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In a first approximation, known as the adiabatic process, the direction of the spin polarization of currents is
parallel to the local magnetization vector in a domain wall. Thus the spatial variation of the direction of the
spin current inside the domain wall results in an adiabatic spin-transfer torque on the magnetization. We show
that domain-wall motion driven by this spin torque has many unique features that do not exist in the conven-
tional wall motion driven by a magnetic field. By analytically and numerically solving the Landau-Lifshitz-
Gilbert equation along with the adiabatic spin torque in magnetic nanowires, we find that the domain wall has
its maximum velocity at the initial application of the current but the velocity decreases to zero as the domain
wall begins to deform during its motion. We have computed domain-wall displacement and domain-wall
deformation of nanowires, and concluded that the spin torque based on the adiabatic propagation of the spin
current in the domain wall is unable to maintain wall movement. We also introduce the concept of domain-wall
inductance to characterize the capacity of the spin-torque-induced magnetic energy stored in a domain wall. In
the presence of domain-wall pinning centers, we construct a phase diagram for the domain-wall depinning by
the combined action of the magnetic field and the spin current.
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I. INTRODUCTION

The subject of current-induced magnetization reversal
(CIMR) in magnetic multilayers has received considerable
interest recently.1–8 From a fundamental point of view, this
topic introduces an interaction between nonequilibrium con-
duction electrons and local moments, and the physics of this
interaction has not been well explored. From the application
point of view, the current-induced magnetization reversal
opens a way to control and manipulate the magnetization
dynamics that is one of the central issues in modern mag-
netic technologies. In conventional magnetic devices, the
magnetization direction is controlled by external magnetic
fields generated by a current or by a permanent magnet.
These magnetic fields are usually spread over a relatively
large spatial extent. The CIMR can be confined to an exact
spatial region where the current flows; this property is very
attractive for magnetic nanodevices, e.g., magnetic random
access memory.

The physics of the current-induced magnetization reversal
involves interplay between nonequilibrium conduction elec-
trons and local magnetization; namely, the spin angular mo-
mentum carried by spin polarized electrons is transferred to
the local moment through the exchange interaction. This is
somewhat analogous to the well-known phenomenon of
electromigration:9 (impurity) atoms migrate in the direction
opposite to the current flow. The origin of electromigration is
mainly the transfer oflinear momentumof nonequilibrium
conduction electrons to atoms, resulting in a “wind force”
that drives migration of the atom. For magnetic materials
where the electric current is spin polarized, it is possible that
the spin polarization of nonequilibrium conduction electrons
changes its orientation along the direction of the current, and
thus the localized magnetic moment receives a spin torque if
the conduction electrons continuously transfer their spin an-
gular momentum to the local moment in the steady state of
current flow. This nonequilibrium conduction-electron-

induced spin torque can alter magnetization structures, drive
magnetization dynamics, and even create domain-wall mo-
tion.

Until now, the spin-transfer model has been developed
mainly on a trilayer structure where two ferromagnetic layers
are separated by a spacer layer. Typically, one chooses the
spacer layer thick enough to reduce the magnetic coupling
between the two ferromagnetic layers and thin enough to
minimize the spin-flip scattering in the spacer so that the
spin-transfer torque is maximized. Several theoretical
models10–14 have been put forward to formulate the spin
torque in terms of geometric and material parameters. While
the correct microscopic picture of the spin torque is still un-
der debate, all the theories contain a spin torque in the form
of

ta = −
aJ

Ms
M 3 sM 3 M̂ pd, s1d

whereM is the magnetization of the free layer,M̂ p is theunit
vector along the direction of the magnetization of the pinned
layer, Ms is the saturation magnetization, andaJ is a model-
dependent parameter and is proportional to the current den-
sity. In general, the magnitudeaJ of the spin-transfer torque
is also a function of the angle between the pinned and free
layer magnetization vectors.

Several theoretical attempts15–18have been made at under-
standing the unique features displayed in the spin torque Eq.
(1). Here we just list three of them:(1) the spin torque may
stabilize steady precessional states, i.e., the magnetization
does not converge to a metastable static state even at zero
temperature;(2) the spin torque may create a different stable
configuration of the magnetization, e.g., an out-of-plane
magnetization direction can be a solution for the metastable
states;(3) the spin torque modifies the effective energy bar-
rier or temperature in a significant and unique way.
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All of the above properties are derived based on the spe-
cific form of the spin torque given in Eq.(1). Equation(1)
assumes that both free and pinned layers have uniform mag-
netization within the layers, at least along the direction of the
current. In a typical ferromagnet, the magnetization is rarely
uniform, and the dynamical process of magnetization is not
coherent rotation in general. It would be interesting to find
what the spin torque does to the magnetization dynamics of
non-single-domain ferromagnets. Berger19 introduced the
“domain drag force” by considering the spin torque in a
single-layer system where the magnetization is not uniform
along the current. He argued, based on his intuitive physics
picture, that the current can drag the domain wall along the
path of the current flow. Bazaliyet al.proposed a spin torque
in a ferromagnet within the ballistic transport model for half-
metallic materials.20 Most recently, we generalized the spin
torque for any diffusive transport ferromagnet,22

tst = − bJM̂ 3 fM̂ 3 sĵ e ·¹dM g, s2d

where M̂ =M /Ms, ĵ e= j e/ je, and bJ=PjemB/eMs, P is the
spin polarization of the current,mB is the Bohr magneton,
and je is the electric current density. The above torque is
identical in form to that of Bazaliyet al.20 However, we
derived the above formulation based on a general property of
ferromagnetic materials: in a ferromagnet, the spin polariza-
tion of the current is always along the direction of the local
magnetization vector, i.e., the transverse component of the
spin current can be neglected.12,13,22Thus one may define a
spin current tensorJ=smB/eMsdPj e^ M sr d where the vector
j e tracks the direction of the charge current andM sr d de-
scribes the direction of the spin polarization of the current.
The spin-transfer torque is defined as the rate of change of
the angular momentum of conduction electrons that are
transferred to the local magnetization,tst=dm /dt=]m /]t
+= ·J. In the steady state of the current flow,]m /]t=0 and
thus we find that the above spin torque can be written as Eq.
(2) if we use the fact that the magnitude of the local magne-
tization vector is a constant.

While the magnitude of the spin torque in spin valves, Eq.
(1), depends on many unknown parameters such as interface
spin-dependent resistance, the magnitude of the adiabatic
spin transfer torquebJ in Eq. (2) can be accurately estimated
for many ferromagnetic materials.bJ, which has the dimen-
sions of velocity, is determined by two material parameters
Ms and P; these parameters have already been determined
experimentally. In Table I, we list the values ofbJ for a
selected set of materials for a current densityje
=107 A/cm2. The half metals CrO2 and Fe2O3 have a maxi-
mum spin polarizationsP=1d and low saturation magnetiza-
tion, and thus the spin torque is larger than that of transition
metals.

The paper is organized as follows. In Sec. II, we establish
the equation of motion of a domain wall by using the gener-
alized Landau-Lifshitz-Gilbert(LLG) equation along with
the adiabatic torque Eq.(2). We write the equation for
nanowires. In Sec. III, we propose a trial function to analyti-
cally obtain solutions for domain-wall dynamics. In particu-
lar, we address the spin-torque-induced domain propagation

and distortion. Then a detailed comparison between numeri-
cal results and analytic solutions is made in Sec. IV. Finally,
we summarize our major findings in Sec. V.

II. MODEL SYSTEM

We assume the current flows in thex direction along the
long length of a wire, i.e.,ĵ e=ex. By placing this in Eq.(2)
and by treating Eq.(2) as an additional torque on the stan-
dard LLG equation, we write the generalized LLG equation
in the presence of the spin torque as

] M

] t
= − gM 3 Hef f + aM̂ 3

] M

] t
− bJM̂ 3 SM̂ 3

] M

] x
D ,

s3d

whereg is the gyromagnetic ratio,Hef f is the effective mag-
netic field including the external field, the anisotropy field,
the magnetostatic field, and the exchange field, anda is the
Gilbert damping parameter.

We now specify the geometry of the wire and the effective
field entering Eq.(3). As shown in Fig. 1, thex axis is taken
as the easy axis as well as the direction of the external field
Hext. The width and the thickness of the wire areD and d,
respectively. The current is along thex direction.

We explicitly write the effective field as

Hef f =
HKMx

Ms
ex +

2A

Ms
2¹2M − 4pMzez + Hextex, s4d

whereHK is the anisotropy field,A is the exchange constant,
and 4pMz is the de-magnetization field.

To gain analytical insight into the domain-wall dynamics,
we first consider that the magnetizationM varies only in the
direction of thex axis. By placing Eq.(4) into Eq. (3), the
LLG equation can be conveniently written in polar coordi-
nates as

TABLE I. The values of bJ for some materials for je
=107A/cm2

Nanowire MssA/md P bJsm/sd

Fe 17.183105 0.5 1.35

Co 14.463105 0.35 1.41

Ni 4.93105 0.23 2.7

Permalloy 83105 0.7 5.1

g -Fe2O3 4.143105 1.0 14.0

CrO2 3.983105 1.0 14.6

FIG. 1. Cartesian and polar coordinate systems.
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] u

] t
+ a sin u

] w

] t
= g

2A

Ms
S2 cosu

] w

] x

] u

] x
+ sin u

]2w

] x2D
− 4gpMssin u sin w cosw + bJ

] u

] x
,

s5d

a
] u

] t
− sin u

] w

] t
= g

2A

Ms
S ]2u

] x2 − sin u cosuS ] w

] x
D2D

− gHKsin u cosu

− 4gpMssin u cosu sin2w − gHextsin u

− bJsin u
] w

] x
, s6d

whereu represents the angle between the magnetization vec-
tor and thex axis, andw is the out-of-plane angle of the
magnetization vector projected in theyz plane, i.e., Mz
=Mssin u sin w.

Our goal is to solve for the magnetization vector as a
function of positionx and timet from the above equations of
motion. In the absence of a current and/or an external mag-
netic field, we consider that the domain wall, separated by
two head-to-head domains along the wire direction, is a Néel
wall21 whose magnetization stays in the plane of the wire,
i.e., Mz=0, Mx=Mscosu, My=Mssin u cosw, where

w = 0, u = 2 tan−1expsx/W0d, s7d

and W0=Î2A/HKMs is the domain-wall width. Att=0, an
electric current and/or an external field is applied. We should
determine the motion of the wall att.0 from Eqs.(5) and
(6) by utilizing the initial condition Eq.(7).

III. ANALYTICAL RESULTS

The nonlinear partial differential equations Eqs.(5) and
(6) are difficult to solve. Here we follow Walker’s analysis of
domain-wall motion by introducing a trial function23

w = wstd, ln tan
u

2
= cstdSx −E

0

t

vstddtD . s8d

The first equation assumes that the projection of the magne-
tization vector in the domain wall on theyz plane is inde-
pendent of the position. One should note that the spatial in-
dependence ofwstd does not mean a uniform out-of-plane
component becauseMz=Mssin u sin w andu varies spatially
in the domain wall fromu=0 to p. The second equation in
Eq. (8) postulates that the domain-wall shape remains a stan-
dard Néel-wall form except that the width of the wallWstd
;cstd−1 varies with time and the wall moves with velocity
vstd. We will show later that this form of the solution is
indeed a correct solution as long as the spin torquebJ and the
external fieldHext are small.

By placing this trial function into Eqs.(5) and(6), utiliz-
ing the identities

] w

] x
=

]2w

] x2 = 0,

] u

] x
= cstdsin u,

]2u

] x2 = cstd2sin u cosu,

] u

] t
= c1sx,tdsin u,

and defining a functionc1sx,td,

c1sx,td ;
dcstd

dt Sx −E
0

t

vstddtD − cstdvstd, s9d

we find

c1sx,td + a
dw

dt
= − 4pgMs sin w cosw + bJcstd s10d

− ac1sx,td +
dw

dt
− gHext

=gSHK −
2A

Ms
cstd2 + 4pMs sin2wDcosu. s11d

Strictly speaking, Eqs.(10) and(11) cannot be valid because
c1sx,td defined in Eq.(9) is linearly proportional tox but
there are no other terms in Eq.(10) and (11) containing the
spatial variablex. Thus,a trial function of the form of Eq.(8)
is possible only when one discards the spatial dependence of
c1. Equivalently, the first term on the right side of Eq.(9)
must be much smaller compared to the second term so that
c1<−cstdvstd. While one could not determine the smallness
of this first terma priori, we will later confirm thatWstd
shrinks by only a few percent during the domain-wall motion
and varies slowly with time so thatdcstd /dt is indeed small.
Now the left-hand side of Eq.(11) becomesx independent
and thus the prefactor in front of cosu on the right-hand side
of Eq. (11) must be identically zero,

HK −
2A

Ms
cstd2 + 4pMs sin2w = 0 s12d

and

acstdvstd +
dw

dt
= gHext. s13d

By placing Eq.(13) into Eq. (10), we have

s1 + a2d
dw

dt
= gHext+ abJcstd − 4pagMs sin w cosw.

s14d

Equations(12) and(14) are the ordinary first-order differen-
tial equations that determine the domain-wall widthc−1std
and the rotation of the domain-wall planewstd subject to the
initial valueswst=0d=0 andc−1st=0d=W0. Once these two
equations are solved, we can obtain the velocity of the do-
main wall from Eq.(13):
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vstd =
gsaHext+ 4pMs sin w coswd

s1 + a2dcstd
−

bJ

1 + a2 . s15d

The numerical solutions of Eqs.(12) and(14) are represented
in Fig. 2, where the domain-wall velocity, displacement, and
distortion are shown as a functions of time. In the following
subsections, we discuss these quantities.

A. Domain-wall velocity

At t=0, the wall is a standard in-plane Néel wall, i.e.,
wst=0d=0. From Eq.(15), we have readily seen that the
velocity is −bJ/ s1+a2d at the initial application of the cur-
rent if no external field is applied. On the other hand, fort
→`, dw /dt=0. We immediately find, from Eq.(13),

vs ; vs`d =
gHext

cs`da
; s16d

this result is the same as that of Schryer and Walker23 in the
absence of the spin torque. We conclude that the terminal
velocity is completely independent of the spin torque. This
implies that the spin current alone, i.e., no applied field, can-
not move the domain wall to a large distance. In Fig. 2(a),
the velocity of the domain wall during the application of the
current is shown. It is noted that the domain-wall motion
stops at a fraction of a nanosecond.

B. Domain-wall distortion

In our analytical theory, domain-wall distortion is charac-
terized by two parameterswstd and c−1std. The former de-
scribes the out-of-plane component of the magnetization and
the latter is the time-dependent domain-wall width. Whent
→`, the distortion is maximum. By settingdw /dt=0, we
find ws`d from Eq. (14) in the absence of the external field,

sin 2ws`d =
bJcs`d
2gpMs

=
bJ

ÎHKMS/2A + s4pMs
2/2Ad sin2ws`d

2gpMs

s17d

where the last identity is from Eq.(12). When bJ

s!gW0
Î4pMsHKd is small, sinw<w and sin2w<0, and Eq.

(17) is simplified as

ws`d <
bJ

4pgMsW0
. s18d

By inserting this into Eq.(12) and again by assumingbJ is
small, we find the maximum reduction of the domain-wall
width as

Ws`d
W0

= 1 −
1

2W0
2

bJ
2

4pMsHKg2 . s19d

In Figs. 2(b) and 2(c), we show the domain-wall distortion
during the application of the current.

C. Domain-wall displacement

As the domain-wall motion eventually stops even for a
perfect wire in the absence of an external field, it is interest-
ing to see how far the domain wall moves, i.e., what is the
maximum distance a domain wall can travel before it stops?
We estimate this displacement by integrating the velocity and
utilizing Eqs.(12) and (13):

xmax=E
0

`

vdt = −E
0

ws`d dw

ac
< −

bJ

4pgaMs
. s20d

Notice that the displacement is inversely proportional to the
damping constant. In Fig. 2(d), we show the displacement as
a function of time.

D. Inductance of domain wall

We have seen that domain-wall motion driven by a cur-
rent is very different from that driven by an external field. In
the latter case, the initial velocity upon the application of the
external field is small and the velocity gradually increases
until a saturation velocity is reached; after that, the domain
wall moves with a constant velocity. We can understand this
field-driven wall motion rather straightforwardly: the wall
motion along the direction of the field is to reduce the Zee-
man energy; the rate of Zeeman energy reduction equals the
energy damping in a constantly moving domain wall. For the
current-driven domain-wall motion, the wall motion does not
decrease the energy because the spin torque has no effect on
the uniformly magnetized domains. Instead, the application

FIG. 2. The velocityv, the wall widthW, the wall anglew, and
the displacementx as a function of timet for different spin torques
and for Hext=0 Oe. The parameters are 4pMs=1.83104 Oe, HK

=500 Oe,Ms=14.463105 A/m, A=2.0310−11 J/m, anda=0.02.
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of the spin torque introduces energy to the wall so that dis-
tortion of the wall occurs. The consequence of the wall dis-
tortion is to generate an energy damping mechanism so that
pumping of the energy by the spin torque can be compen-
sated by the damping. Once the dynamic equilibrium be-
tween pumping and damping is reached, the domain-wall
motion stops and the distortion is maximum. To quantita-
tively see this interesting feature, we consider the wall en-
ergy

E =E
−`

` H2pMz
2 −

HK

2Ms
Mx

2 +
A

Ms
2U ] M

] x
U2Jdx, s21d

where the first term is the magnetostatic energy, the second is
the anisotropy energy, and the final term is the exchange
energy. The rate of energy change can be obtained viadE=
−Hef f·dM and use of the LLG equation,

dE

dt
=E

−`

` H−
ga

1 + a2

1

Ms
uM 3 Hef fu2 −

bJ

1 + a2Hef f ·
] M

] x

−
bJ

1 + a2

a

Ms

] M

] x
· sHef f 3 M dJdx. s22d

Note that the first term is pure damping; the second and third
terms are the result of the spin torque. By inserting the ef-
fective field Eq.(4), we can express the above two equations
in terms of the wall distortion parameterswstd andcstd. The
expression is algebraically tedious and lengthy; we do not
write it down here. Instead, we simply consider limiting
cases where the spin torque is small. A straightforward cal-
culation leads to simple but insightful expressions for the
rate of the energy change and the wall energy,

dE

dt
=

16m0pW0Ms
2

3
sin w cosw

dw

dt
s23d

and

DE ; EsbJd − Es0d =
1

2
LwbJ

2, s24d

where we have defined the inductance of the domain wall
Lw=p / s3m0g2W0d. These expressions illustrate the energy
process during the domain-wall motion. The total spin-
current-induced wall energy is proportional to the square of
the current density—in analogy with the inductance of a cir-
cuit.

The domain-wall energy stored in the form of domain-
wall distortion can be released once the spin current is turned
off—in analogy with the electric discharge of inductance. In
fact, we can easily show that the domain wall will move
back to its original location. To see this, we setbJ=0 in Eq.
(15) and the velocity forHext=0 is

vrecstd =
g4pMssin w cosw

s1 + a2dcstd
. s25d

Note that the initial condition is noww=ws`d and the initial
velocity is +bJ/ s1+a2d. By dropping the first two terms in
the right-hand side of Eq.(14), one can integratewstd out
from Eq. (14) and it is easy to check that

xrec ; E
0

`

vrecdt =E
ws`d

0 dw

ac
= − xmax. s26d

The domain wall moves to its original position. Again, this
phenomenon is analogous to the discharge of an inductance
in the usual electronic circuit. We will show in the next sec-
tion how this feature differs from the domain-wall motion
when an external field is turned off.

E. Beyond Walker’s limit

Until now, our analysis is based on Walker’s trial func-
tion. As in the case of field-driven domain-wall motion, it is
essential to assume that the deviation from the original Néel
wall is small. This limits the validity of our analytical result
to a small current density. In this subsection, we show that
when the current density is larger than a critical current,
Walker’s trial function fails to describe the domain-wall mo-
tion. In fact, the domain wall will not stop at a sufficient
large current and the distortion of the domain wall can no
longer be simply described by two parameters[wstd and
cstd]. Fortunately, for the experimentally interesting regime,
the applied current density is usually within the applicability
of Walker’s theory.

To find the critical current densitybc, we consider a time-
independent solution by settingdw /dt=0 in Eq. (14). By
using Eq.(12), we find

bJ =
4pgMs sin w cosw

ÎHKMs/2A + s4pMs
2/2Adsin2w

. s27d

Maximizing bJ with respect to the anglew, we have

sin2wc =
HK

2HK + 4pMs
, s28d

sin wc coswc =
ÎHKsHK + 4pMsd

2HK + 4pMs
. s29d

Inserting Eqs.(28) and (29) into Eq. (27), we find that the
maximum spin torque for a stationary solution is

bc =
4pgMs

ÎHK + 4pMs

ÎsMs/2Ads2HK + 4pMsd2 + s4pMs
2/2Ads2HK + 4pMsd

s30d

when 4pMs@HK, and

bc < 4pgMsj s31d

where j=ÎA/ s4pMs
2d is the exchange length. Thus when

bJ.bc the stationary solution of Schryer and Walker fails.
On the other hand, if the spin torque is smaller thanbc, the
maximum distortion shown in Eq.(28) is small and thus
the Schryer and Walker trial function is valid. For a Co
nanowire, 4pMs=1.83104 Oe, HK=500 Oe, g=1.9
3107 Oe−1 s−1, Ms=14.463105 A/m, and A=2.0
310−11 J/m, and the critical current is aboutbc=922 m/s or
je
c=2.231010 A/cm2. This current density is at least one to

two orders of magnitude larger than typical experimental val-
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ues and thus the trial function and its solutions are applicable
to most of the experiments. In Fig. 3, we show the maximum
deformation of the domain wall; even for a current density as
high as 231010 A/cm2, the maximum anglew is about 8o

and the wall shrinks by only 22%. Thus we confirm that the
trial functions are good approximations for the domain-wall
dynamics at least in the one-dimensional model presented in
this section.

IV. NUMERICAL RESULTS

Until now, our description of domain-wall dynamics is
based on the assumption that the out-of-plane anglew is time
dependent but spatially independent. For a realistic nanow-
ire, there are a number of complications. Among them, the
magnetization varies along the direction of the wire width,
i.e., one needs to go beyond Schryer and Walker’s one-
dimensional(1(D)) model. Furthermore, a realistic wire is
expected to contain various pinning centers, and it would be
interesting to see the effect of pinning on domain-wall mo-
tion. In general, a micromagnetic calculation is required to
include these complications and to address the role of mag-
netostatic energy(except the shape anisotropy perpendicular
to the film) discarded in our analytical model. In the follow-

ing numerical calculation, we consider the example of a Co
nanowire whose dimensions are as follows: the thickness is
d=5 nm, the width isD=200 nm, and the length is 1.2mm.
The small thickness and large width would make a 1d calcu-
lation approximately valid. To made our numerical calcula-
tion directly comparable with the analytical results obtained
in the last section, we include the demagnetizing field only
through the shape anisotropy. We numerically integrate out
Eqs. (5) and (6) by using a fourth-order predictor-corrector
method with an 0.8 ps time step. Initially, att=0, a station-
ary Néel wall is centered atx=0, a spin current is turned on
along thex direction, and the external field is also applied
along thex direction att.0.

In the presence of the spin torque, the magnetization of
the domain wall is no longer confined in the plane of the
layer and the original Néel wall is distorted during the mo-
tion of the domain wall. In Fig. 4, we show snapshots of
magnetization patterns att=0.06 ns after the current is
turned on att=0. For a small current density, the shape of the
Néel wall is essentially unchanged except for a small out-of-
plane magnetization, consistent with our analytical model in
the previous section. When the applied current is increased to
values larger than the critical current, the shape of the Néel
wall is completely destroyed. The magnetization inside the
wall has developed a significant out-of-plane component[see

FIG. 3. Maximum wall width narrowing
DW/W0 and the maximum anglew as a function
of the spin torque.

FIG. 4. Snapshots of the moving magnetic
wall at t=0.06 ns in a Co nanowire. The damping
constant a=0.1 and the external fieldHext

=0 Oe.
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Fig. 4(b)], and the wall has split into complicated multiple
walls. In our calculation, the critical spin torquebc
<1240 m/s, which approximately agrees with our analytical
result from Eq.(30). We now confine our discussion below
to the case where the current density is smaller than the
critical current.

For a perfect wire, the Néel wall moves with a velocity
v=−bJ immediately after the application of the current. In

Fig. 5, we show the wall positions at different times as the
well as the wall velocity and wall distortion when the wall
moves to different positions. The domain wall remains a
quasi-Néel wall and eventually the wall completely stops. At
x=0, the wall velocity is at its maximumsvmax=750 m/sd.
When the wall stops, the maximum out-of-plane component
of the magnetization(Mz component) approachessuMzu /Ms

=0.1d and the total displacement isxmax=312 nm.
It is interesting to take a look at the domain-wall dynam-

ics with simultaneous application of the current and the ex-
ternal field. As we already pointed out the initial domain-
wall velocity is determined by the current but the final
terminating velocity is controlled by the external field(see
Fig. 6). We confirm here that the spin torque alone is unable
to move the domain wall over a long distance(see Fig. 7(a)).
This feature is just opposite to the domain-wall motion

FIG. 5. (a) The wall positions at several timest=0, 0.5 ns,
1.0 ns, 1.5 ns, 2.0 ns, 2.5 ns, and n=3.0 ns;(b) the wall velocity as
a function of the wall position;(c) the maximum out-of-plane com-
ponent of the magnetization as a function of the wall position. The
damping constant isa=0.008, the spin torque isbJ=−750 m/s, and
the external fieldHext=0 Oe.

FIG. 6. Domain-wall velocity as a function of time(a) for dif-
ferent spin torques at a fixed magnetic fields10 Oed, and (b) for
different magnetic fields at a fixed spin torquesbJ=−500 m/sd. The
solid curves represent the analytical results and the scattered points
are the numerical solutions.

FIG. 7. Displacement of the domain wall for several spin
torques without(a) and with(b) the external field. The solid curves
represent the solutions of the trial function and the scattered points
are the numerical results.

FIG. 8. Energy power(a) and net energy gain(b) of the domain
wall as a function of time.
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driven by an external field: at an initial application of the
magnetic field, the wall velocity is small[in fact one can
easily show that it isaHextW0/ s1+a2d from Eq. (15)], but it
becomes faster and faster until it reaches the saturated speed

from Eq. (16) at ns=gHextWs`d /a. The origin of this differ-
ence was discussed at great length in the last section. The
fact that the initial domain-wall velocity is determined by the
current but the final terminating velocity is controlled by the
external field can be used to design high- and low-speed
domain-wall propagation by properly choosing the desired
spin current density and the magnetic field. For example, if
we are to move the domain wall by 75 nm, the magnetic field
s10 Oed alone will take 0.43 ns. With the help of the spin
torquebJ=−800 m/s, the same displacement can be made in
0.11 ns and it takes 0.65 ns whenbJ=300 m/s. These fea-
tures are clearly illustrated in Fig. 7(b).

We show the rate of energy input of the domain wall
during the application of the spin torque in Fig. 8. The rate of
energy pumping from the spin torque increases at the initial
application of the spin current; then it develops a maximum
rate. After that, the rate decreases due to increase of the
damping. Finally, the energy pumping is exactly compen-
sated by the damping and the wall motion stops.

It is interesting to compare our calculations with
experiment24 where a domain-wall speed of about 3 m/s for
a current density 1.23108 A/cm2 was observed. As we have
concluded that the spin torque alone is unable to move the
wall over a long distances1 mmd, the observed domain-wall
velocity over large distances must come from three possible

FIG. 9. Velocityv and displacementx for a pulsed spin current(left panels) and for a pulsed magnetic field(right panels). The damping
constant isa=0.02.

FIG. 10. The phase boundary of pinning and depinning domain
walls for two types of pinning centers; see text for the definition of
the pinning parametersV0 andz. The external field is applied along
the −x direction and the spin current is along the +x direction att
=0. The damping constant isa=0.02.
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scenarios.(1) An additional magnetic field generated by the
current (Oersted field) was present in the experiment. One
just needs a very small magnetic field to generate this low-
velocity domain-wall motion. In fact, 1–2 Oe was sufficient
and it was hard to rule out such a small field in the experi-
ment. (2) There is a possibility of another spin-current-
induced torque which has a different form from Eq.(2). In-
deed, if one relaxes the adiabatic process which assumes that
the direction of the spin polarization of the current adiabati-
cally follows the magnetization vector in the domain wall,
one generates an other spin torque. A detailed calculation of
the spin torque from nonadiabatic processes is beyond the
scope of the present work; we will defer it to a future pub-
lication. (3) We need to emphasize that the domain-wall mo-
tion in the present theory relies on the form of the Gilbert
damping term. If we replace the Gilbert damping in Eq.(3)
by a Landau-Lifshitz damping, i.e.,agM 3 sM 3Hef fd, we
obtain a finite velocity independent of the damping param-
eter. Again, we should defer this subtle difference to a further
study. We point out that the other existing experiments25,26

seem to support our model: they report that a magnetic field
is always required to move the wall over a long distance.

We end the section by looking at two more interesting
examples. The first one is that the spin current is applied in
the form of a pulse. If we apply a rectangular pulsed spin
current along thex direction, what dynamic behaviors do the
domain walls have? In Fig. 9, we show the evolution of
velocity vstd and displacementxstd with the pulsed spin
toque and we compared them with the pulsed magnetic field.
Suppose a spin torque with magnitudebJ=−600 m/s is
turned on att=0 and turned off att=0.5 ns. In the absence
of the external field, the domain wall moves back to its origi-
nal location after the current is turned off. This is again con-
sistent with our analytical result. However, for the field-
driven domain-wall motion, the domain wall continues to
move in the forward direction after the field is turned off.

Another example is to model the effect of pinning centers
in the domain-wall motion. In realistic nanowires, domain
walls are not completely free to move. There are various
pinning sources such as defects and roughness. We intro-
duced a pinning fieldHpin=V0xHsz− uxud /z, where Hsyd is
the Heaviside step function,z.0 is the distance from the
domain wall center, andx is the position. In Fig. 10, we
present the result for the critical magnetic field required to

move the wall in the presence of a defect. The role of the
current is to first move the domain wall out of the pinning
center so that the critical magnetic field required to move the
wall is smaller.

V. CONCLUSIONS

We have demonstrated in this paper that the domain-wall
motion driven by a spin current has many unique features
that do not exist in the conventional domain-wall motion
driven by a magnetic field. We solved the Landau-Lifshitz-
Gilbert equation along with the current-induced spin torque;
we summarize below our main findings; which are supported
by our analytical and numerical study.(1) The spin torque
alone can move the domain wall, but the total displacement
is limited, thus the spin torque is not capable of moving
domain walls over a large distance.(2) Since the speed of the
wall is large at the initial application of the spin torque, there
the spin torque has an advantage over the magnetic field for
wall movement at short distances.(3) The domain wall is
capable of storing current-induced energy and thus the en-
ergy process of the domain wall is very similar to the charge
and discharge of inductance in an electric circuit.(4) The
spin torque can help to reduce the critical field needed to
move a domain wall if domain-wall pinning centers are
present.(5) It may be important to extend the work to a spin
torque other than the adiabatic spin torque used here in order
to study the contribution from a nonadiabatic spin torque
whose form has not yet been investigated.

In conclusion, a spin torque with the form of Eq.(2) is
proposed to study the dynamics of domain walls. Due to the
different roles played by the spin torque and by the external
field, the current-driven domain-wall motion represents a dif-
ferent type of torque. This spin torque creates the opportunity
for fast domain-wall motion using the combined field and
spin torque.

Note added in proof. Recently, a paper was published,27 in
which the critical current of domain wall motion was briefly
discussed.
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