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We analyze thet− t8− t9−J model, relevant to the superconducting cuprates. By using chiral perturbation
theory we have determined the ground state to be a spiral for small dopingd!1 near half filling. In this limit
the solution does not contain any uncontrolled approximations. We evaluate the spin-wave Green’s functions
and address the issue of stability of the spiral state, leading to the phase diagram of the model. Att8= t9=0 the
spiral state is unstable towards a local enhancement of the spiral pitch, and the nature of the true ground state
remains unclear. However, for values oft8 and t9 corresponding to real cuprates the(1,0) spiral state is
stabilized by quantum fluctuations(“order from disorder” effect). We show that atd<0.119 the spiral is
commensurate with the lattice with a period of eight lattice spacings. It is also demonstrated that spin-wave
mediated superconductivity develops in the spiral state and a lower limit for the superconducting gap is
derived. Even though one cannot classify the gap symmetry according to the lattice representationsss,p,d, . . .d
since the symmetry of the lattice is spontaneously broken by the spiral, the gap always has lines of nodes along
the s1, ±1d directions.
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I. INTRODUCTION

The t-J model has been suggested to describe the essential
low-energy physics of the high-Tc cuprates.1–3 Formation of
spirals in the dopedt-J model was proposed by Shraiman
and Siggia.4 They showed that the pitch of the spiral is pro-
portional to the hole concentrationd, see also Ref. 5. The
idea that the spiral state is the ground state of the doped
Heisenberg antiferromagnet attracted the attention of
theorists,6–13 however, the question of stability of the state
remained controversial. According to Refs. 6, 8, and 10 the
spiral state is unstable toward a local enhancement of the
spiral pitch. On the other hand the analysis of Ref. 9 indi-
cated that the spiral state is stable. A semiclassical analysis of
stability of the (1,0) spiral state was performed in Ref. 5.
According to this analysis the state is marginal(zero stiff-
ness), which effectively indicates that the state is unstable. A
complete stability analysis of spiral states in the Hubbard
model was performed in Ref. 11 also using the semiclassical
approximation. According to their analysis in the leading in
powers of doping approximation the(1,1) spiral is always
unstable and the(1,0) spiral is always marginal in agreement
with Ref. 5. Recently the interest in the spiral state was re-
newed because of the strong experimental indications that at
small doping the cuprates behave as spin glasses or even
exhibit some kind of magnetic ordering. A summary of the
available experimental data on one of the superconducting
cuprates, La2−dSrdCuO4, is given in Ref. 14. The data also
show that magnetic ordering and superconductivity coexist.
The spin glass behavior is consistent with the spiral scenario,
since doping is not uniform the pitch of the spiral is varying
from point to point and hence on large scales it leads to spin
glass behavior.15

In the present work we analyze the stability of spiral
states within the random-phase approximation(RPA). The

approximation is parametrically justified ford!1. In this
part of the work on the technical side we follow the approach
developed by Igarashi and Fulde.9 However, contrary to
them and in agreement with Refs. 6 and 8, we conclude that
in the “pure” t-J modelst8= t9=0d the spiral state is unstable
with respect to a local enhancement of the spiral pitch. We
find that relatively small values oft8 and t9 stabilize the
spiral order, with a uniform hole distribution. Our results are
then consistent with numerical(DMRG) results indicating
that inhomogeneous(striped) phases disappear with the in-
crease of further-neighbor hoppings.16,17 In our approach the
instability of the spiral is closely related to the fact that the
hole dispersion is almost degenerate along the face of the
magnetic Brillouin zone. As soon as the degeneracy is suffi-
ciently lifted by t8 andt9 the instability disappears, leading to
a stable(1,0) spiral state. Within the semiclasical approxima-
tion the effective stiffness of this state is zero in agreement
with Refs. 5 and 11. However, spin quantum fluctuations
give rise to a nonzero positive stiffness and hence favor sta-
bility via an “order from disorder” mechanism. For param-
eter values corresponding to real cuprates, the pitch of the
spiral is proportional to doping, and atd<0.119 the spiral
becomes commensurate with the lattice with period 8, in
agreement with the experimental data of Tranquadaet al.18,19

The possibility ofs and d wave pairing between mobile
holes due to a static distortion of the Neel background was
pointed out in Ref. 20. Such a distortion leads to an infinite
set of very shallow two-hole bound states.21 In Ref. 22 it was
shown, under the assumption that Neel order is preserved
under doping, that in thet-J model there is spin-wave medi-
ated superconducting pairing in all waves except thes wave.
The pairing was found to be maximum in thed wave chan-
nel. A numerical calculation performed in Ref. 23 under the
same assumption showed that the pairing was quite strong.
However, the picture of pairing22,23 was not consistent be-
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cause the starting point of the analysis was the(unstable)
Neel background. In the present paper, after proving the sta-
bility of the spiral state, we consider superconducting pairing
on this state. Using an approach similar to that of Ref. 22 we
find a superconducting pairing instability and show that the
gap always has lines of nodes alongs1, ±1d directions. We
estimate analytically the lower limit for the superconducting
gap. One cannot classify the gap according to the lattice
symmetry representations since the symmetry is spontane-
ously broken by the spiral.

In essence of the method we use is chiral perturbation
theory which allows the treatment of strong interactions and
is exact in the long wavelength limit.24 The small parameter
of the approach is doping near half filling,d!1. We cannot
determine reliably whetherd=0.15,d=0.1, ord=0.05 is suf-
ficiently small to justify our calculations, but we claim that at
sufficiently smalld only the long-range dynamics is impor-
tant and the approach is parametrically justified. The analysis
of pairing within the chiral perturbation theory by construc-
tion complies with the Adler relation25 and hence with the
argument presented by Schrieffer26 concerning pairing via
exchange of Goldstone excitations.

The structure of the paper is as follows. In Sec. II we
calculate the single hole dispersion and the quasiparticle resi-
due for different values oft8 and t9. To do so we use the
self-consistent Born approximation. After that we perform
the RPA analysis and demonstrate the instability of the Neel
order, at arbitrary small hole concentrations, towards forma-
tion of spirals. In Sec. III we consider the hole dispersion in
different spiral states and compare the total energies of the
states. The RPA analysis of stability of the(1,0) spiral state is
performed in Sec. IV, and in Sec. V we calculate the reduc-
tion of the spiral on-site magnetization due to doping. Sec-
tion VI is devoted to the superconducting pairing in spiral
states. We present our conclusions in Sec. VII.

II. SINGLE HOLE PROPERTIES AND RPA PROOF OF
INSTABILITY OF THE NEEL ORDER UPON

DOPING

The Hamiltonian of thet− t8− t9−J model is

H = − t o
ki j ls

cis
† cjs − t8 o

ki j 1ls
cis

† cj1s − t9 o
ki j 2ls

cis
† cj2s

+ Jo
ki j ls

SSiSj −
1

4
ninjD . s1d

cis
† is the creation operator of an electron with spinsss

= ↑ ,↓d at site i of the two-dimensional square lattice,ki j l
represents nearest neighbor sites,ki j 1l next nearest neighbors
(diagonal), and ki j 2l represents next nearest sites. The spin
operator isSi = 1/2cia

† sabcib, and the number density opera-
tor is ni =os cis

† cis. The size of the exchange measured in
two magnon Raman scattering27,28 is J=125 meV. Calcula-
tions of the hopping matrix elements have been performed
by Andersenet al.29 They consider a two-plane situation and
the effective matrix elements are slightly different for sym-
metric and antisymmetric combinations of orbitals between

planes. After averaging over these combinations we obtain:
t=386 meV, t8=−105 meV,t9=86 meV. From now on we
setJ=1. In these units we have

t = 3.1, t8 = − 0.8, t9 = 0.7. s2d

An analysis of angle-resolved-photoemission spectra for the
insulating copper oxide Sr2CuO2Cl2 performed in Ref. 30
with the Hamiltonian(1) and (2) shows an excellent agree-
ment with experiment for both the single-hole dispersion and
for the photoemission intensity. This analysis is based on the
self-consistent born approximation(SCBA).31,32 The ap-
proximation works very well due to the absence of single
loop corrections to the hole-spin-wave vertex.33,34 In the
present calculation of single-hole properties we follow the
approach of Ref. 30 and use the SCBA.

It is well known that without doping(half filling) the
Hamiltonian (1) is equivalent to the two-dimensional(2D)
Heisenberg model which has antiferromagnetic(Neel) order.
There are two sublattices: sublatticea with spin up and sub-
latticeb with spin down. Hence a hole created in the system
has a pseudospin indexa or b. The bare hole operatordi is
defined so thatdi

†~ci↑ on thea sublattice and~ci↓ on theb
sublattice. In the momentum representation

dka
† =Î 2

Ns1/2 +md oiP↑
ci↑eikr i ,

dkb
† =Î 2

Ns1/2 +md ojP↓
cj↓eikr j , s3d

whereN is the number of sites andm= uk0uSizu0lu<0.3 is the
average sublattice magnetization. The quasimomentumk is
limited to be inside the magnetic Brillouin zone:gk

= 1
2scoskx+coskydù0. The indexa (b) can be considered as

pseudospin. Rotational invariance is spontaneously broken,
but nevertheless the pseudospin gives the correct value of the
spin z projection, a corresponds toSz=−1/2 andb corre-
sponds toSz= +1/2. Thecoefficients in Eq.(3) provide the
correct normalization

k0udk↓dk↓
† u0l =

2

Ns1/2 +md oiP↑
k0uci↑

† ci↑u0l

=
1

1/2 +m
k0u

1

2
+ Sizu0l = 1. s4d

For spin excitations the usual linear spin-wave theory is
used (see, e.g., the review paper35). Spin-wave excitations
are described by operatorsaq

† and bq
† creating spin waves

with Sz=−1 andSz= +1, respectively. The momentumq is
restricted inside the magnetic Brillouin zone. The operators
are defined by the equations
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Î 2

N
o
iP↑

Si
+e−iqr i < uqaq + vqb−q

† ,

Î 2

N
o
jP↓

Sj
−eiqr j < vqaq

† + uqb−q. s5d

The spin-wave dispersion and the parameters of the Bogoliu-
bov transformation diagonalizing the spin-wave Hamiltonian
are

vq = 2Î1 − gq
2,

uq =Î 1

vq
+

1

2
,

vq = − sgnsgqdÎ 1

vq
−

1

2
. s6d

Hopping to a nearest-neighbor site in the Hamiltonian(1)
leads to an interaction of the hole with the spin-waves

Hh,sw= o
k,q

gk,qsdk+qa
† dkbaq + dk+qb

† dkabq + H.c.d, s7d

with the vertexgk,q given by Refs. 33 and 34

gk,q ; k0uaqdkbuHtudk+qa
† u0l = 4tÎ 2

N
sgkuq + gk+qvqd.

s8d

The vertexgk,q is independent oft8, t9 because these param-
eters correspond to hopping inside one sublattice. In agree-
ment with Adler relation25 the vertex vanishes atq→0. We
calculate the hole Green’s function using the SCBA
approximation.31–34This gives the quasiparticle dispersionek
and the quasiparticle residueZk. In the vicinity of the disper-
sion minima,k0=s±p /2 , ±p /2d, the quasiparticle residue is

Zk < Z ; Zk0
, s9d

and the dispersion can be approximated as

ek < const +b1gk
2 + b2sgk

−d2

< const +b1
p1

2

2
+ b2

p2
2

2
→ b1

p1
2

2
+ b2

p2
2

2
. s10d

Here gk
−= 1

2scoskx−coskyd, p=k −k0, the componentp1 is
orthogonal to the face of the Brillouin zone and the compo-
nent p2 is parallel to the face, see Fig. 1. The results of our
calculations att=3.1 and for the second neighbor hoppings
within the intervals −1, t8,0 and 0, t9,1 can be fitted as

t = 3.1,

b1 = 1.96 + 1.15t8 + 0.06t82 + 2.70t9 + 0.53t92 + 0.50t8t9,

b2 = 0.30 − 1.33t8 − 0.19t82 + 2.80t9 + 1.06t92 − 0.14t8t9,

Z = 0.29 + 0.055t8 + 0.195t9. s11d

These formulae agree with the results of Refs. 33 and 34 at
t8= t9=0, as well as with Ref. 30 fort8, t9 given by Eq.(2).
The quasiparticle-spin-wave interaction differs from the bare
interaction(7) only by the presence of the quasiparticle resi-
dues and reads

Hqp,sw= o
k,q

Mqshk+qa
† hkbaq + hk+qb

† hkabq + H.c.d, s12d

wherehka
† andhkb

† are quasihole creation operators, and the
vertexMq has the form(we setN=1 for convenience)

Mq = ÎZkZk+qgk,q < − 27/4Zt
q1

Îq
. s13d

Hereq1 is the component ofq orthogonal to the face of the
Brillouin zone, and we assume thatk <k0 andq!1.

It is convenient to introduce the fieldspq andlq instead
of aq andbq

pq = aq − b−q
† ,

lq = aq + b−q
† . s14d

The Green’s functions of these fields are defined as

Dpnsv,qd = − iE
−`

+`

dteivtkTfpqstdpq
†s0dgl,

Dlnsv,qd = − iE
−`

+`

dteivtkTflqstdlq
†s0dgl. s15d

In the absence of interactions they are

Dpn
s0dsv,qd = Dln

s0dsv,qd =
2vq

v2 − vq
2 + i0

. s16d

The indexn in Eqs. (15) and (16) labels them as normal
Green’s functions. According to Eq.(12) the field pq inter-
acts with the quasiholes:FIG. 1. Magnetic Brillouin zone.
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Hqp,p = o
k,q

Mqshk+qa
† hkbpq + H.c.d, s17d

while the fieldlq remains idle with respect to this interac-
tion. The interaction(17) generates a loop correction to the
spin-wave Green’s function shown in Fig. 2. The holes are
fermions and occupy four half pockets or two full pockets as
shown in Fig. 3. At a given momentum there are two states
with different pseudospin, so the Fermi energyeF and the
total Fermi motion energyEF (per lattice site) read

eF =
p

2
Îb1b2d,

EF =
p

4
Îb1b2d2, s18d

whered!1 is the hole concentration. The calculation of the
polarization operator Fig. 2 is straightforward and gives

Psv = ij,qd = o
pockets

Mq
2o

p

2sep − ep+qdnps1 − np+qd
j2 + sep+q − epd2

= −
25/2Z2t2

pÎb1b2

1

q
o

pockets

q1
2Fsj,qd,

Fsj,qd =
1

t2
ft2 − 2ReÎst2/2 + ijd2 − 2eFt2g, Fs0,0d = 1.

s19d

Here t2=b1q1
2+b2q2

2 and np is the Fermi distribution func-
tion. Re stays for real part. Summation over two full pockets
shown on the right side of Fig. 3 has to be performed. Note

that what isq1 for one pocket isq2 for the other, and vice
versa. Atv=0 andq!pF,Îd the polarization operator(19)
is particularly simple:

Ps0,qd = −
25/2Z2t2

pÎb1b2

q. s20d

The polarization operator is always proportional toq, as a
direct consequence of Goldstone’s theorem. A crucial point is
that the polarization operator(20) is independent ofd. Tak-
ing into account the one-loop diagram(Fig. 2) thep-magnon
Green’s function(15) becomes

Dpnsv,qd =
2vq

v2 − vq
2 − 2vqPsv,qd + i0

. s21d

The stability of the system requires that all poles of the
Green’s function(21) are at positivev2. Using Eqs.(20) and
(11) one can see that this criterion is violated forq!pF

,Îd at arbitrary small doping, because(cf. with Refs. 11
and 36)

vq
2 + 2vqPsv = 0,qd = 2q2S1 −

8Z2t2

pÎb1b2
D , 0. s22d

This result signals an instability towards formation of spirals.
In the presented RPA proof of the Neel state instability we

have used the following approximations:(1) The single hole
properties(dispersion and quasiparticle residue) have been
calculated without account of other holes.(2) The incoherent
part of the hole Green’s function has been neglected.(3)
Interactions between quasiholes have been neglected. These
approximations areparametrically justified at sufficiently
small d since Eq.(20) is independent ofd. We observe that
doping influences the behavior of the system only at mo-
mentaq,Îd!1. At the same time all integrals in the SCBA
are convergent at large momenta,q,1. Consequently dop-
ing gives a negligible corrections~dd to the dispersion. The
same is true for the incoherent part of the hole Green’s func-
tion and for the hole-hole interaction. The leading correction
from these effects is~d ln d, see Ref. 37, and hence it is also
negligible for sufficiently smalld.

III. SPIRAL STATES, HOLE DISPERSION, AND TOTAL
ENERGY

In a spiral state there are still two sublattices, sublatticea
and sublatticeb, but the spin at every sitej of each sublattice
is rotated by an angleu j:

uc jl = eiu jn·s/2u ↑ l if j P a sublattice,

uc jl = eiu jn·s/2u ↓ l if j P b sublattice,

u j = Q · r j . s23d

HereQ!1 is the vector of the spiral,s is the vector of Pauli
matrices, andn is an axis of rotation. The direction ofn can
be arbitrary in the plane orthogonal to the spinu↑ l in Eq.
(23), n=sn1,n2,0d=scosa ,sin a ,0d. To first order inQ the
small rotation(23) does not influence the spin-wave disper-

FIG. 2. pq-spin-wave polarization operator.

FIG. 3. Hole pockets and Fermi surface for the Neel state and
for the spiral state withQ~ s1,0d.
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sion and the hole-spin-wave interaction considered in the
preceding section. The only effect which appears at first or-
der inQ is the possibility for a hole to hop between nearest-
neighbor sites of the lattice. Using Eqs.(1) and(23) one can
easily find the Hamiltonian describing this hopping:

HQ = − t o
j,iPa

sinSQ · j

2
Dfie−iadi+j,b

† dia − ieiadia
† di+j,bg.

s24d

Here j is a lattice vector directed from a given sitei Pa to
the nearest neighbori +jPb. One can rewrite Eq.(24) in
momentum representation using the quasihole operatorshk:

HQ = − to
k

sQxsin kx + Qysin kydse−iadkb
† dka + eiadka

† dkbd

→− Zkto
k

sQxsin kx + Qysin kydse−iahkb
† hka + eiahka

† hkbd.

s25d

The quasiparticle residueZk is exactly the same as the one
found in the preceding section by the SCBA. Indeed, the
effects considered in the present section are relevant to the
long-range dynamics, so the corresponding momenta are
very small,Q~d!1. On the other hand all the integrals in
the SCBA are convergent at large momenta and therefore not
sensitive to the long-range dynamics. The axesx and y co-
incide with the crystal axes. Note that the axes 1 and 2 used
to define the phasea are not related to the crystal axes. The
Hamiltonian(25) mixes the stateshka

† andhkb
† . Therefore the

effective Hamiltonian matrix for a givenk takes the form

Hef f = S ek

− ZkteiafQxsin kx + Qysin kyg
− Zkte−iafQxsin kx + Qysin kyg

ek
D , s26d

whereek is found in the preceding section. In the vicinity of
the pointsk0=s±p /2 , ±p /2d one can use Eqs.(9) and (10)
and henceHef f takes the following form:

Hef f = S ek

Î2ZteiaQ1

Î2Zte−iaQ1

ek
D , s27d

where Q1 is the component ofQ orthogonal to the corre-
sponding face of the magnetic Brillouin zone. We denote by
ck

† andwk
† the creation operators that diagonalize this Hamil-

tonian

ck
† =

1
Î2

shka
† − e−imhkb

† d,

wk
† =

1
Î2

shka
† + e−imhkb

† d, s28d

whereeim=sQ1/ uQudeia. The corresponding dispersions are

ek− = ek − Î2ZtuQ1u,

ek+ = ek + Î2ZtuQ1u. s29d

We will see thatuQ1u is always large enough, so only the
states corresponding to theek− branch(c band) are filled by
holes. According to Eq.(29) the total kinetic-energy gain due
to the spiral isDEkin=−Î2ZtuQ1ud per lattice site. On the
other hand the spiral increases the magnetic energy. The
variation of the magnetic energy per lattice site isDEmagn

= 1
2rsQ

2, where rs=Zr /4<0.18 sis the spin stiffness, and
Zr<0.72 is the renormalization factor due to higher
1/S-corrections.38 Finally, the Fermi motion of holesEF

~d2, also contribute to the total energy. Altogether the total
energy of the spiral state(per site) with respect to the un-
doped antiferromagnet is

E = 1
2rsQ

2 − Î2ZtuQ1ud + EF. s30d

There are two possibilities to minimize the total energy: for a
spiral directed along a diagonal of the latticeQ~ s1,1d, and
for a spiral directed along a crystal axis of the latticeQ
~ s1,0d. For the diagonal spiral the effective Fermi surface
consists of two half pockets or one whole pocket, see Fig. 4.
The hole states do not have a pseudospin index and hence the
Fermi energyeF and the total Fermi motion energyEF (per
site) in this casefQ~ s1,1dg read:

eF = 2pÎb1b2d,

EF = pÎb1b2d2. s31d

For the spiral along a crystal axis the effective Fermi surface
consists of four half pockets or two whole pockets, similarly

FIG. 4. Hole pockets and Fermi surface for the spiral state with
Q~ s1,1d.
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to the Neel case, see Fig. 3. However, the hole states in a
spiral do not carry a pseudospin index and hence the Fermi
energy and the total Fermi motion energyEF in this case
fQ~ s1,0dg are

eF = pÎb1b2d,

EF =
p

2
Îb1b2d2. s32d

Using Eqs.(30)–(32) we find the following expressions for
the energy of the spiral state relative to the energy of the
undoped antiferromagnet:

Q ~ s1,1d : Es1,1d = 1
2rsQ

2 − Î2ZtQd + pÎb1b2d2,

Q ~ s1,0d : Es1,0d =
1

2
rsQ

2 − ZtQd +
p

2
Îb1b2d2. s33d

Minimizing E with respect toQ one finds

Q ~ s1,1d: Q =
Î2Zt

rs
d, Es1,1d = H−

Z2t2

rs
+ pÎb1b2Jd2,

Q ~ s1,0d: Q =
Zt

rs
d, Es1,0d = H−

Z2t2

2rs
+

p

2
Îb1b2Jd2.

s34d

Equations(33) and (34) agree with Ref. 9, see also Ref. 39.
We see thatEs1,1d=2Es1,0d, so if these energies are positive
then the state(1,0) has lower energy than the(1,1) state. It
should be noted that the energyEs1,0d is always lower than
the energy of the doped Neel state(i.e., the difference be-
tweenEs1,0d and Eq.(18) is always negative). WhenEs1,1d is
negative then this state has lower energy. However, in this
case the corresponding compressibilitys]2Es1,1d /]d2d is also
negative which implies an instability towards a state with an
inhomogeneous charge distribution. Consequently the(1,1)
spiral state is always unstable in agreement with the conclu-
sions of Refs. 6, 8, and 11. On the other hand the compress-
ibility of the (1,0) state is always positive(in agreement with
Ref. 11). Using the results of our SCBA calculations, sum-
marized in Eq.(11), as well as Eq.(34), one can easily find
the region where the state(1,0) is realized. Our results are
summarized in Fig. 5. The energyEs1,0d vanishes along the
solid line, and the spiral state is unstable in the right bottom
corner of the phase diagram. To complete the analysis of
stability of the(1,0) spiral state we must calculate the spin-
wave polarization operator(“transverse stiffness”). We leave
this analysis to the following section.

For values oft, t8, andt9 from Ref. 29, Eq.(2), the (1,0)
spiral is stable. At this pointZ=0.38, Eq.(11), and hence
according to Eq.(34) the magnitude of the spiral vector is

Q = 6.58d at t = 3.1, t8 = − 0.8, t9 = 0.7. s35d

The spiral is commensurate with the lattice ifQn=p, where
n is an integer number. The corresponding hole concentration
dn=p / s6.58nd. This results in an effective antiferromagnetic
structure with periodDr. The period isDr =n for odd values

of n, andDr =2n for even values ofn. In Table I we present
the values ofdn and the corresponding periods of the com-
mensurate antiferromagnetic structure for several values of
n.

Notice that fordn=0.119 the period is 8, in agreement
with experimental data.18 The spin structure at this doping
value is shown in Fig. 6. In Sec. VII we discuss further the
possible connections of our results to the physics of the su-
perconducting cuprates.

IV. SPIN-WAVE GREEN’S FUNCTION IN THE SPIRAL
STATE AND RPA STABILITY ANALYSIS OF THE

STATE

The stability analysis of the(1,0) spiral state requires a
calculation of the spin-wave Green’s functions(15), similar
to the calculation performed in Sec. II for the Neel state. The
spin wavelq, Eq. (14), remains unchanged since it does not
interact with the holes. The interaction of the spin wavepq
with the holes is given by Eq.(17), but one has to take into
account the fact that the correct quasiparticle states are rep-
resented by the operatorsck andwk instead ofhka andhkb,
Eq. (28). The diagrams shown in Fig. 7 contribute to the
p-spin-wave polarization operators. The diagrams in Figs.
7(A) and 7(B) contribute to the normal polarization operator.
The filled state is alwaysck, however, the excited state in the
loop can be eitherck+q or wk+q, see Eq.(28), providing the
difference between the diagrams in Figs. 7(A) and 7(B).
Since pseudospin is not conserved there is also an anomalous
polarization operator. The contributions to the anomalous op-
erator are given by the diagrams in Figs. 7(C) and 7(D). The

FIG. 5. Phase diagram of thet-t8-t9-J model at t=3.1 and small
doping,d!1. The bottom right corner corresponds to the puret-J
model,t8= t9=0. The top left corner corresponds to parameters from
Ref. 29, Eq.(2). The region of stability of the superconducting(1,0)
spiral phase is shown.

TABLE I. Values of the hole concentrationdn at which a com-
mensurate antiferromagnetic structure with periodDr is established.

n 3 4 5 6

dn 0.159 0.119 0.095 0.079

Dr 3 8 5 12
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anomalous polarization operator gives rise to the anomalous
p-spin-wave Green’s function defined as

Dpasv,qd = − iE
−`

+`

dteivtkTfp−q
† stdpq

†s0dgl. s36d

A straightforward calculation of the polarization operators
PA and PC, taking into account transitions within the same
subband, gives(we setv= ij from now on)

PAsij,qd = − e2imPCsij,qd

= o
pockets

Mq
2

4 o
p

2sep − ep+qdnps1 − np+qd
j2 + sep+q − epd2

= −
Î2Z2t2

pÎb1b2

1

q
o

pockets

q1
2Fsj,qd. s37d

The functionFsj ,qd is defined in Eq.(19). Equation(37)
differs from Eq.(19) by the coefficient 1/4 only. The sum-
mation has to be performed over two full pockets of the(1,0)
spiral state, Fig. 3. We remind the reader thatq1 is the com-
ponent orthogonal to the face of the Brillouin zone. Next we
evaluate the polarization operatorsPB and PD describing
transitions between subbands

PBsij,qd = e2imPDsij,qd = o
pockets

Mq
2

4 o
p

2sep − ep+q − Ddnp

j2 + sep+q − ep + Dd2

= −
Î2Z2t2

pÎb1b2

1

q
o

pockets

q1
2Fsj,qd,

Fsj,qd =
1

t2
ft2 + 2D − 2 ReÎst2/2 + D + ijd2 − 2eFt2g,

Fs0,0d =
2eF

D
, s38d

where D=2Î2ZtuQ1u is the splitting between the subbands,
see Eq.(29). Taking into account Eq.(34) for the (1,0) state
we obtain

D =
2Z2t2

rs
d < 15d. s39d

According to Fig. 7 and Eqs.(37) and (38) the normal and
the anomalous polarization operators are

Pnsij,qd = PAsij,qd + PBsij,qd

= −
Î2Z2t2

pÎb1b2

1

q
o

pockets

q1
2fFsj,qd + Fsj,qdg,

Pasij,qd = PCsij,qd + PDsij,qd

= −
Î2Z2t2

pÎb1b2

e−2im

q
o

pockets

q1
2f− Fsj,qd + Fsj,qdg.

s40d

The corresponding Dyson’s equations for the Green’s func-
tions read

Dpnsqd = Dpn
s0dsqd + Dpn

s0dsqdPnsqdDpnsqd

+ Dpn
s0dsqdPasqdDpasqd,

Dpasqd = Dpn
s0ds− qdPns− qdDpasqd + Dpn

s0ds− qdPa
*sqdDpnsqd,

s41d

with Dpn
s0d given by Eq.(16). By solving these equations we

obtain the normal and the anomalous Green’s functions of
the p field

Dpnsv = ij,qd =
− 2vqfj2 + vq

2 + 2vqPnsij,qdg
fj2 + vq

2 + 2vqPnsij,qdg2 − 4vq
2uPasij,qdu2

,

Dpasv = ij,qd =
2vqPa

*sij,qd
fj2 + vq

2 + 2vqPnsij,qdg2 − 4vq
2uPasij,qdu2

.

s42d

As already discussed in Sec. II, a necessary condition for the
stability of the system is the absence of poles in the Green’s
functions at negativev2 (positivej2). The most dangerous is
the regime of very low frequencies and momenta(v!eF,
q!pF,Îd). Therefore the criterion of stability is

fvq
2 + 2vqPns0,qdg2 . 4vq

2uPas0,qdu2. s43d

Using Eq.(40) the stability criterion can be rewritten as

FIG. 6. (1,0) Spiral state ford=0.119, corresponding toQ
=p /4.

FIG. 7. Contributions top-spin-wave polarization operators.
(A) and(C) describe transitions within thec band, and(B) and(D)
describe transitions between thec andw bands.
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1 .
2Z2t2

pÎb1b2

U1 +
pÎb1b2rs

Z2t2
U +

2Z2t2

pÎb1b2

U1 −
pÎb1b2rs

Z2t2
U .

s44d

According to Eq.(34) the expression 1−pÎb1b2rs/Z
2t2 is

negative in thes1,0d phase sinceEs1,0d is positive. Therefore
the criterion(44) reads

1 − 4rs = 0.28. 0, s45d

meaning that the spiral phase is always stable. It is important
to note that the phase is stable only due to spin-quantum
fluctuations, and the stability is an order from disorder effect.
Without account of the fluctuations(semiclassical approxi-
mation), rs=1/4, andhence the effective transverse stiffness
vanishes, 1−4rs=0. In this case the system becomes mar-
ginal, or in essence unstable, as pointed out in Refs. 5 and
11. Thus the spin quantum fluctuations make the(1,0) spiral
phase stable. We stress that the spin quantum fluctuation ef-
fects in an undoped antiferromagnet are known quite accu-
rately from numerous approaches(spin wave, series expan-
sions, Monte Carlo, etc.). Within the chiral perturbation
theory, used in the present work, one can express the leading
terms in the hole density via the parameters of the undoped
system. In this sense we perform an “exact” account of the
quantum fluctuations. However, we do not calculate terms
subleading in the hole density because such a calculation
cannot be performed without uncontrolled mean-field ap-
proximations. It is possible that at sufficiently large doping
the spiral phase becomes unstable due to such subleading
terms. One possible type of instability is towards formation
of a noncoplanar state, as suggested in Ref. 11. We cannot
determine the exact value of dopingd which is small enough
to justify our calculations, but we claim that at sufficiently
small d our approach is parametrically justified, and conse-
quently Fig. 5 represents the phase diagram of thet-t8-t9-J
model. We emphasize that in this regime the(1,0) spiral

phase is stable for values of parameters corresponding to real
cuprates.

V. ON-SITE MAGNETIZATION IN THE SPIRAL STATE

In the undopedt-J model the spins order in a staggered
collinear pattern and the value of the staggered magnetiza-
tion is

M = ukSzluu < 0.303. s46d

In a spiral state the on-site magnetization follows a spiral
pattern and besides that the value of the magnetization is
reduced compared to Eq.(46). We calculate now the reduc-
tion of the magnetization. Using the spin-wave operators(5)
and neglecting corrections proportional toQ2~d2 one can
rewrite the on-site magnetization in the following form:

M =
1

2
kSa

z − Sb
zl = 0.303 − 2o

q

1

vq
kfaq

†aq + bq
†bq − gqsaqb−q

+ aq
†b−q

† dgl=1 − 2o
q

1

vq
kfaq

†aq + b−qb−q
† − gqsaqb−q

+ aq
†b−q

† dgl. s47d

For small doping the deviation ofM from the value(46) is
due to quantum fluctuations at small momenta,q!1. Hence
one can replacegq→1 and rewrite Eq.(47) in terms of
p-field averages and then the normal Green’s function Eqs.
(14) and (15):

M → 1 − 2o
q

1

vq
kpq

†pql = 1 − 2io
q

1

vq
Dpnst = − 0,qd.

s48d

Finally, using the explicit expression(42) for the Green’s
function we find the reduction of the on-site magnetization in
a spiral:

M = 0.303 +DM ,

DM = − 4o
q
E dj

2p
H j2 + vq

2 + 2vqPnsij,qd
fj2 + vq

2 + 2vqPnsij,qdg2 − 4vq
2uPasij,qdu2

−
1

j2 + vq
2J . s49d

A straightforward numerical integration of this equation with
parameters corresponding to Eq.(2) gives the on-site mag-
netization plotted in Fig. 8.

For hole concentrationd=0.12, corresponding to a com-
mensurate spiral(Fig. 6), the value of the magnetization is
M <0.06. It is quite close to the reported experimental val-
ues in La1.88Sr0.12CuO4 (Ref. 40) as well as
La1.48Nd0.4Sr0.12CuO4 (Ref. 19). The overall decrease ofM
as a function of doping is also consistent with experiment.41

We observe that the spiral state disappears atdc<0.16, be-

yond which pointsd.dcd spin rotational invariance is re-
stored. The existence of a magnetic quantum critical point
inside the superconducting region is an issue of considerable
current interest42 (the spiral states support superconductivity
as discussed in Sec. VI). It has also been suggested that the
phase emerging upon destruction of noncollinear magnetic
order could be of RVB type and exhibit electron
fractionalization,42,43 although in the present work we can
not address the structure of the magnetically disordered re-
gion d.dc.
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Using the expression for the polarization operator(40)
one can show thatDM can be expanded in powers ofd in the
following way:

DM = − ad lns1/dd + bd + cd2 + ¯ . s50d

This equation shows that the expansion is nonanalytic ind.
We have calculated the coefficientsa and b (as well asc)
numerically for several values oft8 and t9, and tabulated
them in Table II.

Only the logarithmic term in the expansion(50) is para-
metrically justified within the chiral perturbation theory
which we use in the present work. This is due to the fact that
the integral in Eq.(49) behaves asdedq/q and consequently
the “b” term in Eq. (50) is related to the upper limit of the
integration, i.e., to the short-distance dynamicssq,pd.
Equation (49) overestimates the contribution of large mo-
menta because it does not take into account the reduction of
the quasiparticle residue away fromk0=s±p /2 , ±p /2d. On
the other hand it underestimates this contribution since it
does not take into account the incoherent part of the hole
Green’s function. To estimate the uncertainty related to the
short-distance dynamics we have calculated the reduction of
the nearest-neighbor sites spin-spin correlatorkSi ·Sjl in the
same way, i.e., assuming no variation of the quasiparticle
residue and without the incoherent contribution. The result of
this calculation agrees within 30% with the available numeri-
cal data.44 This indicates that the values of the coefficientb
in Table II are somewhat reliable. We stress once again that
the leading “a” term in Eq. (50) is due to the long-distance
dynamics only and therefore it is parametrically justified and
reliable.

VI. SUPERCONDUCTING PAIRING IN THE SPIRAL DUE
TO SPIN-WAVE EXCHANGE

Now we investigate the possibility of superconducting
pairing due to the spin-wave exchange shown in Fig. 9. We
consider pairing between the statescp, Eq. (28), inside one
full pocket (see the right-hand side in Fig. 3 for the(1,0)
state). The corresponding many-body wave function has the
form

uCl = p
p

sUp + Vpcp
†c−p

† du0l, s51d

and represents pairing of spinless fermions. Within the full-
pocket description the typical momentum transfer in the dia-
grams of Fig. 9 isq=p−p8, q= uqu,pF~Îd!1. In the de-
scription with half pockets(left-hand side in Fig. 3) the
momentum transfer is close to the antiferromagnetic vector
q<G=s±p , ±pd. We use the full-pocket description which
is more convenient, and in fact Eq.(51) already assumes
such a description withV−p=−Vp. Note that this condition
does not mean that we consider negative parity pairing.
Since parity is defined in the full magnetic Brillouin zone, in
order to consider parity one needs to transfer back from the
full-pocket description to the half-pocket description. Such a
transition is related to translation by the antiferromagnetic
vectorG. The wave function changes sign under such trans-
lation, Vk =−Vk+G. ThereforeV−p=−Vp implies that V−k =
+V−k and the pairing has positive parity. For a discussion of
this peculiar symmetry property we refer the reader to Refs.
21 and 22.

Thus in the pairing channel the typical momentum trans-
fer is q,pF~Îd. At such momentum transfer the spin-wave
Green’s function(42) is substantially different from the bare
one (16). Its spectral weight ImDpsvd is shifted from v
=vq=Î2q~Îd down tov,eF~d. Unfortunately in this re-
gime we cannot find an analytical solution for the pairing.
Even at smalld one needs to solve the Eliashberg equations
numerically and this is outside of the scope of the present
work. However, we can put analytically a lower limit on the
pairing and study its symmetry. To do so we replace the
renormalized Green’s function(42) in the diagrams of Fig. 9
by the bare Green’s function(16). We call this approximation
the “bare approximation” —it is similar to the one used in
Ref. 22. The typical energy transfer in the diagrams of Fig. 9
is v,eF~d!vq~Îd. Therefore when calculating for the
diagrams in Fig. 9, one can setv=0 in the spin-wave
Green’s function(16). This means that in the bare approxi-
mation it is sufficient to consider only the static interaction.
By calculating for the diagrams in Fig. 9 with account of Eqs
(16), (17), and (28) we find the effective pairing potential
due to the spin-wave exchange:

TABLE II. Coefficientsa andb in the d expansion(50) for the
reduction of the on-site magnetization for different values of the
hopping parameterst8 and t9.

Spiral state t8 t9 a b

(1,0) 20.8 0.7 1.3 21.9

(1,0) 20.45 0.45 1.2 21.3

(1,0) 20.3 0.25 1.0 20.7

FIG. 8. On-site magnetization in the(1,0) spiral vs doping for
t=3.1, t8=−0.8, andt9=0.7.

FIG. 9. Spin-wave exchange between holes leading to supercon-
ducting pairing.
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Vp,p8
sdird = −

Mq
2

vq
= − 8Z2t2

q1
2

q2 = − 8Z2t2
sp1 − p18d

2

sp − p8d2 . s52d

Recall thatp1 is the component orthogonal to the face of the
magnetic Brillouin zone. Note that in agreement with the
general Adler relation25 Mq→0, q→0 and hence the pairing
potential remains finite atq=0, as was pointed out by
Schrieffer.26 In addition to the diagrams in Fig. 9 there are
also exchange diagrams which differ by permutation of the
legs. The total effective pairing potential due to the spin-
wave exchange is then

Vp,p8 = Vsdird − Vsexchd = 8Z2t2F−
sp1 − p18d

2

sp − p8d2 +
sp1 + p18d

2

sp + p8d2 G .

s53d

The BCS equation for the superconducting gapDp
=−D−p reads

Dp = −
1

4o
p8

Vp,p8

Dp8

Ep8
= −

1

2o
p8

Vp,p8
sdirdDp8

Ep8
, s54d

where Ep=Îsep−md2+Dp
2. Note that using the interaction

(53) one has to put the coefficient 1/4 instead of 1/2 in the
BCS equation to avoid double counting in the wave function
(51). Alternatively one can use the standard form with 1/2
and with the direct interaction(52) only. In the weak-
coupling limit the gap is small compared to the Fermi en-
ergy, therefore Eq.(54) can be solved in the vicinity of the
Fermi surfacesb1p1

2/2+b2p2
2/2<eFd with logarithmic accu-

racy. The solution is discussed in Ref. 22 and we directly
present the result:

Dp = DSC sin mf,

DSC= CeFe−1/gm,

gm =
4Z2t2

pb2sb1/b2 − 1dSÎb1/b2 − 1
Îb1/b2 + 1

Dm

. s55d

HereDSC is the maximum value of the superconducting gap.
The anglef is defined as

sin f =
Îb2p2

Îb1p1
2 + b2p2

2
, s56d

m=1,2,3, . . . is aninteger number, andC,1 is a constant.
Equation(55) represents a family of solutions, however, the
pairing is maximum in the channel withm=1. In this case,
near the Fermi surface, the gap has the simple form(with p1
andp2 defined in Fig. 1),

Dp = DSC
p2

Îsb1/b2dp1
2 + p2

2
. s57d

We observe that there is a line of nodes along the(1,1) di-
rection.

The solution(55) only describes the pairing within one
full pocket while for a(1,0) spiral (which is of primary in-
terest in the present work) there are two full pockets(Fig. 3).

In this case one needs to solve the BCS equation numerically
(i.e., take into account the pocket-pocket scattering) in order
to determine the symmetry of the solution. This has been
done for a similar problem in Ref. 23 and the expected result
is shown in Fig. 10, where we also have gone back to the full
Brillouin zone(half pocket) description. Since the symmetry
of the lattice is spontaneously broken by the spiral, the “d
wave” classification has lost meaning. In principle this
should be reflected as an asymmetry of the pockets them-
selves; this asymmetry is small ford!1 and is not shown in
Fig. 10.

The pairing (55) obtained in the bare approximation is
rather weak. As we have already mentioned the use of the
exact spin-wave Green’s function(42) is expected to enhance
the pairing substantially due to the spectral weight shift to-
wards low frequencies; we plan to discuss the full numerical
solution of the Eliashberg equations in a future work. How-
ever, there exists an additional contribution to pairing[not
accounted for in the solution(55)] which can be estimated
already in the weak-coupling limit. This involves pairing via
the upperw band (ghost band) and can be included by re-
placing the many-body wave function(51) by

uCl = p
p

sUp + Vpcp
†c−p

† dp
p8

sŪp8 + V̄p8wp8
†

w−p8
† du0l.

s58d

To account for this effect we calculate the second-order cor-
rection to the spin-wave mediated interaction(52) between
the c fermions. The correction is given by the diagram in
Fig. 11. The dot in this diagram is given by Fig. 9 where the
“flavor” of the fermion is changed fromc to w in each spin-
wave vertex. Calculating for the diagrams in Fig. 9 with
account of Eqs.(16), (17), and (28) we find that the dot is
described by the same Eq.(52) but with a sign minus,
“dot” = Mq

2 /vq=8Z2t2sp1− l1d2/ sp− ld2. Hence the second-
order correction Fig. 11 reads

FIG. 10. d wave like symmetry of the superconducting gap in
the (1,0) spiral state.
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dVp,p8
sdird = − s8Z2t2d2o

l

sp1 − l1d2

sp − ld2

1

2el + 2D − 2eF

sp18 − l1d2

sp8 − ld2 ,

s59d

whereel is given by Eq.(10), andeF andD are given by Eqs.
(32) and(39) for the s1,0d spiral state. The evaluation of the
sum in Eq.(59) is particularly simple for the isotropic case,
b1=b2. We will consider this case for the purpose of an
estimate of the effect. Using the expansion with Chebyshev
polynomialsTnsxd

1

1 − 2tx + t2
=

1

1 − t2
f1 + 2o

n=1

`

tnTnsxdg, s60d

and keeping only the first angular harmonic which is impor-
tant for pairing in them=1 channel, we obtain

sp1 − l1d2

sp − ld2 → −
1

2

p,

p.

cossfp + fld, s61d

wherep,=minsp, ld andp.=maxsp, ld. Using this represen-
tation and having in mind that in Eq.(59) upu= up8u=pF we
perform the integration in Eq.(59) and find the correction to
the pairing interaction:

dVp,p8
sdird = −

s8Z2t2d2

32pb
S1 −

D − eF

eF
ln

D

D − eF
+

eF

D − eF
ln

D

eF
D

3 scosfpcosfp8 + sin fpsin fp8d. s62d

We remind the reader that the above formula is valid in the
isotropic case,b=b1=b2. The correction(62) gives rise to
an approximately 10% enhancement of the superconducting
coupling constantg1, Eq. (55):

dg1

g1
=

Z2t2

2pb
S1 −

D − eF

eF
ln

D

D − eF
+

eF

D − eF
ln

D

eF
D . s63d

This enhancement is an interesting qualitative effect related
to the “ghost” band, but numerically its influence on pairing
is relatively weak. Taking into account both Eqs.(55) and
(63) we obtain the following estimate for the pairing in the
dominant, m=1 channel [we use b1=2.9, b2=3.8 corre-
sponding to the hoppings from Eq.(2), and also reinstate the
Heisenberg exchangeJ]:

DSC, 10−2dJ. s64d

For 10% percent doping this weak-coupling formula pro-
duces aTc~DSC of the order of several Kelvin which is
about ten times smaller than transition temperatures in real
compounds. The most important pairing enhancement is ex-

pected from the renormalization of the spin-wave Green’s
function, to be discussed in a separate work.

VII. CONCLUSIONS AND DISCUSSION

We have studied the phase diagram of thet-t8-t9-J model
close to half filling. To determine the single hole properties
(one hole injected in an antiferromagnetic background) we
use the self-consistent Born approximation. This approxima-
tion is not parametrically justified for thet-J model, but it is
known that it works remarkably well for the single-hole
properties. The crucial observation is that these properties
are not related to the long-range dynamics: all integrals in
momentum space are convergent at large momenta(quantum
fluctuations at distances 1–2 lattice spacings). Finite doping
brings nontrivial long-range dynamics into the problem. To
determine the dynamics we use the chiral perturbation theory
which involves an expansion in powers of doping near half
filling, d!1. The efficiency of the chiral perturbation theory
is in essence a consequence of the dimensionality of the
problem s2+1 Dd and Goldstone’s theorem. We certainly
cannot determine the exact value of doping so that it is small
enough to justify the approach, but we claim that at suffi-
ciently smalld the approach is parametrically justified. We
show that the Neel state is unstable with respect to decay to
spiral states as soon as doping is introduced. The analysis of
the stability of the spiral phases is performed within the RPA
approximation, and all nonRPA corrections are suppressed
by powers ofd.

We find that att8= t9=0 the spiral state is unstable toward
a local enhancement of the spiral pitch, and consequently at
that point the nature of the true ground state remains unclear.
However, we have shown that for values oft8 and t9 corre-
sponding to real cuprates the(1,0) spiral state is stable. The
phase diagram of the model att=3.1 (we setJ=1) is shown
in Fig. 5. For hole concentrationd<0.119 the(1,0) spiral is
commensurate with the lattice with a period of eight lattice
spacings, in agreement with experimental data. Figure 8
shows the dependence of the spiral on-site magnetization on
doping. We demonstrate that spin-wave mediated supercon-
ductivity is developed above the spiral state and derive ana-
lytically a lower limit for the superconducting gap. One can-
not classify the gap according to the lattice representations
A1, A2, B1, B2, andEs“s” , “ d” , “ p” ,¯d since the symmetry
of the lattice is spontaneously broken by the spiral. However,
the gap always has lines of nodes and a symmetry similar to
d wave.

Finally we briefly discuss the possible connection of our
results to experiments in the cuprates. Magnetic order has
been observed in the superconducting states of both
La2−x−dNdxSrdCuO4 (Refs. 18 and 19) and La2−dSrdCuO4
(Ref. 14). This order seems to be particularly enhanced near
the hole concentrationd=1/8 where a commensurate struc-
ture with a period of eight lattice spacings is observed. In
addition, static charge order(with a period 4) has been ob-
served at least in one of the materials.18,19 This has lead to
proposals that the state neard=1/8 is acollinear spin density
wave coexisting with a charge density wave(CDW) at twice
the wave vector.42 Such an interpretation of experiments

FIG. 11. Second-order correction to the pairing interaction be-
tween thec fermions due to virtual excitations to the emptyw band.
The dot represents the spin-wave exchange shown in Fig. 9.
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rules out a noncollinear spiral configuration of the type
shown in Fig. 6, since the density of holes is expected to be
uniform in the spiral case. On the other hand the question
whether(static) charge order is a generic feature of the cu-
prates is far from being resolved and experiments in many
cuprates are interpreted as showing fluctuating(i.e., dy-
namic) order in the charge sector.45 For example, the exis-
tence of (static) charge order in La2−dSrdCuO4 is far less
clear14 although it also exhibits commensurate magnetic
peaks aroundd=1/8.

In light of the above we find our result that the spiral(1,0)
state is commensurate with the lattice(period 8, Fig. 6) for
d=0.119 very promising. It seems to be consistent with the
data in the magnetic sector(although the interpretation of
Ref. 19 rules out a spiral state in that material). Moreover, it
is known that doping introduces disorder, in turn leading to
glassy features in the magnetism; at least at low doping(in
the normal state) those features can be explained well within
the spiral scenario.15 In our opinion it would be also very
interesting to study the density response of the system in the
spiral state. In the context of thet-J model the density re-
sponse has been recently investigated in the Neel state,46

where fluctuations at energies of orderJ were found. In a
spiral state, due to the presence of the ghost(empty) band,
we expect that even lower energy charge-density fluctuations
will exist, although a perfectly static CDW order seems im-
possible to stabilize. It is certainly more likely that some

kind of order in the charge sector appears(if anywhere at all)
around the pointt8= t9=0, where the spiral state is inherently
unstable. If we indeed interpret the region marked as “un-
stable” on our phase diagram in Fig. 5 as a candidate for
such order, then the effect of increasingt8 and/or t9 is to
drive the system towards the(stable) spiral order, with a
homogeneous charge distribution. This occurs forut8u / t
*0.18 (at t9=0). From this point of view our results are
similar, at least superficially, to the DMRG results describing
the destruction of stiped phases by second-neighbor
hopping,16,17 where a critical value oft8 necessary to desta-
bilize the stripes was found, and is quite close to our estimate
above.
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