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Instability of planar vortices in the two-dimensional easy-plane Heisenberg model
with distance-dependent interactions
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It is known that magnetic vortices in two-dimensional Heisenberg models with easy-plane anisotropy exhibit
an instability depending on the anisotropy strength. In this paper, we study the statistic behavior of the
two-dimensional easy-plane Heisenberg models with distance-dependent interagfionand J,(r) for in-
plane and out-of-plane components. We develop analytical and numerical methods for accurate determination
of critical anisotropy, above which out-of-plane vortices become stable. In particular, we explore the vortex
formation of the Gaussian-type interaction model and determine the critical anisotropy accurately for square,
hexagonal, and triangular lattices.
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I. INTRODUCTION Recently, we showed that the pattern formation in primary

The maanetism in two dimensions has been the subiect C)visual cortex is also related to the vortex dynamics in
9 ) rfnagnetism‘L.O It is observedn vivo that the development of

continual interest in the last few decades, in particular, due t%trong scalar componertscular dominance columiis near
recent additions of new materials such as Cu-based hlg_th singularity centers at orientational compongptienta-

temperatu_re supercondu_qt_ors and advan_ces n bOt.h numerqu\cn column. There are at least three different types in ob-
and experimental capabilities. The classical two-dimensiona

. ) ) . ; served ocular dominance pattelinsvivo, which correspond
ar;llrsnt?lttrc())npi:nHelsenberg mod¢CTDAHM) with the spin to the Ising type, stable out-of-plane vortex, and stable in-

plane vortex behaviors. The determination of the critical
__ anisotropy is important in describng the region of different
= + + . X i
H K% (SXSY SYS{ )\S'Zqz) (1.9 behaviors in vortex patterns.
In this paper, we consider the two-dimensional easy-plane

for a coupling constari, has been one of the most studied (xy) symmetry Heisenberg model with distance-dependent
models for magnetic systems. For0, it becomes the so- interactions

calledXY model, which is well understood through the work

of Berezinskit and Kosterlitz and Thoule$sit shows a H== > 13 (r: + +I(r 1.2
Kosterlitz-Thouless phase transition, which can be character- %{ ol ”)(SXS; 3\/3/) o ”)SZSZ} (12
ized by a vortex-antivortex unbindirfigFor A <1, it belongs i ) )

to the universality class of th&Y model, and it has been for the classical spin variable§=(S'.¥.S) and the
known that there are two different types of nonlinear solu-distance-dependent exchange enetdyyr)=e,l,(r)/2 (u
tions, called “in-plane” and “out-of-plane” vorticdsSeveral =Xy or 2). The functionl ,(r) is expected to be smooth and
attempts were made by numerical simulations and analyti@pproach zero as— . Comparing Eq(1.2) with Eq. (1.1),
calculations to obtain the critical anisotropy, above which ~we may expect that the anisotropy in the strength of interac-
the out-of-plane vortices become stabilized. Goueéal®>  tions between in-plane and out-of-plane components is
investigated the development of the out-of-plane vortex by~ Jz/ Jxy and obviously =g,/ e, if 1,,(r)=1,(r) for all r. But
using a combined Monte Carlo spin dynamics technique@ more clear definition of the anisotropy parametevill be
They found that the initial out-of-plane vortex relaxes to aneeded for the case of arbitrary interaction functions with
planar one below the critical anisotropy=0.72, 0.86, and Ixy(r) # I,(r). Takeno and Homma showed that the aniso-
0.62 for square, hexagonal, and triangular lattices, respedropic Heisenberg model with distance-dependent interac-
tively. Costa and Costd obtained a more precise value of tions has two different minima irH depending on the
A.=~0.7035 for a square lattice by fitting the out-of-plane ground-state energy of in-plane and out-of-plane
squared componeii§,)? at the central peak as a function of components? We determine the anisotropyby the ratio of

\. Wysin analyzed the core region of a vortex on a discretéhe ground-state energy, which is the boundary of the cross-
lattice and obtained an estimate)of~ 0.7044 for the square over behavior between th€Y and Ising models. The critical
lattice® which is improved further to a very accurate value of anisotropy now may depend on the functional form and pa-
\=0.703409 by iteratively setting each spiXg compo- rameter values of ,(r).

nents to point along the direction of the effective field due to In Sec. Il, we build an effective Hamiltonian in a con-
its neighbors. Zaspadt al. used this method to show thet  tinuum approximation for the arbitrary exchange energy
increases in the presence of the nonmagnetic impurity at thieinction J(r). The continuum theory helps to predict or un-
center of a planar vorteX. derstand the major behavior of spin configurations and vor-
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tex formation. But the exact estimation of the critical aniso-_jfzf(o)/jxy(o)’ a=2J,/J;, andm(r)=S,(r)/Sfor the nearest-

tropy cannot be obtained by a continuum approximatiomejghpor distance. However, the exchange energy(r) is

because of the singularity near the vortex coometimes 1o+ fy1ly positive, and we can expect a ferromagnetic behav-
two distinct spin models can yield the same Hamiltonian in g4, it 3. and J. are both positive. The anisotropy is de-
continuum approximation. We show that different values Ofscribeds as P

the critical anisotropy are possible in spite of the common

approximated HamiltoniafSec. V). In Sec. Ill, we general- A =1-6=73,0)3,/0), (2.6

ize and extend Wysin's analytic mettfold to the distant o ] )

neighbor interaction models. We clarify our method by cal-Which is the ratio of the ground-state energy for in-plane and

culating critical anisotropies of the CTDAHM with(r) ~ Out-Of-plane components. Equatie.5) has two different
=5(r-1) for different lattice types and comparing them to solutions depending ON. The~total ground—siate energy in
obtained values in the CTDAHM. In Sec. IV, we exhibit a Ed. (2.5), (H)o, is given by NJ,(0)S* [or -NJ,(0)S*] and
simulational method to determine the stability threshold ofm?(r)=0 [or m?(r)=1] for all r when\ <1 (or A\ > 1), which

the out-of-plane components. We find that the out-of-planéds the XY- (or Ising-) like solution as shown by Takenet
components start to develop fae=\, where, are 0.7035,  al.? The anisotropy satisfies=z¢,/ ey if 14,(r)=1,(r) for all
0.8330, and 0.6129 in four-digit accuracy for square, hexagor. However,l,(r) # I (r), the anisotropy can be expressed as
nal, and triangular lattices, respectively, which agree We“}\OC(o'Z/a'Xy)d for the interaction rangeo, in the

with the analytic calculations by Wys#i.In Sec. V, we in-  d-dimensional lattice because the exchange energy is propor-
vestigate the critical anisotropy in the two-dimensional easytional to the number of interaction pairs in ferromagnetic
plane Heisenberg model with Gaussian-type interactions ofystems.

|,.(r)=exp(-r?/20%) and the anisotropx =(e,/ eyy)(02/ %)
We obtain the critical anisotropy, for A=¢,/ &y, (oy,=0>)

. . . I1l. ANALYTIC CALCULATIONS OF CRITICAL
and\=0%/ 0%, (ex,=¢,) depending on the interaction ranges

. . . L2 ANISOTROPY
a, for different lattice types and find a general behavior in
A The Hamiltonian in Eq(1.2), can be rewritten as
Il. EFFECTIVE HAMILTONIAN APPROACH H=- 2 {3(ri V1 =P\l - mcos ¢y — ¢y) + J,(ri)mm;},
The classical spin vectd=(S,5,S) can be specified Y
by two angles of rotatior); and é;, 3.9
S = S(sin 6icos ¢, sin gsin ¢,cos6).  (2.1) Wheret(bi:tan-l(sy/s*) andm=S/S. For arbitrarym | <1,
we ge
In the momentum space representation, we write
dH
~ 1 . — =22, {lrij)mcod ¢; — ;) — I(r;;)m; = 0.
Sq:/_—E Se"q"i, (22) (9mi ;‘{ xy( Ij) | S(¢| d’]) z( |]) j}

VN
(3.2
where the vectorg are restricted to the first Brillouin zone ) _
of the simple cubiad-dimensional lattice. Substituting Egs. This always has an in-plane vortex solutian,=0 for all

(2.1) and(2.2) into the Hamiltonian in Eq(1.2), we get sitesi. For the out-of-plane solutions, which have non-zero
- - o L m; components, the determinant of the maitdshould van-
H=- 2 0y(@)(§ S0+ §,Sq) + 0SS e} ish, where
q
(2.3 W,p= 0up 2 E Jylrij)cos ¢ — ¢y) - E 2 Jo(rij) -
ieM, j ieMajEMB

where 33

J(@) =2 3, (near (2.4 For an arbitrary exchange energy functigyir), u=xy or z,

r

the critical value of the anisotropy can be determined by a
£ - 3 h ; -0 th . root finding method for détV(\)|=0. Whenl,(r)=1,r) for
or p=xyor z If J,(a) has a maximum 24=0, the approx all r, so A=g,/¢,,, the boundary for the existence of the

mated Hamiltonian is obtained by the inverse fourier trans- ’ ; .
form of the expansion in Eq2.3): out-of-plane solutions can be obtained from the eigenvalue

problem
H=-NJS+ JZSZ f d2r{ (1 -mP)(V ¢)? A, M, = \W,zm;z=0 (3.9
e (Vm)2 or
el =Ml T 4W}‘ 29 (Wog/AIMs= (1), (3.5

where Jszﬁxy(O), Jp= —3§y(0)/a2, 5=1-3,00) /?]Xy(O), §=1 for
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(3.6

Cl/

=5 Z I(rij)cod b - )

alieM,

| M

and

> >y,

eM JEMB

oo o7

wherea or B is a block index rather than a site index when
there exists a symmetry in the lattice geometry avig
={ilri=r,} is sets ordered by the distance from the vortex |
core (1<a<L). The maximum eigenvalue, which is equal
to 1/\, is determined by using only the nearest components
to the core centemy,m,, ... ,my (1<N<L, whereN is the
number of the nearest components

Note that we assume that the center of the vortex is lo-
cated at the origin of a coordinate system. The in-plane
angles are chosen to be the usual solution of the in-plane >
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vortex in the continuum theorg, =tar(y;/x;) or

COid)l_(i)]):F, FJ (38)

For the CTDAHM in Eq.(1.1), the interaction function is
given byl(r)=48(r-1) and

Azt

1 \g,

4( 1 2)

Ap=—=1+—F=+—=],

VS V5 13

Wi =Wy =2,

Wo1=Wpy=1, (3.9
where  M;={+(1/2,1/2,+(1/2,-1/2} and M,
={£(3/2,1/2,+(3/2,-1/2,+(1/2,3/2,+(1/2,-3/2} for

the square lattice in Fig. 1. In this case, is just the num-
ber of the nearest neighbors that belong to theNsgtfor
m; e M. The critical anisotropy, where thex22 determinant
vanishes, is given by

__AA

= ~0.7157,
A+ 2A,

(3.10

which agrees well with the results of Wysinwysin also
showed the\ is determined by the zero of @33 determi-
nant as 0.7044. We obtain a smaller critical value\gf
~0.6974 forN'=4, which converges to 0.6941 in four-digit
accuracy forN=16. This critical value show a deviation
from the result from numerical simulations. Wysin showed

that there are some differences in the discrete solution fron

the continuum results, especially near the vortex édére.
Similar to Wysin’s process, we eliminate this difference be-

tween discrete and continuum solutions by evolution of eact

spin’s Xy components to point along the direction of the ef-
fective field due to its neighbors, and we obtai}

1 2

FIG. 1. The vortex center is located @,0) and the sites are
presented by different symbols according to the distance from the
vortex center(solid squares for=1/y2, solid triangles forr
=110/2, etc).

For the nearest-neighbor interactions in the CTDAHM,
the size of the vortex core is small, which leads to precise
determination of the critical anisotropy for relatively small
N. But as the interaction range increases, the size of the
vortex core increases and more components of the matrix are
needed to obtain the accurate value\gfFigure 2 shows the
computed anisotropy, as a function of\/ for different in-
teraction rangeg,, in Gaussian-type interactions. The con-

3 T T T T T T T
NS o=2 —+
4
8 eedrens
25 ¢ “
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1.5 '\\ . b
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\\
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\\
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FIG. 2. The critical anisotrop¥. as a function of log\ for the

~0.703420, which is very close to the value obtained byanisotropic Heisenberg model with Gaussian-type interactions for

Wysin, A,=0.703409, and one from our simulations in Sec.
IV (\;~0.7035.

o=2, 4, and 8. Asr increases, the size of the out-of-plane vortex
core increases.
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vergence of different lines for different ranges gives an esti-
mate of the vortex core size. For the average number of
the degeneracy per blockM,, gV, means the number of
spin sites which contributes to the determinatiomgf The
radius of the vortex core can be estimated as

r~ 2N (3.11)
ar

with g approaching 8 for largd/; for the square lattice or the
D, symmetry geometry.

IV. SINGLE-VORTEX SIMULATIONS

In general, it is quite difficult to determine the critical
anisotropy precisely with a simulated annealing approach us-
ing Monte Carlo simulations. In particular, for the distance-
dependent interaction models, the longer annealing time is
required due to the larger lattice size and the larger cutoff
range. Our numerical simulations are carried out by evolving
dynamical equations as a gradient flow, which allows a more
accurate determination of the vortex behavior neaf\.

The discrete equations of motion used in simulations are

(9(?—(? =- j—; =- 2; Jy(rij)sin gisin 6;sin(¢; — ¢)),
(4.19
O;—fi =- Z—Z = 2§j: {Jy(rij)cos @:sin G,cod ¢ — ¢;)
— J/(rjj)sin #cos 6;} (4.1b S
in the absence of thermal fluctuations. The simulations start 05

from an initial state of a planar vortex on the lattice center

and small random fluctuations in out-of-plane components

(IS,] <107), and relax to the ground state in time. Wi
A problem in the single vortex simulations is the effect of

the lattice boundaries. The distribution of spin components is

effected by the lattice boundary as shown in Fig. 3. At first, 05

the contour lines of isophase are stretch out radially from the

vortex core. But after dynamical evolution, they tend to meet

perpendicularly with the lattice boundary due to the equilib-

rium condition 8H/ 8¢~ 0 or V24~ 0. If the lattice size is

not sufficiently large, the distribution of spin components

near the vortex core is effected by the lattice boundary. For ©)

the spin system with distance-dependent interactions, the

size of the vortex core increases, so that the larger lattice size FIG. 3. Spin components near in-plane and out-of-plane vortex

is necessary for simulations. Note also that the shape of tH@'med in the easy-plane Heisenberg model with Gaussian-type in-

lattice matters more than its size. Note that the single vorteferactions(a) The Initial state with an in-plane vortex at the lattice

is attracted to the lattice boundary similar to an electriccenter with small random fluctuations 8] <10 and the states

charge near the conductor surface. If there is an asymmet@/te" €volution for(b) A=0.72 and(c) X=0.74(A =,/ exy, 0yy=07

in the lattice, the vortex at the center may move along g 1 square lattice type ano! 5060 lattice size, nonperiodic bound-

certain direction. An asymmetry in the shape of the cutoffe”y cpnd|t|on$ '“'E'a“e spin ci)mponents are represented by con-

. . tour lines whereg;=n=/8 for n=0,1, ...,15.

range can also induce the wandering of the vortex core. The

single-vortex simulations for the triangular lattice turned out

to be more difficult and sensitive to the shape of the latticeoff range for triangular and hexagonal lattices.

and the cutoff range. For more reliable determination of the We measure the growth of the out-of-plane components

critical anisotropy, we used a radial lattice boundary and cutby {(S,)?). The measurement of the squared component
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x 108 —(sZ/sxy)(of/ofy), 5'21—(82/8Xy)(0'§/0'iy), a2=20'§y and
08 T "X =07035 the anisotropy
2
e, O.
019 | A=—"F—. (5.3
8Xya—xy
__o7’p The critical anisotropy\. is not uniform but varies depend-
o ing one, ando,. We can investigate the behaviour of the
) critical anisotropy from Gaussian type interactions for two
S different general cases; the exchange strengths are propor-
tional to each otherJ,r)/J,/r)=const for allr or A
076 + =¢,l ey, and the exchange energy are proportionad-ﬁdor
the interaction ranger, in the two-dimensional system or
)\203/032( .
0.75 ; 1'0 2:0 " In analytic calculations, a large number of the nearest

components)V, is needed for the convergence of the critical
value\; as shown in Fig. 2. The critical values of the aniso-
t tropy are determined fortN'=1024. For the case of

FIG. 4. The growth or decay of t& component in time for the =¢,/ &y, the critical anisotropy is found by the condition that

CTDAHM in the case of single vortex simulation for the square

lattice type(50x 50 lattice size and time step of 0.001 0.05

(S)? at the central peak can be another choice. However,
tracing single or few components may fail to determine the 0
vortex stability since the vortex core may start to move. In
case that the vortex wanders, the fluctuations can be mea
sured by {(S,)?). To clarify the simulation results, we con-
firm the monotonical increase or decrease after the inflection
point. (@
Our simulational method by a gradient flow is fast in its
convergence speed, yet yielding an accurate result. For ex-
ample, Fig. 4 shows the results of dynamical evolution with
the CTDAHM for the square lattice. We find a monotonical
growth (or decay of out-of-plane components after some
time for A=0.7035(or A=0.7034, 0.7038 This graph sug-
gests that the critical anisotropy lies between 0.7034
=0.7035, which agrees well with analytic calculations by
Wysin in Ref. 9 (\.=0.703409 and ours in Sec. Ili(\,
~0.703420. Similarly, we obtain\;~0.6129 for the trian-
gular lattice and\,~0.8330 for the hexagonal lattice, which
also agree well with the results of Wysin,~ 0.612856 and
0.832956, respectivelt?).

20

0.00

(b)

0.0001

V. EXPERIMENTS IN GAUSSIAN-TYPE INTERACTIONS

As a typical example of spin systems with an arbitrary
distance-dependent interaction types, we study the model
with Gaussian type interactions, where

1,.(r) = exp(= r%/207). (5.1) ©

In the continuum limit, the fourier transformed interaction
FIG. 5. Deviation in the discrete solution from the continuum

2 .
~ _ 5 result near the vortex core for the square lattice, wherecthedy
IM(Q) - 7T<_:> exp(- O'qu2/2) (5.2) axes are the lattice coordinates and thexis denotessin(dyis
- deond| for (a) the nearest-neighbor interactio(iy the Gaussian-
has a maximum afj=0 and the approximated Hamiltonian type interactions withr,,=1 and(c) the Gaussian-type interactions
can be written as EQq(2.5 with J= wsxy<7§y/a2, 6=1  with oy, =4.
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FIG. 7. axy\e’x—c as a function ofoy,. The upper branch corre-
07 1 sponds tox=¢,/&,, and the lower branch t@=o§/o§y. When\
=02l d%,, they axis meansr,.
0.6
with distance interaction, however, corresponds well to the
05 L continuum results near the vortex core in contrast to the one
with the nearest-neighbor interaction. There are much differ-
04 ences between our results and the classical models with the
o nearest-neighbor interactions, which decreases as the interac-
{b)

tion range increases for the Gaussian-type interactions. Fig-
FIG. 6. The critical anisotropy as a function ofay in the ~ U'€ 5 shows the differences between the discrete solutions
anisotropic Heisenberg model with Gaussian-type interactions foR1d the continuum solutions. The discrete solutions are ob-
(@ N=¢,/84y (0y=0,) and (b) >\=0§/0,2<y (exy=¢,). The critical tame_d after the evolution frqm the continuum solutign
anisotropy \. are determined by the determinant of the 1024 =tam(y;/x) by Eg.(5.5), avoiding the lattice boundary ef-

% 1024 matrix. The symbols denote the results of the numericafect by using a round shaped bound#&R~=80). However,

simulations. we solve the equations with the initial angles or setting
cod ¢ — ¢y =F;-f; for Gaussian-type interactions, which
the determinant of th/’x A" matrix W vanishes, where leads tbo the accurate results. Ror o7/ a3, the matrixW is
given by
Waﬁ = 5aﬁ E 2 qu_ rﬁlza-iy)coi(ybi - ¢])
ieM, |
= —r2/20%2 — b
A D exp-r22o?). (5.4) Wap = %EM ;exp( rijl20%,)cod ¢ — ¢))
ieM,j EMB a
The maximal eigenvalua of Eq. (5.4) gives the critical ‘_2 2 exp(-ri/2\o%,), (5.6)
anisotropy\. as in Eq.(3.5). The angles of in-plane compo- teMq jeMpg

nents ¢, are initially set to their continuum vortex values

. = 1y A itei i - . H T i
éi=tan=(yi/x) fo_r_ e_ach sitei and evqlved until they aP” which is difficult to be converted as an eigenvalue problem
proach the equilibrium state according to the dynamical

) s before. The critical anisotropy; is determined byf(\)
equation =detW(\)| in Eq. (5.6) using the root finding method, which
d , is in agreement with the results of numerical simulations
gt = 2; Jrip)sin(¢h = ) (5.9 within an accuracy of two or three digits. We show the ana-

lytic and simulational results for square, hexagonal, and tri-
from Eq. (4.19 with m;=0 for all sites, that is, the discrete angular lattices in Fig. 6.

dynamics in the absence of out-of-component or the pixfe The obtained value of the critical anisotropy decreases as
model limit. Note that the spin configuration of the systemthe interactions range- decreases. Note that the computed
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TABLE I. Linear fitting of axy\f)\_c as a function ofo,.

; _ _ O:
Lattice NEedey \=02l 0%, _ Ising
type slope y intercept slope y intercept
Square 0764928  0.082300  0.625910  0.181816
Hexagonal 0765017  0.116011 0629297  0.243578 . O“t'Of‘Pli‘ﬂe
Triangular ~ 0.764967  0.068548  0.624828  0.154744 Pure Heisenerg vortex stable

values of the critical anisotropy, are in the order of hex-
agonal, square and triangular lattices type for bath
=&,/ ey and\=0%/ 0%, as in the CTDAHM. Figure 7 shows In-plane
the plot of gy \A. as a function ofoy,, showing a linearity vortex stable
between them. The slopes for different lattice types can be
grouped as two classes WillFz,/ e, and\=o0%/ 0%, (Table
). If the linearity is maintained for alb,, the asymptotic Oxy
value of YA, will converge to the slope of the line for large
ayy- With the help of the asymptotic solutions in EgS.4)
and (5.6), we can guess that the critical anisotropy will
converge to zero and the slope of lines in Fig. 7 will become
smaller for largeoy,. _ ) ) ) . )
When &=z, and ny:(rzzll\;zi the approximated approxmgted form in the continuum limit can have different
Hamiltonian with Gaussian-type interactions in E2,5) be- ~ Critical anisotropies. . N _
comes It is very difficult to determine the critical anisotropy for
an arbitrary type of the exchange energy functifr). In
Jsszfdzr (1-m)(V )2 this paper, we have studied two typical cases by using
4 Gaussian-type interaction models. One case isXhat) and
2 J,(r) are proportional for alt, and another case is that(r)
(Vm) ) R ) 4
- +46m° ¢, (5.7 find Jz(r.) have a common distribution type with different
a interaction ranges. The results for these cases suggest some
which is equivalent to that of the CTDAHNRef. 5 with a  general behaviors ik.. The critical anisotropy is the small-
coupling constant of nearest-neighbor interactidg®. In  est for the triangular lattice and is the largest for the hexago-
this case, they have the common ground-state energy and thel lattice among three lattice types explored. The same re-
common excitation energy due to formation of a vortex forsults are also shown in the case of the CTDAHM, because
the same lattice type and lattice size. However, we find thathe spins near the vortex core tend to become parallel, reduc-
the critical anisotropy\. in Gaussian-type interactions is ing their total exchange energy further, so that the lattice type
0.7938 from analytic calculations and 0.7941 from simula-with more nearest neighborhoods can reduce the out-of-plane
tional experiments_ for the square lattice, which are differentexchange energy further, while increasing the in-plane ex-
from A\;~0.7035 in the CTDAHM. These results suggestchange energy for a lower value af Figure 8 shows the
t_hat the_ S(_)Iutlons of the (_:r|t|cal anisotropy from the con-..qssover behavior of spin dynamics when the anisotropy
tinuum limit approach are inadequate. between the in-plane and the out-of-plane energies is mani-
fested only by the difference in interaction ranges. If the
VI. DISCUSSION interaction range for the in-plane case is larger than that for

We have studied the vortex formation in the two- (N€ out-of-plane casés,,>a,), the number of exchange

dimensional anisotropic Heisenberg model with distanceP@rs for the in-plane case is larger for the ferromagnetic
dependent interactions and determined the critical anisotropgyStém and the system belongs to the same universality class
A\ precisely for Gaussian-type interactions. The continuun®s theXY model. The region where the out-of-plane vortex is
theory helps to predict how spin configurations will developstable can be approximately found in the region with
for an arbitrary shaped exchange functigy(r). If the ex- ~ @<o;/0y<1, for a reasonable range of If oy, is very
change energy functiod,(r) satisfies certain conditions, the large in comparison with the nearest-neighbor distance, a
approximated Hamiltonian in the continuum limit shows anhearly zero critical anisotropy may occur.

similarity to that of the CTDAHM, which leads to the simi- Our study for the precise determination of the critical an-
larity in two types of static vortex solutions. However, the isotropy is motivated from the problem of the map formation
continuum theory breaks down in determining the criticalin the cerebral cortex rather than the magnetic. The results
anisotropy as noted by WysfVe also give an example that for the crossover among the regions with Ising, stable out-
two different anisotropic Heisenberg models with a commorof-plane or stable in-plane vortex behaviors depending on

FIG. 8. Crossover behavior for interaction ranges.

H=-NJS+

+[1-681-m)]
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