
Superconducting vortex state in a mesoscopic disk containing a blind hole

G. R. Berdiyorov,* M. V. Milošević, B. J. Baelus,† and F. M. Peeters‡

Departement Natuurkunde, Universiteit Antwerpen (Campus Drie Eiken), Universiteitsplein 1, B-2610 Antwerpen, Belgium
(Received 18 March 2004; published 19 July 2004)

Within the phenomenological nonlinear Ginzburg-Landau theory, we studied the superconducting state of a
mesoscopic superconducting disk with a circular blind hole. The influence of the smoothness of the blind hole
edge, the thickness and size of the blind hole on the superconducting condensate and the vortex state is
examined. We found that the presence of the blind hole in the superconductor increases the superconducting/
normal transition field. For large radii of the blind hole the maximal number of vortices that can nucleate in the
sample increases with decreasing thickness of the blind hole. Vortices are preferentially captured in the blind
hole and for a sufficiently large radius of the blind hole, the multivortex structure becomes energetically
favorable. A gradual transition from a multivortex to a giant vortex state is observed.
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I. INTRODUCTION

The properties of mesoscopic superconductors are very
different compared to those of bulk superconductors as the
vortex configurations and the critical parameters for mesos-
copic samples are strongly influenced by the size and topol-
ogy (boundary) of the samples. Because of their simple ge-
ometry, mesoscopic disks have been the most popular study
objects during the last decade. Superconducting disks made
of different materials were studied both experimentally and
theoretically(see, for example, Refs. 1–4). As function of an
applied external magnetic field, the disks showed various
phase transitions within the superconducting state and de-
pending on the sample dimensions and temperature, the
superconducting-to-normalsS/Nd state transition could be of
first-or second-order. Geimet al. studied also the paramag-
netic Meissner effect in small superconductors5 and the non-
quantized penetration of magnetic field in the vortex state of
superconductors,6,7 which lead tofractional and negative
vortices. Schweigert and Peeters8 discussed the phase transi-
tions between different superconducting states and between
theS/N state of mesoscopic disks by solving numerically the
Ginzburg-Landau(GL) equations. It was found that the type
of phase transition depends on the disk size, namely, both the
radius and the thickness. Furthermore, an analytical approach
was developed to predict the type of phase transitions and to
find the system characteristics near the phase transition point.
In the continuation of their work9,10 (see also Ref. 11) tran-
sitions between different vortex configurations were pre-
dicted (splitting of the giant vortex into a multivortex, and
vice versa).

Recently, due to the importance of pinning phenomena,
the interest shifted to superconducting diskswith a hole(an-
tidot). Four decades ago, the limiting case—the thin-wire
loop—was studied by Little and Parks.12 The H−T phase
diagram showed an oscillatory behavior each time an addi-
tional flux quantumF0=hc/2e penetrated the sample. To
describe the Little-Parks effect, Berger and Rubinstein13

studied nonuniform mesoscopic superconducting loops using
the nonlinear GL theory. They assumed that the induced
magnetic field can be neglected for samples with sufficiently

small thickness. Superconducting ring structures were also
studied by Baelus, Peeters, and Schweigert14 who found that
the presence of the hole in the superconductor strongly in-
fluences the superconducting state. By increasing the size of
the hole for the fixed radius of the disk, an enhanced stabi-
lization of the superconducting state was found and more
vortices can enter the sample. Transitions to a multivortex
state were found for sufficiently large disks. Breaking the
circular symmetry through a non central location of the hole
in the disk favored the multivortex state in the supercon-
ductor. However, a direct experimental observation of the
vortex structure in such mesoscopic samples is still lacking.

Many experiments15–17 were performed recently in order
to study the vortex state in superconductors using magne-
toresistance measurements. By measuring the resistivity of
the non-fully-superconducting state one can obtain informa-
tion about theS/N transition boundary. With this technique it
is possible to investigate the dependence of the critical pa-
rameters on the sample geometry, but it does not provide
clear information about the real vortex structure. To describe
these experimental results one can linearize the GL equa-
tions, simplifying the problem considerably. Another method
to investigate the superconducting state is through Hall
magnetometery,2,5,6,18 which gives indirect information on
the vortex structure deep inside the superconducting region.
The static and dynamic behavior of individual vortices can
also be directly observed using the Bitter decoration
technique,19,20 electron holography,21 scanning probe,22 and
Lorentz23 microscopy. In the case of superconductors with
holes it is impossible to visualize the vortices in the cavity
because of the absence of any magnetic contrast. This can be
circumvented by putting a thin superconducting layer under
the sample(or equivalently by depositing a thin supercon-
ducting film inside the hole) and due to the so-called flux
compression method,20 multiquanta vortices are visualized.

In the present paper we investigate nucleation of super-
conductivity in a superconducting disk containing a blind
hole in the center using the full nonlinear GL theory. The
present blind hole problem is a more general problem than
the perforated superconductor, which we studied
previously.14 Recently authors of Ref. 24 studied supercon-
ducting samples with periodic arrays of blind holes. To show
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the influence of the bottom superconducting layer on the
critical field, Bezryadin, Ovchinnikov, and Pannetier studied
a thin superconducting film with a blind circular hole, using
the linearized GL equations.25 They found that the value of
the critical field is sensitive to the bottom layer thickness, but
the number of vortices, which nucleate inside the hole, was
not influenced. Buzdin and Daumens considered similar
structures using the analogy with electrostatic problems.26 In
our approach, the full nonlinear GL-theory is used and the
dependence of various quantities(free energy, order param-
eter, and magnetization) on the thickness of the blind hole is
studied. This allows us to obtain the actual vortex structure
inside the blind hole, which will act as a pinning site when
embedded in an infinite-extended superconducting film. We
also consider the influence of the smoothness of the edges of
the blind hole on the superconducting state. In two limiting
cases(see Fig. 1): (i) d=di, i.e., for the superconducting
disk,8,9 and (ii ) di =0, the case of rings,14 we recover our
previous results.

This paper is organized as follows. The theoretical formu-
lation of the problem is presented in Sec. II, where we extend
our previous approach to systems with variable thickness.
The influence of the steepness of the edges of the blind hole
on the vortex configuration and critical parameters is studied
in Sec. III. In Secs. IV(small disks) and V (larger disks) we
investigate the dependence of the superconducting state on
the size of the disk and the blind hole, and on the thickness
of the blind hole. The nonsymmetrical case, when the blind
hole is moved from the center of the sample over a distance
a is considered in Sec. VI. TheH−T phase diagram is given
in Sec. VII and our results are summarized in Sec. VIII.

II. THEORETICAL FORMALISM

In this work, we consider a superconducting disk with
radiusR0 and thicknessd with a blind hole in the center with
radiusRi and thicknessdi (see Fig. 1). The superconducting
sample is immersed in an insulating medium(e.g., vacuum)
and exposed to a homogeneous perpendicular magnetic field

HW 0=s0,0,H0d. In our calculation the demagnetization effects
are taken into account and as an example we took the GL
parameterk=1.0, which is close to the experimental value
for Al, Nb, or Pb mesoscopic samples. First we derive the
GL equations for a thin sample with variable thickness
dsx,yd. The total Gibbs free energy is27

GsH = GnH +E HauCu2 +
1

2
buCu4 +

1

4m
US− i"¹W −

2e

c
AWDCU2

+
1

8p
sHW − HW 0d2JdV, s1d

whereH is the local magnetic field andGnH is the free en-
ergy of the magnetic-field-exposed superconductor in the
normal state. For thin disks we are allowed to assume that
the superconducting condensate is homogeneous along the
z-direction and consequently we may take for the volume of
the sampledV=dsx,yddxdy. To derive the GL equations we
use the Euler equation:
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whereV is the integrand appearing in Eq.(1). After simple
transformations we obtain the expression
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which gives us the boundary conditionnWs−i"¹W

−2e/cAW dCuboundary=0 and the first GL equation(see also
Ref. 28):

1
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C
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S− i"¹W −
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c
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,

s4d

where dsx,yd is the coordinate-dependent thickness of our
sample. The last term in Eq.(4) describes the effect of the
sample thickness variation on the superconducting conden-
sate. In case of a sharp hole with radiusRi the latter term
becomes a delta function, which results in a discontinuity of
the derivative of the order parameter atr=Ri, while the order

FIG. 1. The configurations: a superconducting disk with radius
R0 and thicknessd with (a) a sharp edge or(b) a smooth blind hole
with radiusRi and thicknessdsx,yd, which is placed in the center of
the disk.
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parameter itself is continuous. Thus at the edger=Ri the
radial component of the current densityjW will exhibit a jump,

but the total currentIW= jWd has to be continuous.
The second GL equation reads:

¹W 3 ¹W 3 AW =
4p

c
jW, s5d

with the superconducting current density

jW =
e"

im
sC*¹W C − C¹W C*d −

4e2

mc
uCu2AW . s6d

The actual boundary condition corresponds to the preser-
vation of the total current in the perpendicular cross section
of the sample, which can be written as the condition of no

current leaking in the insulator medias−i¹W −AW dCun=0, where
the subscriptn denotes the component normal to the disk
surface. The boundary condition for the vector potential has
to be taken far away from the disk, whereH equals the

applied field, i.e.,AW =AW 0=0.5H0reWf for r@R0. HereeWf de-
notes the azimuthal direction, andr the radial distance from
the disk center.

In this paper we consider thin superconducting samples
sd,di !j ,ld and in this case the GL equations may be aver-
aged over the thickness of the superconductor. Using dimen-

sionless variables and the Landau gauge, divAW =0, we rewrite
the system of coupled nonlinear Eqs.(4) and (5) in the fol-
lowing form:

s− i¹W − AW d2C = Cs1 − uCu2d + is− i¹W − AW dC
¹W dsx,yd
dsx,yd

,

s7d

−
k2

dsx,yd
DAW =

1

2i
sC*¹W C − C¹W C*d − uCu2AW , s8d

and we solve this system by following the numerical ap-
proach of Schweigert and Peeters.8

Here all distances are measured in units of the coherence
lengthj=" /Î−2ma, the order parameter inc0=Î−a /b, and

the vector potential inc" /2ej. k=l /j is the GL parameter,
and l=cÎm/p /4ec0 is the penetration depth. We scale the
superconducting current in units ofj0=cHc/2pj and the
magnetic field in Hc2=c" /2ej2=kÎ2Hc, where Hc

=Î−4pa /b is the critical field.
The difference between the superconducting and the nor-

mal state Gibbs free energy[Eq. (1)] measured inF0
=Hc

2V/8p units can be expressed through the integral

F = V−1E
V
F2sAW − AW 0d jW − uCu4

+ is− i¹W − AW dC
¹W dsx,yd
dsx,yd

Gdsx,yddxdy, s9d

where integration is performed over the sample volumeV,

and AW 0 is the vector potential of the applied uniform mag-
netic field. The dimensionless magnetization, which is a di-
rect measure of the expelled magnetic field from the sample,
is defined as

M =
kHl − H0

4p
, s10d

where kHl denotes the magnetic field averaged over the
sample.

For nonzero temperatureT, the temperature dependence
of j andHc2 is given by

FIG. 2. The function fsrd=f1−exps−r /hdg / f1+exps0.5R0

−rd /hg describing the smoothness of the blind hole edge for differ-
ent values of the parameterh /j.

FIG. 3. The ground state free energy(a) and the corresponding
magnetization(b) as a function of the applied magnetic field for a
disk (thin solid curve) with radiusR0=2.0j and thicknessd=0.6j
and for samples containing a blind hole with different steepness:
h /j=0.2 (dashed curve), 0.1 (dash-dotted curve), 0.05 (dotted
curve), and 0.0(thick solid curve).The GL parameter isk=1.0.
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jsTd =
js0d

Îu1 − T/Tc0u
, s11d

Hc2sTd = Hc2s0dU1 −
T

Tc0
U , s12d

where Tc0 is the critical temperature corresponding to the
transition to the normal state at zero magnetic field. This
scaling allows us to relate our numerical results to the ex-
perimental measurements performed at nonzero temperature.

III. EFFECT OF THE STEEPNESS OF THE BLIND HOLE
EDGE ON THE VORTEX STATE

In this section we investigate the influence of the smooth-
ness of the blind hole edges on the vortex configurations by
changing the smoothness and the slope of the edges of the
blind hole. In order to avoid Dirac-delta-functions in the dif-
ferential equation(7), which appear in the case of a step-like
change in dsx,yd, we introduced a gradual thickness
variation, modelled by the functionfsrd=f1−exps−r /hdg /
f1+expsRi −rd /hg, which is plotted in Fig. 2, forh /j
=0.05, 0.1, 0.2 in the case ofRi =R0/2=1.0j. In the limit h
→0 the functionfsrd reduces to the Heaviside step function.
The thickness of our sample is defined asdsrd=a+b· fsrd,
wherea=di andb=d−di.

We consider a small superconducting sample witha
=0.3j, b=0.3j, Ri =j, R0=2.0j, andh /j=0.0, 0.05, 0.1, 0.2.
It was shown in Ref. 8 that for small radius disks the con-
finement effects are dominant and this imposes a circular
symmetry on the superconducting condensate. Therefore,

following the approach of Ref. 8 we solve the GL equations
assumingCsrd=FsrdexpsiLfd, wherer andf are cylindri-
cal coordinates, and consequently both the vector potential
and the superconducting current are directed alongeWf. L is
the winding number and gives the vorticity of the system. As
we restricted ourselves to circular symmetric configurations,
the present states characterize only the giant vortex states. In
this case, the number of variables in the GL equations are
reduced, which improves the accuracy and shortens the com-
putational time.

Figs. 3(a) and 3(b) show the ground state free energy and
magnetization for the above sample and for the case in the
absence of a blind hole with disk thicknessds=a+bd=0.6j.
In all cases, only a maximum of two vortices can nucleate in
the superconductor. The free energy of the Meissner state for
the disk is lower than the energy of the other samples, which
is a consequence of the enhanced penetration of the magnetic
field into the superconductor when the blind hole is present
[see Fig. 4(a)]. For the same reason, the thermodynamic tran-
sition field between theL=0 andL=1 states is higher for the
disk. This field is the smallest for theh /j=0.0 case, i.e., the
case of a perfect blind hole(steep edge). The free energy of
the L=1 and L=2 states is lower for smallerh /j, which
illustrates the compression of vortices into the center of the
sample[see Fig. 4(b)]. For theL=2 state the value of the free
energy of the disk is lower than the energy of the sample
with h /j=0.1 and 0.2, which results in a higher
superconducting/normalsS/Nd transition field. This field is
Hc3/Hc2=2.11 for the disk andHc3/Hc2=2.04, 2.10, 2.20,
2.40 for the casesh /j=0.2, 0.1, 0.05, and 0.0, respectively.

Following the pattern explained above, the magnetization
s−Md of the disk in the Meissner state is larger than for the

FIG. 4. The magnetic field(a)–(c), Cooper-pair density(d)–(f) and current density(g)–(i) distributions as function of the radial distance
for the states with vorticityL=0, 1, and 2, atH0/Hc2=0.8, 1.1, and 1.8, respectively, for a superconducting disk(solid curve) with radius
R0=2.0j and thicknessd=0.6j and for samples with a blind hole with radiusRi =1.0j and with different steepness characterized by the shape
parameterh /j=0.2 (dashed curve), 0.1 (dash-dotted curve), and 0.05(dotted curve).
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samples with a blind hole, which is due to the larger flux
expulsion from the sample. ForL.0 the relative position of
the different magnetization curves depends on the magnetic
field.

In what follows, we investigate the Cooper-pair density
uCu2, the local magnetic fieldH, and current density distri-
butions. Fig. 4 shows these quantities as a function of the
radial distancer for the states withL=0 sa,d,gd, 1 sb,e,hd
and 2sc, f , id at H0/Hc2=0.8, 1.1, and 1.8, respectively. At
these values of the applied magnetic field the given vorticity
corresponds to the ground state of the sample. The local
magnetic field is scaled by the applied magnetic field and the
current density is expressed in units ofj0=cHc/2pj. In the
Meissner state[Fig. 4(a)], the magnetic field distribution is
the same for all samples, enhanced at the sample boundary
(maximum) and the surrounding insulating medium. How-
ever, the magnetic field in the center of the disk is slightly
lower than for the samples with an incavation. This is due to
the induced supercurrent, which compensates the effect of
the applied magnetic field on the superconductor. Therefore,
the Cooper-pair density in the center is higher for the disk
than for the other samples, while near the outer boundary
uCu2 is higher for the sample withh /j=0.2 [Fig. 4(d)]. All
the current in the superconducting disk is directed in the
clockwise direction, with its maximum at the disk edge.
Therefore, the applied magnetic field is actually enhanced
close to the disk boundary, which leads to a stronger depres-
sion of the Cooper-pair density at the outer edges as com-
pared to the central region of the sample[Fig. 4(d)]. Com-
paring the Meissner currents in the case of a “classical” disk
and the disks with incavations, very little can be seen, as the
current shows almost the same qualitative and quantitative
behavior.

For theL=1 state[Fig. 4(b)] the flux is compressed in the
center of the sample and the magnetic field even becomes
larger than the applied field. In the central region the mag-
netic field is lower for the ones with a blind hole, while the
field at the edge of the samples is the same in all cases. The
Cooper-pair density of this state is higher for the sample with
h /j=0.05 than for the other samples[Fig. 4(e)]. In this case
the sign of the current in the central region of the supercon-
ductor becomes positive(the current direction reverses) due
to the presence of the vortex, but the current near the outer
boundary remains negative[Fig. 4(h)]. Close to the center
the magnetic field is compressed into the superconductor
(paramagnetic effect), while near the outer boundary the
magnetic field is expelled to the insulating media(diamag-
netic effect). The positive current near the center and the
negative current near the edges are stronger for the sample
with h /j=0.05 than in the classical disk case.

When the second vortex enters the superconductor[Fig.
4(c)], the magnetic field in the samples with lowerh is more
enhanced(i.e., as we approach the perfect blind hole case)
since the indentation in the center of the sample favors the
capture of vortices in the center of the disk. The Cooper-pair
density of the disk is higher at the disk boundary than for the
samples with geometrical parameterh /j=0.1 and 0.2(there-
fore, the free energy is lower), but in the central region of the
disk the Cooper-pair density is lower than in the disks
with an incavation[Fig. 4(f)]. The current distribution for the

L=2 state is analogous to theL=1 state, but in this case the
difference between the values of the current densities for the
different samples is more pronounced[Fig. 4(i)].

With decreasing the geometrical parameterh, namely
making the edges of the blind hole steeper, the change of
curvature in the order parameter can be seen close to the
blind hole boundary[see Figs. 4(d)–4(f), for h /j=0.05]. Due
to the continuous functionfsrd describing the shape of the
superconducting disk in our analysis, both the order param-
eter and its derivative, with respect tor are continuous.
However, in the case of a perfect blind hole, a jump in the
derivative of the order parameter should be present at the
edge of the hole due to the preservation of the total current in
every cross section of the disk(as will be shown in the fol-
lowing sections of this article), and the change of the curva-
ture of the order parameter in Figs. 4(d)–4(f), for h /j
=0.05 is therefore a logical consequence of the steeper blind
hole edges.

IV. SMALL SUPERCONDUCTING DISKS WITH A BLIND
HOLE

Using the theoretical approach of the previous section we
consider small superconducting disks with a perfect blind
hole in the center[see Fig. 1(a)], i.e., for h /j=0 and inves-
tigate the effect of the thickness of the blind hole on the
superconducting state. Figs. 5(a) and 5(b) show the ground
state free energy and the magnetization of such a supercon-

FIG. 5. The ground state free energy(a) and the corresponding
magnetization(b) as a function of the applied magnetic field, for a
disk (curve 1) with radiusR0=2.0j and thicknessd=0.5j, a disk
with a blind hole in the center with radiusRi =0.5j and thickness
di /j=0.3 (curve 2), 0.15 (curve 3), 0.05 (curve 4), and 0.0(super-
conducting ring, curve 5). The inset in(a) is an enlargement of the
high magnetic field region where theL=2 state is the ground state.
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ducting disk with radiusR0=2.0j and thicknessd=0.5j with
a blind hole with radiusRi =0.5j and thicknessdi /j=0.0,
0.05, 0.15, 0.3, and 0.5. The inset shows the enlargement of
the free energy in the region where theL=2 state becomes
the ground state. The situation withdi =0.5j corresponds to
the “classical” disk case8 anddi =0.0j to the superconducting
disk with a hole(superconducting ring).14 In all cases the
maximal possible vorticity in the sample equalsLmax=2.
When we decrease the blind hole thickness the Meissner
state, i.e. theL=0 state becomes less stable and theL=0
→L=1 state transition occurs at lower magnetic field[which
is similar to the previous continuous edge case, where de-
creasingh /j implies a decreasing effective thickness of the
blind hole, see Fig. 3(b)]. Also the ground state free energies
for the L=1 andL=2 states are lower for the samples with
small thickness of the blind hole. Notice that theL=1→2
transition occurs at higher fields with decreasingdi [see inset
of Fig. 5(a)], which is opposite to theL=0→1 transition and
is also different in the case of the continuous edge. With
decreasing the thickness of the blind hole theS/N state tran-
sition shifts to higher magnetic fields. This field isHc3/Hc2
=2.11 for the disk,Hc3/Hc2=2.35 for the ring andHc3/Hc2
=2.15, 2.21, and 2.29 for a thickness of the blind holedi /j
=0.3, 0.15, and 0.05, respectively.

The magnetization, −M, [Fig. 5(b)] of the L=0 state is
higher for the disk than for the other samples, which shows
the enhanced expulsion of the field from the disk. However,
for the L=1 state the magnetization of the disk is smaller,
since the presence of the blind hole in the center favors the
appearance of vortices(compression of the flux in the center
of the sample). With decreasing the blind hole thickness the
magnetization of this state increases. The ground state of the

ring with L=1 shows a paramagnetic response, i.e., −M ,0.
For the other samples this effect occurs only for the meta-
stable states withL=1 andL=2.

Figure 6 summarizes these results into a phase diagram
which gives the relation between the blind hole thicknessdi
and the magnetic fieldH0/Hc2 at which the ground state
transitions take place for a superconducting disk with radius
R0=2.0j, thicknessd=0.5j, k=1.0, and a blind hole with
radiusRi =0.5j. The dashed curve indicates the ground state
transition from theL=0 state to theL=1 state, the thin solid
curve theL=1 to theL=2 state transition, and the thicker
solid curve gives theS/N transition. Notice that the Meissner
state is stabilized as being the ground state with increasing

FIG. 7. The magnetic field(a)–(c), Cooper-pair density(d)–(f), and current density(g)–(i) distributions as a function of the radial distance
for the superconducting states withL=0 (a,d,g), 1 (b,e,h), and 2(c,f,i) at H0/Hc2=0.75, 1.55, and 2.0, respectively, for the disk(curve 1)
with radiusR0=2.0j and thicknessd=0.5j, with a blind hole in the center with radiusRi =0.5j and thicknessdi /j=0.3 (curve 2), 0.15(curve
3), 0.05 (curve 4), and 0.0(superconducting ring, curve 5). The insets show the magnetic field near the boundary of the blind hole.

FIG. 6. Phase diagram: the relation between the blind hole
thicknessdi and the magnetic fieldH0/Hc2 at which ground state
transitions take place for a superconducting sample with radiusR0

=2.0j, thicknessd=0.5j, k=1.0 and with blind hole radiusRi

=0.5j.
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thickness of the blind hole, which is opposite to theL=1
→L=2, and theS/N state transition field, which moves to
smaller fields with increasingdi.

Figure 7 shows similar results as Fig. 4, but now for a
smaller radius blind hole, i.e.,Ri =0.5j instead ofRi =1.0j
and where we study the dependence on the thickness of a
steplike (i.e., h=0) blind hole. For theL=0 state the mag-
netic field distribution for the disk and for the samples with a
blind hole is almost the same at the outer edges and outside
of the sample Fig. 7(a). The local magnetic field is lower
than the external magnetic field inside the sample and it in-
creases at the outer edge of the sample, where the field lines
are compressed. Due to the weak penetration of the magnetic
field inside the superconductor the Cooper-pair density is
lower at the outer edges of the samples[Fig. 7(d)]. As one
can see in the inset of[Fig. 7(a)] the magnetic field in the
center of the samples with a blind hole is higher than in the
disk case and therefore the highest value of the Cooper-pair
density is found in the case of a “classical” disk. With de-
creasing thickness of the blind hole this value decreases and
approaches the value of the density of the ring. For the
sample with a hole, a different behavior is observed and the
magnetic field increases in the center since the screening
currents expel part of the applied magnetic field toward the
inside of the hole as well as toward the outside of the disk.

The magnetic field distribution is considerably changed
when the first vortex enters the sample[Fig. 7(b)]. In this
case, because of the demagnetization effect, in the ring case
there is a sharp peak in the magnetic field at the inner bound-
ary and the magnetic field near the center of the sample is
higher than the external magnetic field. However, for the

samples with the blind hole no peak at the inner hole bound-
ary is present, and the magnetic field is increased in the
center of the sample. Consequently, the probability of finding
superconducting electrons inside the disk is smaller than if
the blind hole is present. With decreasing thickness of the
blind hole the value of the magnetic field in the center be-
comes higher and the Cooper-pair density increases near the
boundaries[Fig. 7(e)]. The magnetic field distribution at the
outer boundary of the sample is similar for all samples. The
Cooper-pair density increases abruptly when the thickness of
the blind hole is small, showing the enhanced compression
of the magnetic flux in the blind hole.

The magnetic field distribution and the Cooper-pair den-
sity for the L=2 state is analogous to the field distribution
and uCu2 for the L=1 state[Figs. 7(c) and 7(f)].

One of the most interesting features is the jump in the
derivative of the order parameter over the radial distance at
the blind hole edge. Due to the condition of the continuity of
the order parameter and the shape of the thickness of our
sample, which is actually a step function, the jump in]C /]r
is a consequence of the last term in Eq.(7).

The qualitative behavior of the current density[Figs.
7(g)–7(i)] corresponds to the one of Fig. 4. The current den-
sity of the L=0 state is almost the same for all samples,
regardless of the thickness of the blind hole. As the current
has only a jw component there is no jump in the current
density at the edge of the blind hole, but the total current has
a jump. For theL=1 and L=2 states the current near the
blind hole boundary is positive and near the outer boundary
is negative, and the amplitudes increase with decreasing
thickness of the bottom of the blind hole.

It was shown in Ref. 14 that with increasing inner radius
of the superconducting ring theS/N transition field shifts to
higher magnetic fields and more transitions between different
vortex states are possible. In Figs. 8(a) and 8(b) the ground
state free energy and the corresponding magnetization of a
superconducting disk with a larger blind holesRi =1.0jd is
shown while keeping the other parameters the same as be-
fore. In this case the maximal number of vortices for the
sample with a blind hole of thicknessdi =0.3j is Lmax=2. For
a thinner blind hole, more vortices can enter the sample be-
fore destroying the superconducting state. The maximal
number of vortices for the ring isLmax=4. By decreasing the

FIG. 8. The ground state free energy(a) and corresponding
magnetization(b) as a function of the applied magnetic field of a
superconducting disk with the same parameters as in Fig. 7(curves
1-5), except for the radius of the blind holeRi =1.0j. Open circles
indicate transitions between different vortex states.

FIG. 9. The same as Fig. 6, but now for larger radius of the
blind hole,Ri =1.0j.
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thickness of the blind hole, theS/N transition field shifts to
higher fields. This field isH0/Hc2=2.11 in the disk case and
H0/Hc2=2.38, 2.92, 3.21 for the thickness of the blind hole
di /j= 0.3, 0.15, 0.05, respectively. TheS/N transition field
for the ring equalsH0/Hc2=3.58. The transitions between
differentL states occur at lower fields for the small thickness
of the blind hole, and the free energy becomes lower, ap-
proaching the free energy of the superconducting ring.

The phase diagram in Fig. 9 shows the magnetic field
H0/Hc2, at which ground state transitions take place, as a
function ofdi for larger value of theRi. The thick solid curve
gives theS/N transition, which exhibits some oscillatory-like
behavior. Notice that theS/N transition moves to higher field
with decreasing the blind hole thickness and in that case
more vortices can be trapped. Also that the phase diagram is
very different from theRi =0.5j case(Fig. 6) because now all
ground state transition fields increase withdi except for the
S/N transition field.

V. LARGER DISKS WITH A BLIND HOLE: MULTIVORTEX
STATES

Until now, we restricted ourselves to small superconduct-
ing samples, where the confinement effects are dominant and
only giant vortex states are stable. For larger superconduct-
ing disks it is energetically more favorable for the giant vor-
tex to split into separated vortices for certain magnetic
fields.9

To investigate such multivortex states we generalize the
approach of Ref. 9 to superconducting disks with a blind
hole in the center. No special symmetry is imposed on the
superconducting condensateCsx,yd, which is allowed to be
of arbitrary shape. As an example we take a superconducting
disk with k=1.0, radiusR0=4.0 j, thicknessd=0.1j, and for
different values of the radiusRi and thicknessdi of the blind
hole. Figures 10(a)–10(d) show the free energy for such a

disk containing a blind hole with radiusRi =2.0j and thick-
nessdi =0.1j, 0.05j, 0.01j, and 0 (superconducting ring),
respectively, as a function of the applied magnetic field. The
insets show an enlargement of the free energy close to the
S/N boundary. The multivortex states are plotted by dotted
curves and the transitions from the multivortex state to the
giant vortex state are indicated by open circles. In order to
define whether the state is a multivortex state or a giant vor-
tex state, we used the criterion of Ref. 29, which states that if
the maximum between two minima in the Cooper-pair den-
sity is lower than 0.5% of the maximum Cooper-pair density
in the sample, the state is assigned to be a giant vortex state.
In all samples vortex states up toL=11 can nucleate(see
also Fig. 11). In the case of the uniform disk multivortex
states can nucleate for vorticityL=2, 3, 4, 5, and 6, and with
increasing external field, these multivortex states transit to a
giant vortex state for fixedL. When we include a blind hole
into the disk [Fig. 10(b)] the free energy of all states be-
comes lower and theS/N state transition occurs at higher

FIG. 10. The free energy as a
function of the applied magnetic
field of the superconducting disk
with radiusR0=4.0j, thicknessd
=0.1j (a) with a blind hole in the
center with radiusRi =2.0j and
thicknessdi =0.05j (b), 0.01j (c),
and 0 (superconducting ring) (d),
respectively. The multivortex
states are plotted by dotted curves
and the transitions from the multi-
vortex state to the giant vortex
state are indicated by open circles.

FIG. 11. Phase diagram: the ground state transition fieldH0/Hc2

as a function of the blind hole thicknessdi for a superconducting
sample with radiusR0=4.0j, thicknessd=0.1j, k=1.0, and with
blind hole radiusRi =2.0j.
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magnetic field. This field isHc3/Hc2=1.91 for the disk and
Hc3/Hc2=1.92 for the disk with the blind hole of thickness
di =0.05j. In this case less states are able to nucleate into a
multivortex state, namelyL=2, 3, and 4. Moreover, the mag-
netic field region, over which we found the multivortices, is
also decreased. When we decrease the thickness of the blind
hole [Fig. 10(c)] the vortex states become more stable and
the ground state transitions occur at lower fields for lower
vorticity. Notice that now theL=1 state remains stable even
for negative applied fields. TheS/N transition field now is
Hc3/Hc2=1.95. In this case all states are giant vortex states.
By further decreasing the blind hole thickness the free en-
ergy approaches the energy of the superconducting ring[Fig.
10(d)]. TheS/N transition field of the ring is the highest one
and equals 1.96Hc2, which can also be seen from the phase
diagram in Fig. 11. The phase diagram shows that for the
states with lower vorticitysLø4d the ground state transition
fields are higher for thicker blind holes, i.e., largerdi, while
for states with larger vorticitysL.4d the ground state tran-
sition fields increase with decreasingdi. From Figs. 6, 9, and
11 it is obvious that, regardless on the size of the disk and the
blind hole, the thinner blind hole favors penetration of the
first vortex in the sample(lower applied field necessary), due
to enhanced compression of the field in the blind hole. How-
ever, the behavior of the critical field for penetration of the
following vortices is determined by a competition between
the pinning effects of the blind hole and repulsion between
the vortices in the sample. In the case of a larger hole shown
in Fig. 11, the pinning effects dominate till the fifth vortex
penetrates the blind hole, reinforcing the repulsion between
vortices. ForL.4 vorticity, it is more energetically favor-
able that the vortices sit further from each other, when the
confinement effects of the blind hole are weaker(largerdi),
resulting in a decrease of the threshold applied flux as func-
tion of the thickness of the blind hole.

Figures 12(a)–12(d) show the magnetization for the super-
conducting samples of Figs. 10(a)–10(d). The magnetization

is calculated using Eq.(10) after averaging the field only
over the superconductor, namely excluding the hole in the
superconducting ring case. In these figures the vertical lines
indicate the ground state transitions(see Fig. 10). In the case
of the superconducting disk[Fig. 12(a)] the maxima in the
magnetization curve decrease with increasing vorticityL,
since most of the applied flux is expelled from the supercon-
ductor in the Meissner state. For the given value of the GL
parameter the states withL=1, 4, 5, 6, 7, and 8 show partly
paramagnetic response(i.e., −M ,0). Notice that the inser-
tion of a blind hole enhances such a paramagnetic response
[Figs. 12(b) and 12(c)] for the smallL-states. The largest
amplitude of the magnetization is found for theL=1 state.
When we decrease the thickness of the blind hole[Fig.
12(c)] (i) the maximum in the magnetization shifts to higher
vorticity, (ii ) less states show paramagnetic response, and
(iii ) the magnetization approaches the one of the supercon-
ducting ring case[Fig. 12(d)], which is maximal for theL
=4 state. The magnetization of the superconducting ring,
when the field is averaged over the wholeR0 area, i.e., in-
cluding the hole(Fig. 13) shows qualitatively similar fea-
tures as the magnetization of the superconducting disk; but in
this case the value of the magnetization is larger, the para-
magnetic response is larger, and the magnetization value at
the thermodynamic transition fields increases withL up to
L=3.

Figures 14(a) and 14(b) show the magnetic-field range
DHs=Hpenetration−Hexpulsion over which the vortex state with
vorticity L is stable and the magnetic-field rangeDHg over
which the given vortex state is the ground state. For the disk
case, the results are given by full circles(solid line), for the
disk with the blind hole with thicknessdi =0.05j by open
circles (dashed line), di =0.01j by full squares(dash-dotted
line) and for the superconducting ring by open squares(dot-
ted line). Notice that in each case the Meissner state, i.e., the
L=0 state, has the largest stability region. For the homoge-
neous diskDHs exhibits a local maximum atL=4. The

FIG. 12. The same as Fig. 10,
but now for the magnetization.
The vertical lines indicate the
ground state transitions.
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Meissner state becomes less stable when the blind hole is
present. The transition to theL=1 state occurs at lower mag-
netic field, indicating that the presence of the blind hole sig-
nificantly facilitates the penetration of the first vortex in the
sample. The lowest stability region of theL=0 state is found
for the superconducting ring. With decreasing the thickness
of the blind hole the stability region of the vortex states with
L,7 increases, but forL.7 the stability regionDHs is al-
most independent ofdi, which is a consequence of the fact
that for largeL-values superconductivity is destroyed in the

center of the disk and consequently it does not matter
whether or not a blind hole is present in that region of the
disk. A similar tendency is observed for the ground state
magnetic field rangeDHgsLd [Fig. 14(b)] with the exception
that for L.7 DHgsLd decreases slightly with decreasingdi.
A similar tendency is seen forDHs but to a smaller extent.

As we have shown before, many of the important features
connected with the pinning of vortices by holes in the super-
conductors can be reproduced if thin blind holes are used
instead. However, in the case of the superconducting rings,
the flux is compressed in the hole and this quasigiant vortex
can be recognized only by the phase of the order parameter
in the superconductor around the hole. The advantage of
blind holes lies in the fact that the real vortex structure inside
the pinning center can be visualized. In what follows, we
investigate the influence of the thickness of the blind hole on
the vortex configurations. As was shown in Ref. 29, in su-
perconducting disks transitions from the multivortex state to
the giant vortex state can occur. In our disk sample[see Fig.
10(a)] such transitions appear for the states withL=2, 3, 4, 5,
and 6. The number of multivortex states decreases with de-
creasing blind hole thickness. Figures 15(a)–15(h) show the
phase of the order parameter of the disk for the states with
L=2−6. Phases near zero are given by white regions and

FIG. 13. The magnetization of the superconducting ring with
outer radiusR0=4.0j, thicknessd=0.1j, k=1.0, and inner radius
Ri =2.0j, when the magnetic field is averaged over an area of radius
R0.

FIG. 14. (a) The magnetic-field rangeDHs over which the vor-
tex state with vorticityL is stable and(b) the magnetic-field range
DHg over which the given vortex state is the ground state, as func-
tion of the vorticity L. The sample parameters are the same as in
Fig. 10.

FIG. 15. Contour plot of the phase of the order parameter for the
superconducting disk with radiusR0=4.0j, thicknessd=0.1j and
k=1.0 for the vortex states withL=2 (a) and(b), 3 (c) and(d), 4 (e)
and (f), 5 (g), and 6(h) at H0/Hc2=0.36 and 0.55, 0.5 and 0.77,
0.64 and 0.87, 0.77, 0.92, respectively. Phases near zero are given
by white regions, phases near 2p by dark gray regions.
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phases near 2p by dark gray regions. For theL=2 state, in
lower magnetic fields two individual vortices are separated
from each other[Fig. 15(a)] and at the fieldH0/Hc2=0.55
they join into one giant vortex[Fig. 15(b)]. The multivortex
to the giant vortex state transition for theL=3 state occurs at
H0/Hc2=0.77 [Fig. 15(d)]. The L=4 state shows the “tradi-
tional” multivortex structure[Fig. 15(e)] where all vortices
sit at the corners of the polygon. The multivortex to giant
vortex transition occurs atH0/Hc2=0.87[Fig. 15(f)]. Analo-
gously, in small magnetic fields the states withL=5 andL
=6 show ring vortex structure[Figs. 15(g) and 15(h)], which
are recently of large scientific interest(see Refs. 30 and 31),
but with increasing the applied magnetic field vortices move
to the center and form one giant vortex. The states with even
higher vorticity are giant vortex states.

The arrangements of vortices in samples containing a
blind hole in the center is shown in Fig. 16 by the phase of
the order parameter for the states with lower vorticitysL
ø4d. When the blind hole with thicknessdi =0.05j and ra-
dius Ri =2.0j is present in the superconducting disk withd
=0.1j andR0=4.0j, the two vortices are closer to each other
[Fig. 16(a)] than in the disk case. With decreasing the thick-
ness of the blind hole these two vortices come closer to each
other [Fig. 16(b)] and form a giant vortex with vorticityL
=2. Obviously, when the blind hole is present in the sample
vortices are pinned by the hole, and therefore located closer
to the center for all vortex states as compared to the disk case
(Fig. 15). With decreasing the thickness of the hole the vor-
tices are compressed more to the central region of the
sample. In the case of the superconducting ring it is not
possible to see the vortex structure[Figs. 16(c), 16(f), and
16(i)].

In the above samples, the radius of the blind holeRi is
large enough and all vortices are individually located inside
the blind hole forming the multivortex state, giant vortex
state, or combination of them. Next we consider a supercon-
ducting disk with a small radius blind hole in the center.
Figures 17(a) and 17(b) show the free energy and magneti-
zation of the superconducting disk with radiusR0=4.0j,
thicknessd0=0.1j and containing a blind hole with radius
Ri =0.5j and thicknessdi =0.01j. The inset shows the en-
largement of the free energy for the states with higher vor-
ticity and vertical gray lines in the magnetization[see Fig.
17(b)] indicate the ground state transitions. The multivortex
states are plotted by dotted curves and the transitions from
the multivortex state to the giant vortex state are indicated by
open circles. In this case vortex states up toL=11 can nucle-
ate with aS/N state transition fieldH0/Hc2=1.91. The states
with vorticity L=3−7 aremultivortex states. TheL=1 state
is stable over a larger magnetic-field range than the other
states.

Figures 18(a)–18(h) show the phase of the order param-
eter of the sample for the states withL=3−7 at the different
values of the applied magnetic field. For theL=2 state vor-
tices are close to each other and located in the blind hole, as
in the case of samples with larger blind holes. But for the
L=3 state one vortex is inside the blind hole and the other
are outside of it[Fig. 18(a)]. By further increasing the field
the vortices move to the center[Fig. 18(b)]. For theL=4, 5,
6 states one vortex is in the hole and others make a triangu-

FIG. 16. Contour plot of the phase of the order parameter for a
superconducting disk with radiusR0=4.0j, thicknessd=0.1j, k
=1.0 for blind holes with radiusRi =2.0j and thicknessdi =0.05j
(a,d,g), di =0.01j (b,e,h) and di =0.0j (c,f,i) for the states withL
=2 (a,b,c), 3 (d,e,f), and 4(g,h,i), at H0/Hc2=0.22, 0.41, and 0.6,
respectively. Phases near zero are given by white regions, phases
near 2p by dark gray regions.

FIG. 17. The free energy(a) and the magnetization(b) as a
function of the applied magnetic field of a disk with radiusR0

=4.0j and thicknessd=0.1j for a blind hole in the center with
radiusRi =0.5j and thicknessdi =0.01j. The GL parameterk=1.0.
The inset shows the free energy for higher vorticity and vertical
gray lines indicate ground state transitions. The multivortex states
are plotted by dotted curves and the transitions from the multivortex
state to the giant vortex state are indicated by open circles.
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lar, square and “pentagonal” lattice around the hole[Figs.
18(c)–18(e)]. At small fields the state withL=7 makes a
“shell” structure30,31 with one vortex in the center[Fig.
18(f)]. By increasing the magnetic field these vortices move
toward the hole and form a giant vortex.

VI. NONCENTRAL LOCATION OF THE BLIND HOLE

Until now we considered only cylindrically symmetric su-
perconductors. In the next step we investigate the nonsym-
metric case, i.e., when the blind hole is shifted from the
center of the sample over a distancea. As an example we
take a superconducting disk with radiusR0=4.0j, thickness
d=0.1j with a blind hole with radiusRi =1.0j and thickness
di =0.01j moved over a distancea=2.0j in the −y-direction.
Figures 19(c) and 19(d) show the free energy and magneti-
zation of this sample. To compare with the symmetrical case,
we also plotted the free energy and magnetization for the
superconductor with a blind hole in the center[Figs. 19(a)
and 19(b)]. In the latter caseL=11 vortices can be captured
into the superconductor while it transits to the normal state at
H0/Hc2=1.91. The breaking of the symmetry changes the
superconducting state considerably. In this case the maximal
number of vortices in the sample isL=15 and the stability of
the states with lower vorticity are decreased. The ground
state free energy of the nonsymmetric sample is lower for the
states with L.3, which leads to a higher critical field
Hc3/Hc2=2.47. It is noticeable that transitions between vor-
tex states afterL=10 occur without a jump in the magneti-
zation.

Figures 20(a)–20(h) show the distribution of vortices in
the samples by the phase of the order parameter and Cooper-
pair density. For the symmetric system, i.e.,a=0, we found
only giant vortex states. Figures 20(a) and 20(b) show the
Cooper-pair density and the phase of the order parameter for
the L=2 state in that sample. By breaking the circular sym-
metry of the system, multivortex states are stabilized. Fig-
ures 20(c)–20(g) show the Cooper-pair density of such mul-
tivortex states. The vortex nucleated at the blind hole is for
Lù5 a giant vortex with vorticity 2[see, e.g., Fig. 20(h)].

VII. H −T PHASE DIAGRAM

So far, our calculations have been done for fixed tempera-
ture T. Now we will include temperature in our numerical

FIG. 18. The phase of the order parameter for the superconduct-
ing disk with radiusR0=4.0j, thicknessd=0.1j, k=1.0 for a blind
hole in the center with radiusRi =0.5j and thicknessdi =0.01j for
the vortex states withL=3 (a) and(b), 4 (c), 5 (d), 6 (e) and(f), and
7 (g) and(h) at H0/Hc2=0.57, 0.65, 0.80, 1.0, 0.94, and 1.1, respec-
tively. Phases near zero are given by white regions, phases near 2p
by dark gray regions.

FIG. 19. The free energy and
magnetization as a function of the
applied magnetic field of the su-
perconducting disk with radius
R0=4.0j, thicknessd=0.1j with a
blind hole with radiusRi =1.0j,
and thicknessdi =0.01j, when the
blind hole is in the center(a) and
(b) and moved over a distancea
=2.0j in the −y direction (c) and
(d). The multivortex states are
plotted by dashed curves and the
transition from the multivortex
state to the giant vortex state is in-
dicated by open circle in(c). Open
squares show theS/N transition
fields.
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calculations through the temperature dependence of the co-
herence length[see Eqs.(11) and (12)]. Therefore, all dis-
tances will be expressed in units ofjs0d, magnetic field in
Hc2s0d, and temperature in units of the zero-magnetic-field
critical temperatureTc0. We consider two samples, namely
the superconducting disk with radiusR0=1.5 mm and thick-
nessd=100 nm, with and without a blind hole with radius
Ri =0.75mm and thicknessdi =10 nm. We choose the coher-
ence lengthjs0d=120 nm and the penetration depthls0d
=140 nm, which are typical experimental values for low-
temperature mesoscopic superconductors.

TheH−T phase diagram is shown in Figs. 21(a)–21(c) for
the disk(a), the disk with a blind hole(b), and for the super-
conducting ring(c) for the states with vorticity up toL=5. In
the presence of the blind holes vortices enter the sample at
higher temperatures and these states have a larger stability
region compared to the case of the disk(except for the
Meissner state where the opposite tendency is noticed). The
S/N transition field at fixed temperature and the critical tem-
perature at the given field is higher for the sample with the
blind hole. For values of the parameters used here, the criti-
cal field is increased more than 20% and the critical tempera-

ture by,1.5%. Therefore, introduction of the blind hole in
the superconducting sample is a powerful tool for enhance-
ment of the critical parameters. The critical parameters of the
sample with a blind hole are close to the parameters of the
superconducting ring.

VIII. CONCLUSIONS

We studied the nucleation of superconductivity in super-
conducting disks with a blind hole in the center of the
sample. The influence of the sample shape on the supercon-
ducting state was thoroughly investigated. We found that the
increase of the steepness of the edges of the blind-hole-like
cavity in the superconductor leads to a shift of theS/N tran-
sition field to higher magnetic fields, but the maximal num-
ber of vortices remains the same. The Cooper-pair density,
magnetic field and current density distributions show that the
flux trapped in the superconductor is compressed more into

FIG. 20. Contour plot of the Cooper-pair density and phase of
the order parameter(b) and (h) for the superconducting disk with
radius R0=4.0j, thicknessd=0.1j with a blind hole with radius
Ri =1.0j and thicknessdi =0.01j, when the blind hole is in the cen-
ter (a) and(b) and moved over a distancea=2.0j in they direction
(c)–(h), corresponding to the vortex states withL=2 (a) and (c), 3
(d), 4 (e), 5 (f), and 6(g) at H0/Hc2=0.55 and 0.65, 0.82, 1.0, and
1.12, respectively.

FIG. 21. TheH−T phase diagram and the stability area for the
states with vorticity up toL=5 for (a) the disk,(b) the disk with
blind hole, and(c) the superconducting ring. The radius of the disk
is R0=12.5js0d, the thickness of the diskd=0.83js0d, the radius of
the blind hole Ri =6.25js0d, the thickness of the blind holedi

=0.083js0d, and the GL parameterk equals 1.167sjs0d=120 nmd.
Thick solid curves indicate the superconducting/normal transitions.
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the center of the sample, when the thickness of the sample
changes more steeply.

We also investigated superconducting disks with a perfect
blind hole in the center in the case of relatively small disks
sR=2.0jd. When the radius of the blind hole is much smaller
than the radius of the disk, the maximal number of allowed
vortices is the same for all considered samples, regardless of
the thickness of the blind hole. On the other hand, the de-
crease of the blind-hole thickness leads to higherS/N tran-
sition fields, and the free energy of the sample with blind
hole approaches the energy of the superconducting ring. The
local magnetic-field distribution shows that for theL=1
state, the magnetic field in the center of the sample for the
superconducting ring is lower than at the blind hole edge.
For the sample with the blind hole the magnetic field is
maximal in the center, showing one of the significant differ-
ences between the hole and a blind hole as pinning centers.
For the larger radii of the blind hole the maximal number of
vortices in the sample increases with decreasing the thick-
ness of the blind hole and approaches to the number of vor-
tices in the case of he superconducting ring.

In order to investigate the vortex configurations inside the
blind hole (as opposed to the hole as a pinning center), we
considered superconducting samples with larger sizes. For
the value of the GL parameterk=1.0 the states withLø6
show multivortex states and a further increase of the applied
magnetic field leads to the giant vortex state. When the blind
hole is included into the disk the free energy of all vortex
states lowers and theS/N state transition occurs at higher
magnetic field. A variety of vortex configurations is possible
in the blind hole, since the vortices are confined to the hole.
In this case, less vortex states form a multivortex state and

the range of the magnetic field at which multivortex states
are present is also decreased for fixedL. A thinner blind hole
leads to more stable vortex states and ground state transitions
between different vortex states occur at lower fields. The
states with higher vorticity illustrate stronger flux expulsion
in samples with a blind hole as compared to the pure disk
case. For a small radius of the blind hole a limited number of
vortices are situated in the hole and other vortices are located
in the superconducting region forming a “shell” vortex struc-
ture. In this case, the shell “magic numbers” can effectively
be controlled by the ratio between the size of the disk and its
blind hole. We also considered the nonsymmetric case when
the blind hole is moved over some distance from the center
of the sample. In this case the maximal number of vortices in
the sample is increased, the stability of these states is de-
creased, and multivortex states are favorable.

The H−T phase diagram calculated for the case of the
disk and the disk with a blind hole shows that the critical
field at a given temperature and the critical temperature at
fixed field are higher for samples with a blind hole, and their
values approach the phase boundary of the superconducting
ring.
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