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We derive the polarizability of an electron system(iinthe superconducting phase, willwave symmetry,
(ii) the pseudogap regime, within the precursor pairing scenario(iahdhe d-density-wave(dDW) state,
characterized by d-wave hidden order parameter, but no pairing. Such a calculation is motivated by the recent
proposals that imaging the effects of an isolated impurity may distinguish between precursor pairing and dDW
order in the pseudogap regime of the hithsuperconductors. In all three cases, the wave-vector dependence
of the polarizability is characterized by an azimuthal modulation, consistent wittiiveve symmetry of the
underlying state. However, only the dDW result shows the fingerprints of nesting, with nesting wave vector
Q=(m,m), albeit imperfect, due to a nonzero value of the hopping tatibin the band dispersion relation. As
a consequence of nesting, the presence of hole pockets is also exhibited (my, ¢hedependence of the
retarded polarizability.
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[. INTRODUCTION properties of the HTS'$! These include transport properties,
such as the electrical and thermal conductivifiésand the
Imaging of the electronic properties around an isolatecHall effect??23 thermodynamic properti€d;?> time symme-
nonmagnetic impurity such as Zn in the higp-supercon- try breaking?® and angular resolved photoemission spectros-
ductors(HTS's) has provided direct evidence of the uncon- copy (ARPES.?” The possible occurrence of a dDW state in
ventional nature of the superconducting state in the cuprateg)icroscopic models of correlated electrons has been checked
and in particular of thel-wave symmetry of its order param- in ladder networkg? S
eter below the critical temperatufie.’ In the underdoped It has been recently proposed that direct imaging of the
regime of the HTS's, various models have been proposed ttcal density of statesL DOS) around an isolated impurity
describe the pseudogap state abdye by means of scanning tunneling microsco&TM) cou[d
Several experimental results provide substantial evidencBelP in understgndg% the nature of the “normal” state in the
of a pseudogap opening at the Fermi level in underdopeﬁsel“'dog_lap reginfé. Th_e |d_ea that_ an anisotropic super-
cuprates fof,< T<T’, even though no unique definition of conductmg gap shoulql give rise to directly obseryable_spatlal
the characteristic temperatufié is possible, as it generally fsieglgt;gasfeg g;/e él;g?st“g? ?’C?’o\r/]v%lﬁaag]scigrtlaig Z?u'giaur:% was
gi?sengzr?g éh]%?;n;':\lli:j\?e;n;ig;aelr;iiggl?ﬁgrgpgc?ﬁj considered perturbations of the order parameter to occur
- o ’ within a distance of the order of the coherence length
doping dependence 6F is still a matter of controversy.

g e d h d has b around an impurity. Later, it was shown that an isolated im-
Owing to its d-wave symmetry, the pseudogap has been, v in a d-wave superconductor produces virtual bound

naturally interpreted in terms of precursor superconductingiates close to the Fermi level, in the nearly unitary I#it.
pairing. In particular, the pseudogap has been associated wity,ch g quasibound state should appear as a pronounced peak
phase fluctuations of the order paraméeoveT, (see Ref.  near the Fermi level in the LDOS at the impurity sites is
9 for a review. Within this precursor pairing scenario, the jndeed observed in B®BrL,CaCuyOg (Bi-2212! and
phase diagram of the HTS'’s can be described as a crossoveBa,Cu,0q_, (YBCO).%’
from Bose-Einstein condensatigin the underdoped regime In the normal state, the frequency-dependent LDOS at the
to BCS superconductivityin the overdoped regim&-1? nearest and next-nearest neighbor sites, with respect to the
Recently, it has been proposed that many properties of thienpurity site, should contain fingerprints of whether the
pseudogap regime may be explained within the frameworlpseudogap regime is characterized by precursor p&fing
of the so-called-wave-density scenari@DW).1325Thisis ~ dDW order®?* This is due to the fact that while pairing
based on the idea that the pseudogap regime be characterizalepve T, without phase coherence is a precursor of Cooper
by a fully developed order parameter, at variance with thepairing, and therefore of spontaneous breaking df)dauge
precursor pairing scenario, where a fluctuating order paraninvariance, the dDW state can be thought of as being char-
eter is postulated. The dDW state is an ordered state of uracterized by the spontaneous breaking of particle-hole sym-
conventional kind, and is usually associated with staggeredhetry, in the same way as a charge density wave breaks
orbital currents in the CuQsquare lattice of the HTS®-1°  pseudospin S(2) symmetry*® The LDOS around a nonmag-
Much attention has been recently devoted to showing thaetic impurity in thed-wave superconductingdSO state,
consistency of the dDW scenario with several experimentathe dDW, and the competing dSC+dDW phases in the un-
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derdoped regime has been actually calculated, e.g., by Zhoosonic Matsubara frequency, are the Pauli matrices in
et al?® spinor space, the summations are performed oveNthave

In this context, complementary information is that pro-vectorsk of the first Brillouin zone(1BZ), all fermionic
vided by the polarizabilityFR(q,w) of the system, which Matsubara frequencies,=(2n+1)#T, and the trace is over
gives a measure of the linear response of the charge densitlye spin indices. Here and below we shall use units such that
to an impurity potential. In the case dfwave superconduct- 7=kg=1 and the lattice spacing=1. The retarded polariz-
ors, it has been demonstrated that the anisotropic dependenaiility is defined as usual in terms of the analytic continua-
of the superconducting order parameter on the wave vector tion asFR(q, w)=F(q,iw,— w+i0%). In the normal state, Eq.
gives rise to a cloverlike azimuthal modulation Bf(q,»)  (2) correctly reduces to the Lindhard function for the polar-
along the Fermi line for a two-dimension@D) systent: izability of a free electron ga¥.

These patterns in the dependence ofR(q,w) are here In the following, by specifying the functional form ¢fin
confirmed also for a more realistic band for the cuprates. Ithe case of pairing with and without phase coherence, we
addition to that, the dDW result also shows fingerprints ofwill in turn derive the explicit expression fd¥ in the super-
the Q=(ar,7) nesting properties of such a state. conducting phase with dwave order parameter, and in the

The paper is organized as follows. In Sec. 1, we reviewpseudogap regime, characterized by fluctuativgave order
the expression of the polarizability for tliewave supercon- (precursor pairing scenapio
ducting state and derive that of tdewave pseudoga@@PG
regime, within the precursor pairing scenario. In Sec. Ill, we A. Superconducting phase
derive the polarizability for the dDW state. By allowing non-
zero values of the hopping ratit//t in the dispersion
relation;*~** we will explicitly consider the case in which Hasc™ 2 &ClCks + > ViaoChicly Cor G, (3)
perfect nesting is destroyed. Such a case is relevant for the ks Kk
study of the dDW state, given its particle-hole character. In . ) ) o
Sec. IV, we consider the competition of dDW order with aWherec, (Ccs) is a creation(annihilatior) operator for an
subdominant dSC state in the underdoping regime. In Sec. \glectron in the state with wave vectorand spin projection
we present our numerical results for the polarizability in thes€ {T, | } along a specified direction, arfd= €, - u, with €
dScC, dPG, and dDW states, both in the static limit and as &e single-particle dispersion relation:
function of frequency. We eventually summarize and make
some concluding remarks in Sec. VI.

We assume the following BCS-like Hamiltonian:

& = — 2t(cosk, + cosk,) + 4t’cosk,cosk,, (4)

wheret=0.3 eV,t’/t=0.3 are tight binding hopping param-

eters appropriate for the cuprate superconductors, aisl

the chemical potential. In Eq3), V. is a model potential,
Within linear response theory, the displaced charge denwhich we assume to be separable and attractive in the

sity dp(r) by a scattering potential(r) in the Born approxi- dy2_,2-wave channel: Vi, =-Ngygys, With gk=%(COSkX

Il. LINEAR RESPONSE FUNCTION IN THE dSC
AND dPG STATES

mation is given by —-cosk,) and A>0. Under these assumptions, the Hamil-
tonian Eq.(3) is characterized by a nonzero superconducting
Sp(r) = f V(rFR(r =1’ Ep)dr, (1) order parametercy,C ), leading to a nonzera-wave
mean-field gap\, =A-g, below the critical temperatur€,.

Making use of the explicit expression for the matrix

which implicitly defines the linear response function Green's functionGysc in the superconducting stéfe

FR(r ,Ep) at the Fermi energ§e. Here and in the following
we set the elementary charge 1. Its relevance in establish- ) w0+ &3+ ATy

ing the electronic structure of isolated impurities in normal GasdK,iwy) = ()%~ E2 ' (5)
metals and alloys was emphasized earlier by Stoddart On K

al.*4%5 In momentum space, Eql) readily translates into with E,=(&+A2)Y2 the upper branch of the superconducting
dp(q)=V(q)FR(q,Eg), showing that, for a highly localized spectrum andr, the identity matrix in spin space, and per-
scattering potential in real spad®(r)=Vyd(r), say, the forming the trace over spin indices and the summation over
Fourier transformdp(q) of the displaced charge is simply the internal frequendy in Eq. (2), we obtain the linear re-

proportional toFR(q, Eg). sponse function for a-wave superconducting stafté:

In the presence of superconducting pairing, the generali- 1
zation of the Iine_zar response fun_ctior_1_is given by the density- FasdQsiw,) = => [(ukuk—q - Ukvk—q)2
density correlation functiogpolarizability)*® N7y

_ 1ol _ o f(Ex) — f(Ex—q)
F(Q,iw,) = Tr/—g% Nzk: 73G(K,iwy) Gk - Qi —iw,), X(Ek ~Erq-io, +H.c.
(2) + (Ug—qUk + ukvk—q)2

where G(k ,iw,) is the matrix Green’s function in Nambu X<f(Ek) +f(Exg)— 1 +H c) ©)
notation, 3=T"! is the inverse temperaturey,=2v7T is a Ex +Exq—iw, VR
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where uE:%[l +&E], uﬁzl—uﬁ are the usual coherence at variance with the precursor pairing scenario of the
factors of BCS theory, and(e)=(1+e%9)! is the Fermi pseudogap regime. Such a state is associated with staggered
function at temperatur@. In the limit of zero external fre- oOrbital currents circulating with alternating sense in the
quency andr — 0, Eq.(6) reduces to the static polarizability neighboring plaquettes of the underlying square lattice. As a
studied in Ref. 40 for a-wave superconductor. result, the unit cell in real space is doubled, and the Brillouin
zone is correspondingly halved. At variance with other “den-
sity waves,” the dDW order is characterized not by charge or
spin modulations, but rather by current modulations.

In the pseudogap regime, fa,<T<T', within the pre- The nonzero, singlet order parametbp, breaks pseu-
cursor pairing Scenarl%pne assumes the existence of COO'dospin invariance in the partic'e-h0|e space:

per pairs characterized by a “binding energy;’ having the s .
same symmetry as the true superconducting gap balow (ChrqsCis) = 1Pk Sss - (10

but no phase coherence. In other words, no true off-diagonq\nereas it possessabwave symmetry, as expected, its
Iong_ ra”nge order (_Jlevelops, and one rathe_r Sp?aks ofa flu‘ﬁ’naginary value leads to the breaking of a relatively large
tuating orzdf,f This means that the quasiparticle spectrumymher of symmetries, such as time reversal, parity, transla-
B =(gc+Aj) " is still characterized by a pseudogafk g, py 4 Jattice spacing, and rotation by 2, although the

=A-g, opening at the Fermi energy withwave symmetry, nroduct of any two of these is preservesbe Ref. 21 for a
but now without phase coherence. Therefore, the diagong|etailed analysis

elements of the matrix Green’s functighypg coincide with
those of its superconducting counterpart Es), while the
off-diagonal, anomalous elements are null;

B. Pseudogap regime, within the precursor pairing scenario

Introducing the spinofV}=(clcl. oo, the dDW Hamil-
tonian Eq.(9) can be conveniently rewritten /g!
_ ! T -
lwamo + 73 Hoow= 2, Vid (6~ W7o+ 73+ Dy W, (11)
(i wn)z - EE .

GapdK,iwn) = )

where EJi:%(ekiekJ,Q), and the prime restricts the summa-
The effects due to the finite lifetime of the precursor COOpeIIIO?. ?veBr _nva\{e vectork IbelﬁnglngtLO g_fe r_eguﬁe(émag'
pairs can be mimicked by adding a finite imaginary energ;ﬁe 'Cg. rll Ol:;]n zonc;:‘.onGy. 0,'0? at' k+Q_t+t;E' ~orre-
linewidthiI" to the dispersion relation entering E{), or by spondingly, the matrix reen's function at the |Tmag|nary

P ; - - fime 7 can be defined agpw(k, ) =—(T ¥V, (7)V,(0))
substituting the spectral functions associated with the quasl- . 2430 dDWAR Trks ks\ /o
particle states with “broadened” ones, as discussed in Appei!N0Se inverse reads:

dix A. The relation between the two approaches and with o iwn— & iDy
analytical continuation has been discussed in Appendix A of Gapwik,iwp) =1 DL e : (12)
Ref. 49. D 1on=&eq
Within this precursor pairing scenario, EQR) in the In the case of perfect nestirgf =0) for the dispersion rela-
pseudogap regime then reads tion Eq. (4), Sharapowet al?* explicitly find
; 1 2 2 2.2 . _(lon+ w) 7o+ 73— Dy
=— + k,i = N , 13
FapdQiw,) NEK‘, [(ukuk_q Vilk—q) Gapw(K,iwp) (ion + @)% - &-D? (13

ducting phase. Notice, in particular, the different way the

f(Ey) — f(E,-
X( ( k) ( Kk g) H.c.
chemical potentiap, enters the two expressions.

) to be compared and contrasted with E5).for the supercon-
Ek - Ek—q - in

+ (Uf_qUi + UpvE_y) In the general casg’ +0), perfectl nesting is lost, and we
H(Ey) + f(Epg) — 1 have to refer to the general form Gf5\, EQ.(14). One finds
Ek + Ek—q - |(I)V ngw(k,iﬂ)n) =—

(iw, = E;)(i o~ Ep)

% (iwn_§k+Q —iDy
iDy fwn = &

The mean-field Hamiltonian for the-density-wave state where Ef=—u+ €, +/(¢,)?+D? are the two branches of the
is'® quasiparticle+spec'[+rum obtained by diagonalizing £.2°
) Notice thatE; ,,=E,.
Hapw = kz [&cCCs + IDkC{Oisasl, ©) In the Iimﬁ '?’:OI,( Eq.(14) correctly reduces to Eq13),

s even though it is not straightforward to express E@}) in
where the summation is here restricted to all wave vedtors the same compact matrix notation. In the limit of perfect
belonging to the first Brillouin zoneQ =(, 7) is the dDW  nesting(t’ =0), the dispersion relation E¢4) is antisymmet-
ordering wave-vector, an®,=D.g, is the dDW order pa- ric with respect to particle-hole conjugatiog,.o=—¢. As a
rameter. As anticipated above, the dDW state is characterize@sult, E; =—u+ (e2+DZ)*2, which is to be contrasted with
by a broken symmetry and a well-developed order parametethe quasiparticle spectrum of the superconducting state or the

where we are implicitly assuming.<T<T".

Ill. LINEAR RESPONSE FUNCTION IN THE dDW STATE )1 149
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Es+e[lzd09ap2 stagell\évlthln thg precursor pairing §cenaf¢'q1, * Eﬁi = Aﬁ + DE — ot (G + §k+Q)[E§ —ut \,/(GE)z " Dﬁ],
=*[(eg—w)°+A]"“ The difference comes again from the 20
fact that the Bogoliubov excitations in the dSC and dPG (20
states are Cooper pairs, while the dDW ordered state is chagnd orthonormal eigenvectofki) (for given k in the re-
acterized by a particle-hole mixtufé3! duced 1B3Z. It may be straightforwardly checked thE;
The polarizability in the dDW state is derived in Appen- reduces to the dSC superconducting spectripand to the
dix B. We jUSt quote here the final result, which can be casgpw quasipar'[ide dispersion re|atio|ﬁ7 in the limits D-

in compact matrix notation as =0 (pure dSG andA-=0 (pure dDW, respectively, when the
1.1 halving of the 1BZ is removed.
Faow(@hiw,) = Tr=2>, = > ' kGaow(K,iwn) kGapw(k = Q.iwy In the particle-hole symmetric cagg =0), making use of
Bon Nk the nesting properties described in Sec. lll, E2) simpli-
—iw,), (15) fies as
where nowk=r7y+ 71, andGpy is the matrix Green’s func- Eqi= £ VAZ+ (ut &+ D2)2. (21)

tion for the dDW state, Eq14). Performing the frequency

summatiorf’ one eventually finds For u=0, the four branches of the spectrum degenerate into

' ' the Dirac cone*>3
L le, <« fE)-f(Ely)
Fapw(@iw,) = 52" 3 Z= -~ (16)

k

- &
= Bk~ Elq—io, “

E0=2,1=3= * Ve + A} + Dy, (22)
thus showing that the two gaps have the same role, i.e., the
IV. COMPETITION BETWEEN dSC AND dDW system may be equivalently described as a dDW or a dSC
ORDERS superconductor, with @-wave gapyAZ+D?Z in either case.
Either a nonzero hopping rati@’/t+#0) or a hole doping
In the underdoped regime, it has been predicted on pheyay from half filling (z+0 whent'=0) destroys this par-

nomenological grounds that the dDW order should competgcular symmetry, and one has to resort to the eigenvalues
with a subdominant dSC phas&This has been confirmed Ei, Eq.(20).

by model calculations at the mean-field le%®t? showing In order to obtain the Green's functions in the dSC
that indeed an existing broken symmetry of dDW kind at+dDw case, it is useful to introduce thex4t matrices(i , j
high temperature suppresses that critical temperature for theg 3
subdominant dSC ordered phase. Recently, the competition
between dDW and dSC orders has been shown to be in Tij=7® 7, (23
agreement with the unusual dependence of the restricted
optical sum rule, as observed in underdoped HP5's.

In order to take into account of the competition between T Cim = i S1mnlkn (24)
the dSC and dDW orders at finite temperature, one has to
separately consider the electron states within the two inwhere g is the totally antisymmetric Levi-Civita tensor,
equivalent halves of the Brillouin zone. Therefore, it is con-and
venient to make use of the four-component Nambu spinor

whose algebra is given by

i 1
W= (Wl vl ), or explicitly rt,= 5(1“304_r Tso). (25)
C
K Then the matrix Hamiltonian Eq19) takes the form
v=| an :
cly, Hy = 635+ esol's3~ ul's0~ Dil'oo+ Al'ss,  (26)
T . . o
Ck-q| whence the inverse Green’s functigmow a 4x 4 matrix in

At the mean-field level, the Hamiltonian for the competing N@mbu spacestraightforwardly follows as
dSC and dDW phases thus reads

GascrapwiKiiwn) =iwloo— . (27)
_ T
HdSC“’DW‘% Wi, (18 A in the dDW case Eq(15) (see also Appendix B the
linear response function in the dSC+dDW case can be given
whereH, is the 4x 4 Hermitian matrix defined by a compact matrix form as
iD A 0 . RN .
_gk k K Fasceapu(@i®,) = Tr=2 =3 " ikGasc.apwik.iop)
ﬁ _ _IDK §k+Q 0 _Ak (19) Bwn N k
‘ A 0 —& Dy X KGgscrapwK —Oiop —iw,), (28)
0 ~& =B ~&io where now the vertex matrix in the>d4 Nambu spinor
with real eigenvalueg,; (here,i=0,...,3 given by space is given by
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To+7'1 0 )

29
0 —To— T1 ( )

Finally, it can be shown that E¢28) also admits the follow-
ing spectral decomposition, analogous to El):
f(Exi) — F(Ey—q;

. 1 ) )

=N N ARl A TREgy
Fasc+dowd:i®,) N% iE’jEki_Ek_qj_inUu(k,Q),
(30

whereu;(k ,q) =Tr(kPy;kPy_q;), and Py;=|ki)(kil is the or-
thonormal projector operator on theigenstate of the matrix
Hamiltonian Eq.(19).

V. NUMERICAL RESULTS AND DISCUSSION

We have evaluated numerically the polarizability for the
dPG and dDW cases, Eg®8) and (16), and for the mixed
dSC+dDW case, Eq30), as a function of the relevant vari-
ables. Our numerical results for the pure dSC case turn out to
be very similar to those for the dPG cas least over the
range of variables considered beloand will not be shown
here. In the dPG and the pure dDW cases, we adopt the
following set of parameters, which are believed to be rel-
evant for the cuprate superconductars0.3 eV, t'/t=0.3,
u=-t, corresponding to a holelike Fermi line and a hole
doping ~14.3%, A.=D-=0.06 eV in the dPG and dDW
cases, respectively,and T=100 K.

A. Zero external frequency

In order to make contact with earlier wotkwe first con-
sider the case of zero exterriabsonig frequency,w,=0, in
the time-ordered polarizabilities Eqs) and (16). FIG. 1. Static polarizability for the dPG state in momentum

Our numerical resylts for the wavg-vector dependence O;I,pacedeG(q,O), Eq.(8), in eV, for A-=0.06 eV,T=100 K, and
F(q,0) over the 1BZ in the dPG and in the pure dDW cases, = _t=-0.3 eV, corresponding to the holelike Fermi line in the
are shown in Figs. 1 and 2, respectively. As a result of théormal state shown irtb). (b) also reports the special points
d-wave symmetry of both the pseudogap within the precur=(0,0), X=(,0), M=(a, ), along with the point#\ andB where
sor pairing scenario and the dDW order paramété, 0) is  the Fermi lineg =0 intersects the symmetry contolirX-M-T".
characterized by a four-lobed pattern or azimuthal
modulation®® However, the dDW case is also characterizedspots atQ/2, which evolve into conelike nodes in the limit
by the presence of “hole pockets,” centered aro@P  of pure dSQD-=0), or in the very special cagé=u=0 [see
=(m/2,7/2) and symmetry related points, due to {ladbeit  Eq. (22)]. Accordingly, Fig. 3a) for the static polarizability
imperfec) nesting properties of the dDW state, with nestingF(d,0) over the 1BZ is characterized by local maxima at the
vector Q=(m, ) [see Fig. ?)]. Such a feature is reflected hot spots centered arour@/2, as is the case in the pure
in theq dependence df4pw(q,0), which is characterized by dDW case[cf. Fig. 2a)]. Whereas the precise behavior of the
local maxima at the hole pockets, for the vajue—t of the  Static polarizabilityF(q,0) is of course determined by the
chemical potential considered her@ther values of the actual amount of dSC+dDW mixing at a given temperature
chemical potentials give rise to analogous features, which arand doping, we can conclude that a sizable dDW component
absent in the dPG case. manifests itself through the appearance of hole pockets cen-

Figure 3 shows our numerical results for the static polartered aroundQ/2 in theq dependence df(q,0), also in the
izability F(q,0) in the mixed dSC+dDW case E(0). Rep-  presence of a dSC condensate.
resentative values of the amplitudes of the dSC and dDW We next evaluated the spatial dependencé (of,0) (not
order parameters have been taken as in Ref. 50, Aiz. showr), by Fourier transformindr(q,0) to real space. While
=0.11=0.03 eV, D-=0.08=0.024 eV, atT=0.01=35K, F(r,0) is characterized by Friedel-like oscillations |akin-
for a particlelike Fermi line in the underdoped regime creases from the impurity site, as expeciee these radial,
(t=0.3 eV,t'/t=0.3, ©=-0.2016 eV. Figure 3b) shows the damped oscillations have superimposed on them an azi-
contour plot of the eigenvalue spectrugy; Eq. (20). The  muthal modulation, due to thétwave symmetry of the nor-
latter is characterized by pronounced minima near the hatal state, both in the dPG and in the dDW cases. As a con-

(b) - - - K
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3 2 A 0 1 2 3 (b) _ _ _ k
(b) ky

FIG. 3. Static polarizability for the mixed dSC+dDW state in
FIG. 2. Static polarizability for the pure dDW state in momen- momentum spaceFysc+apw(d,0), Eq. (30), in eVt (a), for A,
tum spaceFaow(d,0), Eq. (16), in eV (a), for D-=0.06 eV, T =0,1=0.03 eV, D-=0.08=0.024 eV, T=0.01~35 K (Ref. 50,
=100 K, andu=-t=-0.3 eV, corresponding to the hole pockets and ,,=-0.2016 eV, corresponding to a particlelike Fermi line
E,=0 shown in(b). (b) also reports the special point3=(0,0,  closed around thE point (underdoped regime(b) shows the con-

X=(m,0), M=(m, ), along with the points3; and B, where the  toyr plots of the eigenvalue spectrugp;, Eq. (20).
line E, =0 intersects the symmetry contoli¥xX-M-I".

sequencek(r,0) is characterized by a checkerboard pattern, B. Frequency dependence
closely related to the symmetry of the underlying square lat- We have next evaluated the frequency dependence of the

tice, with local maxima on the nearest neighbor and local ctarded polarizabiliies, in both the dPG and dDW cases.

minima on the next-nearest neighbor sites. Since these fea: .
tures are common to both the dPG and dDW cases, the sp5i9ures 4 and 5 show our numerical results for éhdepen-
dence of F{.dq,w) and FX,,(q,w), respectively. Each

tial dependence of the charge density oscillations is not di ) I )
rectly helpful in distinguishing between the dPG and dDwecurve refers to either the real or the imaginary part of
states. However, real-space and wave-vector dependencesfoi(d, ) as a function ofo, for a fixed value of wave vector
several quantities of interest for STM studies can be easilgl along the symmetry contour-X-M-I" in the 1BZ [see
connected by means of Fourier transfaiffT) scanning tun-  Figs. Xb) and 2 for its definitiolh While g runs along such
neling microscopy(FT-STM) techniquegsee, e.g., Ref. 54 contour, the Fermi ling, =0 is traversed twicgonce at point
and references therginSuch a technique has proved very A along X-M and once a8 along M-T", for the holelike
effective in detecting large-amplitude Friedel oscillations ofFermi line considered here; see Figbyl, while the hole-
the electron density on the B#¥001) (Refs. 55 and 56and  pocket contour defined big, =0 is traversed twice along the

Be(1010) surfaces, and has been recently discussed in con-M-I' line [pointsB; =B andB, in Fig. 2b)].

nection with experimental probes of fluctuating stripes in the As a consequence of the summation oken either the
HTS's5® In particular, FT-STM experimerits®’ have evi- full or reduced BZ in Egs.(8) and (16), respectively,
denced the role of correlation and reduced dimensionality ifrReFR(q, w) is an even function ofs, while ImFR(q, w) is an
establishing such “giant” Friedel oscillations in the electronodd function ofw in both the dPG and dDW cases. There-
density. fore, the different contributions of particle and hole states in
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FIG. 5. Same as Fig. 4, but for the dDW case. Special points in
FIG. 4. Frequency dependence of the r@aland imaginaryb) the 1BZ are as in Fig.(B).

parts of the retarded polarizabilifyR(q, »), in the dPG case, for

wave vectorg varying along a symmetry contoli-X-M-I" in the  Fermi line asg runs fromX to M, and “bounces back” &,

1BZ [see Fig. 1b)]. All curves have been shifted vertically for again along the Fermi line, agruns fromM back toI'. A
Cla”ty, by an amount prOportional to the path |ength fronto the Slm”ar analys|s may be performed for IF'% in the two cases
actual wave vectoq along_ this symmetry contoysee right scabe_ [Figs. 4b) and Fb)].

D_otted line is the zero axis fdFR(0,w). All other parameters as in As in the static limit, the competition of a sizable dDW
Fig. 1. order parameter with an underlying dSC condensate does not
the two cases are averaged out, and no asymmetric peaks€ rise to qualitatively different results in the depen-
the w dependence of such quantities are to be expected in tHéence of the polarizability, with respect to the pure dDW
dDW case, as is the case for the local density of sgités. case.

On the other hand, the existence of hole pockets centered One may conclude that, in both the dPG and dDW cases,
aroundQ/2 in the dDW state is clearly responsible for the the evolution withq of the features in the dependence of
differentw dependence of Ry [Fig. 4a)] versus RER,,,  F1(d,®) are closely related to the location of the wave vec-
[Fig. Xa)], say, asq runs along thel'-X-M-I" contours. tor g with respect to the Fermi line, and may therefore serve
While Rd:chPG is characterized by a single relative maximum to indicate the presence of hole pockets, as is the case for the
for >0 for all wave vectorg| under consideration, &g,,,  dDW state.
possesses two relative maxirfa a relative maximum and a
shouldey for >0. These two maxima tend to merge into a VI. CONCLUSIONS
single one forB,<q<B;, i.e., inside the hole pocket, and  Motivated by recent STM experiments around a localized
for g=A, i.e., at the intersection of the free particle Fermiimpurity in the HTS’s, we have derived the polarizability
line with the X-M side[Fig. 5a)]. Likewise, the single rela- (density-density correlation functipn F(q,w) for the
tive maximum foro>0 in Rd:dRDW shifts toward larger fre- pseudogap phase, both in the precursor pairing scenario and
guencies ag runs froml to X, is “diffracted” atA along the in the d-density-wave scenario. Expressions for the same
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function have been deri\{ed also in the underdoped regime, Ak, w) = 2w[uﬁa(Ek - w) +v§a(Ek +w)], (A2)
characterized by competing dSC+dDW orders. ) o .

In the static limit(here defined as the limit of zero exter- in the static limit one obtains
nal frequency for the time-ordered correlation funcjjahe f(w) = F(o')
q dependenc_e_ dt(q, 0) reflects thed-wave symmetry of the Frodd, 0eq=0) = - f _—
precursor pairing “pseudogap” or of the dDW order param- B
eter, with an azimuthal modulation consistent with a clover- (A3)
like pattern, as expected also for a superconductor with an
isotropic band'® However, at variance with the dPG case, theWhere
g dependence of the static polarizability in the dDW state 1 1
clearly exhibits the presence of hole pockets, due to(dhe (g, w,0") = —2—2 Ak, w)Ak -q,0"). (A4)
beit imperfect nesting properties of the dDW state, with (2m)" N
nesting vectoQ =(r, 7). Qualitatively similar results to the
pure dDW case are obtained also in the mixed dSC+dDW
case, thus showing that hole pockets are a distinctive feature APPENDIX B: POLARIZABILITY FOR THE dDW
of dDW order. Such behavior is confirmed by thelepen- STATE

dence of the static polarizability in real space. A detailed |, order to derive the analog of the polarizability E@)

comparison With.exp(.arimental data for thedependence qf for the dDW state, we start by considering the density-
the charge density displacement would of course require Bensity correlation function

much more detailed knowledge of tloedependence of the
impurity potential, here crudely approximated with an F(q,7) =—(T,p(q,np(-q,0)), (B1)
s-wave Diracé function. In particular, the presence of higher T ) )
momentum harmonics in the impurity potential may breakVnere p(d, 7)=2Cqi(7)Crsqs(7) IS the electron density op-
the d-wave symmetry of the possible correlated or orderecErator, andr . denotes ordering with respect to the imaginary
states(dPG, dSC, dDW here studied. Also, an extension of time 7. Application of Wick’s theorem then yields
the present Born approximation for the impurity perturba- t +
tion, e.g., to theT-matrix formalism, would afford a more F(A,7) = 2 (T:Ckaqe( D0 (OXT Cr—qe (0)cke(7)
reliable comparison with experimental results. s

An analysis of the frequency dependence of the retarded s
polarizability FR(q,w) reveals that they evolution of the =(p(d,0))p(=q,0)), (B2)
featureqlocal maxima or shouldeysn the » dependence of
this function is closely connected with the relative position
of the wave vectoq with respect to the Fermi line and is
therefore sensitive to the possible presence of hole pocket
as is the case for the dDW state.

¢(q,w,0")dw do’,

the last term being a constant with respect,tahich can be
neglected in Fourier transforming to the Matsubara fre-
uency domain. In the dDW state, the contributions of terms
ke Eq. (10) should be explicitly considered. Therefore, we
make use of the identity
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forming to the Matsubara frequency domain, one eventually
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sions and correspondence.

APPENDIX A: FINITE LIFETIME EFFECTS 1 1

In order to take into account the finite lifetime effects on Fapw(d.i®,) = 73’2 NE "[G1a(k,iwp)
the linear response function for the pseudogap regime within on K
the precursor pairing scenario, we write the diagonal ele- + Gk iwy) + Goi(K,iwp) + GoxK,im,)]
ments of the matrix Green’s function as . .

X[gll(k - Qan - IwV)
Aii(k,w)
W,

gn(k,iwn):ijd _ (A1) +GK=givy~iw,) +Gnk -q,ivy~iw,)
2 iw,—

+ - -
where Ai(k, ) =272 8(E - ), AsK,w)=2m028(E(+w) Gzdk = qiien=io,)], (B4
are the appropriate spectral functions for BCS theory. whereg;; are the entries ofigpw(K,iwy) in Eq. (14). The last

A finite energy linewidthl” can be attached to the energy expression can then be cast into the compact matrix form Eqg.
stateE, by replacing thes functions in the spectral functions (15) by introducing the constant auxiliary matri= 7o+ 7,
A; with broader ones, e.g., a Lorentzian functiafw) :(ﬂ). Equation(B4) simplifies further, by observing that
:(1/7T)F/((1)2+F2) Settlng 912: _g21 and thatg11+ gzzz(iwn_E;)_l"‘(iwn_E;)_l.
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