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We analyze thé-t’-t"—-J model, relevant to the superconducting cuprates. By using chiral perturbation
theory we have determined the ground state to be a spiral for small dégirignear half filling. In this limit
the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green'’s functions
and address the issue of stability of the spiral state, leading to the phase diagram of the middd!. £ the
spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state
remains unclear. However, for values tfand t” corresponding to real cuprates tlig0) spiral state is
stabilized by quantum fluctuationorder from disorder” effegt We show that at5=0.119 the spiral is
commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave
mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is
derived. Even though one cannot classify the gap symmetry according to the lattice represe(statiaiys. .)
since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along
the (1, £1) directions.
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I. INTRODUCTION approximation is parametrically justified faf<1. In this

Thet-J model has been suggested to describe the essentigf't of the work on the technical side we follow the approach
low-energy physics of the high cuprates:2 Formation of eveloped. by lgarashi a.nd Fulledowever, contrary to
spirals in the doped-J model was proposed by Shraiman theém and in agreement with Refs. 6 and 8, we conclude that
and Siggie. They showed that the pitch of the spiral is pro- I the “pure”t-J model (t'=t"=0) the spiral state is unstable
portional to the hole concentratiod) see also Ref. 5. The With respect to a local enhancement of the spiral pitch. We
idea that the spiral state is the ground state of the dopefind that relatively small values of andt” stabilize the

Heisenberg antiferromagnet attracted the attention 015p|ral order, with a uniform hole distribution. Our results are
theorists3-13 however, the question of stability of the state then consistent with numericaDMRG) results indicating

remained controversial. According to Refs. 6, 8, and 10 théhat Inhofrr;ogﬁneougstr:lgedhpha;;es Q'ISappeaf with trf:ehln-
spiral state is unstable toward a local enhancement of th%reta Sbel'? L:cr':her-nglgl _orl oprln{j‘%t %?urtﬁp%mﬁh tt ?h
spiral pitch. On the other hand the analysis of Ref. 9 indi mstaptity of fhe spiral IS closely related fo the fact that the

) . 4 . ~hole dispersion is almost degenerate along the face of the
cated that the spiral state is stable. A semiclassical analysis ﬂjioagnetic Brillouin zone. As soon as the degeneracy is suffi-

stability of the(1,0) spiral state was performed in Ref. 5. cjenly lifted byt’ andt” the instability disappears, leading to
According to this analysis the state is margigatro stiff- 5 staplg1,0) spiral state. Within the semiclasical approxima-
ness, which effectively indicates that the state is unstable. Atjon the effective stiffness of this state is zero in agreement
complete stability analysis of spiral states in the Hubbardyith Refs. 5 and 11. However, spin quantum fluctuations
model was performed in Ref. 11 also using the semiclassicajive rise to a nonzero positive stiffness and hence favor sta-
approximation. According to their analysis in the leading inbility via an “order from disorder” mechanism. For param-
powers of doping approximation th@,1) spiral is always eter values corresponding to real cuprates, the pitch of the
unstable and thél,0) spiral is always marginal in agreement spiral is proportional to doping, and @t=0.119 the spiral
with Ref. 5. Recently the interest in the spiral state was rebecomes commensurate with the lattice with period 8, in
newed because of the strong experimental indications that aigreement with the experimental data of Tranquetda 18-1°
small doping the cuprates behave as spin glasses or even The possibility ofs andd wave pairing between mobile
exhibit some kind of magnetic ordering. A summary of theholes due to a static distortion of the Neel background was
available experimental data on one of the superconductingointed out in Ref. 20. Such a distortion leads to an infinite
cuprates, La sSrsCuQ,, is given in Ref. 14. The data also set of very shallow two-hole bound stafédn Ref. 22 it was
show that magnetic ordering and superconductivity coexistshown, under the assumption that Neel order is preserved
The spin glass behavior is consistent with the spiral scenariaynder doping, that in theJ model there is spin-wave medi-
since doping is not uniform the pitch of the spiral is varying ated superconducting pairing in all waves exceptsheave.
from point to point and hence on large scales it leads to spiiThe pairing was found to be maximum in tdevave chan-
glass behaviof® nel. A numerical calculation performed in Ref. 23 under the
In the present work we analyze the stability of spiral same assumption showed that the pairing was quite strong.
states within the random-phase approximati&PA). The  However, the picture of pairifg?® was not consistent be-
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cause the starting point of the analysis was thestabl¢  planes. After averaging over these combinations we obtain:
Neel background. In the present paper, after proving the sta=386 meV,t’=-105 meV,t"=86 meV. From now on we
bility of the spiral state, we consider superconducting pairingsetJ=1. In these units we have

on this state. Using an approach similar to that of Ref. 22 we

find a superconducting pairing instability and show that the

gap always has lines of nodes alofig +1) directions. We t=31, t'=-08, t"=0.7. (2)
estimate analytically the lower limit for the superconducting
gap. One cannot classify the gap according to the lattic

symmetry representatiqns since the symmetry is Spomanﬁisulating copper oxide SEUO,Cl, performed in Ref. 30
ously broken by the spiral. with the Hamiltonian(1) and(2) shows an excellent agree-

th In essr$nﬁe I?f thethm(tethotd Wet ufsetls ch.|r:;1l pe?urbat'ognent with experiment for both the single-hole dispersion and
eory which allows the treatment of strong Interactions ang, o photoemission intensity. This analysis is based on the

is exact in the long wavelength linit. The small parameter self-consistent born approximatio(GCBA).2L32 The ap-

of the ?pp“’a?h is doping near half filling=<1. We cannot proximation works very well due to the absence of single
determine reliably whethe¥=0.15,5=0.1, or5=0.05 is suf- loop corrections to the hole-spin-wave verféx* In the
ficiently small to justify our calculations, but we claim that at present calculation of single-hole properties we follow the
sufficiently smallé only the long-range dynamics is impor- approach of Ref. 30 and use the SCBA.

tant and the approach is parametrically justified. The analysis It is well known that without dopinghalf filling) the

of pairing within the chiral perturbation theory by construc- |, iitonian (1) is equivalent to the two-dimension&2D)
tion complies with the Adler relatidd and hence with the Heisenberg model which has antiferromagnétieel) order.
argument presented by Schrigﬁ%concerning pairing via There are two sublattices: sublattiaevith spin up and sub-
exchange of Goldstone excitations. lattice b with spin down. Hence a hole created in the system

The structure of the paper i_s as follows. In _Sec: I Wehas a pseudospin indexor b. The bare hole operata¥ is
calculate the single hole dispersion and the quasiparticle reSiiafined so thad-Tocc-T on thea sublattice andxc;, on thleb
H ! " 1 1 1

due for different values of’ andt”. To do so we use the sublattice. In the momentum representation

self-consistent Born approximation. After that we perform
the RPA analysis and demonstrate the instability of the Neel

order, at arbitrary small hole concentrations, towards forma- [ 2 '

tion of spirals. In Sec. Il we consider the hole dispersion in dla: — ciTe'k”,

different spiral states and compare the total energies of the N(L/2 +m) i

states. The RPA analysis of stability of tfle0) spiral state is

performed in Sec. IV, and in Sec. V we calculate the reduc-

tion of the spiral on-site magnetization due to doping. Sec- . 2 -

tion VI is devoted to the superconducting pairing in spiral Ao = mZ ¢ €, 3)

states. We present our conclusions in Sec. VII. Il

An analysis of angle-resolved-photoemission spectra for the

whereN is the number of sites and=[(0|S,|0)| = 0.3 is the
average sublattice magnetization. The quasimomerkum
limited to be inside the magnetic Brillouin zoney,

Il. SINGLE HOLE PROPERTIES AND RPA PROOF OF
INSTABILITY OF THE NEEL ORDER UPON

DOPING :%(cos ke+cosk,) =0. The indexa (b) can be considered as
The Hamiltonian of the—t’ —t”"—J model is pseudospin. Rotational invariance is spontaneously broken,
but nevertheless the pseudospin gives the correct value of the
H=-t> CiTchg—t’ > ciTUleU—t” > ciTchz(, spin z projection, a corresponds td&,=-1/2 andb corre-
(ij)o (ijpo (jo sponds taS,=+1/2. Thecoefficients in Eq(3) provide the
1 correct normalization
+\]2 (SSJ_annJ> (1)
(i)o
c! is the creation operator of an electron with spif <o|dkldll|o>:#2 <o|ci’ch”|o>
=1,]) at sitei of the two-dimensional square latticéj) N(1/2+m){ S
represents nearest neighbor sitgs, next nearest neighbors 1
(diagona), and(ij,) represents next nearest sites. The spin =12 +m<0|5 +5,0)=1. (4)

operator isS5;= 1/20?aaaﬁcig, and the number density opera-

tor is =2, ciTUci(,. The size of the exchange measured in  For spin excitations the usual linear spin-wave theory is
two magnon Raman scatterffig®is J=125 meV. Calcula- used(see, e.g., the review pag&r Spin-wave excitations
tions of the hopping matrix elements have been performedre described by operaton% and Bg creating spin waves
by Anderseret al?° They consider a two-plane situation and with S,=-1 andS,=+1, respectively. The momentum is

the effective matrix elements are slightly different for sym-restricted inside the magnetic Brillouin zone. The operators
metric and antisymmetric combinations of orbitals betweerare defined by the equations
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~ const +B17% + Ba(i)?
\/72 S’re i ~ o+ Uqﬁ—qi €k ,8172 ,82(72k) 2 ,
e ~const+g, 2+ % — P4 g2 (10)
\/72 S darj ~ vqaq + UgBq- (5) Here ygzé(coskx—cosky), p=k -k, the componenp; is
Njc| orthogonal to the face of the Brillouin zone and the compo-

nentp, is parallel to the face, see Fig. 1. The results of our
The spin-wave dispersion and the parameters of the Bogolitzalculations at=3.1 and for the second neighbor hoppings
bov transformation diagonalizing the spin-wave Hamiltonianwithin the intervals =k t’ <0 and 0<t” <1 can be fitted as
are

t=3.1,

wg=2V1-17;, , ,

B;=1.96+1.1% +0.06'“+2.7Q” + 0.53"+ 0.5Q't",
Ug = N 1, B,=0.30-1.38 - 0.19'?+2.8Q" + 1.08"% - 0.14't",

wq 2
Z=0.29+0.05% +0.195". (11
1 1
g=—sgnyy)\/ — - (6) These formulae agree with the results of Refs. 33 and 34 at

wg 2 t'=t"=0, as well as with Ref. 30 far', t” given by Eq.(2).
Hopping to a nearest-neighbor site in the Hamiltonjan ~ The quasiparticle-spin-wave interaction differs from the bare

leads to an interaction of the hole with the spin-waves interaction(7) only by the presence of the quasiparticle resi-
dues and reads

How= A4 qadko@q + AsqpdiaB + H-C), (7
h.sw %gk,q( k+qa“kbTa k+qb kaﬂq ) ( ) qu,swzkz Mq(hl+qahkbaq+hl+thkaﬁq+ H'C')! (12)
e}

with the vertexgy q given by Refs. 33 and 34 whereh], andh{, are quasihole creation operators, and the

vertexM, has the formwe setN=1 for convenience

2
Ok,q= <0|aqdkb|Ht|dI+qa|0> =4 \/%(')’kuq + 7k+qu) 2145, A1
M - \Zka+qgk q = = 2'"7t—=.

(8) Vg

Hereq;, is the component off orthogonal to the face of the
Brillouin zone, and we assume that=k, andgq<<1.

It is convenient to introduce the fields, and\, instead
of ay and g,

(13

The vertexgy q is independent of', t” because these param-
eters correspond to hopping inside one sublattice. In agree-
ment with Adler relatio®® the vertex vanishes af—0. We

calculate the hole Green’s function using the SCBA

approximatior?-34This gives the quasiparticle dispersign 7= ag- B,
and the quasiparticle residug. In the vicinity of the disper- a a
sion minima,ky=(x7/2, +7/2), the quasiparticle residue is T
Ng=ag+ Bl (14)
L=Z=1Z, (9 The Green's functions of these fields are defined as
and the dispersion can be approximated as N R
P PP l@,0) = -1 f dte“A T m () (0)]),
Ky
u +0o0
P . i
> Dan(@,q) =i f dte Y TA(HAH(O)]). (15
Py ks In the absence of interactions they are
- n
2w,
D(w,q) = DQ(w,q) = 53— (16)
0’ - a) +i0’
-
The indexn in Egs. (15 and (16) labels them as normal
Green’s functions. According to E@12) the field m inter-
FIG. 1. Magnetic Brillouin zone. acts with the quasiholes:
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P+q that what isq, for one pocket isy, for the other, and vice
q q versa. Atw=0 andq < pg~ v the polarization operatdd9)
- - is particularly simple:
T T 5125242
2774
p P(0,g)=-——0. (20
™ B1B2

FIG. 2. my-spin-wave polarization operator. L . .
The polarization operator is always proportionalcgoas a

direct consequence of Goldstone’s theorem. A crucial point is
Hapr = 20 Mg(hlsqahkomg + H.C), (17)  that the polarization operatg20) is independent ob. Tak-
k,q ing into account the one-loop diagrdifig. 2) the 7-magnon
Green'’s function15) becomes
while the field\, remains idle with respect to this interac-
tion. The interaction(17) generates a loop correction to the D..(w,q) =
. , - . . % 2
spin-wave Green’s function shown in Fig. 2. The holes are 1]
fermions and occupy four half pockets or two full pockets a
shown in Fig. 3. At a given momentum there are two stat
with different pseudospin, so the Fermi energyand the
total Fermi motion energ¥g (per lattice sit¢ read

2wy
- wé - 204P(w,q) + i0’

(21)

eSThe stability of the system requires that all poles of the
%reen’s function(21) are at positivas?. Using Eqs(20) and
(11) one can see that this criterion is violated fpw pe
~ 8 at arbitrary small doping, becaugef. with Refs. 11

and 36
m
€ = _\B1B26, 22
2 W+ 20,P(0=0,q) =2¢%| 1 - — <0. (22
™ 182
- This result signals an instability towards formation of spirals.
Er= Z\J’,Blﬁzciz, (18 In the presented RPA proof of the Neel state instability we

have used the following approximatiort&) The single hole

properties(dispersion and quasiparticle resigiugave been

where §<1 is the hole concentration. The calculation of the calculated without account of other hol€8) The incoherent

polarization operator Fig. 2 is straightforward and gives  part of the hole Green’s function has been neglect8y.
Interactions between quasiholes have been neglected. These

2(€y — €prg)Mp(1 —Npig) approximations areparametrically justified at sufficiently

small § since Eq.(20) is independent o6. We observe that

Plw=i&q) = X M

2 _ 2
pockets  p & (&g~ &) doping influences the behavior of the system only at mo-
2527242 9 mentag~ \ o< 1. At the same time all integrals in the SCBA

= ﬁa > ng(f,Q), are convergent at large momentg;- 1. Consequently dop-
TN 5152 Y pockets ing gives a negligible correctiof» ) to the dispersion. The
same is true for the incoherent part of the hole Green'’s func-
1 tion and for the hole-hole interaction. The leading correction
F(&q) = 5[t? - 2Re\(t2/2 +i&)?2 - 2¢:t?], F(0,0)=1. from these effects is 5 In 8, see Ref. 37, and hence itis also
t negligible for sufficiently smalb.

(19)
Ill. SPIRAL STATES, HOLE DISPERSION, AND TOTAL

Here t?=B8,q5+ 8,05 and n, is the Fermi distribution func- ENERGY
tion. Re stays for real part. Summation over two full pockets

shown on the right side of Fig. 3 has to be performed. Notea In a spiral state there are still two sublattices, sublatiice

nd sublatticd, but the spin at every siteof each sublattice

is rotated by an anglé;:
ky ky

Y p gy =872 1) if | € a sublattice,

gy =€ | ) if | b sublattice,

HereQ <1 is the vector of the spiraly is the vector of Pauli
matrices, andh is an axis of rotation. The direction of can
be arbitrary in the plane orthogonal to the spir in Eq.
FIG. 3. Hole pockets and Fermi surface for the Neel state and23), n=(n;,n,,0)=(cos«,sin «,0). To first order inQ the
for the spiral state witfQ«(1,0). small rotation(23) does not influence the spin-wave disper-
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sion and the hole-spin-wave interaction considered in th - i : SiaqT jaqt
preceding section. The only effect which appears at first ore-HQ tEk: (Qesin i+ Qysin k) (€™ dpdia + &“ialheo)
der inQ is the possibility for a hole to hop between nearest- , ,
neighbor sites of the lattice. Using Eq4) and(23) one can — = Zt2 (Qgsin ke + Qysin k) (€7°hf hy, + €°hf hyp).
easily find the Hamiltonian describing this hopping: K

(25

The quasiparticle residug, is exactly the same as the one
(QE\ . o i found in the preceding section by the SCBA. Indeed, the
Ho=-t > sin N [ie™dp, ¢ p0ia — 1€""Dia s ] effects considered in the present section are relevant to the
&iea long-range dynamics, so the corresponding momenta are
(24) very small,Qo« §<1. On the other hand all the integrals in
the SCBA are convergent at large momenta and therefore not
sensitive to the long-range dynamics. The axemdy co-
incide with the crystal axes. Note that the axes 1 and 2 used
Here ¢ is a lattice vector directed from a given sitea to  to define the phase are not related to the crystal axes. The
the nearest neighbdr+¢ e b. One can rewrite Eq(24) in  Hamiltonian(25) mixes the stateb/, andh/,. Therefore the
momentum representation using the quasihole operafors effective Hamiltonian matrix for a giveh takes the form

_ ( € - Zte ' [Q,sin ky+ Q,sin k] )
Heff_ ,

. 26
- Zte[Q,sin ky + Qysink, | € (26

whereg, is found in the preceding section. In the vicinity of o &%, also contribute to the total energy. Altogether the total
the pointsky=(x7/2, £7/2) one can use Eq$9) and(10)  energy of the spiral stat@er sit§ with respect to the un-

and henceH,;; takes the following form: doped antiferromagnet is
& \2zte°Q, E = 3pQ% - V2Z4|Q| 5+ E. (30)
eff=\ 5o, ia ) (27) N
V2Zte“Q,q & There are two possibilities to minimize the total energy: for a

where Q, is the component o) orthogonal to the corre- spiral directed along a diagonal of the lattiQe<(1,1), and

sponding face of the magnetic Brillouin zone. We denote by©" @ Spiral directed along a crystal axis of the lattiQe

i and ] the creation operators that diagonalize this Hamil-“(l'_o)' For the diagonal spiral the effective Fermi surface
tonian consists of two half pockets or one whole pocket, see Fig. 4.

The hole states do not have a pseudospin index and hence the
21 W - it Fermi energye: and the total Fermi motion enerds: (per
= \5( ka kb site) in this casd Q= (1,1)] read:

1 € = 27V 31326,
T _ T gt
= —(h, +€'*h,,), 28 —
i \f'2( k@ o) 28 Er = mVB18,5°. (31)
where€#=(Q,/|Q|)€“. The corresponding dispersions are For the spiral along a crystal axis the effective Fermi surface
- consists of four half pockets or two whole pockets, similarly
€= €~ V2ZtQy,
ky ky
€ = &+ \2Z1Qu . (29) g ;
We will see that|Q,| is always large enough, so only the
states corresponding to tlkg_ branch(y bang are filled by ko kx
holes. According to Eq29) the total kinetic-energy gain due T T
to the spiral iSAE,;,=—\2Zt|Q,|4 per lattice site. On the
other hand the spiral increases the magnetic energy. Thi
variation of the magnetic energy per lattice siteAE 4,
:%pst, where p;=7,/4~0.18 sis the spin stiffness, and
Z,~0.72 is the renormalization factor due to higher FIG. 4. Hole pockets and Fermi surface for the spiral state with
1/S-corrections® Finally, the Fermi motion of hole€r  Qo(1,1).
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to the Neel case, see Fig. 3. However, the hole statesina ¢ [ =7~ 7~ "~ T 7 0 7 T 71
spiral do not carry a pseudospin index and hence the Fermi 0.6 -
energy and the total Fermi motion energy in this case i i
[Qe(1,0)] are 3¢ )
R 04l (1,0) superconducting
€ = V81856, | spiral state
0.3+ -
T 0z2f .
EF = E\Jﬂlﬁzaz' (32) ' | unstable
01l phase
Using Egs.(30)<32) we find the following expressions for [ . . L
the energy of the spiral state relative to the energy of the 98 07 06 05 04 03 02 0l ,0
undoped antiferromagnet: t
Qx(1,1): E(1 = lp Qz _ \fEZtQ5+ 77\",31,3252 FIG. 5. Phase diagram of théd’-t"-J model at t=3.1 and small
Ll . y 2Fs 4 H

doping, < 1. The bottom right corner corresponds to the ptide
model,t’=t"=0. The top left corner corresponds to parameters from

1 T i ili i
1,0): Eq g = =pQ? - ZtQS+ —+ £, (33 Ref. 29, Eq(2). The region of stability of the superconducti(ig0)
Q= (1.0 EBug ZPSQ Q 2 VB1h (33 spiral phase is shown.

Minimizing E with respect toQ one finds
g P ® of n, andAr=2n for even values of. In Table | we present

_ B 2zt N Z2%t? GBS the values of6, and the corresponding periods of the com-
Qx(1,1): Q= 05 6 EBap=1- 75 + TNB1B2 ( 5, mensurate antiferromagnetic structure for several values of
n

7t 722 o Notice that for 5,=0.119 the period is 8, in agreement
Qx (1,00 Q=—6 Eug=)1-—=—+=-VBBa (& with experimental dat& The spin structure at this doping
Ps 2ps 2 value is shown in Fig. 6. In Sec. VII we discuss further the
(34 possible connections of our results to the physics of the su-

Equations(33) and(34) agree with Ref. 9, see also Ref. 39. perconducting cuprates.
We see tha€; ;)=2E o, so if these energies are positive

then the stat¢1,0) has lower energy than th@,l) state. It IV. SPIN-WAVE GREEN'S FUNCTION IN THE SPIRAL
should be noted that the energy, o is always lower than STATE AND RPA STABILITY ANALYSIS OF THE
the energy of the doped Neel staiee., the difference be- STATE

tweenE; o and Eq.(18) is always negative WhenE, 4 is - . _ .
negative then this state has lower energy. However, in this The stability analysis of th€l,0) spiral state requires a

case the corresponding compressibiﬁﬁ?E(lyl)/aéz) is also  calculation of the spin-wave Green’s functiofi), similar

negative which implies an instability towards a state with anto the calculation performed in Sec. Il for the Neel state. The

inhomogeneous charge distribution. Consequently(1h#) spin wavehg, Eq.(14), remains unchanged since it does not

spiral state is always unstable in agreement with the concifteract with the holes. The interaction of the spin wasge
sions of Refs. 6, 8, and 11. On the other hand the compresg'th the holes is given by Eq17), but one has to take into
ibility of the (1,0) state is always positivén agreement with account the fact that the correct q_ua5|part|cle states are rep-
Ref. 11). Using the results of our SCBA calculations, sum- resented by the operatogg and ¢y instead offy, andhyp,
marized in Eq(11), as well as Eq(34), one can easily find Eq. (.28)' The d'ag.ra”!s shown in Fig. 7 cpntnbute.to t_he
the region where the statd,0) is realized. Our results are 7-spin-wave polar!zanon operators. The d'|ag.rams in Figs.
summarized in Fig. 5. The enerd§(, o vanishes along the 7(A) and {B) contribute to the normal polarization operator.

solid line, and the spiral state is unstable in the right bottorT]TZepf![aeﬁI S;a’;eiths e?;:vaﬁkzprowggzr’ég(ezg(cgfgv}sjﬁg Itrr]];he
corner of the phase diagram. To complete the analysis g ifference between?he dia?],rams in Fig;{AY and 7B).

stability of fche(_l,O) spiral state we must calculate the spin- Since pseudospin is not conserved there is also an anomalous
wave polarization operatgftransverse stiffnesg” We leave polarization operator. The contributions to the anomalous op-

this analysis to the following section. . ; -
For values of, t/, andt” from Ref. 29, Eq(2), the (1,0) erator are given by the diagrams in FigéCyand (D). The

spiral is stable. At this poinZ=0.38, Eq.(11), and hence
according to Eq(34) the magnitude of the spiral vector is

Q=658 at t=3.1, t'=-0.8, t'=0.7. (35

TABLE |. Values of the hole concentratiofy, at which a com-
mensurate antiferromagnetic structure with petwds established.

The spiral is commensurate with the latticedh= 7, where 3 4 > 6
nis an integer number. The corresponding hole concentratiop, 0.159 0.119 0.095 0.079
o,=m/(6.58). This results in an effective antiferromagnetic , 3 8 5 12

structure with period\r. The period isAr=n for odd values
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b b st e
VAN o T EENG S

FIG. 6. (1,00 Spiral state for6=0.119, corresponding tQ

— FIG. 7. Contributions tow-spin-wave polarization operators.

(A) and(C) describe transitions within th¢ band, andB) and(D)
o ) ) describe transitions between tileand ¢ bands.
anomalous polarization operator gives rise to the anomalous

-spin-wave Green’s function defined as . . .
mspin-way unetion cet PA(i£,0) = Pai£,) + Pgli£,)

Do) =1 a7 0D, (39 LN S e+ d(ea)]
- mN ,Blﬁz q pockets

A straightforward calculation of the polarization operators
Pa and P, taking into account transitions within the same  p = P(i +P(i
subband, giveswe setw=i¢ from now on ai,0) =Peli&,a) + Polis,q)

S g e o)l
PAG£,0) = — €2 #P(i - A= FE@+ dieq
ai£,0) C< £0) ™B1Bs d pockers
- 2 JE 2(6’3 ~ €p+q)np(1 - rz]p+q) (40)
pockets 4 p &+ (Ep+q B 6p)
7 1 The corresponding Dyson’s equations for the Green'’s func-
__ S @F(q). (37)  tions read
N ﬂl,Bz q pockets
- 0)

The functionF(¢,q) is defined in Eq.(19). Equation(37) Dn(@ =D7n(@ + Don(@PH@D (@)
differs from Eq.(19) by the coefficient 1/4 only. The sum- +D'2(q)P(q)D,4(0),

mation has to be performed over two full pockets of th®)

spiral state, Fig. 3. We remind the reader thats the com- .

ponent orthogonal to the face of the Brillouin zone. Next we D.a(a) = D'% (= )Py(= 4)D 2(q) + D'OA(= @) PL(4)D (0,
evaluate the polarization operatoPg and Pp describing (42)
transitions between subbands

with D glven by Eq.(16). By solving these equations we

2(e,— €,0q — AN
(6~ €q = )My obtain the normal and the anomalous Green’s functions of

Pa(i&,q) = 2#Ppi&q) = 2 —qE

pockets 4 5 &+ (a =+ A the 1 field
V2742 1
=" > GO0, 2 2+ w2+ 20 P]
W\Blﬂquockets g D (w=i£q) = w[ €+ 0+ 20,Py(i£,q)]

[+ wf + 204Py(i£,9) 1P - 4w?|Pa(i&,q)]?

_1 2 _ [(+2 P2 2
q)(va)‘tz[t +2A -2 Re\(t?/2 + A +i£)? - 2¢pt?], 2qu;(i§,q)

[£+ wf + 20Py(i£,0) 1 - 4w?|Py(i&,q)*
2€|:

®(0,0 = A (39) (42)

Dra(w=i§,q) =

As already discussed in Sec. Il, a necessary condition for the
' stability of the system is the absence of poles in the Green’s
functions at negative? (positive £). The most dangerous is

where A=2,271|Q,| is the splitting between the subbands
see EQq(29). Taking into account Eq.34) for the (1,0) state

we obtain the reglme of very low frequencies and momefia< e,
2722 q<pg~V 5) Therefore the criterion of stability is
A= 8= 156. (39
Ps [ + 204Py(0,0)]2 > 402 P4(0,9) %, (43)
According to Fig. 7 and Eqg37) and(38) the normal and
the anomalous polarization operators are Using Eq.(40) the stability criterion can be rewritten as
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2722 ™ B1Bops 2722 ™ B1Bops phase is stable for values of parameters corresponding to real
1> 22 | T 7 R cuprates.
™ B1B2 1 ™ B1B2 21
(44) V. ON-SITE MAGNETIZATION IN THE SPIRAL STATE
According to Eq.(34) the expression 1y B;8,ps/ Z%t? is In the undoped-J model the spins order in a staggered
negative in thg1,0) phase sinc& o is positive. Therefore collinear pattern and the value of the staggered magnetiza-
the criterion(44) reads tion is
1-4p,=0.28>0, (45) M = (S| = 0.303. (46)

meaning that the spiral phase is always stable. It is importarlf) @ spiral state the on-site magnetization follows a spiral
to note that the phase is stable only due to spin-quanturattern and besides that the value of the magnetization is
fluctuations, and the stability is an order from disorder effectreduced compared to E¢46). We calculate now the reduc-
Without account of the fluctuationsemiclassical approxi- tion of the magnetization. Using the spin-wave opera(bys
mation), ps=1/4, andhence the effective transverse stiffnessand neglecting corrections proportional @ * one can
vanishes, 1-4=0. In this case the system becomes marfewrite the on-site magnetization in the following form:
ginal, or in essence unstable, as pointed out in Refs. 5 and 1
11. Thus the spin quantum fluctuations make thé) spiral M= =(S.- §)=0.303 -2, q([agaq + ﬁg,@q = Yo(agBq
q

@,

phase stable. We stress that the spin quantum fluctuation ef- 2

fects in an undoped antiferromagnet are known quite accu- 1

rately from numerous approachpin wave, series expan- +atBL)D=1- 22 —([afaq + B-oB g~ valagByg
sions, Monte Carlo, etg. Within the chiral perturbation q “q

h in th k he leadi

theory, used in the present work, one can express the leading Ozgﬁiq)]% (47)

terms in the hole density via the parameters of the undoped

system. In this sense we perform an “exact” account of thé-or small doping the deviation d#l from the value(46) is
guantum fluctuations. However, we do not calculate termslue to quantum fluctuations at small momerte 1. Hence
subleading in the hole density because such a calculatioone can replacey;—1 and rewrite Eq.(47) in terms of
cannot be performed without uncontrolled mean-field ap-w-field averages and then the normal Green'’s function Egs.
proximations. It is possible that at sufficiently large doping(14) and(15):

the spiral phase becomes unstable due to such subleading

terms. One possible type of instability is towards formation 1 - 2> i(WTW Yy=1-2, iD S(t==-00).

of a noncoplanar state, as suggested in Ref. 11. We cannot q 9q ard q @q i

determine the exact value of dopidgvhich is small enough (48)

to justify our calculations, but we claim that at sufficiently

small § our approach is parametrically justified, and conse-Finally, using the explicit expressio2) for the Green’s
guently Fig. 5 represents the phase diagram oftitiet”-J  function we find the reduction of the on-site magnetization in
model. We emphasize that in this regime t{ig0) spiral a spiral:

M = 0.303 +AM,
- d¢ &+ wy + 20Py(i£,) !
e 4§J 2”{[5“w§+qupnﬁaqﬂz—4w§IPa(i§,q)|2 e+l (49

A straightforward numerical integration of this equation with yond which point(5> ;) spin rotational invariance is re-
parameters corresponding to E@) gives the on-site mag- stored. The existence of a magnetic quantum critical point
netization plotted in Fig. 8. inside the superconducting region is an issue of considerable

For hole concentratio®=0.12, corresponding to a com- current intere$t (the spiral states support superconductivity
mensurate spiralFig. 6), the value of the magnetization is as discussed in Sec. VIt has also been suggested that the
M=0.06. It is quite close to the reported experimental val-phase emerging upon destruction of noncollinear magnetic
ues in  LagSrLuO, (Ref. 40 as well as order could be of RVB type and exhibit electron
Lay 4gNdg 4S1p 1 LCUO, (Ref. 19. The overall decrease dfl fractionalizatiort?“3 although in the present work we can
as a function of doping is also consistent with experiniént. not address the structure of the magnetically disordered re-
We observe that the spiral state disappearg.at0.16, be- gion §> 6.
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0.4 T T T T T T T p P’ P p’
ML . AN q,.”

4 FIG. 9. Spin-wave exchange between holes leading to supercon-
ducting pairing.

0.2

0.1 VI. SUPERCONDUCTING PAIRING IN THE SPIRAL DUE

TO SPIN-WAVE EXCHANGE

0.2 Now we investigate the possibility of superconducting
pairing due to the spin-wave exchange shown in Fig. 9. We

FIG. 8. On-site magnetization in t&,0) spiral vs doping for ~ consider pairing between the staigs Eq. (28), inside one

t=3.1,t'=-0.8, andt"=0.7. full pocket (see the right-hand side in Fig. 3 for tki&,0)
statg. The corresponding many-body wave function has the
Using the expression for the polarization operate@)  ©™M
one can show thatM can be expanded in powers &in the _ + ot
following way: W) = 1;[ (Up + Voithl))[0), (51
AM=-asIn(1/8) +bs+cs+ -+ . (50) and represents pairing of spinless fermions. Within the full-

pocket description the typical momentum transfer in the dia-

This equation shows that the expansion is nonanalytié.in 9rams of Fig. 9 isy=p-p’, q=|q|~pe= V6<1. In the de-

We have calculated the coefficierdsand b (as well asc) ~ Scription with half pockets(left-hand side in Fig. Bthe
numerically for several values df andt”, and tabulated Momentum transfer is close to the antiferromagnetic vector

them in Table II. g~G=(xm, £m). We use the full-pocket description which

Only the logarithmic term in the expansigB0) is para- IS more convenient, and in fact E¢51) already assumes
metrically justified within the chiral perturbation theory such a description wittv_,=-V,. Note that this condition
which we use in the present work. This is due to the fact thafloes not mean that we consider negative parity pairing.
the integral in Eq(49) behaves as[dq/q and consequently Since parity is defined in the full magnetic Brillouin zone, in
the “b” term in Eq. (50) is related to the upper limit of the order to consider parity one needs to transfer back from the
integration, i.e., to the short-distance dynamias~ 7). full-pocket description to the half-pocket description. Such a
Equation (49) overestimates the contribution of large mo- transition is related to tr_anslation by t_he antiferromagnetic
menta because it does not take into account the reduction £CtorG. The wave function changes sign under such trans-
the quasiparticle residue away frokg=(+7/2, +7/2). On  lation, Vi=-Vi,q. ThereforeV_,=-V, implies thatV_,=
the other hand it underestimates this contribution since it V- @nd the pairing has positive parity. For a discussion of
does not take into account the incoherent part of the hol&is peculiar symmetry property we refer the reader to Refs.
Green’s function. To estimate the uncertainty related to the1 and 2_2- . )
short-distance dynamics we have calculated the reduction of Thus in the pairing channel the typical momentum trans-
the nearest-neighbor sites spin-spin correlé®rs;) in the ~ fer iSd~peo V. At such momentum transfer the spin-wave
same way, i.e., assuming no variation of the quasiparticl&"€€Nn’s function(42) is substantially different from the bare
residue and without the incoherent contribution. The result oP"€ (16- Its_spectral weight Il (w) is shifted from w
this calculation agrees within 30% with the available numeri-=®q= 24> V6 down t0 w~ eg° 5. Unfortunately in this re-
cal data This indicates that the values of the coefficient 9ime we cannot find an analytical solution for the pairing.
in Table Il are somewhat reliable. We stress once again thdtVen at smalls one needs to solve the Eliashberg equations
the leading & term in Eq.(50) is due to the long-distance numerically and this is outside of the scope of the present

dynamics only and therefore it is parametrically justified andWork. However, we can put analytically a lower limit on the
reliable. pairing and study its symmetry. To do so we replace the

renormalized Green’s functioi@?2) in the diagrams of Fig. 9
by the bare Green'’s functigii6). We call this approximation
the “bare approximation” —it is similar to the one used in
Ref. 22. The typical energy transfer in the diagrams of Fig. 9
IS w~ egx << wqoc\s’a. Therefore when calculating for the
diagrams in Fig. 9, one can sei=0 in the spin-wave

TABLE Il. Coefficientsa andb in the § expansion50) for the
reduction of the on-site magnetization for different values of the
hopping parameters andt”.

Spiral state t’ t” a b . . . .
Green’s function(16). This means that in the bare approxi-
(1,0 -0.8 0.7 1.3 -1.9 mation it is sufficient to consider only the static interaction.
(1,0 —0.45 0.45 1.2 -13 By calculating for the diagrams in Fig. 9 with account of Eqs
(1,0 0.3 0.25 1.0 0.7 (16), (17), and (28) we find the effective pairing potential

due to the spin-wave exchange:
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VAEE Ma__ gt _ gprpPrPD” (52)
PP g q* (p-p")?

Recall thatp, is the component orthogonal to the face of the
magnetic Brillouin zone. Note that in agreement with the
general Adler relatioff Mq— 0, g— 0 and hence the pairing
potential remains finite ag=0, as was pointed out by
Schrieffer?® In addition to the diagrams in Fig. 9 there are
also exchange diagrams which differ by permutation of the
legs. The total effective pairing potential due to the spin-
wave exchange is then

"2 "2
v _ V(dir) _ V(EXCh - 822t2 _ (pl - pl) + (pl + pl)

p.p’ (p_p/)Z (p+p/)2 .
(53
The BCS equation for the superconducting gap

:_A-p reads FIG. 10. d wave like symmetry of the superconducting gap in
the (1,0 spiral state.
1 A ! 1 B A ’
Ap:_ZE Vp,p’E_p:_E2 indg)E_p (54)
p’ P’ p’ P’ In this case one needs to solve the BCS equation numerically

N Y Y . . . (i.e., take into account the pocket-pocket scattgringprder
where E, = (e, ="+, Note that using the interaction to determine the symmetry of the solution. This has been

(53) one ha_ls to put t_he coefficient 1./4 i_nstead of 1/2 in Fhedone for a similar problem in Ref. 23 and the expected result
BCS equation to avoid double counting in the wave function.

. . is shown in Fig. 10, where we also have gone back to the full
(51). Alternatively one can use the standard form with 1/25 ., . o ;
and with the direct interaction2) only. In the weak- Brillouin zone (half pockej description. Since the symmetry

. I . ) of the lattice is spontaneously broken by the spiral, tbe “
coupling limit the gap is small compared to the Fermi en- b y y b

i S wave” classification has lost meaning. In principle this
ergy, therefore Eg54) can be solved in the vicinity of the should be reflected as an asymmetry %f the ppockgts them-
Fermi surface8,p3/2+B,p3/ 2~ €¢) with logarithmic accu-

Sl i X selves; this asymmetry is small for< 1 and is not shown in
racy. The solution is discussed in Ref. 22 and we dlrectIyFig_ 10.
present the result: The pairing(55) obtained in the bare approximation is
A, = AgcSinme rather weak. As we have already mentioned the use of the
p SC ' . , . .
exact spin-wave Green’s functi@a?) is expected to enhance
the pairing substantially due to the spectral weight shift to-
wards low frequencies; we plan to discuss the full numerical
- — m solution of the Eliashberg equations in a future work. How-
_ 4z <\:81/182_ 1) (55  ever, there exists an additional contribution to pair[ngt
BB B2~ D\ BB, + 1 accounted for in the solutio(b5)] which can be estimated
_ ) _ already in the weak-coupling limit. This involves pairing via
HereAgcis the maximum value of the superconducting gapthe uppere band(ghost bany and can be included by re-
The angle¢ is defined as placing the many-body wave functiqs1) by

ASC: CEFe_llgm,

Om

. VBap
sin ¢ = ——2—, (56) e
VB1P1 + B2 (W) =TT Uy + Vbt ) IT Uy + Vs, 01)]0).
m=1,2,3,... is arinteger number, an€C~ 1 is a constant. P P’
Equation(55) represents a family of solutions, however, the (58)

pairing is maximum in the channel witm=1. In this case,
near the Fermi surface, the gap has the simple favith p;

. A To account for this effect we calculate the second-order cor-
and p, defined in Fig. J,

rection to the spin-wave mediated interacti@?®) between
[ the ¢ fermions. The correction is given by the diagram in

Bp=Asc 5 (57)  Fig. 11. The dot in this diagram is given by Fig. 9 where the
V(BYB)PL P “flavor” of the fermion is changed frong to ¢ in each spin-

We observe that there is a line of nodes along(thd) di-  wave vertex. Calculating for the diagrams in Fig. 9 with
rection. account of Eqs(16), (17), and(28) we find that the dot is

The solution(55) only describes the pairing within one described by the same E@52) but with a sign minus,
full pocket while for a(1,0) spiral (which is of primary in-  “dot”= M3/ wq=8Z%%(p,~1,)?/(p~1)%. Hence the second-
terest in the present workhere are two full pocketd=ig. 3). order correction Fig. 11 reads
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pected from the renormalization of the spin-wave Green'’s

P
\4 v X . .
function, to be discussed in a separate work.
v A\ 4

P -1 P VIl. CONCLUSIONS AND DISCUSSION

FIG. 11. Second-order correction to the pairing interaction be- We have studied the phase diagram of tttet”-J model
tween they fermions due to virtual excitations to the emptypand. ~ close to half filling. To determine the single hole properties
The dot represents the spin-wave exchange shown in Fig. 9. (one hole injected in an antiferromagnetic backgrouwe

use the self-consistent Born approximation. This approxima-
_ (py—11)2 1 (0 ~1,)2 tion is not parametrically justified for thieJ model, but it is
VI = _ (872122 Pi™ PL™ , known that it works remarkably well for the single-hole
PP T (p-1)? 26 +2A - 26 (p' - 1) properties. The crucial observation is that these properties
(59) are not related to the long-range dynamics: all integrals in
momentum space are convergent at large momg@ut@ntum
wheree is given by Eq(10), ander andA are given by Egs.  fluctuations at distances 1-2 lattice spacjngnite doping
(32) and(39) for the (1, 0) spiral state. The evaluation of the brings nontrivial long-range dynamics into the problem. To
sum in Eq.(59) is particularly simple for the isotropic case, determine the dynamics we use the chiral perturbation theory
B1=B>. We will consider this case for the purpose of anwhich involves an expansion in powers of doping near half
estimate of the effect. Using the expansion with Chebyshefilling, §<1. The efficiency of the chiral perturbation theory

polynomialsT,(x) is in essence a consequence of the dimensionality of the
" problem (2+1 D) and Goldstone’s theorem. We certainly

1 1 cannot determine the exact value of doping so that it is small
= + n - ; .

1-2x+t2 1 t2[l %t T, (60) enough to justify the approach, but we claim that at suffi-

_ _ _ o ciently small § the approach is parametrically justified. We
and keeping only the first angular harmonic which is impor-show that the Neel state is unstable with respect to decay to

tant for pairing in them=1 channel, we obtain spiral states as soon as doping is introduced. The analysis of
(py—1,)2 1 the stability of the spiral phases is performed within the RPA
p1_12 — - —p—<cos(¢p+ h), (61)  approximation, and all nonRPA corrections are suppressed
(P-D > by powers ofé.

wherep_=min(p,!) andp- =maxp, ). Using this represen- e find that at’=t"=0 the spiral state is unstable toward

a local enhancement of the spiral pitch, and consequently at
that point the nature of the true ground state remains unclear.
However, we have shown that for valuestbfandt” corre-
sponding to real cuprates tlig,0) spiral state is stable. The
(din) _ (822t2)2<1 A-e A & A ) phase diagram of the model 3.1 (we setJ=1) is shown
PP T 3278 € A - & A-er nEF in Fig. 5. For hole concentratiod~ 0.119 the(1,0) spiral is
] ) commensurate with the lattice with a period of eight lattice
X (COS ¢,COS yy + SiN PSin ¢hy). (62 spacings, in agreement with experimental data. Figure 8

We remind the reader that the above formula is valid in theShOWS the dependence of the spiral on-site magnetization on

. . —p — ; : . doping. We demonstrate that spin-wave mediated supercon-

t =B,=8,. Th t 2 t A . -
Isotropic casef=p,=,. The correction(62) gives rise to %uctmty is developed above the spiral state and derive ana-
I

an approximately 10% enhancement of the superconducting:. S )
coupling constang,, Eq. (55): tically a_Iower limit for the :_superconductllng gap. One can-
not classify the gap according to the lattice representations
859, Z%? A- e A € A, Ay, By, By, andE(“s”,“ d”,“ p”, ) since the symmetry
9 = 273 1- € InA e A« I”G_ - (83 of the lattice is spontaneously broken by the spiral. However,
1 F F F F . .
the gap always has lines of nodes and a symmetry similar to
This enhancement is an interesting qualitative effect related wave.
to the “ghost” band, but numerically its influence on pairing  Finally we briefly discuss the possible connection of our
is relatively weak. Taking into account both EqS5) and  results to experiments in the cuprates. Magnetic order has
(63) we obtain the following estimate for the pairing in the been observed in the superconducting states of both
dominant, m=1 channel[we use $,=2.9, 3,=3.8 corre- La,__sNd,Sr;CuQ, (Refs. 18 and 1pand La_sSrsCuQ,
sponding to the hoppings from E), and also reinstate the (Ref. 14. This order seems to be particularly enhanced near
Heisenberg exchangh: the hole concentratiod=1/8 where a commensurate struc-
Acr~ 107253 (64) ture with a period of eight lattice spacings is observed. In
s¢ ' addition, static charge ordéwith a period 4 has been ob-
For 10% percent doping this weak-coupling formula pro-served at least in one of the materigls® This has lead to
duces aT.xAgc of the order of several Kelvin which is proposals that the state ne&1/8 is acollinear spin density
about ten times smaller than transition temperatures in reaave coexisting with a charge density wa@@DW) at twice
compounds. The most important pairing enhancement is exhe wave vectof? Such an interpretation of experiments

tation and having in mind that in Eq59) |p|=|p’|=pr we
perform the integration in Eq59) and find the correction to
the pairing interaction:

Y
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rules out a noncollinear spiral configuration of the typekind of order in the charge sector appe@franywhere at all
shown in Fig. 6, since the density of holes is expected to beround the point’ =t"=0, where the spiral state is inherently
uniform in the spiral case. On the other hand the questiomnstable. If we indeed interpret the region marked as “un-
whether(statig charge order is a generic feature of the cu-stable” on our phase diagram in Fig. 5 as a candidate for
prates is far from being resolved and experiments in manguch order, then the effect of increasitigand/ort” is to
cuprates are interpreted as showing fluctuating., dy-  drive the system towards th@tablg spiral order, with a
namig order in the charge sectbr.For example, the exis- homogeneous charge distribution. This occurs fot/t

tence of(statig charge order in La,Sr,CuQ, is far less g 18 (at t"=0). From this point of view our results are

4 ! i~ .
cleal® although it also exhibits commensurate magnetiCg;mijar, at least superficially, to the DMRG results describing
peaks around=1/8.

. i . the destruction of stiped phases by second-neighbor
In light of the above we find our result that the spif&al0) 16,17 o ) )
state is commensurate with the lattigeeriod 8, Fig. 6 for hopping, ™" where a critical value of’ necessary to desta

5=0.119 very promising. It seems to be consistent with theb|||ze the stripes was found, and is quite close to our estimate

data in the magnetic sect@although the interpretation of above.
Ref. 19 rules out a spiral state in that materidMoreover, it

is known that doping introduces disorder, in turn leading to
glassy features in the magnetism; at least at low dogimg

the normal statethose features can be explained well within ~ We acknowledge discussions with J. Haase, G. Khaliullin,
the spiral scenari& In our opinion it would be also very P. Horsch, C. Bernhard, and S. Sachdev. An important part of
interesting to study the density response of the system in thiis work was done during the stay of one of @P.S) at
spiral state. In the context of theJ model the density re- the Max-Planck-Institut fur Festkorperforschung, Stuttgart.
sponse has been recently investigated in the Neel ‘tate He is very grateful to all members of the theoretical depart-
where fluctuations at energies of ordemwere found. In a ment for hospitality and very stimulating atmosphere. O.P.S.
spiral state, due to the presence of the ghiesipty) band, also thanks the Institut de Physique Théoriguaiversité de

we expect that even lower energy charge-density fluctuationsausanng where part of the research was performed, for
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