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We derive the polarizability of an electron system in(i) the superconducting phase, withd-wave symmetry,
(ii ) the pseudogap regime, within the precursor pairing scenario, and(iii ) the d-density-wave(dDW) state,
characterized by ad-wave hidden order parameter, but no pairing. Such a calculation is motivated by the recent
proposals that imaging the effects of an isolated impurity may distinguish between precursor pairing and dDW
order in the pseudogap regime of the high-Tc superconductors. In all three cases, the wave-vector dependence
of the polarizability is characterized by an azimuthal modulation, consistent with thed-wave symmetry of the
underlying state. However, only the dDW result shows the fingerprints of nesting, with nesting wave vector
Q=sp ,pd, albeit imperfect, due to a nonzero value of the hopping ratiot8 / t in the band dispersion relation. As
a consequence of nesting, the presence of hole pockets is also exhibited by thesq ,vd dependence of the
retarded polarizability.
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I. INTRODUCTION

Imaging of the electronic properties around an isolated
nonmagnetic impurity such as Zn in the high-Tc supercon-
ductors(HTS’s) has provided direct evidence of the uncon-
ventional nature of the superconducting state in the cuprates,
and in particular of thed-wave symmetry of its order param-
eter below the critical temperatureTc.

1–4 In the underdoped
regime of the HTS’s, various models have been proposed to
describe the pseudogap state aboveTc.

Several experimental results provide substantial evidence
of a pseudogap opening at the Fermi level in underdoped
cuprates forTc,T,T* , even though no unique definition of
the characteristic temperatureT* is possible, as it generally
depends on the actual experimental technique employed(see
Refs. 5 and 6 for a review, and references therein). Also, the
doping dependence ofT* is still a matter of controversy.7

Owing to its d-wave symmetry, the pseudogap has been
naturally interpreted in terms of precursor superconducting
pairing. In particular, the pseudogap has been associated with
phase fluctuations of the order parameter8 aboveTc (see Ref.
9 for a review). Within this precursor pairing scenario, the
phase diagram of the HTS’s can be described as a crossover
from Bose-Einstein condensation(in the underdoped regime)
to BCS superconductivity(in the overdoped regime).9–12

Recently, it has been proposed that many properties of the
pseudogap regime may be explained within the framework
of the so-calledd-wave-density scenario(dDW).13–15This is
based on the idea that the pseudogap regime be characterized
by a fully developed order parameter, at variance with the
precursor pairing scenario, where a fluctuating order param-
eter is postulated. The dDW state is an ordered state of un-
conventional kind, and is usually associated with staggered
orbital currents in the CuO2 square lattice of the HTS’s.16–19

Much attention has been recently devoted to showing the
consistency of the dDW scenario with several experimental

properties of the HTS’s.14 These include transport properties,
such as the electrical and thermal conductivities20,21 and the
Hall effect,22,23 thermodynamic properties,24,25 time symme-
try breaking,26 and angular resolved photoemission spectros-
copy (ARPES).27 The possible occurrence of a dDW state in
microscopic models of correlated electrons has been checked
in ladder networks.28

It has been recently proposed that direct imaging of the
local density of states(LDOS) around an isolated impurity
by means of scanning tunneling microscopy(STM) could
help in understanding the nature of the “normal” state in the
pseudogap regime.29–32 The idea that an anisotropic super-
conducting gap should give rise to directly observable spatial
features in the tunneling conductance near an impurity was
suggested by Byerset al.,33 whereas earlier studies34 had
considered perturbations of the order parameter to occur
within a distance of the order of the coherence lengthj
around an impurity. Later, it was shown that an isolated im-
purity in a d-wave superconductor produces virtual bound
states close to the Fermi level, in the nearly unitary limit.35

Such a quasibound state should appear as a pronounced peak
near the Fermi level in the LDOS at the impurity site,36 as is
indeed observed in Bi2Sr2CaCu2O8 (Bi-2212)1 and
YBa2Cu3O9–x (YBCO).37

In the normal state, the frequency-dependent LDOS at the
nearest and next-nearest neighbor sites, with respect to the
impurity site, should contain fingerprints of whether the
pseudogap regime is characterized by precursor pairing38 or
dDW order.32,30 This is due to the fact that while pairing
aboveTc without phase coherence is a precursor of Cooper
pairing, and therefore of spontaneous breaking of Us1d gauge
invariance, the dDW state can be thought of as being char-
acterized by the spontaneous breaking of particle-hole sym-
metry, in the same way as a charge density wave breaks
pseudospin SUs2d symmetry.39 The LDOS around a nonmag-
netic impurity in thed-wave superconducting(dSC) state,
the dDW, and the competing dSC+dDW phases in the un-
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derdoped regime has been actually calculated, e.g., by Zhu
et al.29

In this context, complementary information is that pro-
vided by the polarizabilityFRsq ,vd of the system, which
gives a measure of the linear response of the charge density
to an impurity potential. In the case ofd-wave superconduct-
ors, it has been demonstrated that the anisotropic dependence
of the superconducting order parameter on the wave vectorq
gives rise to a cloverlike azimuthal modulation ofFRsq ,vd
along the Fermi line for a two-dimensional(2D) system.40

These patterns in theq dependence ofFRsq ,vd are here
confirmed also for a more realistic band for the cuprates. In
addition to that, the dDW result also shows fingerprints of
the Q=sp ,pd nesting properties of such a state.

The paper is organized as follows. In Sec. II, we review
the expression of the polarizability for thed-wave supercon-
ducting state and derive that of thed-wave pseudogap(dPG)
regime, within the precursor pairing scenario. In Sec. III, we
derive the polarizability for the dDW state. By allowing non-
zero values of the hopping ratiot8 / t in the dispersion
relation,41–43 we will explicitly consider the case in which
perfect nesting is destroyed. Such a case is relevant for the
study of the dDW state, given its particle-hole character. In
Sec. IV, we consider the competition of dDW order with a
subdominant dSC state in the underdoping regime. In Sec. V,
we present our numerical results for the polarizability in the
dSC, dPG, and dDW states, both in the static limit and as a
function of frequency. We eventually summarize and make
some concluding remarks in Sec. VI.

II. LINEAR RESPONSE FUNCTION IN THE dSC
AND dPG STATES

Within linear response theory, the displaced charge den-
sity drsr d by a scattering potentialVsr d in the Born approxi-
mation is given by

drsr d =E Vsr 8dFRsr − r 8,EFddr 8, s1d

which implicitly defines the linear response function
FRsr ,EFd at the Fermi energyEF. Here and in the following
we set the elementary chargee=1. Its relevance in establish-
ing the electronic structure of isolated impurities in normal
metals and alloys was emphasized earlier by Stoddartet
al..44,45 In momentum space, Eq.(1) readily translates into
drsqd=VsqdFRsq ,EFd, showing that, for a highly localized
scattering potential in real space[Vsr d=V0dsr d, say], the
Fourier transformdrsqd of the displaced charge is simply
proportional toFRsq ,EFd.

In the presence of superconducting pairing, the generali-
zation of the linear response function is given by the density-
density correlation function(polarizability)46

Fsq,ivnd = Tr
1

b
o
vn

1

No
k

t3Gsk,ivndt3Gsk − q,ivn − ivnd,

s2d

where Gsk , ivnd is the matrix Green’s function in Nambu
notation,b=T−1 is the inverse temperature,vn=2npT is a

bosonic Matsubara frequency,ti are the Pauli matrices in
spinor space, the summations are performed over theN wave
vectors k of the first Brillouin zone(1BZ), all fermionic
Matsubara frequenciesvn=s2n+1dpT, and the trace is over
the spin indices. Here and below we shall use units such that
"=kB=1 and the lattice spacinga=1. The retarded polariz-
ability is defined as usual in terms of the analytic continua-
tion asFRsq ,vd=Fsq , ivn°v+ i0+d. In the normal state, Eq.
(2) correctly reduces to the Lindhard function for the polar-
izability of a free electron gas.47

In the following, by specifying the functional form ofG in
the case of pairing with and without phase coherence, we
will in turn derive the explicit expression forF in the super-
conducting phase with ad-wave order parameter, and in the
pseudogap regime, characterized by fluctuatingd-wave order
(precursor pairing scenario).

A. Superconducting phase

We assume the following BCS-like Hamiltonian:

HdSC= o
ks

jkcks
† cks + o

kk8

Vkk8ck↑
† c−k↓

† c−k8↓ck8↑, s3d

where cks
† scksd is a creation(annihilation) operator for an

electron in the state with wave vectork and spin projection
sP h↑ , ↓ j along a specified direction, andjk =ek −m, with ek
the single-particle dispersion relation:

ek = − 2tscoskx + coskyd + 4t8coskxcosky, s4d

wheret=0.3 eV, t8 / t=0.3 are tight binding hopping param-
eters appropriate for the cuprate superconductors, andm is
the chemical potential. In Eq.(3), Vkk8 is a model potential,
which we assume to be separable and attractive in the
dx2−y2-wave channel: Vkk8=−lgkgk8, with gk = 1

2scoskx

−coskyd and l.0. Under these assumptions, the Hamil-
tonian Eq.(3) is characterized by a nonzero superconducting
order parameterkck↑c−k↓l, leading to a nonzerod-wave
mean-field gapDk =D°gk below the critical temperatureTc.

Making use of the explicit expression for the matrix
Green’s functionGdSC in the superconducting state48

GdSCsk,ivnd =
ivnt0 + jkt3 + Dkt1

sivnd2 − Ek
2 , s5d

with Ek =sjk
2+Dk

2d1/2 the upper branch of the superconducting
spectrum andt0 the identity matrix in spin space, and per-
forming the trace over spin indices and the summation over
the internal frequency47 in Eq. (2), we obtain the linear re-
sponse function for ad-wave superconducting state:46

FdSCsq,ivnd =
1

N
o
k
Fsukuk−q − vkvk−qd2

3S fsEkd − fsEk−qd
Ek − Ek−q − ivn

+ H.c.D
+ suk−qvk + ukvk−qd2

3S fsEkd + fsEk−qd − 1

Ek + Ek−q − ivn

+ H.c.DG , s6d
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where uk
2= 1

2f1+jk /Ekg, vk
2=1−uk

2 are the usual coherence
factors of BCS theory, andfsed=s1+ebed−1 is the Fermi
function at temperatureT. In the limit of zero external fre-
quency andT→0, Eq.(6) reduces to the static polarizability
studied in Ref. 40 for ad-wave superconductor.

B. Pseudogap regime, within the precursor pairing scenario

In the pseudogap regime, forTc,T,T* , within the pre-
cursor pairing scenario,9 one assumes the existence of Coo-
per pairs characterized by a “binding energy”Dk having the
same symmetry as the true superconducting gap belowTc,
but no phase coherence. In other words, no true off-diagonal
long range order develops, and one rather speaks of a “fluc-
tuating” order.8 This means that the quasiparticle spectrum
Ek =sjk

2+Dk
2d1/2 is still characterized by a pseudogapDk

=D°gk opening at the Fermi energy withd-wave symmetry,
but now without phase coherence. Therefore, the diagonal
elements of the matrix Green’s functionGdPG coincide with
those of its superconducting counterpart Eq.(5), while the
off-diagonal, anomalous elements are null:

GdPGsk,ivnd =
ivnt0 + jkt3

sivnd2 − Ek
2 . s7d

The effects due to the finite lifetime of the precursor Cooper
pairs can be mimicked by adding a finite imaginary energy
linewidth iG to the dispersion relation entering Eq.(7), or by
substituting the spectral functions associated with the quasi-
particle states with “broadened” ones, as discussed in Appen-
dix A. The relation between the two approaches and with
analytical continuation has been discussed in Appendix A of
Ref. 49.

Within this precursor pairing scenario, Eq.(2) in the
pseudogap regime then reads

FdPGsq,ivnd =
1

N
o
k
Fsuk

2uk−q
2 + vk

2vk−q
2 d

3S fsEkd − fsEk−qd
Ek − Ek−q − ivn

+ H.c.D
+ suk−q

2 vk
2 + uk

2vk−q
2 d

3S fsEkd + fsEk−qd − 1

Ek + Ek−q − ivn

+ H.c.DG , s8d

where we are implicitly assumingTc,T,T* .

III. LINEAR RESPONSE FUNCTION IN THE dDW STATE

The mean-field Hamiltonian for thed-density-wave state
is13

HdDW = o
ks

fjkcks
† cks + iDkcks

† ck+Qsg, s9d

where the summation is here restricted to all wave vectorsk
belonging to the first Brillouin zone,Q=sp ,pd is the dDW
ordering wave-vector, andDk =D°gk is the dDW order pa-
rameter. As anticipated above, the dDW state is characterized
by a broken symmetry and a well-developed order parameter,

at variance with the precursor pairing scenario of the
pseudogap regime. Such a state is associated with staggered
orbital currents circulating with alternating sense in the
neighboring plaquettes of the underlying square lattice. As a
result, the unit cell in real space is doubled, and the Brillouin
zone is correspondingly halved. At variance with other “den-
sity waves,” the dDW order is characterized not by charge or
spin modulations, but rather by current modulations.

The nonzero, singlet order parameterFQ breaks pseu-
dospin invariance in the particle-hole space:

kck+Qs
† cks8l = iFQgkdss8. s10d

Whereas it possessesd-wave symmetry, as expected, its
imaginary value leads to the breaking of a relatively large
number of symmetries, such as time reversal, parity, transla-
tion by a lattice spacing, and rotation byp /2, although the
product of any two of these is preserved(see Ref. 21 for a
detailed analysis).

Introducing the spinorCks
† =scks

† ck+Qs
† d, the dDW Hamil-

tonian Eq.(9) can be conveniently rewritten as20,21

HdDW = oks
8 Cks

† fsek
+ − mdt0 + ek

−t3 + Dkt1gCks, s11d

where ek
±= 1

2sek ±ek+Qd, and the prime restricts the summa-
tion over wave vectorsk belonging to the reduced(“mag-
netic”) Brillouin zone only. Notice thatek+Q

± = 7ek
±. Corre-

spondingly, the matrix Green’s function at the imaginary
time t can be defined asGdDWsk ,td=−kTtCksstdCks

† s0dl,
whose inverse reads:21,30

GdDW
−1 sk,ivnd = Sivn − jk iDk

− iDk ivn − jk+Q
D . s12d

In the case of perfect nestingst8=0d for the dispersion rela-
tion Eq. (4), Sharapovet al.21 explicitly find

GdDWsk,ivnd =
sivn + mdt0 + ekt3 − Dkt2

sivn + md2 − ek
2 − Dk

2 , s13d

to be compared and contrasted with Eq.(5) for the supercon-
ducting phase. Notice, in particular, the different way the
chemical potentialm enters the two expressions.

In the general casest8Þ0d, perfect nesting is lost, and we
have to refer to the general form ofGdDW

−1 , Eq.(14). One finds

GdDWsk,ivnd =
1

sivn − Ek
+dsivn − Ek

−d

3 Sivn − jk+Q − iDk

iDk ivn − jk
D , s14d

whereEk
±=−m+ek

+±Îsek
−d2+Dk

2 are the two branches of the
quasiparticle spectrum obtained by diagonalizing Eq.(9).20

Notice thatEk+Q
± =Ek

±.
In the limit t8=0, Eq. (14) correctly reduces to Eq.(13),

even though it is not straightforward to express Eq.(14) in
the same compact matrix notation. In the limit of perfect
nestingst8=0d, the dispersion relation Eq.(4) is antisymmet-
ric with respect to particle-hole conjugation,ek+Q=−ek. As a
result, Ek

±=−m± sek
2+Dk

2d1/2, which is to be contrasted with
the quasiparticle spectrum of the superconducting state or the
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pseudogap state within the precursor pairing scenario, ±Ek
= ± fsek −md2+Dk

2g1/2. The difference comes again from the
fact that the Bogoliubov excitations in the dSC and dPG
states are Cooper pairs, while the dDW ordered state is char-
acterized by a particle-hole mixture.24,31

The polarizability in the dDW state is derived in Appen-
dix B. We just quote here the final result, which can be cast
in compact matrix notation as

FdDWsq,ivnd = Tr
1

b
o
vn

1

No
k

8kGdDWsk,ivndkGdDWsk − q,ivn

− ivnd, s15d

where nowk=t0+t1, andGdDW is the matrix Green’s func-
tion for the dDW state, Eq.(14). Performing the frequency
summation,47 one eventually finds

FdDWsq,ivnd =
1

N
o
k

8 o
i,j=±

fsEk
i d − fsEk−q

j d
Ek

i − Ek−q
j − ivn

. s16d

IV. COMPETITION BETWEEN dSC AND dDW
ORDERS

In the underdoped regime, it has been predicted on phe-
nomenological grounds that the dDW order should compete
with a subdominant dSC phase.13 This has been confirmed
by model calculations at the mean-field level,25,50 showing
that indeed an existing broken symmetry of dDW kind at
high temperature suppresses that critical temperature for the
subdominant dSC ordered phase. Recently, the competition
between dDW and dSC orders has been shown to be in
agreement with the unusualT dependence of the restricted
optical sum rule, as observed in underdoped HTS’s.51

In order to take into account of the competition between
the dSC and dDW orders at finite temperature, one has to
separately consider the electron states within the two in-
equivalent halves of the Brillouin zone. Therefore, it is con-
venient to make use of the four-component Nambu spinor
Ck

†;sCk↑
† C−k↓

T d, or explicitly

Ck =1
ck↑

ck+Q↑
c−k↓

†

c−k−Q↓
†

2 . s17d

At the mean-field level, the Hamiltonian for the competing
dSC and dDW phases thus reads

HdSC+dDW= o
k

8Ck
†ĤkCk , s18d

whereĤk is the 434 Hermitian matrix defined by

Ĥk =1
jk iDk Dk 0

− iDk jk+Q 0 − Dk

Dk
* 0 − j−k iD−k

0 − Dk
* − iD−k − j−k−Q

2 , s19d

with real eigenvaluesEk i (here,i =0, . . . ,3) given by

Ek i
2 = Dk

2 + Dk
2 − jkjk+Q + sjk + jk+Qdfek

+ − m ± Îsek
−d2 + Dk

2g,

s20d

and orthonormal eigenvectorsuk il (for given k in the re-
duced 1BZ). It may be straightforwardly checked thatEk i
reduces to the dSC superconducting spectrum ±Ek and to the
dDW quasiparticle dispersion relationsEk

±, in the limits D°
=0 (pure dSC) andD°=0 (pure dDW), respectively, when the
halving of the 1BZ is removed.

In the particle-hole symmetric casest8=0d, making use of
the nesting properties described in Sec. III, Eq.(20) simpli-
fies as

Ek i = ± ÎDk
2 + sm ± Îek

2 + Dk
2d2. s21d

For m=0, the four branches of the spectrum degenerate into
the Dirac cone52,53

Ek,0;2,1;3 = ± Îek
2 + Dk

2 + Dk
2, s22d

thus showing that the two gaps have the same role, i.e., the
system may be equivalently described as a dDW or a dSC
superconductor, with ad-wave gapÎDk

2+Dk
2 in either case.

Either a nonzero hopping ratiost8 / tÞ0d or a hole doping
way from half filling (mÞ0 when t8=0) destroys this par-
ticular symmetry, and one has to resort to the eigenvalues
Ek i, Eq. (20).

In order to obtain the Green’s functions in the dSC
+dDW case, it is useful to introduce the 434 matricessi , j
=0, . . . ,3d

Gi j = ti ^ t j , s23d

whose algebra is given by

Gi jGlm = i«i jki«lmnGkn, s24d

where «i jk is the totally antisymmetric Levi-Civita tensor,
and

G33
± =

1

2
sG30 ± G33d. s25d

Then the matrix Hamiltonian Eq.(19) takes the form

Ĥk = ekG33
+ + ek+QG33

− − mG30 − DkG02 + DkG13, s26d

whence the inverse Green’s function(now a 434 matrix in
Nambu space) straightforwardly follows as

GdSC+dDW
−1 sk,ivnd = ivnG00 − Ĥk . s27d

As in the dDW case Eq.(15) (see also Appendix B), the
linear response function in the dSC+dDW case can be given
a compact matrix form as

FdSC+dDWsq,ivnd = Tr
1

b
o
vn

1

No
k

8k̂GdSC+dDWsk,ivnd

3 k̂GdSC+dDWsk − q,ivn − ivnd, s28d

where now the vertex matrix in the 434 Nambu spinor
space is given by
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k̂ = t3 ^ k = St0 + t1 0

0 − t0 − t1
D . s29d

Finally, it can be shown that Eq.(28) also admits the follow-
ing spectral decomposition, analogous to Eq.(16):

FdSC+dDWsq,ivnd =
1

N
o
k

8o
i,j

fsEk id − fsEk−q jd
Ek i − Ek−q j − ivn

uijsk,qd,

s30d

whereuijsk ,qd=Trsk̂Pk ik̂Pk−q jd, and Pk i = uk ilkk i u is the or-
thonormal projector operator on thei eigenstate of the matrix
Hamiltonian Eq.(19).

V. NUMERICAL RESULTS AND DISCUSSION

We have evaluated numerically the polarizability for the
dPG and dDW cases, Eqs.(8) and (16), and for the mixed
dSC+dDW case, Eq.(30), as a function of the relevant vari-
ables. Our numerical results for the pure dSC case turn out to
be very similar to those for the dPG case(at least over the
range of variables considered below) and will not be shown
here. In the dPG and the pure dDW cases, we adopt the
following set of parameters, which are believed to be rel-
evant for the cuprate superconductors:t=0.3 eV, t8 / t=0.3,
m=−t, corresponding to a holelike Fermi line and a hole
doping ,14.3%, D°=D°=0.06 eV in the dPG and dDW
cases, respectively,27 andT=100 K.

A. Zero external frequency

In order to make contact with earlier work,40 we first con-
sider the case of zero external(bosonic) frequency,vn=0, in
the time-ordered polarizabilities Eqs.(8) and (16).

Our numerical results for the wave-vector dependence of
Fsq ,0d over the 1BZ in the dPG and in the pure dDW cases
are shown in Figs. 1 and 2, respectively. As a result of the
d-wave symmetry of both the pseudogap within the precur-
sor pairing scenario and the dDW order parameter,Fsq ,0d is
characterized by a four-lobed pattern or azimuthal
modulation.40 However, the dDW case is also characterized
by the presence of “hole pockets,” centered aroundQ /2
=sp /2 ,p /2d and symmetry related points, due to the(albeit
imperfect) nesting properties of the dDW state, with nesting
vectorQ=sp ,pd [see Fig. 2(b)]. Such a feature is reflected
in theq dependence ofFdDWsq ,0d, which is characterized by
local maxima at the hole pockets, for the valuem=−t of the
chemical potential considered here.(Other values of the
chemical potentials give rise to analogous features, which are
absent in the dPG case.)

Figure 3 shows our numerical results for the static polar-
izability Fsq ,0d in the mixed dSC+dDW case Eq.(30). Rep-
resentative values of the amplitudes of the dSC and dDW
order parameters have been taken as in Ref. 50, viz.D°
=0.1t=0.03 eV, D°=0.08t=0.024 eV, at T=0.01t.35 K,
for a particlelike Fermi line in the underdoped regime
(t=0.3 eV,t8 / t=0.3,m=−0.2016 eV). Figure 3(b) shows the
contour plot of the eigenvalue spectrumEk i Eq. (20). The
latter is characterized by pronounced minima near the hot

spots atQ /2, which evolve into conelike nodes in the limit
of pure dSCsD°=0d, or in the very special caset8=m=0 [see
Eq. (22)]. Accordingly, Fig. 3(a) for the static polarizability
Fsq ,0d over the 1BZ is characterized by local maxima at the
hot spots centered aroundQ /2, as is the case in the pure
dDW case[cf. Fig. 2(a)]. Whereas the precise behavior of the
static polarizabilityFsq ,0d is of course determined by the
actual amount of dSC+dDW mixing at a given temperature
and doping, we can conclude that a sizable dDW component
manifests itself through the appearance of hole pockets cen-
tered aroundQ /2 in theq dependence ofFsq ,0d, also in the
presence of a dSC condensate.

We next evaluated the spatial dependence ofFsr ,0d (not
shown), by Fourier transformingFsq ,0d to real space. While
Fsr ,0d is characterized by Friedel-like oscillations asur u in-
creases from the impurity site, as expected,40,50 these radial,
damped oscillations have superimposed on them an azi-
muthal modulation, due to thed-wave symmetry of the nor-
mal state, both in the dPG and in the dDW cases. As a con-

FIG. 1. Static polarizability for the dPG state in momentum
space,FdPGsq ,0d, Eq. (8), in eV−1, for D°=0.06 eV,T=100 K, and
m=−t=−0.3 eV, corresponding to the holelike Fermi line in the
normal state shown in(b). (b) also reports the special pointsG
=s0,0d, X=sp ,0d, M =sp ,pd, along with the pointsA andB where
the Fermi linejk =0 intersects the symmetry contourG-X-M-G.
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sequence,Fsr ,0d is characterized by a checkerboard pattern,
closely related to the symmetry of the underlying square lat-
tice, with local maxima on the nearest neighbor and local
minima on the next-nearest neighbor sites. Since these fea-
tures are common to both the dPG and dDW cases, the spa-
tial dependence of the charge density oscillations is not di-
rectly helpful in distinguishing between the dPG and dDW
states. However, real-space and wave-vector dependences of
several quantities of interest for STM studies can be easily
connected by means of Fourier transform(FT) scanning tun-
neling microscopy(FT-STM) techniques(see, e.g., Ref. 54
and references therein). Such a technique has proved very
effective in detecting large-amplitude Friedel oscillations of
the electron density on the Bes0001d (Refs. 55 and 56) and

Bes101̄0d surfaces,57 and has been recently discussed in con-
nection with experimental probes of fluctuating stripes in the
HTS’s.58 In particular, FT-STM experiments55–57 have evi-
denced the role of correlation and reduced dimensionality in
establishing such “giant” Friedel oscillations in the electron
density.

B. Frequency dependence

We have next evaluated the frequency dependence of the
retarded polarizabilities, in both the dPG and dDW cases.
Figures 4 and 5 show our numerical results for thev depen-
dence of FdPG

R sq ,vd and FdDW
R sq ,vd, respectively. Each

curve refers to either the real or the imaginary part of
FRsq ,vd as a function ofv, for a fixed value of wave vector
q along the symmetry contourG-X-M-G in the 1BZ [see
Figs. 1(b) and 2 for its definition]. While q runs along such
contour, the Fermi linejk =0 is traversed twice[once at point
A along X-M and once atB along M-G, for the holelike
Fermi line considered here; see Fig. 1(b)], while the hole-
pocket contour defined byEk

−=0 is traversed twice along the
M-G line [pointsB1;B andB2 in Fig. 2(b)].

As a consequence of the summation overk in either the
full or reduced BZ in Eqs.(8) and (16), respectively,
ReFRsq ,vd is an even function ofv, while ImFRsq ,vd is an
odd function ofv in both the dPG and dDW cases. There-
fore, the different contributions of particle and hole states in

FIG. 2. Static polarizability for the pure dDW state in momen-
tum space,FdDWsq ,0d, Eq. (16), in eV−1 (a), for D°=0.06 eV,T
=100 K, andm=−t=−0.3 eV, corresponding to the hole pockets
Ek

−=0 shown in(b). (b) also reports the special pointsG=s0,0d,
X=sp ,0d, M =sp ,pd, along with the pointsB1 and B2 where the
line Ek

−=0 intersects the symmetry contourG-X-M-G.

FIG. 3. Static polarizability for the mixed dSC+dDW state in
momentum space,FdSC+dDWsq ,0d, Eq. (30), in eV−1 (a), for D0

=0.1t=0.03 eV, D°=0.08t=0.024 eV, T=0.01t.35 K (Ref. 50),
and m=−0.2016 eV, corresponding to a particlelike Fermi line
closed around theG point (underdoped regime). (b) shows the con-
tour plots of the eigenvalue spectrumEk i, Eq. (20).
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the two cases are averaged out, and no asymmetric peaks in
thev dependence of such quantities are to be expected in the
dDW case, as is the case for the local density of states.30,31

On the other hand, the existence of hole pockets centered
aroundQ /2 in the dDW state is clearly responsible for the
differentv dependence of ReFdPG

R [Fig. 4(a)] versus ReFdDW
R

[Fig. 5(a)], say, asq runs along theG-X-M-G contours.
While ReFdPG

R is characterized by a single relative maximum
for v.0 for all wave vectorsq under consideration, ReFdDW

R

possesses two relative maxima(or a relative maximum and a
shoulder) for v.0. These two maxima tend to merge into a
single one forB2aqaB1, i.e., inside the hole pocket, and
for q<A, i.e., at the intersection of the free particle Fermi
line with theX-M side[Fig. 5(a)]. Likewise, the single rela-
tive maximum forv.0 in ReFdDW

R shifts toward larger fre-
quencies asq runs fromG to X, is “diffracted” atA along the

Fermi line asq runs fromX to M, and “bounces back” atB,
again along the Fermi line, asq runs fromM back toG. A
similar analysis may be performed for ImFR in the two cases
[Figs. 4(b) and 5(b)].

As in the static limit, the competition of a sizable dDW
order parameter with an underlying dSC condensate does not
give rise to qualitatively different results in thev depen-
dence of the polarizability, with respect to the pure dDW
case.

One may conclude that, in both the dPG and dDW cases,
the evolution withq of the features in thev dependence of
FRsq ,vd are closely related to the location of the wave vec-
tor q with respect to the Fermi line, and may therefore serve
to indicate the presence of hole pockets, as is the case for the
dDW state.

VI. CONCLUSIONS

Motivated by recent STM experiments around a localized
impurity in the HTS’s, we have derived the polarizability
(density-density correlation function) Fsq ,vd for the
pseudogap phase, both in the precursor pairing scenario and
in the d-density-wave scenario. Expressions for the same

FIG. 4. Frequency dependence of the real(a) and imaginary(b)
parts of the retarded polarizabilityFRsq ,vd, in the dPG case, for
wave vectorq varying along a symmetry contourG-X-M-G in the
1BZ [see Fig. 1(b)]. All curves have been shifted vertically for
clarity, by an amount proportional to the path length fromG to the
actual wave vectorq along this symmetry contour(see right scale).
Dotted line is the zero axis forFRs0,vd. All other parameters as in
Fig. 1.

FIG. 5. Same as Fig. 4, but for the dDW case. Special points in
the 1BZ are as in Fig. 2(b).
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function have been derived also in the underdoped regime,
characterized by competing dSC+dDW orders.

In the static limit(here defined as the limit of zero exter-
nal frequency for the time-ordered correlation function), the
q dependence ofFsq ,0d reflects thed-wave symmetry of the
precursor pairing “pseudogap” or of the dDW order param-
eter, with an azimuthal modulation consistent with a clover-
like pattern, as expected also for a superconductor with an
isotropic band.40 However, at variance with the dPG case, the
q dependence of the static polarizability in the dDW state
clearly exhibits the presence of hole pockets, due to the(al-
beit imperfect) nesting properties of the dDW state, with
nesting vectorQ=sp ,pd. Qualitatively similar results to the
pure dDW case are obtained also in the mixed dSC+dDW
case, thus showing that hole pockets are a distinctive feature
of dDW order. Such behavior is confirmed by ther depen-
dence of the static polarizability in real space. A detailed
comparison with experimental data for ther dependence of
the charge density displacement would of course require a
much more detailed knowledge of theq dependence of the
impurity potential, here crudely approximated with an
s-wave Diracd function. In particular, the presence of higher
momentum harmonics in the impurity potential may break
the d-wave symmetry of the possible correlated or ordered
states(dPG, dSC, dDW) here studied. Also, an extension of
the present Born approximation for the impurity perturba-
tion, e.g., to theT-matrix formalism, would afford a more
reliable comparison with experimental results.

An analysis of the frequency dependence of the retarded
polarizability FRsq ,vd reveals that theq evolution of the
features(local maxima or shoulders) in thev dependence of
this function is closely connected with the relative position
of the wave vectorq with respect to the Fermi line and is
therefore sensitive to the possible presence of hole pockets,
as is the case for the dDW state.
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APPENDIX A: FINITE LIFETIME EFFECTS

In order to take into account the finite lifetime effects on
the linear response function for the pseudogap regime within
the precursor pairing scenario, we write the diagonal ele-
ments of the matrix Green’s function as

Giisk,ivnd =
1

2p
E dv

Aiisk,vd
ivn − v

, sA1d

where A11sk ,vd=2puk
2dsEk −vd, A22sk ,vd=2pvk

2dsEk +vd
are the appropriate spectral functions for BCS theory.

A finite energy linewidthG can be attached to the energy
stateEk by replacing thed functions in the spectral functions
Aii with broader ones, e.g., a Lorentzian functionasvd
=s1/pdG / sv2+G2d. Setting

Ask,vd = 2pfuk
2asEk − vd + vk

2asEk + vdg, sA2d

in the static limit one obtains

FdPG
R sq,vext = 0d = −E fsvd − fsv8d

v − v8
fsq,v,v8ddv dv8,

sA3d

where

fsq,v,v8d =
1

s2pd2

1

N
o
k

Ask,vdAsk − q,v8d. sA4d

APPENDIX B: POLARIZABILITY FOR THE dDW
STATE

In order to derive the analog of the polarizability Eq.(2)
for the dDW state, we start by considering the density-
density correlation function

Fsq,td = − kTtrsq,tdrs− q,0dl, sB1d

where rsq ,td=okscqs
† stdck+qsstd is the electron density op-

erator, andTt denotes ordering with respect to the imaginary
time t. Application of Wick’s theorem then yields

Fsq,td = o
kk8
ss8

kTtck+qsstdck8s8
† s0dlkTtck8−qs8s0dcks

† stdl

− krsq,0dlkrs− q,0dl, sB2d

the last term being a constant with respect tot, which can be
neglected in Fourier transforming to the Matsubara fre-
quency domain. In the dDW state, the contributions of terms
like Eq. (10) should be explicitly considered. Therefore, we
make use of the identity

o
k

fk = o
k

8sfk + fk+Qd sB3d

for the summations on bothk andk8 in Eq. (B2), where the
prime restricts the summation to wave vectorsk belonging to
the reduced(magnetic) Brillouin zone. After Fourier trans-
forming to the Matsubara frequency domain, one eventually
has

FdDWsq,ivnd =
1

b
o
vn

1

No
k

8fG11sk,ivnd

+ G12sk,ivnd + G21sk,ivnd + G22sk,ivndg

3fG11sk − q,ivn − ivnd

+ G12sk − q,ivn − ivnd + G21sk − q,ivn − ivnd

+ G22sk − q,ivn − ivndg, sB4d

whereGi j are the entries ofGdDWsk , ivnd in Eq. (14). The last
expression can then be cast into the compact matrix form Eq.
(15) by introducing the constant auxiliary matrixk=t0+t1

= s 1 1
1 1

d. Equation (B4) simplifies further, by observing that
G12=−G21 and thatG11+G22=sivn−Ek

+d−1+sivn−Ek
−d−1.
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