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The highT, cuprates have a complex phase diagram with many competing phases. We propose a bosonic
effective quantum Hamiltonian based on the projectedS$@odel with extended interactions, which can be
derived from the microscopic models of the cuprates. The global phase diagram of this model is obtained using
mean-field theory and the quantum Monte Carlo simulation, which is possible because of the absence of the
minus sign problem. We show that this single quantum model can account for most salient features observed
in the highT, cuprates, with different families of the cuprates attributed to different traces in the global phase
diagram. Experimental consequences are discussed and theoretical predictions are presented.
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[. INTRODUCTION present a single effective quantum model of the superspin

At first glance, the phase diagram of the high transitiondegree of freedom, which can be derived systematically from
temperature superconductiggTSC) cuprates has a striking the microscopic electron models, and can be investigated re-
simplicity: there are only three universal phases in the phaséably both analytically and numerically. The global phase
diagram of all HTSC cuprates: the antiferromagneaé), diagram of this model is then compared with the experimen-
the superconductingSO), and the metallic phases, all with tally observed phase diagram of the HTSC cuprates.
homogeneousharge distributions. However, closer inspec- When formulated on a coarse-grained lattice, with high
tion shows a bewildering complexity of other possibleenergy charge states projected out, the projected550
phases, which may or may not be universally present in alnmodel describes five local superspin degrees of freedom per
HTSC cuprates. A large class of these phases have inhomplaquetté?’ These five states are the spin singlet state at half-
geneous charge distributions. Because of this complexityfjlling, the spin triplet states at half-filling, and the singlet
formulating a universal theory of HTSC is a great challenged-wave hole pair state. Using the contractor renormalization
The Sa5) theory unifies the AF and the SC order param-group (CORE) algorithm, Altman and Auerbaéh showed
eters into a single five-dimensional order parameter callethat the projected S@G) model can be systematically derived
the superspin, and the effective quantum theory of the supefrom the microscopic electron models, and they also deter-
spin naturally explains proximity between the AF and the SOmined the parameters of the effective (SDmodel explicitly
phases in the observed phase diagtaifhe Goldstone from the microscopic interaction parametésee also Ref.
modes of the superspin fluctuations can be identified with th@9). Restricted within the subspace of these five local states,
7 resonance mode observed in the neutron scatterinthe Hamiltonian describing their propagation and interaction
experiment$~1® This theory also predicts the AF vortex is completely expressed in terms of bosonic operators and
statel1” which has recently been observed in a number oftan be studied reliably by the quantum Monte Ca&@dC)
experiments$®-2¢ Initially, the SQ5) theory was motivated calculations. The simplest form of the projected (S0
by the simplicity of the pure AF and SC states, howevermodel has been studied extensively by the QMC method
given the encouraging agreements with the experiments, it isoth in two dimensior§-3? and in three dimensiors.The
tempting to construct a unified theory of the global phaseoverall topology of the phase diagram, the scaling properties
diagram of the HTSC which addresses the more complexear the multicritical point and the nature of the collective
inhomogeneous phases as well. Complexities can of coursxcitations can be reliably obtained from the QMC method,
be introduced phenomenologically into the Landau-within the parameter regime of experimental interests.
Ginzburg-type of theories by simply introducing more order The simplest form of the quantum $&) model describes
parameters. However, this type of approach necessarily limeither the direct, first order transition from the AF to the SC
its the predictive power of theory. The goal of this paper is tostate, or two second order transitions with a uniform, inter-
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mediate AF/SC mix phase in between the pure AF and thésulator. In recent years, this powerful mapping among the
SC states:?” In the case of the direct first order transition asdifferent fractional states has been made more precise by the
a function of the chemical potential, the system at a fixedderivation of the SI2,Z) discrete modular group transfor-
density is phase separated. However, in the HTSC cupratemation from the Chern-Simons thed®” Similarly, the
there are other forms of charge and spin ordered states. Foentral idea of the current paper is to relate the fractional
example, neutron scattering cross section in LSCO materiallott insulator to SC transition with the transition from the
is peaked around (7x8,7) and (w7, 7w+6), where AF Mottinsulator at half-filling to SC state, which is already
6~1/8343% STM experiments have revealed periodic well understood within the context of the original, simple
charge modulation with period close to four lattice SO(5) theory. The construction of the Mott insulating states
spacing?’# either near the vortex core or near surface im-at various fractional filling factors can be constructed from
purities. In the latter case, alternative interpretafioft  the “Law of Corresponding States,” iteratad infinitum to
based on quasiparticle interference is also possible, and thigve a beautiful fractal structure of self-similar phases and
two points of views are summarized by Kivelset al*>  phase transitions, as presented in Fig. 4. The various differ-
Motivated by these experiments, we extend the simplesént compounds of the HTSC cuprates families have slightly
form of the projected S®) model to include extended in- different microscopic parameters, and they correspond to dif-
teractions among the five bosonic states. In fact, these exerent slices of this global phase diagram. The global phase
tended interactions also arise naturally by carrying out thaliagram provides a basic road-map to understand the com-
CORE algorithm to extended ranges. mon elements and differences among various HTSC com-
The projected S®) model with extended interactions pounds.
supports a more complex phase diagram. In particular, there This paper mainly focuses on the zero temperature global
are insulating phases at fractional filling factors where thephase diagram of the underdoped cuprates. However, it is
charges form a lattice, usually commensurate with the underinderstood that the model is valid below the pseudogap tem-
lying lattice. A crucial aspect of this model is that all charge perature, which we interpret as the temperature below which
density wave states are formed by the Cooper pairs of ththe system can be effectively described by the collective
holes, rather than the holes themsel&Fhroughout this bosonic degrees of freedom, like the magnons and the hole
paper, we shall denote such states as the pair-density-waypairs. Therefore, it is implied that the pseudogap state is a
(PDW) states or pair checkerboard states. This distinctiorregime where the various ground states discussed here com-
has a profound experimental consequence, since the repéte with each other, and different experiments may access
space periodicity of the former is larger than the latter by adifferent aspects of these competing states. The existence of
factor of V2. This type of insulating PDW states is a conse-the pseudogap temperature gives the fundamental experi-
guence of strong pairing and low superfluid density, a conmental justification to investigate the global phase diagram
dition which is naturally fulfilled in the underdoped cuprates, of the underdoped cuprates by a purely bosonic model. In the
but has not yet been unambiguously identified in other exfuture, we shall use the same model to investigate the mani-
perimental systems before. The PDW state can either takiestations of these competing states at finite temperature, in
the form of stripes or checkerboards, depending on the ratiode pseudogap regime. A comparison of the charge order
of the extended interaction parameters in the model. Furthepredicted by this work and the STM experiment in the
more, PDW states with longer periodicity generally requirepseudogap regime has recently been reported in Ref. 48.
longer range interactions to stabilize. Based on this reason- While this paper is presented within the logical context of
ing, a simple picture emerges for the global phase diagram dghe SQ@5) theory, some of the ideas and results bear intellec-
underdoped cuprates. The phase diagram consists of islantigl similarities to the previous theoretical works. The idea of
of insulating PDW states, each with a preferred rational fill-doped holes forming ordered stripes has been discussed ex-
ing fraction, immersed in the background of SC stas=e  tensively in Refs. 34 and 49-53. Although we focus more on
Fig. 4. The height of the Mott insulating PDW lobes varies the charged ordered states in the forms of checkerboards of
depending on the preferred filling fraction and the range ohole pairs, they are conceptually related to stripes and can be
extended interactions, but in principle, these insulating stateealized experimentally or theoretically depending on the mi-
are all self-similar to each other, and similar to the parent ARcroscopic parameters. The pseudogap temperature was iden-
insulator at half-filling. There can be either a direct first ordertified as the formation temperature of Cooper pairs by Emery
transition or two second order phase transitions between thand Kivelsor* Our interpretation of the pseudogap tempera-
SC state and the PDW state, with the possibility of an interture is more general, which also includes the formation of the
mediate “supersolid” phase, where both orders are presentmagnetic collective modes in addition to the holes pairs.
Based on our model, the bewildering complexity of theVojta and Sachdév have discussed the phase diagram of
cuprate phase diagram can be deduced from a simple primloped Mott insulator with various charge ordered insulating
ciple of the “Law of Corresponding States.” This concept isstates at rational fractions. More recently, Zhang, Demler,
borrowed from the work of Kivelson, Lee, and Zhang on theand Sachdev have studied extensively the competition
global phase diagram of the quantum Hall effécin fact, among charge and spin ord€f’ Laughlin pointed out that
our proposed phase diagram in Fig. 4 bears great similaritthe small superfluid density in the underdoped regime is re-
to Fig. 1 of that reference. In the case of the QHE, the “Lawsponsible for various charge ordering phenonértaaaset
of Corresponding States” physically related quantum al.5° have noticed that the Wigner crystal state of the hole
phase transitions at various filling fractions tesiaglequan-  pairs could be stabilized due to the competition of phase
tum phase transition from the=1 integer state to the Hall separation and long ranged Coulomb interaction. Kim and
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° 4 #}0 resentation in terms of the microscopic states on a plaquette
has energyE,=-2J and total spinS=0. This “RVB” like
m ] singlet state will be the vacuum state of the effective bosonic
CORE SQ(5) model. The next set of energy eigenstates are three
3 triplet statesty(l) with energyE;=-J and total spin quantum
8 numberS=1. All other energy eigenstates of the Heisenberg
Zu . .
S l plaguette have energids=0 and can be neglected in the
“i(_) ° C8° R low energy effective model. It should be noted that the op-
“ - eratortz with spin 1 and charge O createrdcore bosons
FIG. 1. lllustration of the basic idea of the CORE method. To because one qannot create more than one of them simulta-
implement the CORE method, first decompose the original lattice irpeou“sly on a" s_mgle P'aquﬁtte; The ground state of two holes
plaquettes, and then truncate the spectrum of a given plaquette {8 @ “Cooper’-like hole pair with internad-wave symmetry
five lowest states, i.e., the singlet, hole-pair and three magnoW'th respect to the vacuum. _ _
states. An effective Hamiltonian for these bosons can then be deter- Using the CORE method and keeping only the five lowest
mined using the CORE method. Left: local bosons in the originaiStates(the singlet boson, the three magnafgnd the hole-
lattice. Gray rectangle denotes the singlet RVB vacua, circles depair tl), the effective Hamiltonian of these bosons can be
note holes and the set of two parallel vertical arrows denote th@btained a&29:64
magnon. Right: local bosons on the lattice of plaquette. Leaflike

pattern denotes a local-wave hole-pair on a plaquette. Canted H="Hy+ Heyt (1)
arrow denotes local magnon on a plaquette. The singlet RVB
vacuum is denoted by an empty site. whereH,, is the Hamiltonian of the previously studied &D

model containing only on-site interactighg®:33
Hor®® have discussed experiments at certain “magic” filling

fractions in terms of the commensurate Wigner crystal type Ho=Ac2 thDt(i) + A 2 th(i)t,(i)

of order of the electrons, rather than the hole pairs discussed i @

in this paper. Restricted to the charge sector, the projected _ Toivg (i

SO(5) model is essentially the same as the hard-core quan- Jcan) [t(Dta(1) + H.c]

tum boson model on a lattice, whose phase diagram has been

extensively studie@-63 =32 2 [th() + t,Lh() + ()], (22
This paper is organized as follows: In Sec. Il, the pro- a ()

jected S@5) model with extended interactions is presented.andH

: o is the part containing extended interactions
The choice of parameters is discussed from the CORE algo- ¢ P g

rithm and phenomenology. The self-similarity of the insulat- _ / S

ing states and the classification of the quantum phase transi- Hexi= [Vc% Ve ((iEj» ]nh(')nh(])

tions are then discussed in Sec. lll. In Sec. 1V, the global

phase diagram of the model is obtained within the mean field =3, 2 [t (Dth()t.i) + H.c]
theory. The low energy collective modes and their quantum a (ij)

symmetry are then studied using a slave-boson approach. In
Sec. V, QMC simulation is carried out to compare with
mean-field results obtained in Sec. IV. The experimental con-
sequences and predictions are discussed in Sec. VI. Finally, +> > Vs(titj)g(titj)s. (2b)
Sec. VIl concludes our study. (ijy =0,1,2

+V, > % [Mh()N() + Mu(Hng(0)]
a (i

L. HAMILTONIAN OF THE MODEL The model is subjected to the hard-core constraint
The effective bosonic SG) model can be derived di- > ny(i) +ny(i) < 1. 3
rectly from the microscopic Hubbard model td model, a
through a renormalization group transformation called the .
contractor renormalizatiofCORE) method?®64To construct Here,A. andAq are the energy costs to create a hole-pair and
bosonicquasiparticles from fermionic model, we divide the Magnon, respectivelyd; and Jg arsthe hopping terms of
lattice into effective sites containing @vennumber of sites. N0le-pairs and magnong,(i) andt(i) are the annihilation
In order to conserve the symmetry betweeandy direction ~ and creation operators of hole-pair on plaquettt,(i) and
in the System, a p|aquette of X2 sites are typ|ca||y t2(|) are the annihilation and creation Operators of magnon
choser?”28|n their CORE study of the 2D Hubbard model, on plaquette for a=x,y,z. (---) and((---)) denote nearest-
Altman and Auerbacl started from the spectrum of lowest- neighbor(nn) and next-nearest-neighb@mnn), respectively.
energy eigenstates of the<2 plaquette for 0, 1, and 2 holes, nh(i):tﬁ(i)th(i) and na(i):tZ(i)ta(i) are the hole-pair density
respectively (Fig. 1). The low energy eigenstates of the and magnon density operators on plaguéfteespectively.
Heisenberg plaquette can be determined easily. The nond&he hole-pair density oh, per plaquette corresponds to
generate ground stat@) (see Ref. 28 for a real-space rep- twice the real doping of5 holes per lattice site, i.e.,
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S=ny/2. (4) Yelve

Finally, (titj)g creates two magnons simultaneously on SF L SF
plaguettes and j, which are coupled into total spi Hey // N\
contains nn and nnn hole pair interactiods and V., ex- \
change hopping termg, betweent, andt, bosons, interac- 3

tion V. between nn magnons and hole-pairs. The 4-magnon nn=0 [ n,=
interactionsVy ; ,are important in the pure AF phase but we ) | i

can neglect them since we are mostly interested in the doped 1 :
phase where magnon density decreases. According to the H
CORE calculation on 2-plaquettes and fixidg=1 as the
unit of energy, one obtains from thd-J model
with J/t=0.4 (relevant for cupratgs

FIG. 2. Phase diagram of a hard-core boson model with nearest-
neighbor interaction. There are one superfl(8 state and three
insulating states: zero-doping state,=0), half-filled state (n,

3 3 V. V. v v v =1/2), and fully occupied statén,=1). At the next level of the
¢ il ¢ 0 1 2 ™ hierarchy, longer ranged interactions lead to new insulating states
2. -0.6 10 -1 -1 0.4 —3 Wwith ny=1/4 andn,=3/4, asshown in Fig. 3.

For J.~2, Hq is approximately S symmetric at the 1
mean field Ie\?eF?’?’O'g? Y 5@ Lo = é(axm)z*' g(am)?, (8)
The CORE derivation of the §6) model (1) is only - ] . )
approximate. It should also be borne in mind thattideand ~ Whereg~1/vpsx is a dimensionless constant. This model
the Hubbard models are also approximate models of the re&2s been studied extensivéfyit has a transition towards a
cuprates themselves. If one started from a different microdisordered state ag.=1.45. From the computation of the
scopic modelfor example, next-nearest-neighbor hopping,Staggered moment, we can firgl such that the original
extended Coulomb repulsion, gtcne would have obtained Heisenberg valug0.3) of the AF moment is recoveredy,
a similar effective Hamiltonian with different parameters. =1.125. On the other hand, we know from mean-field calcu-
Therefore, in this paper, we shall take the CORE parametefdtions and QMC simulation that the disordered phase occurs
as a guidance, and study the robust properties of th&)SO at As/Js=8. We then obtain the proportionality factor be-
model with a more general set of parameters, as to reprodu¢@€eng and 1Apsx. Using gy, we find that an effective
well-known results and compare directly with experiments, model for Heisenberg correspondsAg/ J;=4.8. o
At half-filling (n,=0), the model involves only the singlet N most parts of this paper, we shall consider the simpli-
and the magnon, and the effective Hamiltonian containingi€d model withJ;=V=0.
only J; and A can be rewritten as

tT(i)+t (i)tT(j)+t (J) A IIl. HEURISTIC ARGUMENT ON THE SELF-SIMILARITY
H= 2332 a E o o E AL ESE Liﬁ(i)' (5) BETWEEN PAIR-DENSITY-WAVE (PDW) STATES
(i) V v i

Let us ignore for a moment the magnons, and consider a
_ hard-core boson model with extended interactions. The phase
where[t!(i)+t,(i)]/\2 is the AF moment andl,4(i) is the  diagran®"°?of a hard-core boson model with nn interaction
SQ(3) symmetry generatéf

JelVe

Lag(i) = = i[th()ta0) — thi)t,()]. (6) SF

This model is similar to the nonlinear model
(NLO’M),65'66

1
H=p> mm*+ = &, ) . ,
(i) X i FIG. 3. Phase diagram of a hard-core boson model with nn and
nnn interactions. There are a superfl@8F state and five insulat-

. . ing states with dopin@/4,1/4,2/4,3/4, and 4/4. At theext level
whereny” is thea component of the AF moment aiBlis the o the hierarchy, new insulating states are developed at doping level
angular moment on site After rescaling of time using the n,=1/8, n,=3/8, n,=5/8, andn,=7/8. This hierarchy construc-
spin velocityc=vps/ x and up to a prefactor, the Lagrangian tion can be iteratedd infinitum to obtain a self-similar phase dia-
density of theNMoM can be cast in the usual form in the gram with insulating phases at doping leygl2", with integersp

continuum limit andn, such that Gzp<2".
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contains one superfluid state and three Mott-insulating statesan be either a single first-order transition or two second
corresponding to zero-dopin@y,=0), half-filling (n,=1/2), order transitions, with a mixed state in between, where both
and fully occupied(n,=1), as sketched in Fig. 2. The half- order parameters are nonzero. A third marginal possibility
filling state has checkerboard charge order. If one transformgccurs at a symmetric point, when these two second order
the hard-core boson model into an AF Heisenberg model, thehase transitions collapse into a single one. In the context of
checkerboard order of the bosons simply corresponds to theigh T, cuprates, these three types are shown in phase dia-
AF order of the Heisenberg spins. The following argumentgrams of Ref. 1 as Figs(&—1(c), respectively. This situa-
assumes that the checkerboard order at half-filling is a basiéon can be easily understood by describing the competition
and robust form of order, such that it is repeated at all difin terms of a Landau-Ginzburg functional of two competing
ferent levels of the hierarchy. order parameter®, which is given by

If we regard the empty sites of the half-filled checker-
board state as an inert background, we obtain a fully- 1 2. 1 2 4 4 .
occupied Mott-insulating state on the coarse-grained lattice, F=3ridi+3rady+ Uiy + Uphy + 2Uipdhindy,  (9)
with lattice spacingy2ax y2a. The nnn interaction on the
original lattice becomes the nn interaction on the coarseWhere#; andg, are vector order parameters with andN,
grained lattice, and a new half-filled checkerboard state cafomponents, respectively. In the context of (SOtheory,
be stabilized on the coarse-grained lattice. Such a state cols=2 andN,=3, and we can viewp? as a SC component of
responds to doping,=1/4 on theoriginal lattice. Similarly, ~the superspin vector, and? as the AF component of the
we can regard the filled sites of the original half-filled check-superspin vector. These order parameters are obtained by
erboard lattice as an inert background, leaving with an emptyninimizing the free energ¥. By tuningr,, one can drive a
state on the coarse-grained lattice. A new checkerboard sta@élantum phase transition from AF to SC. Rap> \uyUy,
can again be stabilized on the coarse-grained lattice, whicthe quantum phase transition from AF to SC is a single first
corresponds to doping,=3/4 on theoriginal lattice. This order transition of “type 1.” F0u12<\u1u2, the transition
hierarchical procedure of forming a new daughter checkerfrom AF to SC consists of two second order transitions, and
board state from two parent checkerboard state can obvthere is a finite range af, where AF and SC coexist uni-
ously be iteratedad infinitum to obtain a fractal-like, self- formly; the transition is of “type 2.” Fom,=yu;u,, the
similar phase diagram as shown in Fig. 3. It is interesting tgohase transition occurs at
note that the nearest-neighbor interaction on the coarse-

grained lattice is just the next-nearest-neighbor interaction on r—i = r—i (10)
the original lattice. There is also the possibility that small VUp VU

regions with coexisting SF and PDW ordéfsupersolids)
are present around the Mott-insulating lobes in the phase
dlagramSZ ,63,67,68

where the free energy takes the (SDsymmetric form

rlv’u1~2

Having presented the generic phase diagram for the F= + Ufzqﬁ“ (1)
charge boson only, we consider now the inclusion of the
magnons in the full SG) with extended interactions. Gen- with
erally, charge ordered insulating states also have AF order. 2 )
The n,=0 state of the charge boson corresponds to the un- (752= A, 2 (12)
doped parent Mott insulator. Thg=1/2 state of the charge Vu; Vup

boson would correspond t6=1/4 doping for the cuprates,
which is probably at or beyond the limit of applicability of Since the free energy depends only énone order param-
our bosonic model. Therefore, the phase diagram of the hardter can be smoothly rotated into the other without any en-
core boson model in the range ok, <1/2 from Fig. 3  ergy cost. At this point, the chemical potential is held fixed,
would translate into a phase diagram of the cuprates in theut the SC order parameter and the charge density can
doping range of & §<1/4, as shown in Fig. 4. As we shall change continuously according the condition tljbétls con-
show later, this phase diagram is supported by accurate QM&tant. This is a special case intermediate between “type 1 and
calculations of the S®) model with extended interactions. 2” transitions, where two second order phase transitions col-
We expect that the insulating states@1/16 and 1/8 are lapse into one. This transition can only occur at an(B0O
AF ordered. Since the magnon density decreases with irsymmetric point. We thus classify it as “type 1.5.” The full
creasing doping, thé=3/16 state may not be AF ordered. quantum S@) symmetry can only be realized in the class A
The nature of the phase boundary between two differentransition of “type 1.5.” On the other hand, the static, or
phases shown in Fig. 4 requires careful characterization. Wprojected S@6) symmetry can be realized in class B transi-
can classify all phase transitions into two broad classesions of “type 1.5.”
Class A describes transitions at fixed chemical potential, In HTSC cuprates, the charge gap at half-filling is very
typically at an effectively particle-hole symmetric point large, of the order ofJ ~6 eV, it is not possible to induce
around the tip of the Mott lobe. Class B describes transitionshe “class Al” transition from the AF to the SC state by
where the chemical potential or the density is varied. Eacltonventional means. However, the charge gap in the frac-
broad class is further classified into three types, 1, 2, and 1.%ional insulating states is much smaller, of the ordelof
Generically, the phase transition between two ordered phasesd it is possible to induce the “class A2” or “class A3”
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FIG. 5. The schematic plot of the unit cell of a quarter-filled
magnetic insulating state. The solid square denotes a plaquette of
the original lattice and the dashed-dotted square denotes a

FIG. 4. (Color) A typical global phase diagram of the cuprates in 2-Plaguette by 2-plaquette unit cell.

the parameter space of chemical potential and the ratio of boson
hopping energy over Coulomb interaction energy. This phase diansulating phases. On the other hand, the phase transition in
gram shows self-similarity among the insulating PDW states at halfthe LSCO system, wherd; displays a pronounced dip at
filing and other rational filling fractions. There are two types of =1/8, corresponds to the “class B3” transition.
superfluid-insulator transition. The quantum phase transition of

“class A” can be approached by varying the hopping energy, for

example, by applying a pressure and magnetic field at constant v MEAN-FIELD PHASE DIAGRAM OF THE MODEL
doping. The quantum phase transition of “class B” can be realized
by changing the chemical potential or doping. There can be either a
direct first order phase transition or two second order phase transi-

tions between the SC state and the PDW state, with the possibility . I . . .
of an intermediate “supersolid” phase, where both orders are Since the Hamiltoniail) contains up to nnn interactions,

present. Different families of cuprates correspond to different traced/€ can introduce the following four-sublattice ansatz within

of “class B.” For example, we belieweBCOis B1-like,BSCOmay mean field theory:
be close to B2-like andSCOis B3-like. The vertical dashed-dotted
line denotes a boundary in the overdoped region beyond which our
pure bosonic model becomes less accurate.

A. Four-sublattice ansatz and mean-field phase
diagram

W) =] [en+ hoth(mr) +x,(mn)]Q), (13

insulator to superconductor transition by applyingWhere ) is the singlet ground states,x,;hy, are real

pre:su:]éov”hor b_y e;pplymg_a: ma%negc f_|e|'df.|'73 i ied variational parametersp=A,B,C,D denote the sites in a
giveﬁ tsyest(él”r?r?lcfl?gr?l(;/tigrris%:); deingot[z;ng fi?(\é?j \I/ZI\L/Jae”gf {haéunit cell, a_ndr _is the coordinate _in the lattice of unit cells, as
quantum parameted./V,, traces out different one dimen- sketched in Fig. 5. The mean-field energy reads
sional slices in this phase diagram, with typical slices B1, 50

B2, and B3 depicted in Fig. 4. The nature of the phase tran- ' T % ' i ' ' '
sition B1 is similar to that of the superspin-flop transition I %

. ; : " sC
discussed in Ref. 1. In this case, the phase transition from ths %,

AF to the SC state can be further classified into “types 1, 1.5, .
and 2,” with the last two cases leading to an AF/SC mixed ° PDW+SC =
AF+SC o % .
| |
+AF @ -
& ' +SC! . PDW
s [} ®

phase at the phase transition boundary. For lower values o
J./V,, the trace B3 encounters th&=1/8 insulating phase.

The key signature of this type of phase transition is that the 107

&
SC T, will display a pronounced minimum as the doping ™ L

variation traces through thé=1/8 insulating state. Mean-

while, the AF ordering[possibly at a wave vector shifted 05
from (7, )] will show reentrant behavior as doping is var-
ied. The phase transition around the fractional insulating
phases can again be classified into “types 1, 1.5, and 2,” witt
possible AF/SC, AF/PDW, SC/PDW, and AF/PDW/SC 0.0
mixed phases.

We believe that the AF to SC transition in theBCQ
BCCQ, and theNCCO systems corresponds to a “class B1”

transition. These systems only have an AF to SC transition, FIG. 6. (Color onling The MF phase diagram obtained by mini-
which can be further classified into “types 1, 1.5, and 2,” butmizing the energy functionall4) subjected to the hard-core con-

u
\
u

'n,=0
(=0

)
GO0

|

e
d o =
/

Js=1

PDW+AF

Ac=4.8
Ve =4.1010

/-’ Ve’ =3.6329

np=1/4 \'

(5=1/8)
1

0

5

-A

c

they do not encounter additional statically ordered fractionaktraint(15). J,, andV,, are taken to be zero.
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FIG. 7. (Color onling Doping dependence of SC order param-
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05 | e Jc=20 b‘ﬁ

PDW

0.00 0.05 0.10 0.15 0.20 0.25

FIG. 9. (Color onling Doping dependence of PDW order de-

eter for differentd.. For smallJ., there is a dip around hole-pair fined for differencel.. For J.<1.3, a strong peak is presentrat

dopingn,=1/4 (real dopingé=1/8).

4Eve
N

= Ac(hi +hg +hg +hd) — 23 [eaha + echclleshs
+€php] + AdX + Xg + XC + Xp)— 43d exa + €cxc]
X [egXg + epXp] — A [ haXa + hexc][heXg + hpXp]
+2V[h3 + hZ][h3 + h3 ]+ 4V.[hahZ + h3h3]
+ 2V, ([ + hZIDG + 3] + [hg + h3 1D +xE))

(14)

with the hard-core constraint

0.00 0.05 0.10 0.15 0.20 0.25
S

=1/4 orreal dopingé=1/8.

h2+x2+e2=1, m=A,B,C,D. (15)
m m em

Here,N/4 is the number of unit-cells arid is the number of
plaguettes.

By minimizing the energy functiondll4) subjected to the
hard-core constrainl5), we obtain the mean-field ground
state for a given set of parameters. Figure 6 plots the mean-
field global phase diagram, foAs=4.8, V.=4.1010, V/
=3.6329, and.=V_=0.

This phase diagram displays some rich features as ex-
pected. It has three insulating states: an undoped antiferro-
magnetic(AF) state, an insulating AF PDW state with hole-
pair densityn,=1/4 (6=1/8) and an insulating PDW state
with hole-pair densityn,=1/2 (6=1/4). Besides these insu-
lating states, it also has a pure SC phase, a supersolid phase
and mix phases of coexisting AF and SC order.

In Figs. 7 and 8, we plot the doping dependence of SC
and AF orders for differend.. If one follows a “class B1”
trace, such as the one with fixdg=1.5, the doping depen-
dence of SC order mimics the behaviorYtBCOandBSCO
families with a underdoped region, < 0.3 (6<0.15 and an
overdoped regiom,>0.3 (6>0.15. If one follows a “class
B3" trace, such as the one with fixeld=1.0, the SC order
displays a pronounced dip and the AF ordering is strongly
enhanced arounch,=1/4 (5=1/8). Therefore, the “class
B2” trace mimics the behavior of theSCOfamily.

The doping dependence of charge order parameter is also
plotted in Fig. 9. It measures the charge modulation defined

by

1
PDW=" 2 [my(m) — ), (16)

whereny, is the average hole-pair density andis summed

FIG. 8. (Color onling Doping dependence of AF order param- over A,B,C,D. While “class B1” trace shows no charge or-
eter for differentJ;. For J.>1.3, AF order decreases as doping dering in underdoped region, “class B3” trace displays a

increases and vanishes arousr0.1.

clear signature of charge ordering aroufwl1/8.
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B. Slave-boson approach, effective Hamiltonian, and B > 5]
dynamical SO(5) symmetry Xp = Xg = i 8- A_s / 64‘]; + A; (224
The hard-core constrairi8) can also be enforced by in- 16 Js V16J+Aq)

troducing a slave—bosdlﬁ(i) for each latticé’ The presence —
i indi ; 1 A, |64 +A
of this boson indicates that the plaquettés empty. The ep=eg= 8+J_S\/ st 8s (22h)
S

hard-core conditiori3) is then replaced by - 1_6 16J§+ Ag_ '
. . . . [ 2 2_
Q) = (E tatali) + titn(i) + tlteli) - 1) =0. (17) Yo = \/1 4 As (160 + A (220
« Nl 3 Vear+az]
This constraint can be enforced by introducing an additional
site dependent fieldl(i) and adding to the Hamiltoniafl) 1 A 1632+ AZ
iti ee=\Vsl4tT Vel (220
an additional term 8 J 6472 + A2
L S S s
Hy== 2 M0)Q(0). (18) —
i A 64J; + Ag
Ae=—7"2\ o 2 (229
Since in physical states one always has one and only one 2 1635 + Ag
boson per lattice sites, destructigoreation of a boson
t,(th), a=x,y,z,h, must always be accompanied by creation A=A, (22f)
(destruction of the empty bosotﬂ(tP). In this way, the whole
Hamiltonian takes the form Ag 1602 + A2
TNy TNz
Hsp= A th(D)th(i) + A th(i)t,(0) sT5s
i i
L _ for Ag/Js=<442.
= 3.2 [t Dte(DE(t() + H.e] = Io [thte(i) The bosons are then expanded around their mean-field
i i values as
FEOIE) + (D] = 2 NDQM) + Moy
I ~
ty(m,r) = h,, + by(m,r), 23
By integrating out the field in the partition function, one t (m,r) =Xy, + Bx(m,r), (23b)
automatically enforces the hard-core constradii)=0 on
each site. The saddle point approximation (®) corre- — P
sponds to replacing the boson operators arfigtld with real (1) = &+ be(m,n), (239
constants to minimize the energy. Within the four-sublattice ~
ansatz, this is equivalent to minimizing the energy functional ty(m,r) =by(m,r), (23d)
subjected to the hard-core constrgit). After obtaining the R
ground state, we can expand the boson operators around their t,(m,r) =b,(m,r). (23¢

mean-field values and drop quartic terms in the Hamiltonian

; : e Again, m=A,B,C,D andr is the coordinate in the coarse-
19) to yield an effective Hamiltonian of the boson operators’ 2" NG .
;ro)undythe ground state P grained lattice of unit cells. Plug23a—23e¢ into the slave-

We shall now study the checkerboard state characterize son Ham.iltoniar(.19) and <_jrop. the quartic terms to yield
by following mean-field solution: the quadratic effective Hamiltonian

ff — ff ff ff ff
hA:]-a XA:eA:hB:hC:hD:O (20) He® _EO+Hﬁ +H§ +H§ +H§ (24)
for the simplified model withJ_=V_=0. with Ey the mean-field ground state energy given by
The saddle-.point of the slave-boson Hamilton{&f) can Eo= 2N(Ac = Ag)X3 + N(Ag = No)X2 + ANXc8cXg€s
be solved to yield
(259
XD:XB:XC: 01 (216) and Hiff, Heff’ H)e,ﬁ. and Hgff,
ep=eg=ec=1, (21b) He = g}c ) >, (As— Amblb(m,g) = > Abibe(m,q)
m=B,C.D| g q
Ap=Ag=Ac=0, (210 ~ ~
v - 3.3 [4exxa(bl(C.q)b(C,q) + H.c) + B C]
A=A, (21d) a
5 - 23> [ec[by(C,q) + b,(C,~ )] + x[b{(C, Q)
for Ag/Js=442 and q
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- - n 4 T T T T
+be(C,~ o) ]] x[cos a(eg[bl(B,~ q) + by(B,0)] =
- - | | —=— Spin wave modes AT
+xg[bl(B,~ ) + be(B,q)]) + cosqy (B D)], (25b) —2— Charge mode 1 /A/A/
3| | —o— Charge mode 2 P ]
HE'= 2 (A= hg + 2Vo)bly(B,a) + biby(D,q)] + X (A | LT
‘ A A ! 8 /A/./ .:/c:‘/o'/o/-c“@;‘“'\io
= Nc+4V)blbn(C,q)+ 2 (Ag— A)blb,(A,0) I, 2f sl i
q O: /A/ ./6;(]/ O
X | s el
Ain A - o 40 V. =4.1010
=M blbe(A, o) ~ 3.2 Bepxelb (A, q)be(A,0) = P °
q q 1} _p° V., =3.6329 i
Spon - - v Jo=1 A =48
+bl(A q)b,(A,0)]- 235" [cos gy (be(A,q)by(B, — ) _— s s
q » J,=130 A, =-3.84
Ve
~ ~ 0 L 1 R 1 =
+bj(B,~ q)bl(A,q)) + cos(B — D)] 36 55 5
— 2J.epc >, [c0sq,(B}(C,q)by(B, ) q/n
q
+ Bﬁ(B,q)Bh(C,q)) + cosqy(B<—> D)], (250 FIG. 10. (C;ol_o_r onlin_e Dispersion_ of four gapless modes at a
quantum multicritical point, located tip of th&=1/8 checkerboard
. o o lobe illustrated in Fig. 6. The two spin wave modes have exactly the
HE =2 (As—N\g)(b!b,(B,q) + bb,(D,q)) same dispersion due to the @Dsymmetry of the AF moment. For
¢l the parameters shown in the figure, these four modes have the same
~pe ~pe speed at the multicritical point. These four modes correspond the
+ E (As = Ac)beba(C,a) + E (As—Ag)byb,(A,q) four Goldstone modes required by the quantum dynamicdbsO
q q symmetry.
/\T ~ ’\T
- 2,ecep, [b(C.0) + by(C. - g)[cos (b, (D,~ ) The conditionC;=0 gives the lobe-shaped second order
a phase boundary where one charge mode becomes soft and a
+b,(D,q) +cosq(D < B)], a=y,z. (259  Phase transition from the PDW state to the SC state occurs.

However, one must be careful since it is possible that the

Here, the operator‘&(m,q) are the Eourier transforms of the System takes a first order transition before the charge mode
bosonic operatorfa(m 0 softens. This indeed happens for lower left part of the lobe,

’ where the PDW state takes a first order transition to an AF
+SC mixed state. In the following discussion, we assume the
tip and some of the left part of the lobe survive, as in the case
plotted in Fig. 6.
where the summation afis over the lattice of unit cells. As one approaches the left part of the second order lobe

This effective Hamiltonian has four decoupled paH§, ~ following a trajectory with constand., the energy cost of

HE™ HE™ and HE". Among these four decoupled partsk;ff removing hole-pair decreases and becomes zero at the phase
and HZ are just the Hamiltonian for the gapped magneticboundary. This observation leads to the conclusion that a
mode on sublattice A and gapless magnetic Goldstone modé@érticlelike charge mode becomes soft on the left part of the
on sublattice B, C, and D due to the spontaneous symmetipPe- Similarly, one can argue that a holelike charge mode
breaking of S@8) spin symmetry. These two gapless Gold- PECOMES soft at the right part. At the tip, where the left part

stone modes correspond to the gapless uniform rotation cﬁnd right part of the lobe meet, both particlelike and r_lolelike
the AF ordering fromx direction toy or z direction. H" is modes become soft. Consequently, an effective particle-hole
X

the Hamiltonian of gappe®magnon mode on sublattice B, symmetry is dynamically restored. One can check @at

C d D due to th d fi n h indeed vanishes at the tip of the lobe.
, anc ue to the qonef?.nsa lon omagnons on these At the tip of the lobe, the speed of gapless charge modes
sublattices. The remainirtgy," is of great interest for it is the

o is determined by the interactiovi, and V.. For appropriate
Hamiltonian of the charge modes amemagnon mode on 5 es ofV, and V., the speed of the gcapless charge mode

sublattice A. _ can be the same as the speed of the two gapless AF spin

Under the insulating lobe of checkerboard state, thgyave modes. When quantum €& symmetry is spontane-
charge modes are gapped. The chargedgis given by the  oysly broken to an S@) symmetry, there should be exactly
solution to the quartic equation of the form four degenerate gapless Goldstone bosons. This model shows

4, 2, c.= 27 that such a dynamical symmetry is possible at the multi-
wot Cowp t C5=0, @7 critical point around the tip of théd=1/8 lobe. Figure 10

whereC, andC, are quadratic functions @k. This equation plots the dispersions of four gapless modes at the tip of an
is quartic because fields with momentugnand -q are  AF insulating checkerboard lobe in the phase diagram of
coupled and there atét' terms in the effective Hamiltonian. Fig. 6.

b(m,g) = >, €9b(m,r), m=A,B,C,D, (26)
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V. PHASE DIAGRAM OBTAINED FROM QUANTUM

MONTE CARLO SIMULATION .

A. Numerical simulation

Because of the bosonic nature, the minus-sign problem is
absent in the quantum $8& model. Therefore, simulations
can be carried out for systems with sizes much larger thar
the ones available with fermionic QMC simulation in the
physically interesting region. The pioneering numerical
works®%-33.7475show that the projected $8) model can
give a realistic description of the phase diagram of the HTSC 05
cuprates and account for many of their physical properties. In

1.0

P

this section, we shall present the simulation of the(0O AF PRMNEER FOW

model with extended interactions using the stochastic serie:

expansion(SSB method®-"8 with operator-loop updaté. 00l !

This quantum Monte Carlo method was shown to be very o 5 10 15 =0
efficient for simulations of hardcore bosonic systefh&:"® -Ac

The overall topology of the phase diagram agrees well with
the mean field calculation presented in the previous section, FIG. 11.(Color onling The global phase diagram obtained by
although the parameters are strongly renormalized. QMC. The parameters used in simulation ag=4.8, V,=4.1010,
From the values given in Sec. Il, we see that we canvé:3'6329' and) =V _.=0. The lines are guides to the eye _onIy.
safely neglectl, which is rather small so that only remains 'n€ overall topology of the phase diagram agrees well with the
J, and J; which are both positive. In this sectiod, =0. mean-fle!d phase diagram of Fig. 6, although the parameters are
In order to avoid the notorious sign problem in the quan—renormal'zed'
tum Monte Carlo simulations of the $8) model with ex- _ _
tended interactions, all off-diagonal terms should be positiveSize of the systep a scaling analysis can demonstrate long
On a square lattice with only nearest-neighbor nonzero offfange order. _ _
diagonal terms, the sign of these matrix elements can be Due to the intrinsic complexity of the projected &D
safely changed by a harmless unitary transformation actingnodel and to the large number of interaction types, we re-
on hopping terms in only one of the sublattices. stricted the simulations to small latticeéd x4 up to 10
For each simulation, the number of loofm “worms” ~ X10 latticeg at low temperatureqtypically 5=10), to
made during the loop operator updétés calculated self- mainly be in the ground state. Even using the powerful SSE
consistently during the thermalization part, such that on avimethod, we found that for specific points in the phase dia-
erage the number of vertices visited by worms during eaclgram (near phase boundaries for examplautocorrelation
loop operator update is equal@n). Here(n) is the average times Qf diffe:rent observables or tunneling times betwegn.
number of non-identity vertices in the operator strigge WO neighboring phases can be long, decreasing the statisti-
Ref. 78 andC a proportionality constant, usually taken be- €@l precision. This sometimes prevents us from providing
tween 1 and Kthe largerC, the more autocorrelations be- definitive statements about the nature of phase transitions.
tween successive Monte Carlo configurations are reduced However, outside of these regions, we can clearly distinguish
In order to plot the phase diagram, we should compute théh€ nature of the different phases.
order parameters corresponding to AF, SC, and PDW phase.
We use the superfluid densipy to locate SC phases. Indeed, B. Limiting cases

pc can be related to the winding numbers of the world-lines 1,4 pure projected SG) model corresponds tv =V’
c c

which can_be directly computed during the QMC _\ _q anq3 =23 This model has been studied with the
simulations. ’. Herg the winding m_meer pnly involves the same techniqué’ A first-order transition between AF and SC
c_ha_rlged pfar_tl_cles, ."ﬁ"hthe hole pair hopping. V\f car;] take_ hases was observed. It was already recognized that a small
similar definition with the magnetic bosons to define the spi . andV/ were enough to turn this transition into a second-

Stlflrtn'esst. ahif dt the densitv-densit order phase transition.
IS straightforward to measure the density-aensity Corme-— »p, yipa interesting case occurs when the triplet density

lations and their Fourier transform, the structure faCtorSoecomes small. In that limit, the model reduces to one type
N(ax,ay) which indicate PDW phases of hard-core boson with hoppingd, and nearest and next-
nearest neighbor repulsion, andV, respectively.

H= 3.3 [H0)t() + H.el+ [VCE VS ]nhmnh(j)
uy (i) i

These quantities characterize the diagonal long-range order. (28)

On finite clusters, the structure factor at the appropriate mo-

mentum diverges as the volume of the system in the orderesb that we can fixJ,=1 as the energy unit. This model has

phase, so that, by plottirlxgj(qx,qy)/L2 vs 1/L (Listhelinear been extensively studied in Ref. 63 and some results have

N(@) = 53 expliq (i +1).
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FIG. 14. (Color onling Scaling of(7,0) PDW order parameter
N(7r,0)/L?] for various sizegL=6 to 12 from top to bottomwith
.=1.5. We checked that it extrapolates to O for all

FIG. 12. (Color onling 6=n,/2 vs chemical potential fod.
=1.5 and).=0.6. The presence of plateaux indicates incompressibl
PDW phases. The finite size effects are rather small.

been obtained with the same SSE method. Let us review a 2. Away from halt-filling

few useful results. Away from half-filling, our grand-canonical algorithm is

able to check whether we are in a phase separated state or not
1. Half-filling by looking at the histogram of the density during the simu-
. T lation. On general grounds, the presence of a double peak
. _The ph_ase diagram at ha]f-ﬂllmg IS We." known and ex- structure shows the presence of true phase separation in the
hibits solid phases with eithefs,0) (stripe or (m,m) system
(checker_boar)j structures. In b_etvveen_ exists a superfluid ~ \nith our choice of parameters, we find that away from the
phase with a nonzero S”peg'u"?' density We recover the  gyineq state, there is a phase, close to half-filling, where both
same results as Hebest al.:*> with our choice of interac- N(0,)/L2 (PDW order parametgand p, are finite, that is a
tions, by varyingJ, we can drive the system from a super- supersolid phase. Moreover, there is no sign of phase sepa-

fluid toward a(r,0) (stripe) phase.

—m—J 15 L8
03} —®—J.=1.2 L=8
—a—J =10 L8
|| —v—J,0.8 L8
—-J=06 L=8

Pe

02 H —o—J=06 L=10’£§///{
s i / !

0.00 0.05 0.10 0.15 0.20

S

FIG. 13. (Color onling Superfluid density as a function of dop-
ing for variousJ.. The “class B1” trace with].=1.0 bears great

ration so that it is a true homogeneous phase, as claimed in
Ref. 63.

C. Global phase diagram

Now that the parameters are fixed, we can compute the
phase diagram for variouk and chemical potential. (see
Fig. 11). In order to discuss these results, we plot in the
following most of the data as a function of dopidgn,/2
which depends on the chemical potentiglas shown in Fig.
12, but has no strong finite-size effects. Let us comment on
some results.

1. Large J.

For all values ofJ., the superfluid density increases lin-
early with doping, for small doping, thus capturing a key
piece of the Mott physics. For largk (J,=1.5 for examplg
reducing hole density starting frond=1/4, we have a
smooth decrease of superfluid dengisge Fig. 13 At the
same time, magnon density increases and gives rise to AF.
Figure 14 shows typical data df(w,0)/L? which is the

similarity with the famous domelike phase diagram of many cupratd®DW order parameter for various sizes. In order to get infor-

families. Also, the “class B3"-like trace witli.<0.8 has a pro-
nounced dip atv=1/8 as thephase diagram of theSCO family

does.

mation on the thermodynamic limit, we have performed a
finite-size scaling of our data, and it vanishes for all fillings.
We have a superconducting state for all dopings, with a pos-
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LT ’ ' ) ! ’ : ’ ! ’ T 0.20 T T T T T T T T T T
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0.10 | sl 015 A )= y .
—v—L=10 2 & £—J =06 L=8
\ —eo—J=15 L=6
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var'i:oluGs. iiszé;iol%r’g?lénn% (:ZTQ,fOo)rI\DJI(?;A(/)_%r_d\?\/reacshchﬁg(cjtltﬁgt?fv:ﬁr:in FI_G. 17. (Qolor onling The spin stiffness vs chemical potential
the system sizes simulated, finite PDW order survives in the thertor different sizes and..
modynamic limit forn,=0.25(5=0.125.
parameter showing a finite value is shown in Fig. 15rgr
=0.5(6=0.29 and J.=0.6. In Fig. 13, we see that below
J.~ 1.3, the superfluid density vanishesmgt1/2 (6=1/4)
in agreement with what has been found for the single-boson
2. Small J, model®® Mean-field results find a higher valu¥./2=1.8).
For smallerJ,, the long-range interactions between hole . P- Intermediate dopingA second example of the interac-
pairs start to play a role. tion effect is given by the appearance of an insulating PDW
a. Large doping The first example is the appearance of aPhase an,=0.25(5=0.123 for low enoughJ,(J.<0.7). A
(7,0) PDW insulating phase ai,=1/2 (§=1/4). Indeed, finite PDW order parameter ane,=0 are shown again in
close to this doping, the magnon density is very small so tha!9s- 15 and 13 fod.=0.6. This state corresponds to a lo-
the model is similar to the single hardcore boson case. Wg@lization of one hole-pair every 4 sites, so that this
therefore recover a transition at fixeg=1/2 (6=1/4) as a -L1/4 (5:%/8) checkerboard also possesses a finite
function of J; between a superfluid phas8C) and an insu- N(m,m)/L* as shown in Fl_g. .16. We flnq that th!Bh_
lating stripe phaseéwith a finite PDW order and a vanishing =1/46=1/8) checkerboard is insulating, with a vanishing

superfluid density A finite-size scaling of the PDW order Superfluid density. However, it could be possible to have a
supersolid phas&.

0.05 . i . . i For intermediate dopings 0.25n,<0.5(0.125<6

sible coexistence with AF at low-doping. When the doping
vanishes, we recover a pure AF phase.

' ' ' ' ' ' <0.25 and smallJ., we find a finite superfluid density and
possibly a finite PDW order, that is a supersolid region. We
0.04 |- —n—| =4 - checked that this phase is stable against phase separation. We
—o—L=6 ] cannot be conclusive about its extension in the phase dia-
—4—L=8 gram, due to the long autocorrelation time for some observ-
_ 003f —v—L=10 . ables. This explains the large error bars in some parts of the
B l phase diagram. However, since we know that such a phase
£ |\ exists and is stable close to half-filling, we can assume that it
E Ba - =Y 7 has a finite extension. It would be interesting to check
o \\ LN : whether this supersolid also exists for a single hard-core bo-
5 L ; a i son model close to,=1/4 (5=1/8), which is much easier
' e 9 " \@@ ' to sim_ulate. It is remarka}ble that fa, vglues cloge to the
- e 535 \*v\\gfg‘@:is 1 transition, we see a d|p_|n_ the supe_rflwd Qen:ﬂ{'—}g. 13,
0.00 @g&;»gzif-‘#f . L ,x, i which is due to the proximity to the insulating state.
0.00 0.05 0.10 0.15 0.20 0.25

3. Magnetic properties

o As shown in Fig. 17, the spin stiffness shows a monotonic
FIG. 16. (Color onling (s, 7) PDW order as a function affor ~ decrease with chemical potentigdr doping so that it is
various sizegL=4, 6, 8 and 1pandJ.=0.7. We checked that it is difficult to locate precisely where it vanishes. For small dop-
finite only for n,=1/4 (6=1/8) checkerboard. ing & or chemical potential A., we observe a rapid linear
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decrease so that we can estimate roughly where AF coultb as the “Uemura plot.” Further examination also shows that
vanish in the thermodynamic limit. These phase boundariethe superfluid density in the overdoped regime decreases
are shown in Fig. 11 and are in agreement with what hasvith increasing doping, which is commonly referred to as the
been found at the mean-field level. “boomerang effect.” In cuprate system, the muon spin relax-
For smallJ,, AF seems to vanish at,=1/4 (§=1/8).  ation ratec(T—0) is proportional ton/m" wheren; is the
However, our data gb, also show a shallow peak above this superfluid density andm” is the effective mass of
filling, which could indicate a reentrance of AF as found in hole-pairs®? To explain the deviation from the linear relation
mean-field. Unfortunately, with our current limitation on betweeno and doping in the overdoped regime, Uemura
available sizes and statistics, we cannot conclude for surgroposed that some of the doped holes do not form pairs and
about this possibility. are phase separated from the SC hole-pairs, even at zero
temperaturé? A similar phase separation picture was pro-
D. Summary posed by Uchid& However, it has always been rather puz-
e . zling that if the phase separated normal electrons existed at
_The qualitative features found at the mean-field level arg,q . tomperature, they should provide a channel of relax-
still present in a full numerical c_alculat|on and we have 3ations, which has not been observed experimentally.
very nice overall agreemeugee Figs. 6 ar_ld 3.1Of course, Within our effective bosonic modeT, is directly deter-
exact cr|t|ca}l values af for supgrconductlng—msul_ator ran- mined by the superfluid densipy. As we can see from Fig.
sition are different from mean-field values but this does nor13, p indeed scales linearly with the doping density for

chan_ge the phy_sical concl_usions._ . small doping, and has a domelike dependence for higher
It is very difficult to point precisely where AF vanishes doping for intermediate values of.. It peaks arounds

since spin stiffness does not show any sharp drop. However, 18% for J,=1.2. The physical reason for the behavior on

we cleafly see a strong .reduct!onpgt which seems to de- the overdoped side arises from the tendency of hole pairs to
crease linearly with doping. With the chosen parameter;;_, form a competing charge ordering state at either 3/16 or 1/4.
: X Within this picture, when more holes are added into the sys-
line merge close to the tip of tie=1/4lobe as was found at o on the overdoped side, the holes are still paired, but

the mean-field level. This result was associated to the dyéome of them form a charge ordered PDW state, with pre-

namical restoration of SG) symmetry at this point. OUr  foireq doping of 3/16 or 1/4. This charge ordered PDW state
data might be an indication that this is indeed the d@&  gjiher phase separates from the SC state, or coexists with it,
have taken the sam¥; andV; so it seems pretty robust ;s ejther way, the superfluid density is reduced because of
However, a complete answer can only be provided by comge repulsive coupling between the two forms of order.

puting dynamical correlations, which is more involved andrherefore, this picture predicts a new charge ordered state on

requires good statistics. the overdoped side, which should be tested experimentally.
Since the magnon density decreases monotonically with dop-
VI. EXPERIMENTAL CONSEQUENCE AND PREDICTIONS ing, the charge ordered states on the overdoped side may not

be AF ordered, which makes it hard to observe by neutron
scattering. Furthermore, on the overdoped side, our purely

Hamllto_man b"’?SEd on the projected @model W'.th €X" " hosonic model also becomes less accurate, and a fully quan-
tended interactions, and presented detailed analytical and N tive theory has to include the low energy fermionic exci-

merical calculations which give a consistent global phas?ations

diagram as depicted in Fig. 4. This schematic phase diagram '

is obtained from the quantitative model calculations summa-

rized in Figs. 6 and 11. This model captures the overall to- B. The 1/8 anomaly and pressure experiments

pology of the cuprates phase diagram, including the dome- .

like feature ofT,, which is determined within our model by " the LSCOsystems T, has a pronounced dip near dop-

the superfluid density, the 1/8 anomaly due to charge ordefd Of 8=1/8 More recently, it has been demonstrated that

ing, the coexistence of SC with AF and possibly with chargethe competition between the nearly insulating 1/8 phase and

order. As mentioned in the Introduction, some of these feaghe SC phase in theSCOfamily can be controlled by pres-

tures have been discussed in other theoretical contexts bﬁy(rje. There are two clilfferent approa_ch(Ts. Oné; alls tﬁ. apply
fore, however, it is rather remarkable that they are all repro- ydrostatic or uniaxial pressure on singlé crystail this
duced by a single quantum model accessible by reliablda: the pressure iab plane increase§; while the pressure

QMC. Below we shall discuss some of these features ani’ € direction decreases.. The other is to introduce com-
present more detailed theoretical predictions. pressive or expansive strain into thin films with the help of

the lattice mismatch between the film and substfatén-
hancedT, and disappearance of the 1/8 anomaly for com-
pressed film and strong reduction ©f for expanded film
A remarkable feature of the HTSC cuprates is the domewere observed:

like dependence off, on doping. Experiments have also = Our model reproduces th#=1/8 efect for J.<1, as one
shown a remarkable dependence of superfluid density ocan see from Fig. 13. The pronounced dip is caused from the
doping. On the underdoped side, bdthand the superfluid competition between the SC state and the insulating PDW
density scale linearly with doping, a fact commonly referredstates. Varying doping corresponds to the “B2” or “B3”

In this work we have constructed a single quantum

A. Dependence of superfluid density on doping
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traces as depicted in Fig. 4. On the other hand, pressure in >
the ab plane reduces the lattice constant, thus increases the !
hopping termJ.. Therefore, applying pressure in thab
plane is equivalent to following a “class A2” trace starting
from a smallJ. in the global phase diagram. The doping
dependence df for different films given in Fig. 3 of Satet P
al.”* shares many common features with our doping depen- ‘j
dence of SC order parameter, both MF res(fg. 7) and .
QMC results(Fig. 13. The destructive effect ot of the
pressure in the direction can also be understood in terms of =
the Poisson effect. The lattice constantain plane will in- e »
crease when the sample is compressed incthdrection. ’
This will lead to the decrease @f, as argued previously. ‘j
Similar to the “class A2” trace, “class A3” trace can also -
be realized by applying pressure. Therefore, we predict a

similar pressure induced superconductor-to-insulator transi- F'G: 18. (Color onling The hole-pair checkerboard state with
tion at 5=1/16. antiphase magnetic domain at doping le¥ell/16. Circles denote

In this way, the pressure effect on the 1/8 anomaly iSholes and arrows denote spins while black crosses denote spins in a

understood in terms of the bosonic superfluid-to-insulatonSIngIGt bond.

transition at the fixed density @=1/8. Standard predictions ) ) S

on the superfluid-to-insulator transition apply to the1/8  hole pairs, form a Wigner crystal state, the periodicity of the
transition. In addition, we argued that the tip of the1/8  charge ordering would be larger by a factor\d, inconsis-
lobe can possibly have the full quantum GDsymmetry. tent with the experiment. Thgrefore, by forming the Wigner
This prediction can be experimentally tested by comparing'ystal state of the hole pairs rather than the holes them-

both the static and dynamic charge and magnetic responsei!ves, the doping level can be compatible with the observed
as we have discussed in Sec. Il B. size of the charge unit cell. In Ref. 43, the hole pair check-

erboard state was established by a mean field calculation. A
main result of the present work is to establish the existence

C. The vortex phase and the ground state abovél, of this state by QMC calculations.
The “class A2" and “class A3" traces can also be ap- Our calculations as summarized in Figs. 6 and 11 show

roached in the cuprates by applying a magnetic field alonﬁ?at the charge ord_ered insulating states are alsq accompa-
Itohe c-axis, which eﬁ%ctively};edpupc)és ?he hopgping tedgnin ied by AF magnetic order. Enhanced AF fluctuation in the

underdopedLSCO samples, we predict that the magnetic yortex state was originally predicted within the &Dtheory

field destroys SC order by localizing hole-pairs into a ppwin Refs. 1 and 17 and has been experimentally observed in a

state. This naturally leads to the field-induced insulating beNUmber of HTSC cuprate families by a variety of experimen-

havior in underdoped. SCQ7273 For the YBCOand BSCO tal techniques®-2* More recently, AF order has been de-

systems, the magnetic field could drive the hole-pairs into 4€€t€d b% fheutron scattering abot,, in electron doped
disordered state before the lobe 6£1/8 or 5=1/16 is cuPrates™*® This magnetic field induced quantum phase
reached. transition from the SC state to the AF state corresponds to

Recently, a striking feature is revealed in the STM experi-N€ “A2” trace as depicted in Fig. 4.
ments by Hoffmaret al.3” where the local density of states
(DOS) near the vortex core shows a two-dimensional check-
erboardlike modulation with aa#x 4a charge unit cell. Here
a is the lattice spacing of the Cy®lane. This modulation
decays exponentially away from the center of the vortex In previous subsections, we argue that the competition
core, with a decay length of aboutd.QA similar pattern has between PDW and SC can be tuned by applying pressure or
also been seen in the absence of the applied magnetiédield magnetic field. In particular, we show that the PDW ordering
possibly induced by the impurities at the surface. In the casef hole-pairs can develop in the vortex core. The localized
of vortex core experiment, SC is destroyed by the magnetibiole-pairs in a PDW state are expected to have little contri-
field, and the nature of the competing state is revealed. Theution to the transport properties such as thermal conductiv-
case of impurity scattering is more complex, and the experiity. This leads to the argument of the suppression of thermal
mental observation can also be interpreted as due to quasienductivity by applying a magnetic field io-axis below
particle interferencé®-4! some temperatur&,. Since the onset temperatufg is ex-

The §=1/8insulating PDW state was proposed as an expected to be proportional to the superfluid densly, has
planation for the STM measuremefifsThis state has the weak dependence on the magnetic field and follws the
daX 4a checkerboard symmetry as observed in the experiunderdoped cuprates. Moreover, the closer the system is to
ment, and the doping level for the insulatidg 1/8 state is  the charge ordered insulating state such as the 1/8 PDW
reasonably close to the optimal doping level of the cupratesstate, the smaller the suppression effect would be. Finally,
On the other hand, if the holes themselves, rather than théne in-plane magnetic field has little effect on the thermal

D. Charge localization and suppression of thermal
conductivity
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plicitly due to numerical complexities, it is clear that the
physics of these PDW states are similar to the 1/8 doping.
Preliminary evidence for thé=1/16 insulating state exists
for the LSCOmaterial®%8 As we see from Figs. 18 and 19,
the charge ordering pattern rotates from diagonal sat
=1/16 tosquare at5=1/8. This transition between states
with different rotational symmetries could possibly be re-
lated to the diagonal to square transition observed in the
neutron scattering experiments at5% in the LSCO
material®’-88

F. Magnetic order

In this paper, we focused our discussion on the checker-
board charge order at=1/8. Strictly within our model, the

FIG. 19. (Color onling The hole-pair checkerboard state with accompanied AF magnetic order is commensurate, as
in-phase magnetic domain at doping levet1/8. Circles denote  gketched in Fig. 19. This type of magnetic structure is con-
holes and arrows denote spins while black crosses denote spins insgstent with the recently observed field induced magnetic or-
singlet bond. der in theNCCO material?526 but not consistent with the

magnetic structure observed in th8 COmaterial, which has

conductivity due to the fact that it does not create vortex inantiphase domain walls. We would like to stress that this is
the ab plane. not a limitation on the fundamental approach taken here. As

Therefore, trace “A2” in our global phase diagram and theshown in Fig. 20, checkerboard charge order of the hole pairs
charge localization into a hole pair crystal can possibly excan be fully consistent with the AF magnetic structure with
plain the recent experiment on the suppression of thermaintiphase domain walls. However, stability of this type of
conductivity by applying a magnetic field in the  magnetic structure requires more extended magnetic interac-
direction8® We also predict that applying pressure will also tions. Since the complexity of both the CORE algorithm and
induce the suppression or enhancement of the thermal cothe QMC increases substantially, we have not yet been able
ductivity around the 1/8 doping, assuming the pressure wilto derive such extended interactions from the microscopic
not induce strong effect of the lattice structure which canmodels, and simulate them with QMC.
also change the thermal conductivity.

G. Coexistence phases

E. 1/16 doping While the simple S5) model predicts the coexistence

As discussed in Sec. lll, additional insulating lobessat phases of AF and SC, more regions with coexisting charge,
=1/16 and6=3/16 doping levels are predicted if interac- AF and SC orders are predicted in the global phase diagram
tions are more extended than the nnn interactions included iof Figs. 6 and 11. In particular, the “type 1” first order tran-
this work. The charge and spin ordering patterns for this statsition from undoped AF state to SC state predicted by simple
are depicted in Fig. 18. Even though the current paper doeSQ(5) model is turned into two “type 2" second order tran-
not investigate this type of more extended interactions exsitions by the interactiong, andV,, which is consistent with

previous study® While the width of these coexistence re-

TS T gions is model dependent, coexistence phases are important

i qualitative predictions of our theory. Experiments on

i cuprates have indeed suggested such coexistence fiaées.

| As we see from Fig. 8, the AF order disappears around

: 6=0.10. This is consistent with the value obtained from the

i t-J model®® The width of the AF/SC coexistence phase

] largely depends on the values &f andV,,. As determined
EI by the CORE method),. is negative andv is positive.

Thus, at the mean-field level, bofty andV , terms induce a
repulsion between AF and SC in the mixed state of coexist-
ing AF and SC. When these terms are included, one would
expect a smaller region of the AF/SC coexistence state in the
global phase diagram. On the other hand, these two terms
have different effects on the checkerboard state. Since the
mean-field value ofr-operator in the PDW state is zero, the
FIG. 20. (Color onling The hole-pair checkerboard state with J interaction will not induce any interaction terms at the
antiphase magnetic domain at doping lewel1/8. Circles denote mean-field level. In contrast, thé, term effectively changes
holes and arrows denote spins while black crosses denote spins irtlae local chemical potential of hole-paismagnons due to
singlet bond. the nonzero mean-field value of magnghsle-pairg on the
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nn plaquette. Thereforé/,, also reduces the height of the overall topology of the phase diagram obtained from our

insulating PDW lobe. model agrees well with the experiments, and so are the be-
haviors of various physical quantities. Inclusion of longer
VIl. CONCLUSIONS ranged interactions could bring detailed and quantitative

) . ) _agreements with the cuprate phase diagram.
Starting from commonly used microscopic models of high

T, cuprates, an effective bosonic model can be derived by the
CORE algorithn?2° In addition to the simple interactions
included in the original projected $8) model?7-30:33 ex- We would like to acknowledge useful discussions with Dr.
tended interactions play an important role in determining theA. Auerbach, Dr. E. Demler, Dr. W. Hanke, Dr. J.P. Hu, Dr.
global phase diagram of the model. This model can be studs. Kivelson, E. Mukamel, Dr. G. Schmid, Dr. M. Troyer, and
ied systematically by the analytical mean field theory and byC.J. Wu. This work is supported by the NSF under Grant No.
the QMC method, thanks to the absence of the minus sigpMR-9814289, and the U.S. Department of Energy, Office
problem. The global phase diagram consists of self-similaof Basic Energy Sciences under Contract No. DE-ACO03-
insulating PDW phases at rational filling fractions, immersed76SF00515 and by the Swiss National Science Foundation.
in the background of the uniform SC phase, as depicted schét.D.C. is also supported by a Stanford Graduate Fellowship.
matically in Fig. 4. Different families of cuprates are attrib- Part of the simulations were performed on the Asgard Be-
uted to different traces in the global phase diagram. Thewulf cluster at ETH Zlrich and at SLAC.
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