For small dop-
ing d or chemical potential −Dc, we observe a rapid linear

FIG. 15. (Color online) sp ,0d PDW order as a function ofd for
various sizes(L=6,8, and 10) for Jc=0.6. We checked that, within
the system sizes simulated, finite PDW order survives in the ther-
modynamic limit fornhù0.25 sdù0.125d.

FIG. 16. (Color online) sp ,pd PDW order as a function ofd for
various sizes(L=4, 6, 8 and 10) andJc=0.7. We checked that it is
finite only for nh=1/4 sd=1/8d checkerboard.

FIG. 17. (Color online) The spin stiffness vs chemical potential
for different sizes andJc.
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decrease so that we can estimate roughly where AF could
vanish in the thermodynamic limit. These phase boundaries
are shown in Fig. 11 and are in agreement with what has
been found at the mean-field level.

For small Jc, AF seems to vanish atnh=1/4 sd=1/8d.
However, our data ofrs also show a shallow peak above this
filling, which could indicate a reentrance of AF as found in
mean-field. Unfortunately, with our current limitation on
available sizes and statistics, we cannot conclude for sure
about this possibility.

D. Summary

The qualitative features found at the mean-field level are
still present in a full numerical calculation and we have a
very nice overall agreement(see Figs. 6 and 11). Of course,
exact critical values ofJc for superconducting-insulator tran-
sition are different from mean-field values but this does not
change the physical conclusions.

It is very difficult to point precisely where AF vanishes
since spin stiffness does not show any sharp drop. However,
we clearly see a strong reduction ofrs, which seems to de-
crease linearly with doping. With the chosen parameters, it
seems plausible that both this line and the PDW transition
line merge close to the tip of then=1/4 lobe as was found at
the mean-field level. This result was associated to the dy-
namical restoration of SOs5d symmetry at this point. Our
data might be an indication that this is indeed the case(we
have taken the sameVc and Vc8 so it seems pretty robust).
However, a complete answer can only be provided by com-
puting dynamical correlations, which is more involved and
requires good statistics.

VI. EXPERIMENTAL CONSEQUENCE AND PREDICTIONS

In this work we have constructed a single quantum
Hamiltonian based on the projected SOs5d model with ex-
tended interactions, and presented detailed analytical and nu-
merical calculations which give a consistent global phase
diagram as depicted in Fig. 4. This schematic phase diagram
is obtained from the quantitative model calculations summa-
rized in Figs. 6 and 11. This model captures the overall to-
pology of the cuprates phase diagram, including the dome-
like feature ofTc, which is determined within our model by
the superfluid density, the 1/8 anomaly due to charge order-
ing, the coexistence of SC with AF and possibly with charge
order. As mentioned in the Introduction, some of these fea-
tures have been discussed in other theoretical contexts be-
fore, however, it is rather remarkable that they are all repro-
duced by a single quantum model accessible by reliable
QMC. Below we shall discuss some of these features and
present more detailed theoretical predictions.

A. Dependence of superfluid density on doping

A remarkable feature of the HTSC cuprates is the dome-
like dependence ofTc on doping. Experiments have also
shown a remarkable dependence of superfluid density on
doping. On the underdoped side, bothTc and the superfluid
density scale linearly with doping, a fact commonly referred

to as the “Uemura plot.” Further examination also shows that
the superfluid density in the overdoped regime decreases
with increasing doping, which is commonly referred to as the
“boomerang effect.” In cuprate system, the muon spin relax-
ation ratessT→0d is proportional tons/m

* wherens is the
superfluid density andm* is the effective mass of
hole-pairs.82 To explain the deviation from the linear relation
betweens and doping in the overdoped regime, Uemura
proposed that some of the doped holes do not form pairs and
are phase separated from the SC hole-pairs, even at zero
temperature.82 A similar phase separation picture was pro-
posed by Uchida.83 However, it has always been rather puz-
zling that if the phase separated normal electrons existed at
zero temperature, they should provide a channel of relax-
ations, which has not been observed experimentally.

Within our effective bosonic model,Tc is directly deter-
mined by the superfluid densityrc. As we can see from Fig.
13, rc indeed scales linearly with the doping density for
small doping, and has a domelike dependence for higher
doping for intermediate values ofJc. It peaks aroundd
,18% for Jc=1.2. The physical reason for the behavior on
the overdoped side arises from the tendency of hole pairs to
form a competing charge ordering state at either 3/16 or 1/4.
Within this picture, when more holes are added into the sys-
tem on the overdoped side, the holes are still paired, but
some of them form a charge ordered PDW state, with pre-
ferred doping of 3/16 or 1/4. This charge ordered PDW state
either phase separates from the SC state, or coexists with it,
but either way, the superfluid density is reduced because of
the repulsive coupling between the two forms of order.
Therefore, this picture predicts a new charge ordered state on
the overdoped side, which should be tested experimentally.
Since the magnon density decreases monotonically with dop-
ing, the charge ordered states on the overdoped side may not
be AF ordered, which makes it hard to observe by neutron
scattering. Furthermore, on the overdoped side, our purely
bosonic model also becomes less accurate, and a fully quan-
titative theory has to include the low energy fermionic exci-
tations.

B. The 1/8 anomaly and pressure experiments

In the LSCOsystems,Tc has a pronounced dip near dop-
ing of d=1/8.84 More recently, it has been demonstrated that
the competition between the nearly insulating 1/8 phase and
the SC phase in theLSCOfamily can be controlled by pres-
sure. There are two different approaches. One is to apply
hydrostatic or uniaxial pressure on single crystal.70 In this
way, the pressure inab plane increasesTc while the pressure
in c direction decreasesTc. The other is to introduce com-
pressive or expansive strain into thin films with the help of
the lattice mismatch between the film and substrate.71 En-
hancedTc and disappearance of the 1/8 anomaly for com-
pressed film and strong reduction ofTc for expanded film
were observed.71

Our model reproduces thed=1/8 effect for Jc,1, as one
can see from Fig. 13. The pronounced dip is caused from the
competition between the SC state and the insulating PDW
states. Varying doping corresponds to the “B2” or “B3”
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traces as depicted in Fig. 4. On the other hand, pressure in
the ab plane reduces the lattice constant, thus increases the
hopping termJc. Therefore, applying pressure in theab
plane is equivalent to following a “class A2” trace starting
from a smallJc in the global phase diagram. The doping
dependence ofTc for different films given in Fig. 3 of Satoet
al.71 shares many common features with our doping depen-
dence of SC order parameter, both MF results(Fig. 7) and
QMC results(Fig. 13). The destructive effect onTc of the
pressure in thec direction can also be understood in terms of
the Poisson effect. The lattice constant inab plane will in-
crease when the sample is compressed in thec direction.
This will lead to the decrease ofTc as argued previously.

Similar to the “class A2” trace, “class A3” trace can also
be realized by applying pressure. Therefore, we predict a
similar pressure induced superconductor-to-insulator transi-
tion at d=1/16.

In this way, the pressure effect on the 1/8 anomaly is
understood in terms of the bosonic superfluid-to-insulator
transition at the fixed density ofd=1/8.Standard predictions
on the superfluid-to-insulator transition apply to thed=1/8
transition. In addition, we argued that the tip of thed=1/8
lobe can possibly have the full quantum SOs5d symmetry.
This prediction can be experimentally tested by comparing
both the static and dynamic charge and magnetic responses,
as we have discussed in Sec. II B.

C. The vortex phase and the ground state aboveHc2

The “class A2” and “class A3” traces can also be ap-
proached in the cuprates by applying a magnetic field along
thec-axis, which effectively reduces the hopping termJc. In
underdopedLSCO samples, we predict that the magnetic
field destroys SC order by localizing hole-pairs into a PDW
state. This naturally leads to the field-induced insulating be-
havior in underdopedLSCO.72,73 For theYBCOandBSCO
systems, the magnetic field could drive the hole-pairs into a
disordered state before the lobe ofd=1/8 or d=1/16 is
reached.

Recently, a striking feature is revealed in the STM experi-
ments by Hoffmanet al.,37 where the local density of states
(DOS) near the vortex core shows a two-dimensional check-
erboardlike modulation with a 4a34a charge unit cell. Here
a is the lattice spacing of the CuO2 plane. This modulation
decays exponentially away from the center of the vortex
core, with a decay length of about 10a. A similar pattern has
also been seen in the absence of the applied magnetic field.38

possibly induced by the impurities at the surface. In the case
of vortex core experiment, SC is destroyed by the magnetic
field, and the nature of the competing state is revealed. The
case of impurity scattering is more complex, and the experi-
mental observation can also be interpreted as due to quasi-
particle interference.39–41

The d=1/8 insulating PDW state was proposed as an ex-
planation for the STM measurements.43 This state has the
4a34a checkerboard symmetry as observed in the experi-
ment, and the doping level for the insulatingd=1/8 state is
reasonably close to the optimal doping level of the cuprates.
On the other hand, if the holes themselves, rather than the

hole pairs, form a Wigner crystal state, the periodicity of the
charge ordering would be larger by a factor ofÎ2, inconsis-
tent with the experiment. Therefore, by forming the Wigner
crystal state of the hole pairs rather than the holes them-
selves, the doping level can be compatible with the observed
size of the charge unit cell. In Ref. 43, the hole pair check-
erboard state was established by a mean field calculation. A
main result of the present work is to establish the existence
of this state by QMC calculations.

Our calculations as summarized in Figs. 6 and 11 show
that the charge ordered insulating states are also accompa-
nied by AF magnetic order. Enhanced AF fluctuation in the
vortex state was originally predicted within the SOs5d theory
in Refs. 1 and 17 and has been experimentally observed in a
number of HTSC cuprate families by a variety of experimen-
tal techniques.18–24 More recently, AF order has been de-
tected by neutron scattering aboveHc2, in electron doped
cuprates.25,26 This magnetic field induced quantum phase
transition from the SC state to the AF state corresponds to
the “A2” trace as depicted in Fig. 4.

D. Charge localization and suppression of thermal
conductivity

In previous subsections, we argue that the competition
between PDW and SC can be tuned by applying pressure or
magnetic field. In particular, we show that the PDW ordering
of hole-pairs can develop in the vortex core. The localized
hole-pairs in a PDW state are expected to have little contri-
bution to the transport properties such as thermal conductiv-
ity. This leads to the argument of the suppression of thermal
conductivity by applying a magnetic field inc-axis below
some temperatureTK. Since the onset temperatureTK is ex-
pected to be proportional to the superfluid density,TK has
weak dependence on the magnetic field and followsTc in the
underdoped cuprates. Moreover, the closer the system is to
the charge ordered insulating state such as the 1/8 PDW
state, the smaller the suppression effect would be. Finally,
the in-plane magnetic field has little effect on the thermal

FIG. 18. (Color online) The hole-pair checkerboard state with
antiphase magnetic domain at doping leveld=1/16. Circles denote
holes and arrows denote spins while black crosses denote spins in a
singlet bond.
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conductivity due to the fact that it does not create vortex in
the ab plane.

Therefore, trace “A2” in our global phase diagram and the
charge localization into a hole pair crystal can possibly ex-
plain the recent experiment on the suppression of thermal
conductivity by applying a magnetic field in thec
direction.85 We also predict that applying pressure will also
induce the suppression or enhancement of the thermal con-
ductivity around the 1/8 doping, assuming the pressure will
not induce strong effect of the lattice structure which can
also change the thermal conductivity.

E. 1/16 doping

As discussed in Sec. III, additional insulating lobes atd
=1/16 andd=3/16 doping levels are predicted if interac-
tions are more extended than the nnn interactions included in
this work. The charge and spin ordering patterns for this state
are depicted in Fig. 18. Even though the current paper does
not investigate this type of more extended interactions ex-

plicitly due to numerical complexities, it is clear that the
physics of these PDW states are similar to the 1/8 doping.
Preliminary evidence for thed=1/16 insulating state exists
for the LSCOmaterial.60,86As we see from Figs. 18 and 19,
the charge ordering pattern rotates from diagonal atd
=1/16 to square atd=1/8. This transition between states
with different rotational symmetries could possibly be re-
lated to the diagonal to square transition observed in the
neutron scattering experiments atd,5% in the LSCO
material.87,88

F. Magnetic order

In this paper, we focused our discussion on the checker-
board charge order atd=1/8. Strictly within our model, the
accompanied AF magnetic order is commensurate, as
sketched in Fig. 19. This type of magnetic structure is con-
sistent with the recently observed field induced magnetic or-
der in theNCCO material,25,26 but not consistent with the
magnetic structure observed in theLSCOmaterial, which has
antiphase domain walls. We would like to stress that this is
not a limitation on the fundamental approach taken here. As
shown in Fig. 20, checkerboard charge order of the hole pairs
can be fully consistent with the AF magnetic structure with
antiphase domain walls. However, stability of this type of
magnetic structure requires more extended magnetic interac-
tions. Since the complexity of both the CORE algorithm and
the QMC increases substantially, we have not yet been able
to derive such extended interactions from the microscopic
models, and simulate them with QMC.

G. Coexistence phases

While the simple SOs5d model1 predicts the coexistence
phases of AF and SC, more regions with coexisting charge,
AF and SC orders are predicted in the global phase diagram
of Figs. 6 and 11. In particular, the “type 1” first order tran-
sition from undoped AF state to SC state predicted by simple
SOs5d model is turned into two “type 2” second order tran-
sitions by the interactionsVc andVc8, which is consistent with
previous study.30 While the width of these coexistence re-
gions is model dependent, coexistence phases are important
qualitative predictions of our theory. Experiments on
cuprates have indeed suggested such coexistence phases.89–94

As we see from Fig. 8, the AF order disappears around
d=0.10. This is consistent with the value obtained from the
t-J model.95 The width of the AF/SC coexistence phase
largely depends on the values ofJp and Vp. As determined
by the CORE method,Jp is negative andVp is positive.
Thus, at the mean-field level, bothJp andVp terms induce a
repulsion between AF and SC in the mixed state of coexist-
ing AF and SC. When these terms are included, one would
expect a smaller region of the AF/SC coexistence state in the
global phase diagram. On the other hand, these two terms
have different effects on the checkerboard state. Since the
mean-field value ofp-operator in the PDW state is zero, the
Jp interaction will not induce any interaction terms at the
mean-field level. In contrast, theVp term effectively changes
the local chemical potential of hole-pairs(magnons) due to
the nonzero mean-field value of magnons(hole-pairs) on the

FIG. 19. (Color online) The hole-pair checkerboard state with
in-phase magnetic domain at doping leveld=1/8. Circles denote
holes and arrows denote spins while black crosses denote spins in a
singlet bond.

FIG. 20. (Color online) The hole-pair checkerboard state with
antiphase magnetic domain at doping leveld=1/8. Circles denote
holes and arrows denote spins while black crosses denote spins in a
singlet bond.
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nn plaquette. Therefore,Vp also reduces the height of the
insulating PDW lobe.

VII. CONCLUSIONS

Starting from commonly used microscopic models of high
Tc cuprates, an effective bosonic model can be derived by the
CORE algorithm.28,29 In addition to the simple interactions
included in the original projected SOs5d model,27,30,33 ex-
tended interactions play an important role in determining the
global phase diagram of the model. This model can be stud-
ied systematically by the analytical mean field theory and by
the QMC method, thanks to the absence of the minus sign
problem. The global phase diagram consists of self-similar
insulating PDW phases at rational filling fractions, immersed
in the background of the uniform SC phase, as depicted sche-
matically in Fig. 4. Different families of cuprates are attrib-
uted to different traces in the global phase diagram. The

overall topology of the phase diagram obtained from our
model agrees well with the experiments, and so are the be-
haviors of various physical quantities. Inclusion of longer
ranged interactions could bring detailed and quantitative
agreements with the cuprate phase diagram.
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