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It is known that magnetic vortices in two-dimensional Heisenberg models with easy-plane anisotropy exhibit
an instability depending on the anisotropy strength. In this paper, we study the statistic behavior of the
two-dimensional easy-plane Heisenberg models with distance-dependent interactionsJxysrd and Jzsrd for in-
plane and out-of-plane components. We develop analytical and numerical methods for accurate determination
of critical anisotropy, above which out-of-plane vortices become stable. In particular, we explore the vortex
formation of the Gaussian-type interaction model and determine the critical anisotropy accurately for square,
hexagonal, and triangular lattices.

DOI: 10.1103/PhysRevB.70.024405 PACS number(s): 64.60.2i

I. INTRODUCTION

The magnetism in two dimensions has been the subject of
continual interest in the last few decades, in particular, due to
recent additions of new materials such as Cu-based high-
temperature superconductors and advances in both numerical
and experimental capabilities. The classical two-dimensional
anisotropic Heisenberg model(CTDAHM) with the spin
Hamiltonian

H = − Ko
ki,jl

sSi
xSj

x + Si
ySj

y + lSi
zSj

zd s1.1d

for a coupling constantK, has been one of the most studied
models for magnetic systems. Forl=0, it becomes the so-
calledXY model, which is well understood through the work
of Berezinskii1 and Kosterlitz and Thouless.2 It shows a
Kosterlitz-Thouless phase transition, which can be character-
ized by a vortex-antivortex unbinding.3 For l,1, it belongs
to the universality class of theXY model, and it has been
known that there are two different types of nonlinear solu-
tions, called “in-plane” and “out-of-plane” vortices.4 Several
attempts were made by numerical simulations and analytic
calculations to obtain the critical anisotropylc, above which
the out-of-plane vortices become stabilized. Gouvêaet al.5

investigated the development of the out-of-plane vortex by
using a combined Monte Carlo spin dynamics technique.
They found that the initial out-of-plane vortex relaxes to a
planar one below the critical anisotropyl<0.72, 0.86, and
0.62 for square, hexagonal, and triangular lattices, respec-
tively. Costa and Costa6,7 obtained a more precise value of
lc<0.7035 for a square lattice by fitting the out-of-plane
squared componentsSzd2 at the central peak as a function of
l. Wysin analyzed the core region of a vortex on a discrete
lattice and obtained an estimate oflc<0.7044 for the square
lattice,8 which is improved further to a very accurate value of
lc<0.703409 by iteratively setting each spin’sxy compo-
nents to point along the direction of the effective field due to
its neighbors. Zaspelet al. used this method to show thatlc
increases in the presence of the nonmagnetic impurity at the
center of a planar vortex.9

Recently, we showed that the pattern formation in primary
visual cortex is also related to the vortex dynamics in
magnetism.10 It is observedin vivo that the development of
strong scalar components(ocular dominance column) is near
the singularity centers at orientational components(orienta-
tion column). There are at least three different types in ob-
served ocular dominance patternsin vivo, which correspond
to the Ising type, stable out-of-plane vortex, and stable in-
plane vortex behaviors.11 The determination of the critical
anisotropy is important in describng the region of different
behaviors in vortex patterns.

In this paper, we consider the two-dimensional easy-plane
(XY) symmetry Heisenberg model with distance-dependent
interactions

H = − o
i,j

hJxysr ijdsSi
xSj

x + Si
ySj

yd + Jzsr ijdSi
zSj

zj s1.2d

for the classical spin variablesSi =sSi
x,Si

y,Si
zd and the

distance-dependent exchange energyJmsrd=«mImsrd /2 (m
=xy or z). The functionImsrd is expected to be smooth and
approach zero asr →`. Comparing Eq.(1.2) with Eq. (1.1),
we may expect that the anisotropy in the strength of interac-
tions between in-plane and out-of-plane components isl
,Jz/Jxy and obviouslyl=«z/«xy if Ixysrd= Izsrd for all r. But
a more clear definition of the anisotropy parameterl will be
needed for the case of arbitrary interaction functions with
IxysrdÞ Izsrd. Takeno and Homma showed that the aniso-
tropic Heisenberg model with distance-dependent interac-
tions has two different minima inH depending on the
ground-state energy of in-plane and out-of-plane
components.12 We determine the anisotropyl by the ratio of
the ground-state energy, which is the boundary of the cross-
over behavior between theXY and Ising models. The critical
anisotropy now may depend on the functional form and pa-
rameter values ofJmsrd.

In Sec. II, we build an effective Hamiltonian in a con-
tinuum approximation for the arbitrary exchange energy
function Jsrd. The continuum theory helps to predict or un-
derstand the major behavior of spin configurations and vor-
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tex formation. But the exact estimation of the critical aniso-
tropy cannot be obtained by a continuum approximation
because of the singularity near the vortex core.8 Sometimes
two distinct spin models can yield the same Hamiltonian in a
continuum approximation. We show that different values of
the critical anisotropylc are possible in spite of the common
approximated Hamiltonian(Sec. V). In Sec. III, we general-
ize and extend Wysin’s analytic method8,13 to the distant
neighbor interaction models. We clarify our method by cal-
culating critical anisotropies of the CTDAHM withIsrd
=dsr −1d for different lattice types and comparing them to
obtained values in the CTDAHM. In Sec. IV, we exhibit a
simulational method to determine the stability threshold of
the out-of-plane components. We find that the out-of-plane
components start to develop forlùlc wherelc are 0.7035,
0.8330, and 0.6129 in four-digit accuracy for square, hexago-
nal, and triangular lattices, respectively, which agree well
with the analytic calculations by Wysin.13 In Sec. V, we in-
vestigate the critical anisotropy in the two-dimensional easy-
plane Heisenberg model with Gaussian-type interactions of
Imsrd=exps−r2/2sm

2d and the anisotropyl=s«z/«xydssz
2/sxy

2 d.
We obtain the critical anisotropylc for l=«z/«xy ssxy=szd
andl=sz

2/sxy
2 s«xy=«zd depending on the interaction ranges

sm for different lattice types and find a general behavior in
lc.

II. EFFECTIVE HAMILTONIAN APPROACH

The classical spin vectorSi =sSi
x,Si

y,Si
zd can be specified

by two angles of rotationfi andui,

Si = Sssin uicosfi,sin uisin fi,cosuid. s2.1d

In the momentum space representation, we write

S̃q =
1

ÎN
o

i

Sie
−iq·r i , s2.2d

where the vectorsq are restricted to the first Brillouin zone
of the simple cubicd-dimensional lattice. Substituting Eqs.
(2.1) and (2.2) into the Hamiltonian in Eq.(1.2), we get

H = − o
q

hJ̃xysqdsS̃qx
S̃−qx

+ S̃qy
S̃−qy

d + J̃zsqdS̃qz
S̃−qz

j,

s2.3d

where

J̃msqd = o
r

Jmsrde−iq·r s2.4d

for m=xy or z. If J̃msqd has a maximum atq=0, the approxi-
mated Hamiltonian is obtained by the inverse fourier trans-
form of the expansion in Eq.(2.3):

H . − NJsS
2 +

JsS
2

4
E d2rHas1 − m2ds¹fd2

+ af1 − d8s1 − m2dg
s¹md2

s1 − m2d
+ 4dm2J , s2.5d

where Js= J̃xys0d, Jp=−J̃xy9 s0d /a2, d=1−J̃zs0d / J̃xys0d, d8=1

− J̃z9s0d / J̃xys0d, a=2Jp/Js, andmsr d=Szsr d /S for the nearest-
neighbor distancea. However, the exchange energyJmsrd is
not fully positive, and we can expect a ferromagnetic behav-
ior if Js and Jp are both positive. The anisotropyl is de-
scribed as

l = 1 −d = Jzs0d/Jxys0d, s2.6d

which is the ratio of the ground-state energy for in-plane and
out-of-plane components. Equation(2.5) has two different
solutions depending onl. The total ground-state energy in

Eq. (2.5), kHl0, is given by −NJ̃xys0dS2 [or −NJ̃zs0dS2] and
m2sr d=0 [or m2sr d=1] for all r whenl,1 (or l.1), which
is the XY- (or Ising-) like solution as shown by Takenoet
al.12 The anisotropy satisfiesl=«z/«xy if Ixysrd= Izsrd for all
r. However,IxysrdÞ Izsrd, the anisotropy can be expressed as
l~ ssz/sxydd for the interaction range sm in the
d-dimensional lattice because the exchange energy is propor-
tional to the number of interaction pairs in ferromagnetic
systems.

III. ANALYTIC CALCULATIONS OF CRITICAL
ANISOTROPY

The Hamiltonian in Eq.(1.2), can be rewritten as

H = − o
i,j

hJxysr ijdÎ1 − mi
2Î1 − mj

2cossfi − f jd + Jzsr ijdmimjj,

s3.1d

wherefi =tan−1sSi
y/Si

xd andmi =Si
z/S. For arbitraryumi u !1,

we get

] H

] mi
. 2o

j

hJxysr ijdmicossfi − f jd − Jzsr ijdmjj = 0.

s3.2d

This always has an in-plane vortex solution,mi =0 for all
sites i. For the out-of-plane solutions, which have non-zero
mi components, the determinant of the matrixW should van-
ish, where

Wab = dab o
iPMa

o
j

Jxysr ijdcossfi − f jd − o
iPMa

o
jPMb

Jzsr ijd.

s3.3d

For an arbitrary exchange energy functionJmsrd, m=xy or z,
the critical value of the anisotropy can be determined by a
root finding method for detuWsldu=0. WhenIxysrd= Izsrd for
all r, so l=«z/«xy, the boundary for the existence of the
out-of-plane solutions can be obtained from the eigenvalue
problem

Aama − lwabmb = 0 s3.4d

or

swab/Aadmb = s1/ldma s3.5d

for
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Aa =
1

uMau o
iPMa

o
j

Isr ijdcossfi − f jd s3.6d

and

wab =
1

uMau o
iPMa

o
jPMb

Isr ijd, s3.7d

wherea or b is a block index rather than a site index when
there exists a symmetry in the lattice geometry andMa

=hi ur i =raj is sets ordered by the distance from the vortex
core s1øaøLd. The maximum eigenvalue, which is equal
to 1/lc, is determined by using only the nearest components
to the core center,m1,m2, . . . ,mN (1øNøL, whereN is the
number of the nearest components).

Note that we assume that the center of the vortex is lo-
cated at the origin of a coordinate system. The in-plane
angles are chosen to be the usual solution of the in-plane
vortex in the continuum theoryfi =tan−1syi /xid or

cossfi − f jd = r̂ i · r̂ j . s3.8d

For the CTDAHM in Eq.(1.1), the interaction function is
given by Isrd=dsr −1d and

A1 =
4
Î5

,

A2 =
4
Î5

S1 +
1
Î5

+
2

Î13
D ,

w11 = w12 = 2,

w21 = w22 = 1, s3.9d

where M1=h±s1/2,1/2d , ±s1/2,−1/2dj and M2

=h±s3/2,1/2d ,±s3/2,−1/2d ,±s1/2,3/2d ,±s1/2,−3/2dj for
the square lattice in Fig. 1. In this case,wab is just the num-
ber of the nearest neighbors that belong to the setMb for
mi PMa. The critical anisotropy, where the 232 determinant
vanishes, is given by

lc =
A1A2

A1 + 2A2
< 0.7157, s3.10d

which agrees well with the results of Wysin.8 Wysin also
showed thelc is determined by the zero of a 333 determi-
nant as 0.7044. We obtain a smaller critical value oflc
<0.6974 forN=4, which converges to 0.6941 in four-digit
accuracy forNù16. This critical value show a deviation
from the result from numerical simulations. Wysin showed
that there are some differences in the discrete solution from
the continuum results, especially near the vortex core.13

Similar to Wysin’s process, we eliminate this difference be-
tween discrete and continuum solutions by evolution of each
spin’s xy components to point along the direction of the ef-
fective field due to its neighbors, and we obtainlc
<0.703420, which is very close to the value obtained by
Wysin, lc<0.703409, and one from our simulations in Sec.
IV slc<0.7035d.

For the nearest-neighbor interactions in the CTDAHM,
the size of the vortex core is small, which leads to precise
determination of the critical anisotropy for relatively small
N. But as the interaction range increases, the size of the
vortex core increases and more components of the matrix are
needed to obtain the accurate value oflc. Figure 2 shows the
computed anisotropylc as a function ofN for different in-
teraction rangessm in Gaussian-type interactions. The con-

FIG. 1. The vortex center is located ats0,0d and the sites are
presented by different symbols according to the distance from the
vortex center(solid squares forr =1/Î2, solid triangles forr
=Î10/2, etc.).

FIG. 2. The critical anisotropylc as a function of log2N for the
anisotropic Heisenberg model with Gaussian-type interactions for
s=2, 4, and 8. Ass increases, the size of the out-of-plane vortex
core increases.
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vergence of different lines for different ranges gives an esti-
mate of the vortex core sizerv. For the average number of
the degeneracyg per blockMa, gNc means the number of
spin sites which contributes to the determination oflc. The
radius of the vortex core can be estimated as

rv ,Î g

p
Nc s3.11d

with g approaching 8 for largeNc for the square lattice or the
D4 symmetry geometry.

IV. SINGLE-VORTEX SIMULATIONS

In general, it is quite difficult to determine the critical
anisotropy precisely with a simulated annealing approach us-
ing Monte Carlo simulations. In particular, for the distance-
dependent interaction models, the longer annealing time is
required due to the larger lattice size and the larger cutoff
range. Our numerical simulations are carried out by evolving
dynamical equations as a gradient flow, which allows a more
accurate determination of the vortex behavior nearl,lc.
The discrete equations of motion used in simulations are

] fi

] t
= −

] H

] fi
= − 2o

j

Jxysr ijdsin uisin u jsinsfi − f jd,

s4.1ad

] ui

] t
= −

] H

] ui
= 2o

j

hJxysr ijdcosuisin u jcossfi − f jd

− Jzsr ijdsin uicosu jj s4.1bd

in the absence of thermal fluctuations. The simulations start
from an initial state of a planar vortex on the lattice center
and small random fluctuations in out-of-plane components
suSzu ,10−6d, and relax to the ground state in time.

A problem in the single vortex simulations is the effect of
the lattice boundaries. The distribution of spin components is
effected by the lattice boundary as shown in Fig. 3. At first,
the contour lines of isophase are stretch out radially from the
vortex core. But after dynamical evolution, they tend to meet
perpendicularly with the lattice boundary due to the equilib-
rium conditiondH /df,0 or ¹2f,0. If the lattice size is
not sufficiently large, the distribution of spin components
near the vortex core is effected by the lattice boundary. For
the spin system with distance-dependent interactions, the
size of the vortex core increases, so that the larger lattice size
is necessary for simulations. Note also that the shape of the
lattice matters more than its size. Note that the single vortex
is attracted to the lattice boundary similar to an electric
charge near the conductor surface. If there is an asymmetry
in the lattice, the vortex at the center may move along a
certain direction. An asymmetry in the shape of the cutoff
range can also induce the wandering of the vortex core. The
single-vortex simulations for the triangular lattice turned out
to be more difficult and sensitive to the shape of the lattice
and the cutoff range. For more reliable determination of the
critical anisotropy, we used a radial lattice boundary and cut-

off range for triangular and hexagonal lattices.
We measure the growth of the out-of-plane components

by ÎksSzd2l. The measurement of the squared component

FIG. 3. Spin components near in-plane and out-of-plane vortex
formed in the easy-plane Heisenberg model with Gaussian-type in-
teractions.(a) The Initial state with an in-plane vortex at the lattice
center with small random fluctuations ofuSzu,10−6 and the states
after evolution for(b) l=0.72 and(c) l=0.74 (l=«z/«xy, sxy=sz

=1, square lattice type and 50350 lattice size, nonperiodic bound-
ary conditions). In-plane spin components are represented by con-
tour lines wherefi =np /8 for n=0,1, . . . ,15.
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sSzd2 at the central peak can be another choice. However,
tracing single or few components may fail to determine the
vortex stability since the vortex core may start to move. In
case that the vortex wanders, the fluctuations can be mea-
sured byÎksSzd2l. To clarify the simulation results, we con-
firm the monotonical increase or decrease after the inflection
point.

Our simulational method by a gradient flow is fast in its
convergence speed, yet yielding an accurate result. For ex-
ample, Fig. 4 shows the results of dynamical evolution with
the CTDAHM for the square lattice. We find a monotonical
growth (or decay) of out-of-plane components after some
time for l=0.7035(or l=0.7034, 0.7033). This graph sug-
gests that the critical anisotropy lies between 0.7034,lc
ø0.7035, which agrees well with analytic calculations by
Wysin in Ref. 9 (lc<0.703409) and ours in Sec. III(lc
<0.703420). Similarly, we obtainlc<0.6129 for the trian-
gular lattice andlc<0.8330 for the hexagonal lattice, which
also agree well with the results of Wysin(lc<0.612856 and
0.832956, respectively13).

V. EXPERIMENTS IN GAUSSIAN-TYPE INTERACTIONS

As a typical example of spin systems with an arbitrary
distance-dependent interaction types, we study the model
with Gaussian type interactions, where

Imsrd = exps− r2/2sm
2d. s5.1d

In the continuum limit, the fourier transformed interaction

Ĩmsqd = pSsm

a
D2

exps− sm
2q2/2d s5.2d

has a maximum atq=0 and the approximated Hamiltonian
can be written as Eq.(2.5) with Js=p«xysxy

2 /a2, d=1

−s«z/«xydssz
2/sxy

2 d, d8=1−s«z/«xydssz
4/sxy

4 d, a2=2sxy
2 and

the anisotropy

l =
«z

«xy

sz
2

sxy
2 . s5.3d

The critical anisotropylc is not uniform but varies depend-
ing on «m and sm. We can investigate the behaviour of the
critical anisotropy from Gaussian type interactions for two
different general cases; the exchange strengths are propor-
tional to each other,Jzsrd /Jxysrd=const for all r or l
=«z/«xy, and the exchange energy are proportional tosm

2 for
the interaction rangesm in the two-dimensional system or
l=sz

2/sxy
2 .

In analytic calculations, a large number of the nearest
components,N, is needed for the convergence of the critical
valuelc as shown in Fig. 2. The critical values of the aniso-
tropy are determined forN=1024. For the case ofl
=«z/«xy, the critical anisotropy is found by the condition thatFIG. 4. The growth or decay of theSz component in time for the

CTDAHM in the case of single vortex simulation for the square
lattice type(50350 lattice size and time step of 0.001).

FIG. 5. Deviation in the discrete solution from the continuum
result near the vortex core for the square lattice, where thex andy
axes are the lattice coordinates and thez axis denotesusinsfdis

−fcontdu for (a) the nearest-neighbor interactions(b) the Gaussian-
type interactions withsxy=1 and(c) the Gaussian-type interactions
with sxy=4.
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the determinant of theN3N matrix W vanishes, where

Wab = dab o
iPMa

o
j

exps− r ij
2/2sxy

2 dcossfi − f jd

− l o
iPMa

o
jPMb

exps− r ij
2/2sxy

2 d. s5.4d

The maximal eigenvaluel of Eq. (5.4) gives the critical
anisotropylc as in Eq.(3.5). The angles of in-plane compo-
nentsfi are initially set to their continuum vortex values
fi =tan−1syi /xid for each sitei and evolved until they ap-
proach the equilibrium state according to the dynamical
equation

] fi

] t
= − 2o

j

Jxysr ijdsinsfi − f jd s5.5d

from Eq. (4.1a) with mi =0 for all sites, that is, the discrete
dynamics in the absence of out-of-component or the pureXY
model limit. Note that the spin configuration of the system

with distance interaction, however, corresponds well to the
continuum results near the vortex core in contrast to the one
with the nearest-neighbor interaction. There are much differ-
ences between our results and the classical models with the
nearest-neighbor interactions, which decreases as the interac-
tion range increases for the Gaussian-type interactions. Fig-
ure 5 shows the differences between the discrete solutions
and the continuum solutions. The discrete solutions are ob-
tained after the evolution from the continuum solutionfi
=tan−1syi /xid by Eq. (5.5), avoiding the lattice boundary ef-
fect by using a round shaped boundarysR=80d. However,
we solve the equations with the initial angles or setting
cossfi −f jd= r̂ i ·r̂ j for Gaussian-type interactions, which
leads to the accurate results. Forl=sz

2/sxy
2 , the matrixW is

given by

Wab = dab o
iPMa

o
j

exps− r ij
2/2sxy

2 dcossfi − f jd

− o
iPMa

o
jPMb

exps− r ij
2/2lsxy

2 d, s5.6d

which is difficult to be converted as an eigenvalue problem
as before. The critical anisotropylc is determined byfsld
=detuWsldu in Eq. (5.6) using the root finding method, which
is in agreement with the results of numerical simulations
within an accuracy of two or three digits. We show the ana-
lytic and simulational results for square, hexagonal, and tri-
angular lattices in Fig. 6.

The obtained value of the critical anisotropy decreases as
the interactions ranges decreases. Note that the computed

FIG. 6. The critical anisotropylc as a function ofsxy in the
anisotropic Heisenberg model with Gaussian-type interactions for
(a) l=«z/«xy ssxy=szd and (b) l=sz

2/sxy
2 s«xy=«zd. The critical

anisotropy lc are determined by the determinant of the 1024
31024 matrix. The symbols denote the results of the numerical
simulations.

FIG. 7. sxy
Îlc as a function ofsxy. The upper branch corre-

sponds tol=«z/«xy and the lower branch tol=sz
2/sxy

2 . When l
=sz

2/sxy
2 , the y axis meanssz.
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values of the critical anisotropylc are in the order of hex-
agonal, square and triangular lattices type for bothl
=«z/«xy andl=sz

2/ssy
2 as in the CTDAHM. Figure 7 shows

the plot of sxy
Îlc as a function ofsxy, showing a linearity

between them. The slopes for different lattice types can be
grouped as two classes withl=«z/«xy andl=sz

2/sxy
2 (Table

I). If the linearity is maintained for allsxy, the asymptotic
value ofÎlc will converge to the slope of the line for large
sxy. With the help of the asymptotic solutions in Eqs.(5.4)
and (5.6), we can guess that the critical anisotropylc will
converge to zero and the slope of lines in Fig. 7 will become
smaller for largesxy.

When «xy=«z and sxy=sz=1/Î2, the approximated
Hamiltonian with Gaussian-type interactions in Eq.(2.5) be-
comes

H . − NJsS
2 +

JsS
2

4
E d2rHs1 − m2ds¹fd2

+ f1 − ds1 − m2dg
s¹md2

s1 − m2d
+ 4dm2J , s5.7d

which is equivalent to that of the CTDAHM(Ref. 5) with a
coupling constant of nearest-neighbor interactionsJs/2. In
this case, they have the common ground-state energy and the
common excitation energy due to formation of a vortex for
the same lattice type and lattice size. However, we find that
the critical anisotropylc in Gaussian-type interactions is
0.7938 from analytic calculations and 0.7941 from simula-
tional experiments for the square lattice, which are different
from lc<0.7035 in the CTDAHM. These results suggest
that the solutions of the critical anisotropy from the con-
tinuum limit approach are inadequate.

VI. DISCUSSION

We have studied the vortex formation in the two-
dimensional anisotropic Heisenberg model with distance-
dependent interactions and determined the critical anisotropy
lc precisely for Gaussian-type interactions. The continuum
theory helps to predict how spin configurations will develop
for an arbitrary shaped exchange functionJmsrd. If the ex-
change energy functionJmsrd satisfies certain conditions, the
approximated Hamiltonian in the continuum limit shows a
similarity to that of the CTDAHM, which leads to the simi-
larity in two types of static vortex solutions. However, the
continuum theory breaks down in determining the critical
anisotropy as noted by Wysin.8 We also give an example that
two different anisotropic Heisenberg models with a common

approximated form in the continuum limit can have different
critical anisotropies.

It is very difficult to determine the critical anisotropy for
an arbitrary type of the exchange energy functionJmsrd. In
this paper, we have studied two typical cases by using
Gaussian-type interaction models. One case is thatJxysrd and
Jzsrd are proportional for allr, and another case is thatJxysrd
and Jzsrd have a common distribution type with different
interaction ranges. The results for these cases suggest some
general behaviors inlc. The critical anisotropy is the small-
est for the triangular lattice and is the largest for the hexago-
nal lattice among three lattice types explored. The same re-
sults are also shown in the case of the CTDAHM, because
the spins near the vortex core tend to become parallel, reduc-
ing their total exchange energy further, so that the lattice type
with more nearest neighborhoods can reduce the out-of-plane
exchange energy further, while increasing the in-plane ex-
change energy for a lower value ofl. Figure 8 shows the
crossover behavior of spin dynamics when the anisotropy
between the in-plane and the out-of-plane energies is mani-
fested only by the difference in interaction ranges. If the
interaction range for the in-plane case is larger than that for
the out-of-plane casessxy.szd, the number of exchange
pairs for the in-plane case is larger for the ferromagnetic
system and the system belongs to the same universality class
as theXY model. The region where the out-of-plane vortex is
stable can be approximately found in the region with
a,sz/sxy,1, for a reasonable range ofs. If sxy is very
large in comparison with the nearest-neighbor distance, a
nearly zero critical anisotropy may occur.

Our study for the precise determination of the critical an-
isotropy is motivated from the problem of the map formation
in the cerebral cortex rather than the magnetic. The results
for the crossover among the regions with Ising, stable out-
of-plane or stable in-plane vortex behaviors depending on

TABLE I. Linear fitting of sxy
Îlc as a function ofsxy.

Lattice l=«z/«xy l=sz
2/sxy

2

type slope y intercept slope y intercept

Square 0.764928 0.082300 0.625910 0.181816

Hexagonal 0.765017 0.116011 0.629297 0.243578

Triangular 0.764967 0.068548 0.624828 0.154744

FIG. 8. Crossover behavior for interaction ranges.
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the interaction range in Fig. 8 correspond well with the data
from the animal experiments for different types of the map
formation in the visual cortex.11
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