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We discuss effects of various impurities on the magnetic susceptibility and the specific heat of the quantum
S=1/2 Heisenberg antiferromagnet on a two-dimensional square lattice. For impurities with spinSi .0 (here
Si =1/2 in the case of a vacancy or an added spin, andSi =1 for a spin coupled ferromagnetically to its
neighbors), our quantum Monte Carlo simulations confirm a classical-like Curie susceptibility contribution
Si

2/3T, which originates from an alignment of the impurity spin with the local Néel order. In addition, we find
a logarithmically divergent contribution, which we attribute to fluctuations transverse to the local Néel vector.
We also study frustrated and nonfrustrated bond impurities withSi =0. For a simple intuitive picture of the
impurity problem, we discuss an effective few-spin model that can distinguish between the different impurities
and reproduces the leading-order simulation data over a wide temperature range.
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I. INTRODUCTION

The problem of impurities in low-dimensional quantum
antiferromagnets has attracted considerable attention ever
since the discovery of high-temperature superconductivity in
the cuprates.1 At low concentration, holes doped into the
CuO2 planes are localized, or have very low mobility, and
hence static impurities are relevant for understanding the ini-
tial reduction of antiferromagnetism upon doping com-
pounds such as La2CuO4. These impurities are expected to
be magnetically frustrated.2 Although not directly related to
the breakdown of antiferromagnetism associated with the on-
set of superconductivity, static nonfrustrating impurities, e.g.,
inert holes corresponding to substitution of Cu atoms by non-
magnetic Zn,3,4 also can give important information pertain-
ing to the nature of the interactions in the CuO2 planes. The
same applies to related cuprates where the planes are broken
up into chains5 or ladders.6 Very recently, similar impurity
problems were also suggested to be of relevance to possible
physical realizations of quantum computers.7

On the theoretical side, Heisenberg impurity models can
be studied by a wide range of modern quantum many-body
methods. Importantly, numerical techniques, such as quan-
tum Monte Carlo and the density matrix renormalization
group, can give approximation-free results against which
analytical approaches can be tested on a quantitative level.
Once such a program has been completed, the applicability
of a Heisenberg description to an experimental system can be
judged without concerns about approximations in the calcu-
lations. There is already a large body of work devoted to
various impurity effects, and a coherent picture is emerging.
Restricting ourselves to work on single impurities, we note
several ground state calculations for Heisenberg chains,8–11

ladders,12–14 and the two-dimensional (2D) square
lattice.13,15–22 Extensive work on chains23–25 and 2D
systems21,26–29at finite temperature has also been carried out.
In this paper, we continue our studies27 of finite-temperature
effects of isolated static impurities in the standard 2D
Heisenberg model, and also present some results for the 3D
system.

In a recent comprehensive quantum field-theoretical
work,21 a low-temperature theory of an arbitrary quantum
impurity in a 2D antiferromagnetic host system was devel-
oped, with the host being either in theT=0 magnetically
ordered phase(i.e., in the renormalized-classical regime at
T.0) or close to a quantum-critical point. In the magneti-
cally ordered phase a leading-order classical-like Curie con-
tribution to the impurity susceptibility was predicted to stem
from the coupling of the impurity momentSi to the local
Néel order as the temperatureT→0, i.e., ximp

z →Si
2/3T.

Stimulated in part by these theoretical predictions by Sach-
dev et al.,21 we recently carried out a large-scale quantum
Monte Carlo(QMC) study 27 of the 2D S=1/2 Heisenberg
antiferromagnet and confirmed the Curie prefactor 1/12 in
the renormalized-classical regime, for a vacancy(missing
spin) as well as for an addedSi =1/2 impurity spin. How-
ever, we also discovered a low-T logarithmically divergent
subleading contribution to the impurity susceptibility. This
anomaly was attributed to the transverse component, for
which aT-independent behavior had been predicted.21,30 Re-
lated logarithmic divergences had also previously been
found, e.g., in an exact study of an impurity in the classical
2D Heisenberg model,31 and in a Green’s function treatment
of the 2D quantum model with an extra spin atT=0.16 In the
latter study, the frequency dependent transverse impurity sus-
ceptibility ximp

' sT=0,vd was found to be log divergent when
v→0. More recently, an anomalous susceptibility was also
found in the Heisenberg model with a finite impurity
concentration.32

Recent efforts, by Sachdev and Vojta28 and Sushkov,29 to
explain our previous numerical findings,27 have resulted in
more complete field-theoretical descriptions where the impu-
rity susceptibility indeed acquires a previously unnoticed
subleading log divergent contribution. Its principal cause can
also in these analytical treatments be considered as associ-
ated with the transverse component, although there are also
higher-order logarithmic contributions arising from longitu-
dinal fluctuations.28,30 In the formulation by Sachdev and
Vojta,28 which relies on an expansion of the nonlinears
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model around dimensionalityd=1, a very detailed form for
the logarithmic corrections to the impurity susceptibility was
given. For general impurity spinSi:

ximp
z =

Si
2

3T
F1 +

T

prs
lnSC1rs

T
D −

T2

2p2rs
2lnSC2rs

T
D + OS T

rs
D3G ,

s1d

wherers is the spin stiffness of the bulk-ordered antiferro-
magnet in the absence of impurities and the unknown con-
stantsC1,2 are in general nonuniversal, but become universal
when a quantum critical point is approached. The first sub-
leading term~lns1/Td in Eq. (1) hence accounts for the log
divergent behavior observed in our numerical studies. The
quantitative agreement between Eq.(1) and our numerical
data is quite remarkable, as will be shown in this paper. Our
results also agree qualitatively with the analytical results ob-
tained by Sushkov.29

The purpose of this paper is to give a more complete
numerical account of the effects of different types of single
static impurities on the magnetic susceptibility of the 2DS
=1/2 Heisenberg antiferromagnet on a square lattice. Some
of the results were previously summarized in Ref. 27. The
impurity effects were there determined for a vacancy and an
added-spin impurity, by calculating impurity susceptibilities
with the stochastic series expansion(SSE) QMC
technique.33,34 The impurity susceptibility is simply the dif-
ference between the susceptibilities of the pure and doped
Heisenberg models. In this paper we compare our numerical
results for the vacancy and added-spin impurity models with
the theoretical expression in Eq.(1). We also consider an
impurity consisting of a spin coupled ferromagnetically to its
four nearest neighbors[see Fig. 1(d)]. This coupling arrange-
ment is nonfrustrating and can be expected to lead to anSi

=1 impurity, in contrast to theSi =1/2 vacancy and added-
spin impurities. It was suggested by Aharonyet al.,2 that hole
doping the parent compounds of the cuprate superconductors
could lead to effective frustrated ferromagnetic exchange
couplings between nearest neighbor Cu spins. Motivated by
this scenario, we have also considered an impurity model
with a single ferromagnetic bond, and compared this with a
missing bond. The 2D Heisenberg antiferromagnet with two
vacancies on different sublattices, and at different separa-
tions, is also studied in order to further elucidate the behavior
of the single-vacancy impurity susceptibility. Finally, we
have considered a single vacancy in the three-dimensional
(3D) Heisenberg antiferromagnet, for which analytical limit-
ing expressions has also been obtained recently.28 Although
the main focus of this paper is on the susceptibility, we will
also present some results for impurity effects on the internal
energy and the specific heat.

In Ref. 27 we also introduced effective models for the
vacancy and added-spin systems. These models are very
simple few-spin systems constructed in order to capture the
leading-order impurity effects—they do not contain the log
corrections. They provide simple physical pictures of the
dominant mechanisms at play in the full Heisenberg impurity
models. In this paper the effective models are discussed in
detail, and the concept is further demonstrated by results for
added-spin impurities with different couplings to the host
and the ferromagnetically coupled in-plane impurity spin.

The rest of the paper is organized as follows: In Sec. II the
full Heisenberg and effective models, as well as their impu-
rity susceptibilities, are defined. In Sec. III the SSE Monte
Carlo method is briefly outlined, and the improved estima-
tors needed to achieve sufficient statistical accuracy are dis-
cussed. We also describe an averaging trick used to alleviate
the sign problem in our study of the frustrated ferromagnetic-
bond impurity. The SSE results are presented and compared
with the corresponding effective models in Sec. IV. Conclud-
ing remarks are given in Sec. V. In the Appendix we discuss
the specific heat of the pure Heisenberg model, for which we
have obtained low-temperature results of unprecedented ac-
curacy. In order to provide benchmark results for other cal-
culations, we also list some selected high-precision numeri-
cal values for energies and susceptibilities of systems with
different impurities.

II. IMPURITY MODELS AND SUSCEPTIBILITIES

Following Ref. 21, an impurity susceptibility is defined as
the difference between the susceptibility of an impurity sys-
tem and the pure system, i.e.,

ximp
z,sid = xsid

z − xsad
z , s2d

wherei =b,c,d,e, andf, correspond to the different impurity
systems shown in Figs. 1 and 2, andx sad

z is the susceptibility
of the pure system. The susceptibilities on the right-hand side
of Eq. (2) are not normalized by the system size, i.e.,

FIG. 1. Full Heisenberg models and corresponding effective
models of the(a) pure, (b) vacancy,(c) added-spin, and(d) four
ferromagnetic bonds systems. Thick solid lines symbolize ferro-
magnetic spin-spin couplings −JF,0, with JF=J. The free param-
eters of the effective models are the couplingsa and r.
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xsid
z =

1

TSoj

Sj
zD2

, s3d

where the sum is over all the spins of the pure or impurity
systems. The impurity susceptibilities are hence intensive
differences of extensive quantities, and they provide a natu-
ral framework for quantifying the effects of different isolated
impurities on the susceptibility of the pure system. They also
give the leading(linear) dependence on the concentration of
impurities. The definition in Eq.(2) will be used both in the
context of the full Heisenberg models and the corresponding
effective models, both of which will be defined in this sec-
tion. Quantities analogous to Eq.(2) will also be used for the
internal energy and the specific heat.

The impurity susceptibility can be separated in compo-
nents parallel and perpendicular to a given direction. Here
the separation is done with respect to an axis along the ori-
entation of the local Néel order at the impurity. In the isotro-
pic 2D Heisenberg antiferromagnet, true long-range Néel or-
der sets in, i.e., the spin-rotation symmetry of an infinite
system is broken, only atT=0.36 The componentsximp

i,sid and
ximp

',sid, wherei and' refer to directions parallel and perpen-
dicular to the Néel order, are, therefore, true physical observ-
ables only atT=0. However, our calculations show a tem-
perature behavior that confirms an approximate, but
conceptually useful, separation of the impurity susceptibility
in components already at low finiteT, as will be shown in
Sec. IV. In the 3D Heisenberg antiferromagnet, Néel order is
present already at finite temperature, belowTc/J<0.95,35

which makes the two components truly distinguishable. The
effective impurity models are defined to include a fluctuating
direction given by a classical vectorN, describing a local
Néel order with respect to which susceptibility components
can be defined. Comparisons with the QMC results show that
the separation into components is useful even at a quantita-
tive level.

A. Full Heisenberg models

The basis for this study is the isotropicS=1/2 Heisenberg
antiferromagnet on a periodicL3L lattice. This model is
defined by the Hamiltonian

Hsad = Jo
b=1

Nb

Sisbd ·Sjsbd, s4d

where J.0, bond b connects the nearest-neighbor sites
fisbd , jsbdg, andNb is the total number of bonds.Hsad is given

a pictorial representation to the left in Fig. 1(a), and will
hereafter be referred to as the full Hamiltonian of the pure
system. Impurity models are obtained by introducing single
defects in the pure model.

We begin by presenting the models with impurity mo-
mentsSi Þ0. They are illustrated in Fig. 1. When a single
spin S0 is removed from the square lattice, the vacancy
model shown to the left in Fig. 1(b) is obtained. We will
study it in 2D as well as in 3D. The added-spin model,
shown to the left in Fig. 1(c), is obtained by coupling a
single off-plane spin-12 Sa antiferromagnetically to a spinS0
on the square lattice. Two different values on the coupling
strengthJ'=J and J'=J/2 will be considered here. In the
limit J'→`, the magnetic properties of the added-spin
model become equivalent to the vacancy model, since the
two spinsSa and S0 are then locked in a singlet state. An
Si =1 impurity is obtained by considering a configuration of
four ferromagnetic bonds with one spin in common, as
shown in Fig. 1(d).

We also consider the models with impurity momentsSi
=0 shown in Fig. 2. A system with one frustrating ferromag-
netic bond, where the spin-spin coupling is −JF,0, is shown
in Fig. 2(e). In the limit JF /J→`, one might hence expect a
correspondingSi =1 impurity moment, as the two spins con-
nected by the ferromagnetic bond then form a triplet. On the
other hand, forJF=0 clearly Si =0, and hence a transition
betweenSi =0 and 1 might be expected at some intermediate
JF. However, it has been shown that in a Néel ordered bulk,
the correlations between the spins connected by the ferro-
magnetic bond remain antiferromagnetic,17 which is possible
because of the broken degeneracy of the triplet when it is
coupled to an asymmetric environment. Hence, counterintu-
itively, an Si =1 behavior whenT→0 may actually never be
realized with a ferromagnetic bond impurity. We will here
consider only the coupling strengthJF=J, for which the sign
problem due to frustration can be alleviated by a position
averaging procedure, as discussed in Sec. III. Our QMC data
shows that the impurity momentSi =0 in this case, and the
behavior is similar to the removed-bond impurity model
sJF=0d shown in Fig. 2(f).

Two-impurity models are useful for further clarifying the
properties of the single-impurity models. Here we will con-
sider only the case of two vacancies, which are chosen to be
either at a fixed short distance from each other or maximally
separated on theL3L square lattice.

B. Effective models

The purpose of introducing effective models is to capture
the dominant mechanisms at play in the full Heisenberg
models with very simple systems containing a minimal num-
ber of adjustable parameters. The effective models are con-
strained by two criteria:(i) they should reproduce the high-T
impurity susceptibility, the sign of which depends on
whether a spin has been added or removed, and(ii ) they
should mimic the expected21 leading-order behaviorSi

2/3T
of the impurity susceptibilities at lowT, i.e., the alignment of
the impurity moment with the local Néel order. Effective
models are here considered for the fullSi Þ0 impurity mod-
els shown in Fig. 1.

FIG. 2. Full Heisenberg models of the(e) frustrating ferromag-
netic bondsJF=Jd and (f) removed bondsJF=0d systems.
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In our effective models the local Néel order at the impu-
rity is modeled by a classical “nonmagnetic” vectorN. When
a single spinS0 is removed from the full model of the pure
system, as shown to the left in Fig. 1(b), the remaining sys-
tem has anS=1/2 ground state due to the sublattice asym-
metry. Hence, the effective model corresponding to the va-
cancy system, shown to the right in Fig. 1(b), is simply
defined with a single effective remnant “environment” spin-1

2
Se. This spin is coupled to a classical unit vectorN repre-
senting the orientation of the local Néel order. The magni-
tude of this order is absorbed in the coupling strengthr. The
effective model for the pure system is naturally obtained by
reinserting the spinS0, as shown to the right in Fig. 1(a),
with a.0 for antiferromagnetic coupling. The effective
model for the added-spin system, shown to the right in Fig.
1(c), is obtained by coupling an extra spin-1

2 Sa to S0. Fi-
nally, the effective model for the system with a configuration
of four ferromagnetic bonds, shown to the right in Fig. 1(d),
is obtained by simply changing the sign ofa, i.e., by making
the coupling ferromagnetic instead of antiferromagnetic. To
summarize, the Hamiltonians of the effective models, corre-
sponding to the full models in Fig. 1, are

Hsad
eff = rN ·Se + aS0 ·Se, s5ad

Hsbd
eff = rN ·Se, s5bd

Hscd
eff = rN ·Se + aS0 ·Se + J'Sa ·S0, s5cd

Hsdd
eff = rN ·Se − aS0 ·Se. s5dd

The parametersr .0 and a.0 cannot be derived in any
trivial way. The magnitude ofr should in principle depend
on T, but theT dependence can be expected to be weak once
the amplitude of the order has developed locally close to the
impurity. One could also argue that a direct coupling be-
tweenN and the central spinS0 should be included. Such a
coupling is clearly mediated through the four nearest neigh-
bors ofS0. However, in the spirit of keeping the models as
simple as possible, we here chose to accomplish this cou-
pling indirectly through the remnant environment spinSe.
One can further anticipate that the optimum values for the
couplingsr anda will depend on the impurity type, since the
effective impurity spin is spread out and its coupling is me-
diated through the local environment ofS0, which will be
distorted in different ways by different impurities. However,
we will show that the same parameters,r /J<1.90 anda /J
<2.25,37 actually give an overall reasonable agreement for
all the Si .0 impurity types considered here.

The procedure for determining the susceptibilities of the
effective models is straightforward. An external applied field
h=hzez defines thez direction. The magnetization operators
M sid, corresponding to the effective Hamiltonians in Eqs.(5),
have thez componentsMsad

z =S0
z+Se

z, Msbd
z =Se

z, Mscd
z =Sa

z+S0
z

+Se
z, and Msdd

z =Msad
z . The susceptibilities are given by the

usual formula

xsid
z = U ] kkMsid

z llN

] hz
U

hz=0
=E

0

1/T

dtkkMsid
z stdMsid

z s0dllN

−
1

T
kkMsid

z llN
2 , s6d

where i =a,b,c, and d. Here the inner bracketsk·l indicate
the quantum mechanical expectation value for a fixed direc-
tion of N, andk·lN denotes the classical orientation average.
The imaginary-time evolved operator Msid

z std
=expstHsid

effdMsid
z exps−tHsid

effd. ExpressingMsid
z in the coordi-

nate system defined byN,

Msid
z = cossQdMsid

i − sinsQdMsid
' , s7d

wherei and' denote the directions parallel and perpendicu-
lar to N, the expectation values can be easily calculated. The
second term in Eq.(6) vanishes. The first term can be sepa-
rated into components:

xsid
z = 1

3xsid
i + 2

3xsid
' , s8d

where the prefactors originate from the classical orientation
averaging. The susceptibility components are

xsid
i =E

0

1/T

dtkMsid
i stdMsid

i s0dl =
1

T
ksMsid

i d2l, s9ad

xsid
' =E

0

1/T

dtkMsid
' stdMsid

' s0dl, s9bd

which can be easily evaluated in thei basis. In this basis Eq.
(9a) has the simple form becausefHsid

eff ,Msid
i g=0.

A dominant feature of the effective models is the align-
ment of a quantum spin with a classical vector. This can be
appreciated by examining the simple effective Hamiltonian
Hsbd

eff , given in Eq.(5b), for the vacancy system. The corre-
sponding susceptibility is given by

xsbd
z = 1

3xsbd
i + 2

3xsbd
' =

1

3

1

4T
+

2

3

1

2r
tanhS r

2T
D . s10d

The temperature dependence of the two components is
graphed in Fig. 3(b) for r =1.90. SinceSe=1/2 in this model,
the i component can be written ass1/3dxsbd

i =Se
2/3T. Hence,

the classical Curie prefactorSe
2, instead of the usual quan-

tum mechanical prefactorSesSe+1d, is a consequence of the
finite coupling between the spinSe and the classical vector
N. This is precisely the low-T leading order behavior
proposed21 in Eq. (1) in the renormalized classical regime of
a 2D antiferromagnet. The perpendicular component in Eq.
(10) tends to a constant at lowT. On the other hand, in the
limit r →0, i.e., whenSe and N decouple,Se recovers its
quantum identity and the susceptibility has the usual Curie
form xsbd

z →SesSe+1d /3T.
The effective models also serve the purpose of elucidating

the steps in determining the impurity susceptibilityximp
z,sbd

=xsbd
z −xsad

z . The separation in components of the susceptibil-
ity for the effective pure system,xsad

z , is shown in Fig. 3(a).
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The parallel components1/3dxsad
i vanishes at lowT since the

spinsS0 and Se are then aligned antiferromagnetically with
respect toN. The perpendicular components2/3dxsad

' as-
sumes a constant value at lowT. The components of the
susceptibilityxsbd

z for the vacancy system were given analyti-
cally in Eq. (10) and are shown in Fig. 3(b). Finally, the
components of the impurity susceptibility are shown in Fig.
3(c). At high T, the impurity susceptibility is just the sum of
the Curie contributions of each independent spin, i.e.,ximp

z,sbd

→1/4T−2/4T=−1/4T. At low T the parallel component di-
verges, while the perpendicular component becomes a con-
stant. The inset verifies that the parallel component is respon-
sible for theSe

2/3T behavior, since 4Tximp
z,sbd,1/3 asT→0.

Besides being capable of reproducing the expected low-T
leading order behavior of the full models, the effective mod-
els also account quite accurately for impurity specific behav-
ior at intermediateT, as will be shown in Sec. IV. There we
also demonstrate that the effective models account accurately
for the T dependence of the internal energy.

III. QUANTUM MONTE CARLO METHOD

The numerical method employed here for the full Heisen-
berg models is the operator-loop formulation of the stochas-
tic series expansion(SSE) QMC method. It is a method

based on importance sampling of the terms of the Taylor
series for the density matrix. Its application to the Heisen-
berg model has been discussed in detail, e.g., in Refs. 33 and
34. The method is only briefly outlined here in order to dis-
cuss some important aspects of the impurity work, including
a trick for alleviating the sign problem for the frustrated-
bond system and the use of improved estimators for reducing
statistical errors.

The Hamiltonian of the Heisenberg antiferromagnet in
Eq. (4) can be cast into the form

Hsad = −
J

2o
b=1

Nb

sH1,b − H2,bd +
JNb

4
, s11d

where the operatorsH1,b andH2,b, defined by

H1,b = 2s 1
4 − Sisbd

z Sjsbd
z d , s12ad

H2,b = Sisbd
+ Sjsbd

− + Sisbd
− Sjsbd

+ , s12bd

are diagonal and off-diagonal, respectively, in the basis
hual= uS1

z ,S2
z , . . . ,SN

z lj used in the simulation. An exact ex-
pression for the partition functionZ is obtained by expanding
the density matrixe−bH in a Taylor series at inverse tempera-
ture b=1/T skB=1d. The series can be truncated at some ex-
pansion powernmax=M, since terms of order greater thann
~Nb give an exponentially vanishing contribution.33 The
truncated partition function is then given by

Z = o
a

o
SM

Wsa,SMdKaUp
i=1

M

Hai,bi
UaL . s13d

Since the matrix element of the operator product takes the
values 0 or 1, the statistical weight of a contributing configu-
ration is33

Wsa,SMd =
s− 1dn2sbJdnsM − nd!

2nM!
. s14d

A number ofM −n identity operatorsH0,0= I have been in-
serted in the matrix element of each term in Eq.(13), with
expansion ordern,M, and the change in prefactor reflects
the number of different ways to distribute then Hamiltonian
operators among theM positions. The symbolSM denotes a
sequence of operator indices,

SM = sa1,b1d,sa2,b2d, . . . ,saM,bMd, s15d

where ai P h1,2j and bi P h1, . . . ,Nbj, corresponding to the
operatorsHai,bi

in Eqs.(12), or sai ,bid=s0,0d, corresponding
to the identity operatorH0,0. For a given sequenceSM the
order n then denotes the number of non-s0,0d operators in
the sequence. For a nonfrustrated lattice, the numbern2 of
off-diagonal operatorss2,bid in the sequenceSM is always
even for nonvanishing contributions, thus yielding a positive
definite statistical weightWsa ,SMd in Eq. (14).

With a positive definite expansion, the partition functionZ
can be stochastically evaluated by importance-sampling in
the configuration spacesa ,SMd. For this purpose an algo-
rithm consisting of two different configuration updates is
used. In the first update(diagonal update) the sequenceSM is

FIG. 3. The components of the susceptibilities of the effective
models for the pure(a) and vacancy(b) systems. The components
of the impurity susceptibilityximp

z,sbd=xsbd
z −xsad

z are shown in(c). The

inset shows the 4Tximp
z,sbd,1/3 behavior asT→0.
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traversed from beginning to end, while attempting substitu-
tions s0,0d↔ s1,bid. The substitutions0,0d→ s1,bid is at-
tempted only if the spins connected by bondbi are antipar-
allel [for a nonvanishing contribution with the definition of
the diagonal operator in Eq.(12a)]. The probabilities to use
for accepting/rejecting the change have been given else-
where, e.g., in Ref. 34. An accepted attempt changes the
expansion ordern by ±1. If an off-diagonal operators2,bid is
encountered no single operator substitution can be carried
out, and instead the saved stateual is updated by flipping the
two spins connected by the bondbi, so that the state on
which the diagonal operators act are always available when
attempting and updates0,0d→ s1,bid. In the second update
(operator-loop update) the sequenceSM is uniquely decom-
posed into a numberNl of operator loops, in which substitu-
tions s1,bid↔ s2,bid can be carried out, independently with
probability 1/2 for each loop. All the spins associated with
the loops are also flipped. During the operator-loop update
the ordern is kept fixed and the weight of the configuration
is unchanged. The operator-loop update was introduced and
discussed in detail in Ref. 34.

The simulation is started with a random stateual and an
empty sequenceSM =s0,0d ,s0,0d , . . . ,s0,0d of arbitrary
(short) length M. One Monte Carlo step(MC step) consists
of a diagonal update followed by an operator-loop update.
During the equilibration stage of the simulation the cutoffM
is adjusted to always exceed the maximum ordern reached.
Hence, the truncated partition functionZ in Eq. (13) is no
approximation. Observables are measured after every MC
step and expectation values and their errors are determined
by the usual method of data binning. Estimators for various
observables of the Heisenberg antiferromagnet, in the con-
text of the SSE method, are discussed in Ref. 33. The sus-
ceptibility is given in Eq.(3), where the sum is evaluated in
the stored stateual. The internal energy and the specific heat
are given by33

E = −
knl
b

, s16ad

C = kn2l − knl2 − knl. s16bd

The operator-loop formulation of the SSE method, as de-
scribed above, is directly applicable to the isotropic Heisen-
berg antiferromagnet. Impurities in the form of vacancies,
added spins, and missing bonds can be included with only
very minor changes in the algorithm. In the added-spin im-
purity case, the only change in a program for the pure model
is that the acceptance probabilities in a diagonal update
s0,0d→ s1,bkd, involving the additional bondk connecting
the impurity spin, depend on the bond strengthJk. However,
the impurities consisting of a frustrating ferromagnetic bond
or four nonfrustrating ferromagnetic bonds necessitate some
additional considerations, as will be discussed next.

For a ferromagnetic bond, the diagonal bond operator
(12a) is defined as 2s1/4+Si

zSj
zd and the off-diagonal(12b) is

multiplied by −1. During the diagonal update the substitution
s0,0d→ s1,bid, where bi is a ferromagnetic(antiferromag-
netic) bond, is hence attempted only if the spins connected

by bondbi are parallel(antiparallel). The rules for construct-
ing the operator loops are also modified, as discussed in Ref.
38. For the impurity consisting of four nonfrustrating ferro-
magnetic bonds, the expression for the statistical weightW in
Eq. (14) is still valid if n2 is replaced by the numbernA2 of
off-diagonal operatorss2,bid acting on antiferromagnetic
bonds. Because of the symmetry of the arrangement of four
ferromagnetic bonds, this number also has to be even, and,
therefore, the weightW is still positive definite.

A single frustrating ferromagnetic bond(here with cou-
pling JF=J) in the Heisenberg antiferromagnet gives rise to a
sign problem. Proceeding as in the case of four ferromag-
netic bonds discussed above, the sign would be determined
by the number of spin flips of antiferromagnetic bonds,
which now can be even or odd. Since the total number of
flips still has to be even, we can also define the sign as
s−1dnF2, wherenF2 is the number of spin flips on the ferro-
magnetic bond. However, we can also proceed in a different
way which allows for an alleviation of the sign problem by
position-averaging whenJF=J. We then treat the ferromag-
netic bond in the same way as an antiferromagnetic bond in
the diagonal update, i.e., a diagonal operator can appear only
on antiparallel spins. The sign will then be given bys−1dnF,
wherenF is the total number of operators—diagonal and off-
diagonal—operating on the ferromagnetic bond. The simula-
tion of the system with a ferromagnetic bond then proceeds
exactly as the simulation of the pure antiferromagnet, i.e.,
expectation values can be calculated usinguWu and by re-
weighting the measurements with the signS=s−1dnF of the
corresponding configuration,

kAl =
kASluWu

kSluWu
. s17d

In practice, however, the calculations become impossible
whenkSluWu approaches zero. Here a technique based on po-
sitional averaging is used to tackle this problem. The idea is
to replace the signS of a given configuration with the aver-
aged sign39

S =
1

Nb
o
R

SsRd, s18d

where an average of the signSsRd=s−1dnFsRd is taken with
respect to all possible locationsR of the ferromagnetic bond.
Expectation values are then given by

kAl =
kASluWu

kSluWu
. s19d

This technique was discussed in a more general context in
Ref. 39, where it was shown that it significantly alleviates
the sign problem of the antiferromagnet with randomly po-
sitioned ferromagnetic bonds. This came at the price of an
approximation corresponding to switching to an “annealed”
disorder. Here, in the single-impurity problem, there is no
approximation as the trick simply corresponds to simulta-
neously studying systems with all possible locations of the
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ferromagnetic bond. When considering only a single position
R of the ferromagnetic bond, the sign problem will be more
severe than with a redefinition of the diagonal operator dis-
cussed above for the four-bond impurity. However, when us-
ing the position averaging there will be some system size
above which the statistic is improved. We here obtained ex-
pectation values with reasonable statistical errors for system
sizes up toL=32 at temperatures down toT=J/8. Since the
evaluation of the sign during the simulation is completely
separate from the sampling procedures, the effect of a ferro-
magnetic bond can actually be obtained as a “bonus” while
simulating the pure antiferromagnet. A drawback of the po-
sition averaging method is that it does not allow for ferro-
magnetic bond strengthsJFÞJ, except perhaps forJF very
close toJ where reweighting should work.

We next briefly comment on the accuracy needed to study
the impurity effects and the use of improved estimators for
increasing the accuracy. For largeL, the effect of a single
impurity on the magnetic susceptibilityx z is very small, as
shown in the inset of Fig. 4. In order to get acceptable errors
for the impurity susceptibilitiesx imp

z in Eq. (2) very precise
values for the individual susceptibilities are clearly neces-
sary. To achieve this, an improved estimator40 is used. The
general idea is to reduce the statistical errors by replacing the
value of an observableA corresponding to a given Monte

Carlo configuration by an estimatorĀi obtained by averaging
over many equal-weight configurations during the operator-
loop update. In the case of the susceptibility, this is particu-
larly simple since the magnetization is a conserved quantity.
Some of the loops will go through(once or multiple times)
the stateual, i.e., the state on which the ordered operator
product is acting on in Eq.(13). Definings i

z as the sum over
all the spins inual covered by theith loop, we clearly have

Mz = o
i=1

N

Si
z ; o

i=1

Nl

s i
z. s20d

We can now average this over all the 2Nl ways of flipping the
loops, giving

x z = bKo
i=1

Nl

ss i
zd2L . s21d

Figure 4 shows size-normalized results for the magnetic sus-
ceptibility obtained this way for the pure 2D Heisenberg an-
tiferromagnet, as well as low-T data for systems with an
impurity. We believe that these results are the most accurate
ones currently available for this model and therefore also list
selected numerical data in the Appendix. For the internal
energy and the specific heat, Eqs.(16a) and (16b), no im-
proved estimator of the type discussed above can be con-
structed. The energy can nevertheless be calculated to high
accuracy, as seen in the Appendix. For the specific heat, it is
very difficult to reach good accuracy at low temperature.
Nevertheless, we are able to clearly discern the expected41

behaviorC~T2 at low T, as shown in Fig. 14 in the Appen-
dix.

IV. RESULTS

Here, in Sec. IV A, we begin by presenting susceptibility
results for theSi Þ0 impurities illustrated in Fig. 1. In Sec.

FIG. 5. The impurity susceptibilities of the(a) vacancy and(b)
added-spinsJ'=Jd models, for different system sizesL. The dotted
lines show the expected asymptotic behavior 4Tx imp

z →1/3 asT
→0. Error bars are smaller than the symbols.

FIG. 4. SSE results for the magnetic susceptibility of the pure
2D Heisenberg antiferromagnet for different system sizesL. Error
bars are smaller than the symbols. The inset shows a comparison
between the low-T behavior for the pure, vacancy, and added-spin
models withL=64. For the added-spin model, two values on the
coupling constantJ' /J are considered.
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IV B we consider the case of a vacancy in a 3D system, and
in Sec. IV C we look at the system with two vacancies. We
discuss results for theSi =0 bond impurities(Fig. 2) in Sec.
IV D. In Sec. IV E we summarize our results for the impurity
effects on the energy and the specific heat.

A. SiÅ0 impurities

The impurity susceptibilities for a vacancy and an added
spin with J'=J are shown in Figs. 5(a) and 5(b), respec-
tively. The results are multiplied by 4T. At high T the data
for different system sizesL coincide, while at lowerT finite-
size effects are clearly seen forLø16. The finite-size effects
are due to theS=1/2 ground states of the vacancy and
added-spin models, to which the system converges below an
L dependent crossover temperature, as has recently been dis-
cussed by Sushkov.29 For the largest system size considered
here,L=64, all finite-size effects are eliminated within sta-
tistical errors for temperatures down toT/J=1/32. The ob-
served behavior at highT for both impurity types is due to
the fact that the total susceptibility is then just the sum of the
Curie contributions of each independent spin, i.e.,

x imp
z,sb,cd = x sb,cd

z − x sad
z → L2 7 1

4T
−

L2

4T
= 7

1

4T
s22d

as T→`. The minus(plus) sign is for the vacancy(added-
spin) impurity model. According to the expression in Eq.(1),
the leading order behavior of the impurity susceptibility is
4Tx imp

z ,4Si
2/3 as T→0. For aSi =1/2 impurity, the con-

stant value 1/3 should then be approached at lowT. This is
also clearly observed in the size-convergedsL=64d data for
the vacancy impurity, shown in Fig. 5(a). For the added-spin
impurity shown in Fig. 5(b), an approach of 4Tximp

z,scd to 1/3 is
also likely, although the convergence occurs at lowerT than
for the vacancy. At intermediateT the results for the two
different impurity types are strikingly different. Specifically,

the shoulderlike structure with a minimum aroundT/J
<0.8 observed in the added-spin data has no counterpart in
the vacancy data, but in both cases there is a maximum at
T/J<0.2. Some of the differences clearly are related to the
different T→` behaviors.

In Fig. 6 the size-converged SSE data are compared with
the results of the effective models. Results are also shown for
the added-spin impurity withJ'=J/2. The values of the two
parameters of the effective models,a /J=2.25 and r /J
=1.90,37 were chosen for optimal overall agreement between
the SSE data and the effective model results, for both the
vacancy and the added-spin systems. For this choice of val-
ues, the effective models reproduce the added-spin data with
a remarkable precision down toT/J<0.1, for bothJ'=J and
J'=J/2. Moreover, with the same set of values a reasonable
agreement is also obtained for the vacancy system. Hence,
the same parameters describe well a wide range of coupling
strengths to the added spin(the vacancy corresponds to
J' /J=`).

In each of the three cases shown in Fig. 6, the effective
models also reproduce the low-T leading-order behavior sug-
gested in Eq.(1), i.e., 4Tx imp

z ,4Si
2/3=1/3 for a Si =1/2

impurity. Hence, the effective models clearly contain the
dominant impurity physics and are able to distinguish be-
tween different impurity types in a broadT range. In analogy
with the results for the effective models, the observed low-T
leading-order behavior of the full Heisenberg models is as-
cribed to a susceptibility component parallel to a locally Néel
ordered domain coupled to the impurity, i.e.,s1/3dximp

i,sid

,Si
2/3T=1/12T, wherei =b,c, andSi =1/2.
We next examine the thermodynamic low-T impurity sus-

ceptibilities more closely by subtracting from them the
leading-order termSi

2/3T. The resulting quantities should
then describe the transverse impurity susceptibilities at low
T, i.e., s2/3dximp

',sid,ximp
z,sid−Si

2/3T.30 The results in Fig. 7 for
ximp

z,sb,cd−1/12T of the vacancy impurity, and of the added-

FIG. 6. L=64 results for the impurity susceptibilities of the va-
cancy and added-spin models is compared to the results of the cor-
responding effective models. The dotted line shows the value 1/3.

FIG. 7. SSE data forximp
z −1/12T of the vacancy and added-spin

models with system sizesL=64. Straight lines and dashed curves
are fits of the theoretical results in Ref. 28 to our low-T simulation
data. The dotted curve shows the 1/6T behavior.
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spin impurity with J'=J, show an apparent logarithmically
divergent behavior asT→0. The results for the added-spin
impurity with J'=J/2 are not conclusive in this regard, but a
similar log divergent behavior at still lower temperatures is
clearly plausible. AsJ' /J→`, the magnetic properties of
the added-spin model should become equivalent to those of
the vacancy model. In the limitJ' /J→0, on the other hand,
the added spin is decoupled from its host and the impurity
susceptibility becomes simply the susceptibility of a single
spin s1/4Td, i.e., ximp

z −1/12T,1/6T. When comparing the
SSE results in Fig. 7 with each other, it then seems that the
log divergent behavior starts at higherT as the magnitude of
the coupling to the added spin,J' /J, is increased. This can
be naturally understood as an impurity moment strongly
coupled to the environment can develop only atT belowJ'.

According to the theoretical expression by Sachdev and
Vojta,28 Eq. (1), the slopes of the the low-T curves should be
equal on the log-linear scale used in Fig. 7. The slope is
given bySi

2/3prs, whereSi is the “bare” impurity spin and
rs is the spin stiffness of the bulk-ordered antiferromagnet,
for which we use the valuers/J=0.181.42 Our results for the
vacancy and theJ'=J added spin are indeed consistent with
this prediction. The straight solid lines are fits of the leading
logarithmic part,~lnsC1rs/Td, of Eq. (1) to the low-T data,
whereas the dashed curves show fits including also the sub-
leading correction~T lnsC2rs/Td. For the vacancy system
we find C1<1.7 (in the leading-order fit) or C1<1.6 and
C2<0.3, for the added-spin systemsJ'=Jd C1<50 or C1

<73 and C2<184. For the added-spin impurity withJ'

=J/2, no fit can be made with only the leading term, and we
find C1<105 andC2<1019.

Results for the impurity model with a configuration of
four ferromagnetic bonds are shown in Fig. 8. Again, the

results for differentL coincide at highT, while finite-size
effects are seen at lowerT. The high-T observed behavior,
4Tximp

z,sdd→0 asT→`, is due to the fact that the susceptibili-
ties of the doped and the pure models cancel, since there is
an equal number of independent spins in both models at high
temperatures. The ground state spin of this model isS=1,
and hence also an impurity momentSi =1 can be anticipated.
The low-T finite-size susceptibility should then be 4Txz

,4TfSsS+1d /3Tg=8/3 and in the thermodynamic limit
4Txz,4TsS2/3Td=4/3.This behavior is indeed seen in Fig.
8; for L=4 and 8 the low-T behavior dictated by the ground
state spin can be observed, while forL=32 the low-T sus-
ceptibility is size-converged at least toT/J=1/16 and iscon-
sistent with a convergence to 4/3. We also show results for
the corresponding effective model. Using the same values for
a /J and r /J as previously for the vacancy and added-spin
effective models, changing only the sign ofa, the behavior
agrees qualitatively with the SSE results. The inset of Fig. 8
showsximp

z,sdd−1/3T, which at lowT should be dominated by
the transverse components2/3dximp

',sdd. Again, an apparent log
divergent trend is observed. The straight line and the dashed
curve are fits of Eq.(1). Data for the two lowestT are not
included in these fit because of the finite-size effects that
most likely remain here. Nevertheless, the results support the
universal low-T prefactor(slope) of the leading logarithmic
correction.

B. Vacancy in a 3D system

Here we discuss the case of a vacancy in the 3D Heisen-
berg antiferromagnet. Some predictions28 were recently
made also for this system, but since we have not achieved
sufficient accuracy they are not tested in detail here. The
leading-order behavior can nevertheless be extracted. In Fig.
9 the SSE data are shown for different system sizes

FIG. 8. Impurity susceptibilities for different system sizesL of
the impurity model with four ferromagnetic bonds. The solid curve
shows the result of the corresponding effective model, which as-
sumes the asymptotic value 4/3(shown by the dotted line) at lowT.
The log divergent behavior ofx imp

z −1/3T, for a system of sizeL
=32, is shown in the inset, where the solid line and the dashed
curve are fits of the theoretical results in Ref. 28 to our low-T
simulation data.

FIG. 9. The impurity susceptibilities of the 3D Heisenberg an-
tiferromagnet with a vacancy, for different system sizesL. The dot-
ted line shows the value 1/3. A comparison betweenx imp

z −1/12T
of the 2D and 3D models is shown in the inset.
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L sN=L3d, and a comparison between the 3D and 2D data is
shown in the inset. The high-T behavior, as well as the low-
T finite-size effects, have the same explanations as those
given for the 2D results. For the largest system size,L=16,
most finite-size effects are eliminated within statistical er-
rors in theT range considered. The observed thermody-
namic behavior is reminiscent of the 2D results in Fig.
5sad, with the exception that the transition to a constant-
valued behavior now occurs abruptly atT/J<0.95, which
is the Néel temperatureTN of the model.35 There are signs
of a singular behavior of the impurity susceptibility at the
transition. At temperaturesTøTN, the susceptibility is
seen to follow very closely the proposed21,28 behavior
S2/3T. It should be noted that although 3D order sets in
below TN, our finite-size systems nevertheless do not
break the symmetry and the direction of the Néel vector is
not fixed. In an infinite symmetry-broken system, the
S2/3T behavior would not be present if the magnetization
fluctuations are defined with respect to the average in the
direction of the fixed Néel vector.

In the inset of Fig. 9, the perpendicular component
s2/3dximp

' =ximp
z −s1/3dximp

i is compared to the analogous
quantity of the 2D model. Although the statistical accuracy is
not very high at low temperature, it is clear that the behav-
iors are different. The 3D results do not indicate any log
divergent behavior of the type observed in the 2D system.
Instead an almost constant behavior is observed, as also pre-
dicted in the field theory.28

C. Two vacancies in 2D

Next we present SSE results for the 2D Heisenberg anti-
ferromagnet with two vacancies on different sublattices. The
results for the impurity susceptibility are multiplied by a fac-
tor 1/2, so that single-impurity values should be obtained
when the correlation length is much shorter than the separa-
tion between the vacancies. WhenT is lowered, interactions
between the impurities become important as the correlation
lengthj grows exponentially. AtT corresponding to a corre-
lation length of the same order as the vacancy separation, the
moments due to the two vacancies on different sublattices
are pinned by the local Néel order antiparallel to each other,
resulting in a rapid quenching of the parallel component of
the impurity susceptibility. Hence,x imp

z does not diverge as
T→0. The data shown in Fig. 10(a) is for the case of maxi-
mum separation of two vacancies on different sublattices;r
=sL /2−1,L /2d. Sincej diverges exponentially asT→0, the
point at which ximp

z deviates from the divergent single-
vacancy behavior moves only very slowly to lowerT asL is
increased. For largerL, an almost constantximp

z is observed.
However, no sign of convergence of the plateau value is
seen. Clearly, in a system of finite size there will always be
some interaction also between the perpendicular components
of the two vacancies, and hence even for largeL the two-
vacancy model does not trivially reproduce the single-
vacancy results below some temperature. It is plausible,
however, that the roughly lnsLd divergence of the plateau
height seen in Fig. 10(a) continues asL→`. This would be
fully in line with the log divergentximp

',sbd for the single va-
cancy.

The very sudden crossover from divergent to almostT
independent behavior seen in Fig. 10(a) speaks for a compo-
nent ximp

',sid aligning strongly to the local Néel order(which
becomes the global order at theL dependent crossover tem-
perature), and justifies the separation into parallel and trans-
verse(with respect to the local fluctuating Néel vector) im-
purity susceptibility components already at intermediateT.
However, the longitudinal component is not strictlySi

2/3T;
the recent field theory by Sachdev and Vojta predicts that the
remaining longitudinal contributions, once this leading term
has been subtracted, has a temperature dependence
~T lns1/Td. Nevertheless, the transverse contribution, which
is ~lns1/Td at low T, dominates.

In Fig. 10(b), SSE data is shown for the case of the two
vacancies being nearest neighbors,r =s1,0d, as well as at
separationr =s2,1d on the square lattice. Again, the single-
vacancy data are reproduced at highT. In contrast to the
divergent trend seen in the maximum-separation data in Fig.
10(b), the finite-size behavior has now converged to a near
constant at lowT, and no signs of a log divergence as a
function of L is observed. In the figure we show onlyL
=32 results, which are almost converged to the thermody-
namic limit. The absence of log corrections for two vacan-
cies at fixed separation is consistent with results of a Green’s
function calculation,16 where the introduction of a second
extra spin destroyed the log divergence in the frequency de-
pendentT=0 susceptibility observed for the system with a
single extra spin.

FIG. 10. Impurity susceptibility for different system sizesL of
the square lattice with two vacancies. The vacancies are as far apart
as possible in(a). In (b) the L=32 results are shown for the cases
when the two vacancies are nearest neighbors(open symbols) and
at distancer =s2,1d from each other(solid symbols).
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D. Si =0 impurities

We next turn to the QMC results shown in Fig. 11 for the
2D Heisenberg antiferromagnet with a ferromagnetic bond or
a missing bond, i.e., withJF=J or JF=0, respectively. In this
case the impurity susceptibilities do not diverge asT→0,
and the results are not, therefore, multiplied withT. The
observed high-T behavior of each model,x imp

z →0, is due to
the fact that the susceptibilities of the pure and the doped
models cancel, since there is an equal number of independent
spins in both models at high temperatures. For the missing-
bond impurity, low-T finite-size effects are clearly seen for
L=4 and 8, while for the largest system sizeL=32, the re-
sults should be almost size-converged and show little tem-
perature dependence at lowT. The observed finite-size be-
havior, x imp

z sT→0d→0 reflects theS=0 ground state, and
clearly the size-convergedT dependence also speaks for an
Si =0 impurity. Results for the ferromagnetic-bond impurity
are limited to temperatures down toT/J=1/8,because of the
sign problem caused by the frustrating ferromagnetic bond.
The data are reminiscent of the missing-bond results, and
hence also the ferromagnetic-bond impurity hasSi =0. Both
models are, clearly, special cases of the system with one
ferromagnetic bond of arbitrary strengthJF. It would be in-
teresting to investigate how the impurity spin magnitudeSi
changes asJF is increased. ForJF /J@1, the two spins con-
nected by the ferromagnetic bond form a triplet and hence
should give anSi =1 Curie contributionSisSi +1d /3T=2/3T
when J&T&JF. The remainingN−2 spins each contribute
1/4T, and hence the impurity susceptibility should be 1/6T
in this regime. In Fig. 11 the results forT.J are closer to
this form for JF=J than for JF=0, but the requirement
J,T,JF is not satisfied and the deviations(reduction rela-
tive to 1/6T) reflect an expected crossover from the high-T
independent-spin formximp

z <0.
An interesting question is whether the classical-like Curie

behavior x imp
z <Si

2/3T with Si =1 can be observed in this

model forJF.J. As already discussed in Sec. II, the asym-
metric coupling to the bulk of the two spins connected by the
ferro bond most likely implies aT→0 behavior correspond-
ing to Si =0 for any finiteJF. This is because anSi =1 impu-
rity requires that the two spins at the ferro bond are domi-
nantly in themz=1 stateu↑↑l with respect to the local Néel
order (in a semiclassical picture such as our effective impu-
rity model), whereas in fact the couplings in this case instead
favor themz=0 componentsu↑↓l+ u↓↑ld /Î2.17

E. Internal energy and specific heat

We finally discuss our SSE calculations concerning impu-
rity effects on the internal energy and the specific heat, which
we have obtained using the estimators in Eqs.(16a) and
(16b), respectively. In analogy to Eq.(2), we again define the
impurity quantities as differences between the doped and the
pure systems, i.e.,

Eimp
sid = Esid − Esad, s23ad

Cimp
sid = Csid − Csad, s23bd

wherei =b,c,d,e, andf, correspond to the different impurity
systems shown in Figs. 1 and 2, and the symbola denotes
the pure system. In Fig. 12 results for the impurity energies
are shown for the vacancy model(a) and the added-spin
model (b) with J'=J and J'=J/2 (shown in the inset). At

FIG. 11. Impurity susceptibilities for different system sizesL of
the models with a missing bond(solid symbols) and a ferromag-
netic bond withJF=J (open symbols). The dotted curve shows the
expected high-T behavior 1/6T for largeJF /J.

FIG. 12. The impurity energies of the(a) vacancy and(b)
added-spinsJ'=Jd models, for different system sizesL. The inset
shows theL=64 QMC results for the added-spin model withJ'

=J/2. The curves are results of the corresponding effective models.
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high T the impurity energies vanish, since the mean energy
of each independent spin becomes zero. ForL=64, all finite-
size effects are eliminated within statistical errors for both
models in theT range considered. Since the vacancy system
has four antiferromagnetic bonds less than the pure system,
the impurity energyEimp

sbd , shown in Fig. 12(a), is positive at
all T. At low T the results converge to a constant value,
which should be equal to the energy cost of removing one
spin from an infinite lattice in its ground state. The low-T
value observed in Fig. 12(a) is indeed consistent withT=0
results obtained in a previous linear spin-wave study.15 Re-
sults for the added-spin model withJ'=J, shown in Fig.
12(b), are negative because of the one extra antiferromag-
netic bond, and the size-converged behavior seems to also
tend to a constant asT→0. This constant value corresponds
to the energy cost of removing the off-plane added spin from
its host lattice, and its magnitude is observed to be roughly
one-fourth of the low-T value of the vacancy impurity en-
ergy. TheT dependence of theL=64 results for the added-
spin impurity withJ'=J/2, shown in the inset, are qualita-
tively very similar, but because of the smaller impurity-bond
strength the absolute values are smaller.

The solid curves in Fig. 12 are results of the correspond-
ing effective models. Using the same values ona /J andr /J
as previously when calculating the impurity susceptibilities,
we obtain a qualitative agreement for the vacancy model
while the agreement is remarkably good for the added-spin
model, both forJ'=J and J'=J/2 (inset). Hence, in addi-
tion to reproducing the impurity susceptibilities of the full

models, the effective models also describe properly the en-
ergetics of the full models. Also, the parametersa andr can
be tuned to give a better agreement for the vacancy model in
Fig. 12(a), but this in turn will give a poorer agreement be-
tween QMC and effective-model results for the impurity sus-
ceptibility of the vacancy model in Fig. 6.

In Fig. 13 QMC results for the impurity specific heats are
shown for the vacancy model(a) and the added-spin model
(b) with J'=J. As the system size is increased and the tem-
perature is lowered the statistical errors grow rapidly. The
size-converged behavior is difficult to determine belowT/J
<0.3, butCimp

sbd in Fig. 13(a) is, nevertheless, consistent with
the behavior ofEimp

sbd in Fig. 12(a), as C=dEsTd /dT. The
point at which Cimp

sbd goes through zero,T/J<0.5, corre-
sponds to the maximum in the energy curveEimp

sbd in Fig. 12.
The effective model reproduces well the high-T behavior and
also exhibits a negative minimum at intermediate tempera-
ture. However, this feature is much less pronounced than for
the full model, and the maximum at lowerT is missing. In
Fig. 12(b), sufficient accuracy in the simulations has not
been reached for larger system sizes, and the size-converged
behavior can therefore not be determined.

V. SUMMARY

In this paper we have presented results of an extensive
QMC study of impurity effects in theS=1/2 Heisenberg
antiferromagnet on a square lattice, as well as some results
for a 3D system. The effects of different types of single static
impurities on the magnetic susceptibility and the specific
heat have been investigated.

For several types ofSi Þ0 impurities in 2D (vacancy,
added spin, ferromagnetically coupled spin), our very precise
simulation data has revealed an additive logarithmic correc-
tion to the predicted classical-like Curie contributionSi

2/3T

FIG. 13. The impurity specific heats of the(a) vacancy and(b)
added-spinsJ'=Jd models, for different system sizesL. The dashed
curve in (a) shows the result of the effective model.

FIG. 14. Size-normalized specific heats of the pure 2D Heisen-
berg antiferromagnet for different system sizesL. Error bars are
smaller than the symbols. The inset compares our low-T data with
theory (solid curve) (Ref. 41).
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to the impurity susceptibility. We have argued that this loga-
rithmic contribution reflects primarily fluctuations transverse
to the local Néel order at the impurity. This is in agreement
with recent field-theoretical work,28,29 carried out after our
initial report of log corrections.27 Here we have shown that
our numerical results are in excellent quantitative agreement
with these field-theoretical results,28,29 containing both lead-
ing and subleading logarithmic corrections. In 3D, we find
no signs of logarithmic corrections, in accord with
predictions.28

In order to have a simple mechanism explaining the
leading-order(i.e., apart from the log corrections) impurity
physics, we have also introduced few-spin effective models.
Comparisons with the QMC results show that the effective
models can distinguish between impurities of different types
and spinsSi. In many cases the quantitative agreement be-
tween the effective and full models is surprisingly good over
a wide temperature range. This suggests that extended effec-
tive models based on larger clusters of spins, e.g., 333 clus-
ters centered around the site impurities, should give very
accurate descriptions, perhaps also for the vacancy model
which we here found was the hardest case to describe with
the simplest effective model.
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APPENDIX: SELECTED QMC DATA FOR THE
SUSCEPTIBILITY, ENERGY, AND SPECIFIC HEAT

The numerical data underlying the analyses carried out in
this paper are of very high accuracy—the small errors are
only statistical in nature—and may hence be useful as bench-
marks for alternative calculations. In Tables I and II we
therefore listL=64 data for the susceptibility and the internal
energy, at several inverse temperaturesJ/T, for the pure(a),
vacancy(b), and added-spin models(c).

In Fig. 14 we show the SSE results for the specific heat of
the pure 2D Heisenberg antiferromagnet at temperatures
down to T/J=1/32. At such low temperatures the specific
heat has not been determined reliably in previous studies.43

We have obtained the results using the direct estimator, Eq.
(16b). The low-T data shown in the inset of Fig. 14 are
clearly consistent with the quadraticT behavior suggested in
the Hasenfratz-Niedermeyer chiral perturbation theory:41

CsTd =
6zs3d
pc2 T2 + OsT4d, sA1d

where we usec=1.66 for the spin-wave velocity44 andzs3d
=1.2020569.
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