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Impurity effects at finite temperature in the two-dimensional S=1/2 Heisenberg antiferromagnet
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We discuss effects of various impurities on the magnetic susceptibility and the specific heat of the quantum
S=1/2 Heisenberg antiferromagnet on a two-dimensional square lattice. For impurities witg, spgn(here
S=1/2 in thecase of a vacancy or an added spin, &1 for a spin coupled ferromagnetically to its
neighbor$, our quantum Monte Carlo simulations confirm a classical-like Curie susceptibility contribution
§/3T, which originates from an alignment of the impurity spin with the local Néel order. In addition, we find
a logarithmically divergent contribution, which we attribute to fluctuations transverse to the local Néel vector.
We also study frustrated and nonfrustrated bond impurities &itt0. For a simple intuitive picture of the
impurity problem, we discuss an effective few-spin model that can distinguish between the different impurities
and reproduces the leading-order simulation data over a wide temperature range.
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I. INTRODUCTION In a recent comprehensive quantum field-theoretical

The problem of impurities in low-dimensional quantum WOrk?* @ low-temperature theory of an arbitrary quantum
antiferromagnets has attracted considerable attention evBPPUrity in a 2D antiferromagnetic host system was devel-
since the discovery of high-temperature superconductivity iPPed, with the host being either in the=0 magnetically
the cuprate$.At low concentration, holes doped into the ordered phasgi.e., in the renormalized-classical regime at
CuO, planes are localized, or have very low mobility, and T>0) or close to a quantum-critical point. In the magneti-
hence static impurities are relevant for understanding the inically ordered phase a leading-order classical-like Curie con-
tial reduction of antiferromagnetism upon doping com-tribution to the impurity susceptibility was predicted to stem
pounds such as L&uQ,. These impurities are expected to from the coupling of the impurity momerg; to the local
be magnetically frustratetiAlthough not directly related to Néel order as the temperatuie—0, i.e., Xizmp—>s,2/3T.
the breakdown of antiferromagnetism associated with the onStimulated in part by these theoretical predictions by Sach-
set of superconductivity, static nonfrustrating impurities, e.g.dev et al,?! we recently carried out a large-scale quantum
inert holes corresponding to substitution of Cu atoms by nonMonte Carlo(QMC) study?’ of the 2D S=1/2 Heisenberg
magnetic Zre# also can give important information pertain- antiferromagnet and confirmed the Curie prefactor 1/12 in
ing to the nature of the interactions in the Gu@anes. The the renormalized-classical regime, for a vacarnoyssing
same applies to related cuprates where the planes are brokepin as well as for an adde§=1/2 impurity spin. How-
up into chaing or ladders Very recently, similar impurity —ever, we also discovered a loWwlogarithmically divergent
problems were also suggested to be of relevance to possibfibleading contribution to the impurity susceptibility. This
physical realizations of quantum computérs. anomaly was attributed to the transverse component, for

On the theoretical side, Heisenberg impurity models carwhich aT-independent behavior had been predictet.Re-
be studied by a wide range of modern quantum many-bodiated logarithmic divergences had also previously been
methods. Importantly, numerical techniques, such as quarieund, e.g., in an exact study of an impurity in the classical
tum Monte Carlo and the density matrix renormalization2D Heisenberg modéf, and in a Green’s function treatment
group, can give approximation-free results against whictof the 2D quantum model with an extra spinTat0.16 In the
analytical approaches can be tested on a quantitative levdatter study, the frequency dependent transverse impurity sus-
Once such a program has been completed, the applicabiligeptibility Xiﬁnp(T:O,w) was found to be log divergent when
of a Heisenberg description to an experimental system can he— 0. More recently, an anomalous susceptibility was also
judged without concerns about approximations in the calcufound in the Heisenberg model with a finite impurity
lations. There is already a large body of work devoted toconcentratiorf?
various impurity effects, and a coherent picture is emerging. Recent efforts, by Sachdev and V@jtand Sushkot? to
Restricting ourselves to work on single impurities, we noteexplain our previous numerical finding$have resulted in
several ground state calculations for Heisenberg clfafds, more complete field-theoretical descriptions where the impu-
ladderst>** and the two-dimensional (2D) square rity susceptibility indeed acquires a previously unnoticed
lattice1315-22 Extensive work on chaif$?® and 2D subleading log divergent contribution. Its principal cause can
system3!26-29t finite temperature has also been carried outalso in these analytical treatments be considered as associ-
In this paper, we continue our studiésf finite-temperature ated with the transverse component, although there are also
effects of isolated static impurities in the standard 2Dhigher-order logarithmic contributions arising from longitu-
Heisenberg model, and also present some results for the 3dinal fluctuation$83° In the formulation by Sachdev and
system. \ojta,?® which relies on an expansion of the nonlinear
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full model effective model =1 impurity, in contrast to th&=1/2 vacancy and added-
spin impurities. It was suggested by Aharagtyal.? that hole
..M..,@.'.. 0°/ () doping the parent compounds of the cuprate superconductors
Q’.’.’. o) /N could lead to effective frustrated ferromagnetic exchange
J couplings between nearest neighbor Cu spins. Motivated by
this scenario, we have also considered an impurity model
- with a single ferromagnetic bond, and compared this with a
@\r/N (b) missing bond. The 2D Heisenberg antiferromagnet with two

vacancies on different sublattices, and at different separa-
tions, is also studied in order to further elucidate the behavior
of the single-vacancy impurity susceptibility. Finally, we
have considered a single vacancy in the three-dimensional
(3D) Heisenberg antiferromagnet, for which analytical limit-
ing expressions has also been obtained receithithough

the main focus of this paper is on the susceptibility, we will

(0 .. —a also present some results for impurity effects on the internal
m. @/ r d) energy and the specific heat.
(00— /N In Ref. 27 we also introduced effective models for the

vacancy and added-spin systems. These models are very
FIG. 1. Full Heisenberg models and corresponding effectivesimple few-spin systems constructed in order to capture the
models of the(@) pure, (b) vacancy,(c) added-spin, andd) four  |eading-order impurity effects—they do not contain the log
ferroma_gnetl_c bo_nds systems. Thlck_solld lines symbolize ferroqgrrections. They provide simple physical pictures of the
magnetic spin-spin couplingslr<0, with Jg=J. The free param-  qominant mechanisms at play in the full Heisenberg impurity
eters of the effective models are the couplingandr. models. In this paper the effective models are discussed in
detail, and the concept is further demonstrated by results for
model around dimensionality=1, a very detailed form for added-spin impurities with different couplings to the host
the logarithmic corrections to the impurity susceptibility wasand the ferromagnetically coupled in-plane impurity spin.
given. For general impurity spif§: The rest of the paper is organized as follows: In Sec. Il the
5 3 full Heisenberg and effective models, as well as their impu-
N =§[1+Lln<cms> T |n<Czps> +O<I> } rity susceptibilities, are defined. In Sec. Il the SSE Monte
mP 3T ms \ T 27%p2 T ps/ | Carlo method is briefly outlined, and the improved estima-
(1) tors needed to achieve sufficient statistical accuracy are dis-
cussed. We also describe an averaging trick used to alleviate
where p, is the spin stiffness of the bulk-ordered antiferro- the sign problem in our study of the frustrated ferromagnetic-
magnet in the absence of impurities and the unknown conbond impurity. The SSE results are presented and compared
stantsC, , are in general nonuniversal, but become universalith the corresponding effective models in Sec. IV. Conclud-
when a quantum critical point is approached. The first subing remarks are given in Sec. V. In the Appendix we discuss
leading terme<In(1/T) in Eq. (1) hence accounts for the log the specifi_c heat of the pure Heisenberg model, for which we
divergent behavior observed in our numerical studies. Théave obtained low-temperature results of unprecedented ac-
guantitative agreement between Ed) and our numerical ~curacy. In order to provide benchmark results for other cal-
data is quite remarkable, as will be shown in this paper. Oufulations, we also list some selected high-precision numeri-
results also agree qualitatively with the analytical results ob€@l values for energies and susceptibilities of systems with
tained by Sushko?? different impurities.
The purpose of this paper is to give a more complete
numerical account of the effects of different types of single
static impurities on the magnetic susceptibility of the 3D [Il. IMPURITY MODELS AND SUSCEPTIBILITIES
=1/2 Heisenberg antiferromagnet on a square lattice. Some
of the results were previously summarized in Ref. 27. The Following Ref. 21, an impurity susceptibility is defined as
impurity effects were there determined for a vacancy and aithe difference between the susceptibility of an impurity sys-
added-spin impurity, by calculating impurity susceptibilities tem and the pure system, i.e.,
with the stochastic series expansiogSSE QMC
technique®®3* The impurity susceptibility is simply the dif- .
ference between the susceptibilities of the pure and doped Xizr'n(;;) :X(Zi) —Xfa), 2
Heisenberg models. In this paper we compare our numerical
results for the vacancy and added-spin impurity models with
the theoretical expression in E(l). We also consider an Wherei=b,c,d,e, andf, correspond to the different impurity
impurity consisting of a spin coupled ferromagnetically to its Systems shown in Figs. 1 and 2, apf, is the susceptibility
four nearest neighbofsee Fig. 1d)]. This coupling arrange- of the pure system. The susceptibilities on the right-hand side
ment is nonfrustrating and can be expected to lead t§ an of Eq. (2) are not normalized by the system size, i.e.,
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a pictorial representation to the left in Fig(al, and will
() hereafter be referred to as the full Hamiltonian of the pure
system. Impurity models are obtained by introducing single

J defects in the pure model.

We begin by presenting the models with impurity mo-
mentsS # 0. They are illustrated in Fig. 1. When a single
M ® spin S, is removed from the square lattice, the vacancy
model shown to the left in Fig.(b) is obtained. We will
FIG. 2. Full Heisenberg models of tife) frustrating ferromag-  Study it in 2D as well as in 3D. The added-spin model,
netic bond(Je=J) and(f) removed bondJ:-=0) systems. shown to the left in Fig. (), is obtained by coupling a
single off-plane spir‘é— S, antiferromagnetically to a spi§,
1 on the square lattice. Two different values on the coupling
Xfi) = —<2 %Z>2 (3) strengthd, =J and J, =J/2 will be considered here. In the
T\ limit J, —, the magnetic properties of the added-spin
. . . .. model become equivalent to the vacancy model, since the
where the sum is over all the spins of the pure or _|mpur|_tthO spinsS, and S, are then locked in a singlet state. An

. . » ; %:l impurity is obtained by considering a configuration of
differences of extensive quantities, and they provide a natue ferromagnetic bonds with one spin in common, as
ral framework for quantifying the effects of different isolated shown in Fig. 1d) ’
impurities on the susceptibility of the pure system. They also We also cbnsider the models with impurity momesis
give the leadinglinear) dependence on the concentration of:0 shown in Fig. 2. A system with one frustrating ferromag-
impurities. The definition in Eq(2) will be used both inthe | ..o wher.e fhe spin-spin coupling &< 0, is shown
context of the full Heisenberg models and the correspondingn Fig 2(e), In the limit Jo/J— o0, one might hen,ce expect a
effective models, both of which will be defined in this sec- correépondingizl imqurity mo;nent, as the two spins con-

.“C;n' Qlljant't'es angl?rg]jous to .lfz_.@%w'l{ also be used for the nected by the ferromagnetic bond then form a triplet. On the
internal energy and the specific heat. . other hand, forJg=0 clearly S=0, and hence a transition
The impurity susceptlblllt_y can be se_parate_d n Comloo'betweenS:O and 1 might be expected at some intermediate
nents paral!el e_md perpepdmular to a given .d|rect|on. Her%F_ However, it has been shown that in a Néel ordered bulk,
the separation Is done with respect to an axis along_the %Tthe correlations between the spins connected by the ferro-
entation of the local Néel order at the impurity. In the |sotro-magnetic bond remain antiferromagnéfayhich is possible
pic 2D He_lsenberg antlfe_rromag_net, true long-range Néel.orbecause of the broken degeneracy of the triplet when it is
der SEtS. in, i.e., the spm;rotgz;tlon symmetry of u,%? Imclnltecoupled to an asymmetric environment. Hence, counterintu-
S{S(ti?m is broken, only a=0."> The components;y,, and ively, an S=1 behavior wherm — 0 may actually never be
Ximp » Wherel and L refer to directions parallel and perpen- reajized with a ferromagnetic bond impurity. We will here
dicular to the Néel order, are, therefore, true physical observsgnsider only the coupling strengih=J, for which the sign
ables only afT=0. However, our calculations show a tem- proplem due to frustration can be alleviated by a position
perature behavior that confirms an approximate, buyeraging procedure, as discussed in Sec. Ill. Our QMC data
ponceptually useful, separation _of the impurity suscept|'b|lltyshOWS that the impurity momer§=0 in this case, and the
in components already at low finif§ as will be shown in  phehavior is similar to the removed-bond impurity model
Sec. IV. In the 3D Heisenberg antiferromagnet, Néel order I$J-=0) shown in Fig. 2f).

present already at finite temperature, bel@w/J=~0.95% Two-impurity models are useful for further clarifying the
which makes the two components truly distinguishable. Th%roperties of the single-impurity models. Here we will con-

effective impurity models are defined to include a fluctuatinggjyer only the case of two vacancies, which are chosen to be

direction given by a classical vectdt, describing a local  gjther at a fixed short distance from each other or maximally
Néel order with respect to which susceptibility component%eparated on the X L square lattice.

can be defined. Comparisons with the QMC results show that
the separation into components is useful even at a quantita- B. Effective models

tive level. The purpose of introducing effective models is to capture

the dominant mechanisms at play in the full Heisenberg
models with very simple systems containing a minimal num-
The basis for this study is the isotrofs 1/2 Heisenberg ~ ber of adjustable parameters. The effective models are con-

antiferromagnet on a periodic X L lattice. This model is strained by two criteriati) they should reproduce the high-
defined by the Hamiltonian impurity susceptibility, the sign of which depends on
whether a spin has been added or removed, @ndhey
should mimic the expectéH leading-order behavioSZIST

Ha) = Jb§—:l Sit) " Sj(o)- @ ofthe impurity susceptibilities at o, i.e., the alignment of

: the impurity moment with the local Néel order. Effective

where J>0, bond b connects the nearest-neighbor sitesmodels are here considered for the f§lt* 0 impurity mod-
[i(b),j(b)], andNj is the total number of bondsl,) is given  els shown in Fig. 1.

A. Full Heisenberg models

Np
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In our effective models the local Néel order at the impu- 3<<M(Zi)>>N
rity is modeled by a classical “nonmagnetic” veckbrWhen )((Zi) = —
a single spinS; is removed from the full model of the pure
system, as shown to the left in Fig(b], the remaining sys- 1
tem has arS=1/2 ground state due to the sublattice asym- - ?<<M(Zi)>>ﬁ,, (6)
metry. Hence, the effective model corresponding to the va-
cancy system, shown to the right in Fig(b}, is simply  wherei=a,b,c, andd. Here the inner brackets) indicate
defined with a single effective remnant “environment” spin- the quantum mechanical expectation value for a fixed direc-
Se. This spin is coupled to a classical unit vectérrepre-  tion of N, and(-)y denotes the classical orientation average.
senting the orientation of the local Néel order. The magni-The  jmaginary-time ~ evolved  operator MZ(7)
tude of this order is absorbed in the coupling stremgtihe  _ HeEMMZ _eh inaMZ. in th ® di
effective model for the pure system is naturally obtained by_exFi M) e_xp( ())- ExpressingMy, in the coordi-
reinserting the spirS,, as shown to the right in Fig.(a), hate system defined by,

1T
_ f dr{(MZ (M2 ()N

h,=0

with >0 for antiferro_magnetic coupling. The_eﬁeptivg fi):cos{G))M?i)—sin(@)Mﬁ), 7)
model for the added-spin system, shown to the right in Fig.
1(c), is obtained by coupling an extra sp%nsa to Sy. Fi-  wherel and L denote the directions parallel and perpendicu-

nally, the effective model for the system with a configurationlar to N, the expectation values can be easily calculated. The
of four ferromagnetic bonds, shown to the right in Figd)l ~ second term in Eq(6) vanishes. The first term can be sepa-
is obtained by simply changing the signafi.e., by making rated into components:

the coupling ferromagnetic instead of antiferromagnetic. To

z _1) ,2 1
summarize, the Hamiltonians of the effective models, corre- Xi) = 3X0) ¥ 3X0): (8)
sponding to the full models in Fig. 1, are where the prefactors originate from the classical orientation
off averaging. The susceptibility components are
H(a):I‘N 'Se+ aSO-Se, (58) Ut 1
Xl(li) = f dﬁM!i)(T)M!i)(o» = .T.((M!i))z% (99
H =N - S,, (5b) 0
T
1 - €1 1
HET=IN - Se+ aSp- Se+ 3, Sa- S0, (50) X(i)‘JO dx{Mgi(DM;(0)), (9b)
off which can be easily evaluated in théasis. In this basis Eq.
Hg=rN-Se—aSp- Se. (5d) (94 has the simple form becaus, M{;1=0.

) ) A dominant feature of the effective models is the align-
The parameters >0 and «>0 cannot be derived in any ment of a quantum spin with a classical vector. This can be

trivial way. The magnitude of should in principle depend gappreciated by examining the simple effective Hamiltonian
;)hn T, butl_':hgT dfe[[ahendegcehcandbe e|><pe(zjt€i‘d t0”be ;Nealft O?r:?ﬂfg, given in Eq.(5b), for the vacancy system. The corre-
e amplitude of the order has developed locally close to : Do
impurity. One could also argue that a direct coupling be-gpondlng susceptibility is given by
tweenN and the central spi, should be included. Such a 2 _1 2. .11 21 r
coupling is clearly mediated through the four nearest neigh- X(b) = 3X(0) ¥ 3X(b) = 347 T 350 @M 57 /- (10)
bors of S;. However, in the spirit of keeping the models as ]
simple as possible, we here chose to accomplish this couthe temperature dependence of the two components is
pling indirectly through the remnant environment si8g  9raphed in Fig. &) for r=1.90. SinceS,=1/2 inthis model,
One can further anticipate that the optimum values for théhell component can be written &%/3) x, =S/ 3T. Hence,
couplingsr anda will depend on the impurity type, since the the classical Curie prefact®?, instead of the usual quan-
effective impurity spin is spread out and its coupling is me-tum mechanical prefact@®.(S.+1), is a consequence of the
diated through the local environment 8§, which will be  finite coupling between the spi. and the classical vector
distorted in different ways by different impurities. However, N. This is precisely the loWF leading order behavior
we will show that the same parameters)~1.90 anda/J proposed! in Eq. (1) in the renormalized classical regime of
~2.25% actually give an overall reasonable agreement fora 2D antiferromagnet. The perpendicular component in Eq.
all the §> 0 impurity types considered here. (10) tends to a constant at loi. On the other hand, in the
The procedure for determining the susceptibilities of thelimit r —0, i.e., whenS, and N decouple,S, recovers its
effective models is straightforward. An external applied fieldquantum identity and the susceptibility has the usual Curie
h=h,e, defines thez direction. The magnetization operators form be)—>Se(Se+ 1)/3T.

My;), corresponding to the effective Hamiltonians in E@s, The effective models also serve the purpose of elucidating
have thez componentM{, =S+, M{, =S, M{;=S,+S  the steps in determining the impurity susceptibilmﬁb)
+S, and M{;=M{,. The susceptibilities are given by the =x{, —x(,- The separation in components of the susceptibil-
usual formula ity for the effective pure systenx(za), is shown in Fig. &).
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based on importance sampling of the terms of the Taylor
series for the density matrix. Its application to the Heisen-
berg model has been discussed in detail, e.g., in Refs. 33 and
34. The method is only briefly outlined here in order to dis-
cuss some important aspects of the impurity work, including
a trick for alleviating the sign problem for the frustrated-
bond system and the use of improved estimators for reducing
statistical errors.

The Hamiltonian of the Heisenberg antiferromagnet in
Eq. (4) can be cast into the form

Np
J JN
H(ﬁ):_EE (Hl,b_HZ,b)"'Tby (11)
b=1
where the operators; , andH,, defined by
Hip=2(3 - SipSin) (12a
Hop= Sty Si) + S S (12b)

are diagonal and off-diagonal, respectively, in the basis
{ley=19[,S5, ..., )} used in the simulation. An exact ex-
pression for the partition functiaz is obtained by expanding
the density matribe? in a Taylor series at inverse tempera-
ture B=1/T (kg=1). The series can be truncated at some ex-
pansion powen,,,=M, since terms of order greater than
«NgB give an exponentially vanishing contributiéh.The
truncated partition function is then given by

M
II Hahq
i=1

Since the matrix element of the operator product takes the
values 0 or 1, the statistical weight of a contributing configu-
ration is*

al. (13

Z=2 2 W(a, S\ «
a Sy

(=1D"(BY"(M - n)! _

2"M! (19

W(a,Su) =

oS i .
susceptibilityx(, for the vacancy system were given analyti- A number ofM=n identity operatorsHy o=I have been in-

cally in Eqg. (10) and are shown in Fig. (B). Finally, the

serted in the matrix element of each term in Et@), with

components of the impurity susceptibility are shown in Fig.expansion orden<M, and the change in prefactor reflects
3(c). At high T, the impurity susceptibility is just the sum of the number of different ways to distribute theHamiltonian

the Curie contributions of each independent spin, Xﬁ:g)

— 1/4T-2/4T=-1/4T. At low T the parallel component di-
verges, while the perpendicular component becomes a con-
stant. The inset verifies that the parallel component is respon-
sible for theS,%/3T behavior, since Ax” ~1/3 asT—0.

operators among thil positions. The symbdb, denotes a
sequence of operator indices,

S\/I = (alvbl)a(a21b2)1 R v(aMabM)1 (15)
wherea; e{1,2} andb;e{1,... N,}, corresponding to the

Besides being capable of reproducing the expected'ﬂow—operatorgqa_'b_ in Egs.(12), or (a;,b;)=(0,0), corresponding
leading order behavior of the full models, the effective mod-ig the ident'it3'/ operatoH, ,. For a given sequenc§, the
els also account quite accurately for impurity specific behavprdern then denotes the number of n®;0) operators in

ior at intermediateT, as will be shown in Sec. IV. There we he sequence. For a nonfrustrated lattice, the numbef
also demonstrate that the effective models account accurategﬁ_diagonm operator€2,b) in the sequenc&, is always

for the T dependence of the internal energy.

IIl. QUANTUM MONTE CARLO METHOD

even for nonvanishing contributions, thus yielding a positive
definite statistical weightV(a,Sy) in Eq. (14).

With a positive definite expansion, the partition function
can be stochastically evaluated by importance-sampling in

The numerical method employed here for the full Heisenthe configuration spacéx,S,). For this purpose an algo-
berg models is the operator-loop formulation of the stochasrithm consisting of two different configuration updates is
tic series expansioiSSE QMC method. It is a method used. In the first updat@iagonal updatethe sequenc8, is
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traversed from beginning to end, while attempting substituby bondb; are paralle(antiparalle). The rules for construct-
tions (0,0« (1,b;). The substitution(0,0)—(1,b;) is at- ing the operator loops are also modified, as discussed in Ref.
tempted only if the spins connected by bdndare antipar- 38. For the impurity consisting of four nonfrustrating ferro-
allel [for a nonvanishing contribution with the definition of magnetic bonds, the expression for the statistical walght
the diagonal operator in E@123]. The probabilities to use EQ. (14) is still valid if n, is replaced by the number,, of
for accepting/rejecting the change have been given elsesff-diagonal operatorg2,b;) acting on antiferromagnetic
where, e.g., in Ref. 34. An accepted attempt changes thieonds. Because of the symmetry of the arrangement of four
expansion orden by +1. If an off-diagonal operatd®2,b;) is  ferromagnetic bonds, this number also has to be even, and,
encountered no single operator substitution can be carrietherefore, the weightV is still positive definite.
out, and instead the saved sthigis updated by flipping the A single frustrating ferromagnetic bonthere with cou-
two spins connected by the borg, so that the state on pling J==J) in the Heisenberg antiferromagnet gives rise to a
which the diagonal operators act are always available whesign problem. Proceeding as in the case of four ferromag-
attempting and updaté,0) — (1,b;). In the second update netic bonds discussed above, the sign would be determined
(operator-loop updajethe sequenc&,, is uniquely decom- by the number of spin flips of antiferromagnetic bonds,
posed into a numbeX, of operator loops, in which substitu- which now can be even or odd. Since the total number of
tions (1,b;) < (2,b;) can be carried out, independently with flips still has to be even, we can also define the sign as
probability 1/2 for each loop. All the spins associated with(—=1)"2, whereng, is the number of spin flips on the ferro-
the loops are also flipped. During the operator-loop updatenagnetic bond. However, we can also proceed in a different
the ordem is kept fixed and the weight of the configuration way which allows for an alleviation of the sign problem by
is unchanged. The operator-loop update was introduced argbsition-averaging whed-=J. We then treat the ferromag-
discussed in detail in Ref. 34. netic bond in the same way as an antiferromagnetic bond in
The simulation is started with a random stéd¢ and an  the diagonal update, i.e., a diagonal operator can appear only
empty sequenceS,=(0,0),(0,0),...,(0,0) of arbitrary on antiparallel spins. The sign will then be given ()",
(shor) lengthM. One Monte Carlo stepMC step consists  Whereng is the total number of operators—diagonal and off-
of a diagonal update followed by an operator-loop updatediagonal—operating on the ferromagnetic bond. The simula-
During the equilibration stage of the simulation the cutdff  tion of the system with a ferromagnetic bond then proceeds
is adjusted to always exceed the maximum omieeached. exactly as the simulation of the pure antiferromagnet, i.e.,
Hence, the truncated partition functighin Eq. (13) is no  expectation values can be calculated usiig and by re-
approximation. Observables are measured after every M@eighting the measurements with the si§a(-1)"F of the
step and expectation values and their errors are determinedrresponding configuration,
by the usual method of data binning. Estimators for various

observables of the Heisenberg antiferromagnet, in the con- (AS)w
text of the SSE method, are discussed in Ref. 33. The sus- (A)= S (17)
ceptibility is given in Eq(3), where the sum is evaluated in (S
the stored statky). The internal energy and the specific heat|n practice, however, the calculations become impossible
are given by® when(S)y approaches zero. Here a technique based on po-
(n sitional averaging is used to tackle this problem. The idea is
E=- E (163 to replacggthe sigs of a given configuration with the aver-
aged sig
C=(n% - (nN?-(n). (16b) 1
. 3= SR, (18)
The operator-loop formulation of the SSE method, as de- Np R

scribed above, is directly applicable to the isotropic Heisen- . ) )

berg antiferromagnet. Impurities in the form of vacancies\Where an average of the sigR)=(-1)"" is taken with

added spins, and missing bonds can be included with onljespect to all possible locatiofisof the ferromagnetic bond.

very minor changes in the algorithm. In the added-spin im-Expectation values are then given by

purity case, the only change in a program for the pure model

is that the acceptance probabilities in a diagonal update (AZ )

(0,0 —(1,by), involving the additional bond connecting (A)= SR (19

the impurity spin, depend on the bond strendthHowever, i

the impurities consisting of a frustrating ferromagnetic bondThis technique was discussed in a more general context in

or four nonfrustrating ferromagnetic bonds necessitate somref. 39, where it was shown that it significantly alleviates

additional considerations, as will be discussed next. the sign problem of the antiferromagnet with randomly po-
For a ferromagnetic bond, the diagonal bond operatogitioned ferromagnetic bonds. This came at the price of an

(129 is defined as @ /4+S'S) and the off-diagonal12b)is  approximation corresponding to switching to an “annealed”

multiplied by —1. During the diagonal update the substitutiondisorder. Here, in the single-impurity problem, there is no

(0,0—(1,b), whereb; is a ferromagnetiqantiferromag-  approximation as the trick simply corresponds to simulta-

netic) bond, is hence attempted only if the spins connectedieously studying systems with all possible locations of the
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FIG. 4. SSE results for the magnetic susceptibility of the pure Ne T 1 ()
2D Heisenberg antiferromagnet for different system sizegrror 5 0.6 v l=4 _
bars are smaller than the symbols. The inset shows a comparison A4AL=8
. . L o L=16 J
between the lowF behavior for the pure, vacancy, and added-spin u =32
models withL=64. For the added-spin model, two values on the 0.4 O-0OL=64 _
coupling constand | /J are considered. e
| sl vl s nenld

0.01 0.1 1 10
T

ferromagnetic bond. When considering only a single position

R of the ferromagnetic bond, the sign problem will be more FIG. 5. The impurity susceptibilities of th@) vacancy andb)
severe than with a redefinition of the diagonal operator dis@dded-spinJ, =J) models, for different system sizés The dotted
cussed above for the four-bond impurity. However, when us!nes show the expected asymptotic behavidixf,,—1/3 asT
ing the position averaging there will be some system siz?o' Error bars are smaller than the symbols.
above which the statistic is improved. We here obtained ex- N N
pectation values with reasonable statistical errors for system S, B ! ,
sizes up td.=32 at temperatures down T6=J/8. Since the M= 2 §= 2 i
evaluation of the sign during the simulation is completely = =
separate from the sampling procedures, the effect of a ferrdie can now average this over all thé @ays of flipping the
magnetic bond can actually be obtained as a “bonus” whiléoops, giving

(20)

simulating the pure antiferromagnet. A drawback of the po- N,
sition averaging method is that it does not allow for ferro- Y*=B S (092 ). (21)
magnetic bond strengthk # J, except perhaps fal: very i

close toJ where reweighting should work. Ei 4sh . lized its for th .
We next briefly comment on the accuracy needed to study'9Ure 4 Shows size-normalized results for the magnetic sus-

the impurity effects and the use of improved estimators foCEPtPility obtained this way for the pure 2D Heisenberg an-
increasing the accuracy. For large the effect of a single _t|ferro_magnet, as well as lo@-data for systems with an
impurity on the magnetic susceptibility? is very small, as impurity. We believe that these results are the most accurate
shown in the inset of Fig. 4. In order to get acceptablé errorones currently available for this model and therefore also list
for the impurity susceptibilities(izmp in Eq. (2) very precise selected néjrr;]erlcal d_?tar:n theEApoendlg. 1Ff§)br the !nternal
values for the individual susceptibilities are clearly necesSNergy and the specific heat, _ajﬂ; 9 and (16b), no im-
sary. To achieve this, an improved estim&tds used. The Proved estimator of the type discussed above can be con-
general idea is to reduce the statistical errors by replacing tharucted. The energy can nevertheless be calcu_lgted to h'gh
value of an observablé corresponding to a given Monte accuracy, as seen in the Appendix. For the specific heat, it is

) . . . . very difficult to reach good accuracy at low temperature.
Carlo configuration by an estimatéy obtained by averaging \eyertheless, we are able to clearly discern the expécted

over many equal-weight configurations during the operatoryapaviorC« T2 at low T, as shown in Fig. 14 in the Appen-
loop update. In the case of the susceptibility, this is particuz;,

larly simple since the magnetization is a conserved quantity.
Some of the loops will go througfonce or multiple times

the state|a), i.e., the state on which the ordered operator
product is acting on in Eq13). Definingo; as the sum over Here, in Sec. IV A, we begin by presenting susceptibility
all the spins ina) covered by theth loop, we clearly have results for theS # 0 impurities illustrated in Fig. 1. In Sec.

IV. RESULTS
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FIG. 6. L=64 results for the impurity susceptibilities of the va- |G, 7. SSE data fOX/iZmp-l/lzT of the vacancy and added-spin

cancy and added-spin models is compared to the results of the cfodels with system sizels=64. Straight lines and dashed curves
responding effective models. The dotted line shows the value 1/3gy¢ fits of the theoretical results in Ref. 28 to our [vsimulation

data. The dotted curve shows the T/Behavior.
IV B we consider the case of a vacancy in a 3D system, an
in Sec. IV C we look at the system with two vacancies. We
discuss results for th§=0 bond impuritiegFig. 2) in Sec.
IV D. In Sec. IV E we summarize our results for the impurity
effects on the energy and the specific heat.

e shoulderlike structure with a minimum arouddJ
~0.8 observed in the added-spin data has no counterpart in
the vacancy data, but in both cases there is a maximum at
T/J=0.2. Some of the differences clearly are related to the
different T— < behaviors.

In Fig. 6 the size-converged SSE data are compared with
A. S #0 impurities the results of the effective models. Results are also shown for
_ _ N the added-spin impurity witll, =J/2. The values of the two
The impurity susceptibilities for a vacancy and an addedparameters of the effective models/J=2.25 andr/J

spin with J, =J are shown in Figs. @ and 3b), respec- =1 9037 were chosen for optimal overall agreement between
tively. The results are multiplied byT4 At high T the data  the SSE data and the effective model results, for both the
for different system sizefs coincide, while at lowef finite-  yacancy and the added-spin systems. For this choice of val-
size effects are clearly seen for 16. The finite-size effects ;g5 the effective models reproduce the added-spin data with
are due to theS=1/2 ground states of the vacancy and g remarkable precision down T J~0.1, for bothd, =J and
added-spin models, to which the system converges below ai =3/2. Moreover, with the same set of values a reasonable
L dependent crossover temperature, as has recently been digreement is also obtained for the vacancy system. Hence,
cussed by Sushkd¥. For the largest system size consideredihe same parameters describe well a wide range of coupling
here,L=64, all finite-size effects are eliminated within sta- strengths to the added spitthe vacancy corresponds to
tistical errors for temperatures down 1@J=1/32. The ob- 3 /j=c0),
served behavior at highi for both impurity types is due ©0 | each of the three cases shown in Fig. 6, the effective
the fact that the total susceptibility is then just the sum of thenogels also reproduce the IgTleading-order behavior sug-
Curie contributions of each independent spin, i.e., gested in Eq(1), i.e., 4TXiZmp~432/3:1/3 for a§=1/2
1251 L2 1 impurity. Hence, the effective models clearly contain the
Xo® = xto0 = Xt — T T mC T (22)  dominant impurity physics and are able to distinguish be-
tween different impurity types in a broddrange. In analogy
as T—o. The minus(plus) sign is for the vacancyadded-  With the results for the effective models, the observed Tow-

spin) impurity model. According to the expression in Eij), leading-order behavior of the full Heisenberg models is as-
the leading order behavior of the impurity susceptibility is Cfibed to a susceptibility component parallel to a locally Néel
4Tx%,~4S/3 asT—0. For a§=1/2 impurity, the con- ordered domain coupled to the impurity, i.é1/3)x;
stant value 1/3 should then be approached atTowhis is ~ ~ S/3T=1/12T, wherei=b,c, andS=1/2.

also clearly observed in the size-converged 64) data for We next examine the thermodynamic |Gwmpurity sus-

the vacancy impurity, shown in Fig(&. For the added-spin ceptibilities more closely by subtracting from them the
impurity shown in Fig. ), an approach of'nXin;gg to1/3is leading-order terme/3T. The resulting quantities should
also likely, although the convergence occurs at loWéhan then describe the transverse impurity susceptibilities at low
for the vacancy. At intermediat& the results for the two T, i.e., (2/3)xﬁn;§;)~xf;,5”—§/3T.3° The results in Fig. 7 for

different impurity types are strikingly different. Specifically, y*>®~1/12T of the vacancy impurity, and of the added-

imp
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FIG. 8. Impurity susceptibilities for different system sidesf FIG. 9. The impurity susceptibilities of the 3D Heisenberg an-

the impurity model with four ferromagnetic bonds. The solid curve tiferromagnet with a vacancy, for different system sike3he dot-
shows the result of the corresponding effective model, which asted line shows the value 1/3. A comparison betwgegp,—1/12T
sumes the asymptotic value 4¢shown by the dotted lineat lowT.  of the 2D and 3D models is shown in the inset.

The log divergent behavior gtizmp—1/3T, for a system of siz&

=32, is shown in the inset, where the solid line and the dashedesylts for differentl coincide at highT, while finite-size
curve are fits of the theoretical results in Ref. 28 to our PW- effects are seen at lowdr. The highT observed behavior,
simulation data. 4TxA9 0 asT— o, is due to the fact that the susceptibili-

spin impurity withJ, =J, show an apparent logarithmically ties of the doped and the pure models cancel, since there is
divergent behavior a¥— 0. The results for the added-spin an equal number of independent spins in both models at high
impurity with J, =J/2 are not conclusive in this regard, but a temperatures. The ground state spin of this mode$4d,
similar log divergent behavior at still lower temperatures isand hence also an impurity momefit 1 can be anticipated.
clearly plausible. As], /J—, the magnetic properties of The low-T finite-size susceptibility should then beT g

the added-spin model should become equivalent to those of 4T[S(S+1)/3T]=8/3 and in thethermodynamic limit

the vacancy model. In the limit, /J— 0, on the other hand, 4Ty?~4T(S?/3T)=4/3.This behavior is indeed seen in Fig.
the added spin is decoupled from its host and the impurityg; for L=4 and 8 the lowF behavior dictated by the ground
susceptibility becomes simply the susceptibility of a singlestate spin can be observed, while for32 the lowT sus-
Spin (1/4T), i.e., Ximp~1/12T~1/6T. When comparing the ceptibility is size-converged at leastTéJ=1/16 and iscon-
SSE results in Fig. 7 with each other, it then seems that thgjstent with a convergence to 4/3. We also show results for
log divergent behavior starts at highers the magnitude of  the corresponding effective model. Using the same values for
the coupling to the added spid, /J, is increased. This can ;3 andr/J as previously for the vacancy and added-spin
be naturally understood as an impurity moment stronglysttective models, changing only the sign @f the behavior

Coirgggrzjci)ntgioe?r;llerci?l?frgiigglngxep:/rZISSF?oonnlg)—/ dlse;%"r‘]’a]ei\'/ andarees %elitatively with the SSE results. The inset of Fig. 8
\Vojta,?8 Eq. (1), the slopes of the the loW-curves should be Shows)(m, —1/3T, which at Iovfl('d)shoulq be dominated by
equal on the log-linear scale used in Fig. 7. The slope i¢he transverse compone®/3);,,"- Again, an apparent log

ps is the spin stiffness of the bulk-ordered antiferromagnetcurve are fits of Eq(1). Data for the two lowesT are not
for which we use the valugy/J=0.18142 Our results for the included in these fit because of the finite-size effects that

vacancy and thé, =J added spin are indeed consistent with most likely remain here. Nevertheless, the results support the

this prediction. The straight solid lines are fits of the leadinguniversal lowT prefactor(slopg of the leading logarithmic

logarithmic part,<In(C,ps/T), of Eq. (1) to the lowT data, correction.

whereas the dashed curves show fits including also the sub-

leading correction=T In(C,ps/T). For the vacancy system

we find C;=~1.7 (in the leading-order fitor C;~1.6 and

C,~0.3, for the added-spin systefd, =J) C;~50 or C; Here we discuss the case of a vacancy in the 3D Heisen-

~73 and C,~184. For the added-spin impurity with, berg antiferromagnet. Some predicti&hsvere recently

=J/2, no fit can be made with only the leading term, and wemade also for this system, but since we have not achieved

find C;~10° andC,~ 10'°. sufficient accuracy they are not tested in detail here. The
Results for the impurity model with a configuration of leading-order behavior can nevertheless be extracted. In Fig.

four ferromagnetic bonds are shown in Fig. 8. Again, the9 the SSE data are shown for different system sizes

B. Vacancy in a 3D system
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L (N=L3), and a comparison between the 3D and 2D data is 0.01 01 TH ; 10
shown in the inset. The high-behavior, as well as the low- T
T finite-size effects, have the same explanations as those

given for the 2D results. For the largest system size]6,
most finite-size effects are eliminated within statistical er-
rors in theT range considered. The observed thermody-
namic behavior is reminiscent of the 2D results in Fig. g 02
5(a), with the exception that the transition to a constant- =
valued behavior now occurs abruptly BtJ=0.95, which 0.1
is the Néel temperatur€, of the modeP® There are signs L
of a singular behavior of the impurity susceptibility at the 0.0
transition. At temperature§ <T,, the susceptibility is
seen to follow very closely the proposéd® behavior ol il il
S?/3T. It should be noted that although 3D order sets in

below Ty, our finite-size systems nevertheless do not 0.10 L=32 oor=(1,0) |
break the symmetry and the direction of the Néel vector is =21
not fixed. In an infinite symmetry-broken system, the
S?/3T behavior would not be present if the magnetization g 0.05[
fluctuations are defined with respect to the average in the "=
direction of the fixed Néel vector.

In the inset of Fig. 9, the perpendicular component
(2/3) Ximp=Ximp~ (1/3 Ximp is compared to the analogous
quantity of the 2D model. Although the statistical accuracy is 0.05-
not very high at low temperature, it is clear that the behav- 0"01 — ""6'1 — '1 — ""'%'0
iors are different. The 3D results do not indicate any log ' B T
divergent behavior of the type observed in the 2D system.

Instead an almost constant behavior is observed, as also pre-FIG. 10. Impurity susceptibility for different system sizesof

vvl=4
A4A|=8 _
=16
| =32
0 |-64

@

(b)

dicted in the field theor$? the square lattice with two vacancies. The vacancies are as far apart
as possible in@). In (b) the L=32 results are shown for the cases
C. Two vacancies in 2D when the two vacancies are nearest neighbopgn symbolsand

Next we present SSE results for the 2D Heisenberg antit distance =(2,1) from each othetsolid symbols.

ferromagnet with two vacancies on different sublattices. The The very sudden crossover from divergent to alnibst
reSUItS fOI‘ the Impurlty Susceptlblllty are multlplled by a faC' independent behavior seen in F|g(axbpeaks for a Compo_
tor 1/2, so that single-impurity values should be obtainethent ) aligning strongly to the local Néel ordéwhich
when the correlation length is much shorter than the separasecomes the global order at thedependent crossover tem-
tion between the vacancies. Wheris lowered, interactions peraturg, and justifies the separation into parallel and trans-
between the impurities become important as the correlatioperse(with respect to the local fluctuating Néel vegtam-
length & grows exponentially. AT corresponding to a corre- purity susceptibility components already at intermediate
lation length of the same order as the vacancy separation, théowever, the longitudinal component is not stricgy/ 3T;
moments due to the two vacancies on different sublatticethe recent field theory by Sachdev and Vojta predicts that the
are pinned by the local Néel order antiparallel to each otheremaining longitudinal contributions, once this leading term
resulting in a rapid quenching of the parallel component othas been subtracted, has a temperature dependence
the impurity susceptibility. Hencegizmp does not diverge as «T In(1/T). Nevertheless, the transverse contribution, which
T—0. The data shown in Fig. 8 is for the case of maxi- is xIn(1/T) at low T, dominates.

mum separation of two vacancies on different sublattices;  In Fig. 1Qb), SSE data is shown for the case of the two
=(L/2-1,L/2). Since¢ diverges exponentially &6— 0, the  vacancies being nearest neighbars,(1,0), as well as at
point at which xi,, deviates from the divergent single- separatiorr =(2,1) on the square lattice. Again, the single-
vacancy behavior moves only very slowly to loweasL is  vacancy data are reproduced at hi§ihiIn contrast to the
increased. For largdr, an almost constang,, is observed.  divergent trend seen in the maximum-separation data in Fig.
However, no sign of convergence of the plateau value igQ(b), the finite-size behavior has now converged to a near
seen. Clearly, in a system of finite size there will always beconstant at lowT, and no signs of a log divergence as a
some interaction also between the perpendicular componentgnction of L is observed. In the figure we show only

of the two vacancies, and hence even for lakgthe two- =32 results, which are almost converged to the thermody-
vacancy model does not trivially reproduce the single-namic limit. The absence of log corrections for two vacan-
vacancy results below some temperature. It is plausiblegies at fixed separation is consistent with results of a Green’s
however, that the roughly (h) divergence of the plateau function calculatio® where the introduction of a second
height seen in Fig. 1@) continues as — . This would be  extra spin destroyed the log divergence in the frequency de-
fully in line with the log divergent)(ﬁrﬁéb) for the single va- pendentT=0 susceptibility observed for the system with a
cancy. single extra spin.
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We next turn to the QMC results shown in Fig. 11 for the 0.01 0 ™ 1 10
2D Heisenberg antiferromagnet with a ferromagnetic bond or
a missing bond, i.e., witB=J or Jz=0, respectively. In this
case the impurity susceptibilities do not diverge Tas> 0,
and the results are not, therefore, multiplied with The  shows theL=64 QMC results for the added-spin model with
observed highF behavior of each modek?,,—0, is due to  =J/2. The curves are results of the corresponding effective models.
the fact that the susceptibilities of the pure and the doped

models cancel, since there is an equal number of independegiggel forJg>J. As already discussed in Sec. II, the asym-
spins in both models at high temperatures. For the missingmetric coupling to the bulk of the two spins connected by the
bond impurity, lowT finite-size effects are clearly seen for ferro bond most likely implies — 0 behavior correspond-
L=4 and 8, while for the |argest SyStem size 32, the re- |ng to S:o for any f|n|teJF This is because aﬁ:l impu_
sults should be almost size-converged and show little temyity requires that the two spins at the ferro bond are domi-
perature dependence at |olv The observed finite-size be- nantly in them?=1 state|11) with respect to the local Néel
havior, ximp(T—0)— 0 reflects theS=0 ground state, and order(in a semiclassical picture such as our effective impu-
clearly the size-convergedl dependence also speaks for anrity model, whereas in fact the couplings in this case instead

§=0 impurity. Results for the ferromagnetic-bond impurity favor them?=0 component|1 |)+||1))/12.7
are limited to temperatures downtdJ=1/8, because of the

sign problem caused by the frustrating ferromagnetic bond.
The data are reminiscent of the missing-bond results, and
hence also the ferromagnetic-bond impurity 1§xs0. Both We finally discuss our SSE calculations concerning impu-
models are, clearly, special cases of the system with ONgyy effects on the internal energy and the specific heat, which
ferromagnetic bond of arbitrary strenglp. It would be in- o nave obtained using the estimators in E@$a and
teresting to investigate how the impurity spin magnit&le (16h), respectively. In analogy to E(Q), we again define the

changes age is increased. Fodg/J> 1, the two SpiNs CON- i ity quantities as differences between the doped and the
nected by the ferromagnetic bond form a triplet and henc%ure systems, i.e.

should give ar§=1 Curie contributionS(S+1)/3T=2/3T

FIG. 12. The impurity energies of thé) vacancy and(b)
added-spinJ; =J) models, for different system sizés The inset

E. Internal energy and specific heat

whenJ=<T=Jc. The remaining\-2 spins each contribute Eiop=E) ~ E (23a
1/4T, and hence the impurity susceptibility should be T/6
in this regime. In Fig. 11 the results fdr>J are closer to Ci(rlr)lp:C(i) ~Cla» (23b)

this form for Jz=J than for J-=0, but the requirement
J<T<Jg is not satisfied and the deviatiog®duction rela- wherei=b,c,d,e, andf, correspond to the different impurity
tive to 1/6T) reflect an expected crossover from the high- systems shown in Figs. 1 and 2, and the syn#adlenotes
independent-spin forrp(izmpzo. the pure system. In Fig. 12 results for the impurity energies
An interesting question is whether the classical-like Curieare shown for the vacancy modé) and the added-spin
behaviorXiZmpzSZIST with §=1 can be observed in this model(b) with J, =J andJ, =J3/2 (shown in the inset At
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%‘ FIG. 14. Size-normalized specific heats of the pure 2D Heisen-

- berg antiferromagnet for different system sidesError bars are
smaller than the symbols. The inset compares ourTodata with
theory(solid curvg (Ref. 41).

0.5\ n ; :
Ll L] models, the effective models also describe properly the en-

g 10 ergetics of the full models. Also, the parameterandr can
be tuned to give a better agreement for the vacancy model in
FIG. 13. The impurity specific heats of tli@) vacancy andb)  Fig. 14@), but this in turn will give a poorer agreement be-
added-spinJ, =J) models, for different system sizes The dashed tween QMC and effective-model results for the impurity sus-
curve in(a) shows the result of the effective model. ceptibility of the vacancy model in Fig. 6.

In Fig. 13 QMC results for the impurity specific heats are
high T the impurity energies vanish, since the mean energghown for the vacancy modéh) and the added-spin model
of each independent spin becomes zero.lFo64, all finite-  (b) with J, =J. As the system size is increased and the tem-
size effects are eliminated within statistical errors for bothperature is lowered the statistical errors grow rapidly. The
models in theT range considered. Since the vacancy systensize-converged behavior is difficult to determine beldiJ
has four antiferromagnetic bonds less than the pure system: 0.3, butCi(rlffp in Fig. 13a) is, nevertheless, consistent with
the impurity energ)Ei(rE?p, shown in Fig. 12a), is positive at  the behavior ofE.(b)p in Fig. 12a), as C=dE(T)/dT. The
all T. At low T the results converge to a constant value,point at which C.(E? goes through zeroJ/J=0.5, corre-
which should be equal to the energy cost of removing ongponds to the maximum in the energy cufff in Fig. 12.
spin from an infinite lattice in its ground state. The IGW- The effective model reproduces well the higtbehavior and
value observed in Fig. 18 is indeed consistent witi=0 350 exhibits a negative minimum at intermediate tempera-
results obtained in a previous linear spin-wave stid¥e-  tyre. However, this feature is much less pronounced than for
sults for the added-spin model with =J, shown in Fig.  the full model, and the maximum at low@ris missing. In
12(b), are negative because of the one extra antiferromagrig, 13b), sufficient accuracy in the simulations has not

netic bond, and the size-converged behavior seems to al§en reached for larger system sizes, and the size-converged
tend to a constant 86— 0. This constant value corresponds pehavior can therefore not be determined.

to the energy cost of removing the off-plane added spin from
its host lattice, and its magnitude is observed to be roughly
one-fourth of the lowF value of the vacancy impurity en-
ergy. TheT dependence of the=64 results for the added-
spin impurity withJ, =J/2, shown in the inset, are qualita- In this paper we have presented results of an extensive
tively very similar, but because of the smaller impurity-bondQMC study of impurity effects in theS=1/2 Heisenberg
strength the absolute values are smaller. antiferromagnet on a square lattice, as well as some results
The solid curves in Fig. 12 are results of the correspondfor a 3D system. The effects of different types of single static
ing effective models. Using the same valuesadd andr/J  impurities on the magnetic susceptibility and the specific
as previously when calculating the impurity susceptibilities,heat have been investigated.
we obtain a qualitative agreement for the vacancy model For several types of#0 impurities in 2D (vacancy,
while the agreement is remarkably good for the added-spiadded spin, ferromagnetically coupled gpiour very precise
model, both forJ, =J andJ, =J/2 (inse. Hence, in addi- simulation data has revealed an additive logarithmic correc-
tion to reproducing the impurity susceptibilities of the full tion to the predicted classical-like Curie contributiSff 3T

V. SUMMARY
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TABLE I. Selected_=64 data for)(fi)/L2 at inverse temperature TABLE Il. SelectedL=64 data for -E(i)/LZ at inverse tempera-
JIT, wherei=a,b, and ¢ correspond to the pure, vacancy, and tureJ/T, wherei=a,b, andc correspond to the pure, vacancy, and
added-spin systems, respectively. added-spin systems, respectively.

i=c i=c
JIT i—a i=b J,=J J,=J/2 JIT i=a i=b J, =J J,=J/2

32 0.045048) 0.0457674) 0.0459074) 0.0461283) 32 0.6694416) 0.66915625) 0.669515¢6) 0.66947025)
16 0.04635@8) 0.0467373) 0.0468673) 0.0470563) 16 0.669389(7) 0.66910487) 0.66946267) 0.66941587)
8  0.0491443) 0.0493443) 0.0494612) 0.0495573) 0.668910%) 0.66862478) 0.6689881) 0.668933(9)
4 0.0559941) 0.0560921) 0.056179l) 0.0562141) 0.6637461) 0.6634521) 0.6638071) 0.6637611)
2
1

0.07860004) 0.07863474) 0.078694%4) 0.07871064) 0.5930501) 0.59275%1) 0.5930981) 0.5930602)
0.093539®) 0.09353772) 0.09358592) 0.09359372) 0.38756(2) 0.3873722) 0.3876002) 0.3875692)

= N b~ 0

to the impurity susceptibility. We have argued that this loga-
rithmic contribution reflects primarily fluctuations transverse
to the local Néel order at the impurity. This is in agreement

with recent field-theoretical work82° carried out after our i _ ) )
initial report of log correctiond” Here we have shown that _1he numerical data underlying the analyses carried out in

our numerical results are in excellent quantitative agreemeriflis paper are of very high accuracy—the small errors are
with these field-theoretical resuf&2° containing both lead- only statistical in nature—and may hence be useful as bench-

ing and subleading logarithmic corrections. In 3D, we fingmarks for alternative calculations. In Tables | and Il we
no signs of logarithmic corrections, in accord with therefore list.=64 data for the susceptibility and the internal

APPENDIX: SELECTED QMC DATA FOR THE
SUSCEPTIBILITY, ENERGY, AND SPECIFIC HEAT

predictions?® energy, at several inverse temperatur€s, for the pure(a),
In order to have a simple mechanism explaining thevacancy(b), and added-spin mode{s).
leading-orderi.e., apart from the log correctiongmpurity In Fig. 14 we show the SSE results for the specific heat of

physics, we have also introduced few-spin effective modelsthe pure 2D Heisenberg antiferromagnet at temperatures
Comparisons with the QMC results show that the effectivedown to T/J=1/32. At such low temperatures the specific
models can distinguish between impurities of different typesheat has not been determined reliably in previous stddies.
and spinsS. In many cases the quantitative agreement beye have obtained the results using the direct estimator, Eq.
tween the effective and full models is surprisingly good over(16p). The lowT data shown in the inset of Fig. 14 are

a wide temperature range. This suggests that extended effeggarly consistent with the quadrafichehavior suggested in

tive models based on larger clusters of spins, e ¥.33Ius- e Hasenfratz-Niedermeyer chiral perturbation thedry:
ters centered around the site impurities, should give very

accurate descriptions, perhaps also for the vacancy model
which we here found was the hardest case to describe with 6403
the simplest effective model. (M) = LZ)TZ +0O(T?), (A1)
7C
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