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The driven transport of plastic systems in various disordered backgrounds is studied within mean field
theory. Plasticity is modeled using nonconvex interparticle potentials that allow for phase slips. This theory
most naturally describes sliding charge density waves; other applications include flow of colloidal particles or
driven magnetic flux vortices in disordered backgrounds. The phase diagrams exhibit generic phases and phase
boundaries, though the shapes of the phase boundaries depend on the shape of the disorder potential. The
phases are distinguished by their velocity and coherence: the moving phase generically has finite coherence,
while pinned states can be coherent or incoherent. The coherent and incoherent static phases can coexist in
parameter space, in contrast with previous results for exactly sinusoidal pinning potentials. Transitions between
the moving and static states can also be hysteretic. The depinning transition from the static to sliding states can
be determined analytically, while the repinning transition from the moving to the pinned phases is computed by
direct simulation.
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I. INTRODUCTION

The collective dynamics of extended systems driven
through quenched disorder is a rich and challenging problem,
with many experimental realizations. Such systems include
vortices in type II superconductors, charge density waves in
anisotropic conductors, domain walls in random ferromag-
nets, and planar cracks in heterogeneous materials.1 Much of
the theoretical work to date has focused on modeling these
systems as extended elastic media. In these models the re-
storing forces are monotonically increasing functions of the
relative displacements, and the system is not allowed to tear.
At zero temperature, overdamped elastic media subject to an
applied forceF and quenched disorder exhibit a nonequilib-
rium phase transition from a pinned state to a sliding state at
a critical value,FT, of the driving force.2 The depinning tran-
sition, first fully studied for collective models with disorder
in the context of charge density waves, displays the universal
critical behavior of continuous equilibrium phase transitions,
with the mean velocityv of the medium playing the role of
the order parameter.1,3 For monotonic interactions, it has
been shown that the system’s velocity is a unique function of
the driving force.4 The sliding state is therefore unique and
there is no hysteresis or history dependence. The depinning
transition of driven elastic media has been studied exten-
sively, both by functional renormalization group methods3,5–7

and large scale numerical simulations.8–13 Universality
classes have been identified, which are distinguished, for ex-
ample, by the range of the interactions or by the periodicity
(or nonperiodicity) of the pinning force. More recent work,
while still focusing on elastic media, has shown that the dy-
namics is quite rich well into the uniformly sliding
state.14–18,20

The elastic medium model is often inadequate to describe
many real systems which exhibit plasticity(due, for instance,
to topological defects in the medium) or inertial effects that
violate the assumption of overdamped equations of motion.
The dynamics of plastic systems can be both spatially and
temporally inhomogeneous, with coexisting pinned and mov-

ing regions.19 The depinning transition may become discon-
tinuous (first order), possibly with macroscopic hysteresis
and “switching” between pinned and sliding states.21–24 The
theoretical understanding of the dynamics of such “plastic”
systems is much less developed than that of driven elastic
media. A number of mean-field models of driven extended
systems with locally underdamped relaxation or phase slips
have been proposed in the literature,1,25–33 but many open
questions remain.

Much of the original theoretical work on driven disor-
dered systems was motived by charge density wave(CDW)
transport in anisotropic conductors, which display a nonlin-
ear current-voltage characteristic with a threshold voltage for
collective charge transport.34,35 It has been known for some
time that the elastic depinning transition may not be physi-
cally relevant to real CDW materials.35–37 Coppersmith ar-
gued that in elastic models with weak disorder, unbounded
strains can build up at the boundaries of an atypically low
pinning region, resulting in large gradients of displacement
that lead to the breakdown of the elastic model.36 Topologi-
cal defects or phase slips will occur at the boundaries of such
a region, yielding a spatially nonuniform time-averaged ve-
locity. Theoretical and numerical studies of models that in-
corporate both phase and amplitude fluctuations of the CDW
order parameter have indicated that phase slips from large
amplitude fluctuations can destroy the critical
behavior.20,38,39 The depinning may become discontinuous
and hysteretic, or rounded, in the infinite system limit. Ex-
periments show that varying the temperature of the CDW
material can lead to a transition from continuous depinning
to hysteretic depinning with sharp “switching” between
pinned and sliding states.22,40,41 Furthermore, the observed
correlation between the amplitude of broadband noise and
macroscopic velocity inhomogeneities also suggest the pres-
ence of phase slips.42 It should be mentioned, however, that
in many samples a substantial amount of phase slips occurs
at the contacts,43 while less clear evidence exists for substan-
tial phase slip effects in the bulk. In general, CDW experi-
ments display considerable sample-to-sample variability,23
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making the comparison between theoretical models and ex-
periments quite challenging.

Related slip effects or plastic behavior have been pro-
posed to explain the complex dynamics of many other dissi-
pative systems, including vortex arrays in type-II supercon-
ductors. Simulations(mainly in two dimensions),17,44–49

imaging,18,50–53 and transport and noise experiments54–56

have shown that driven flux lattices often do not respond as
elastic media. Instead, the driven lattice tears as small-scale
topological defect structures are generated and healed by the
interplay of drive, disorder and interactions. The tearing re-
sults in a “plastic” response, with highly defective liquidlike
regions flowing around the boundaries of pinned solidlike
regions.49 This kind of response is most prominent in the
region near vortex lattice melting, where the so-called peak
effect occurs, i.e., the critical current shows a sudden in-
crease with temperature or applied field. Reproducible noise
or “fingerprint phenomena” have been observed in the
current-dependent differential resistance and attributed to the
sequential depinning of various chunks of the vortex
lattice.54 Images of driven vortex arrays in irradiated thin
films of Niobium obtained by Lorentz microscopy have
shown clearly that vortex rivers flowing past each other at
the boundaries of pinned regions of the lattice.51 Scanning
tunneling microscopy, which can resolve individual vortices
at high density, has also revealed a clear evolution of the
vortex dynamics with disorder strength.52 In samples with
weak disorder the vortex array was observed to creep coher-
ently along one of the principal crystal axes near the onset of
motion. In samples with strong disorder, the depinning is
plastic and the path of individual vortices can be followed as
they meander through the pinned crystal. Finally, as in the
case of CDWs, a correlation between plasticity and broad-
band noise has been observed in several samples.56 Recently
it has been argued that some of the observed behavior may
be due to edge contamination effects that are responsible for
the coexistence of a metastable disordered phase and a stable
ordered phase.57–59 It is clear that more work is needed to
understand the rich dynamics of these driven systems.

In this paper we study the driven dynamics of a disor-
dered medium with phase slips, in order to better address
questions about these and related physical systems. We re-
strict ourselves to systems which are periodic along the di-
rection of motion, such as CDWs, vortex lattices or 2D col-
loids, and consider only the dynamics of a scalar
displacement field. For concreteness, the model is described
in the context of driven CDWs, but it also applies to other
driven systems with pinning periodic in the displacement
coordinate. Assuming overdamped dynamics and discretiz-
ing spatial coordinates, the dynamics of the phaseui of each
CDW domain is controlled by the competing effects of the
external driving force, the periodic pinning from quenched
disorder, and the interaction among neighboring domains.
Following the literature,25,60–62phase slips are introduced by
modeling the interactions as a nonlinear sine coupling in the
phase difference of neighboring domains. The mean field
limit for this type of model has been studied by Strogatz,
Westervelt, Marcus, and Mirollo25 for the case of the smooth
sinusoidal pinning force and was shown to exhibit a first
order depinning transition, with hysteresis and switching. In

this paper we use a combination of analytical methods and
numerical simulations to obtain the nonequilibrium mean
field phase diagram of the phase slip model for a variety of
pinning forces(see Fig. 1). Note that most of the pinning
forces we consider are discontinuous. This form of the force
mimics the cusped potentials that are the starting points for
mean field theories that best reproduce the finite-dimensional
results. The discontinuous pinning forces also reflect the
abrupt changes in the effective force(sum of elastic and
pinning forces) that occur when a neighboring region of the
medium suddenly moves forward. We find that discontinuous
forces, and even continuous nonsinusoidal pinning forces,
yield a rich nonequilibrium phase diagram, with novel stable
static phases that are not present for exactly sinusoidal pin-
ning forces.

In mean field theory, the nonequilibrium state of the sys-
tem can be described in terms of two order parameters. As
the pinning potential for each domaini is periodic in ui,
having minima atbi +2pn, for integern, and taking the in-
teractions to be periodic in the differenceui −u j between
neighboring phases with the same period, a natural order
parameter is the coherence of the phases. This coherence is
measured by the amplituder of a complex order parameter
defined via

reic =
1

N
o
j=1

N

eiu j , s1d

with c a mean phase. In the absence of interactions among
the phases or external drive, theui’s are locked to the random
phases,ui =bi, and the state is incoherent, withr =0. In the

FIG. 1. Sketches of the pinning potentials and forces studied in
this paper. The pinning forces are periodic with period 2p and the
pinning potential for a degree of freedomui has minima atbi

+2np, for integern. The cases are organized primarily by the sign
of c, with the pinning forceYsxd=−ax−cx3+Osx5d for small x=ui

−bi. The coefficient of the harmonic part of the force satisfiesa.0.
The cases(a), (b) and(c) are for “soft” pinning forcessc,0d; they
differ near the potential maxima, corresponding to monotonic, non-
monotonic, and continuous forces, respectively. Case(d) is a “hard”
potential sc.0d. The “scalloped” potential, case(e), is precisely
quadraticsc=0d in the interval −p,x,p. The form of the poten-
tial especially affects the stability of the coherently pinned phase
and whether “re-entrant” pinning is possible upon increasing or
decreasing the force.
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opposite limit of very strong interactions we expect perfect
coherence of the static state, with all phases becoming equal
and r →1 as the interactions become strong(or the pinning
becomes weak). Another order parameter is the average ve-
locity of the system, given by

v =
1

N
o
j=1

N

u̇ jstd. s2d

The mean velocity is the order parameter for the transition
between static and moving phases.

The central results of this paper are the nonequilibrium
phase diagrams describing the static and moving phases, for
the various pinning forces shown in Fig. 1. The parameters
for the phase diagrams are the driving forceF and the
strengthm of the interaction between the domains.(For a
phase diagram in the drive force vs pinning strength plane,
see Sec. VII.) Although the precise shape of the phase
boundaries depends on the detailed form of the pinning po-
tential, the types of phases and the schematic topology of the
phase diagram are general. This topology and set of phases is
exemplified in the phase diagram for the discontinuous soft
cubic pinning force[see Fig. 1(b)] shown in Fig. 2. We find

three distinct zero-temperature nonequilibrium phases:
(i) an incoherent static phase(IS) at low drives and small

coupling strengths, withv=0 andr =0;
(ii ) a coherent static phase(CS) at low drives and large

coupling strengths, withv=0 andr .0;
(iii ) a coherent moving phase(CM) at large drives, with

v.0 andr .0.
We have investigated the possibility of an incoherent

moving (IM ) phase. For continuous pinning forces, there is
no IM phase. For discontinuous pinning forces, we speculate
that the IM phase is unstable generically.(See Sec. V where
the stability of a possible IM phase is discussed.)

An important new feature of the phase diagram is the
occurrence of a coherent static phase at finiteF. In contrast,
for the sinusoidal pinning force studied previously by Stro-
gatz and collaborators25 the static state is always incoherent
(IS) for all finite values of the driving force and the CS phase
is only present atF=0.

The location of the transitions between these phases de-
pends on the system’s history. Changing the couplingm at
fixed drive F can give a hysteretic transition between inco-
herent and coherent static phases, as shown in the inset of
Fig. 2 for F=0. Figure 3 shows the behavior of both the
mean velocity and the coherence asF is first increased and
then decreased across the boundaries between static and
moving phases of Fig. 2, while keepingm fixed. The most
important features of the phase diagrams are

(i) The transition between the IS and CS phases is gener-
ally discontinuous. The region of coexistence of coherent
and incoherent static states is bounded by curvesmdsFd and
musFd [or equivalentlyFdsmd andFusmd]. When the coupling
strengthm is increased at fixedF within the static region, the
system jumps from an incoherent to a coherent state at the
critical valuemusFd, with a discontinuous change inr (see
inset of Fig. 2). Whenm is ramped back down, the coherent
static state remains stable down to the lower valuemdsFd.
The boundariesmdsFd andmusFd coincide for the piecewise
linear pinning force. In this case the transition is still discon-
tinuous, but not hysteretic. An exception to this general be-
havior is found for the hard pinning potential at very small
values ofF, where the transition between coherent and inco-
herent static states is continuous.

(ii ) The depinning to the moving phase is discontinuous
and hysteretic when the system depins from the IS phase
(except whenm=0). WhenF is increased adiabatically from
zero at fixedm for a system prepared in the IS phase, both
the velocity and the coherence jump discontinuously from
zero to a finite value atF↑

i smd. For an example, see the top
frames of Fig. 3. When the force is ramped back down from
the sliding state the system gets stuck again at the lower
valueF↓smd.

(iii ) The depinning to the moving phase is generally con-
tinuous when the system depins from the CS phase. In this
case both the velocity and the coherence change continu-
ously at the transition, although they may be nonanalytic
functions of the control parameters. An example of this be-
havior is displayed in the bottom frames of Fig. 3. An excep-
tion is found for piecewise linear pinning forces[case(e) of
Fig. 1] for m*mu.

FIG. 2. Phase diagram in the coupling-drivesm–Fd plane for a
discontinuous soft cubic pinning force of the type shown in Fig.
1(b). The equation of motion is Eq.(4). The correspondingYsxd is
given by Eq.(42) with a=15/s8pd andc=−4a3/27. The strength of
the pinning ish=1 for all degrees of freedom. The diagonally lined
region indicates the IS phase, while the cross-hatched region indi-
cates the CS phase. The light gray shaded region denotes the region
of coexistence of the CM and IS phases, while the medium gray
shaded region denotes the region of coexistence of the IS and CS
phases. The linesF↑

i and F↑
c are the forces at which the system

depins upon increasing the drive from the incoherent and coherent
static states respectively. The lineF↓ is the force at which a coher-
ently moving system stops upon lowering the drive. The point
sme,Fed indicates where the static-moving transition goes from hys-
teretic to nonhysteretic. The curvesmusFd andmdsFd are the values
of the coupling at which the static system makes the transition to
and from finite coherence states, respectively. The inset displays the
hysteresis in the coherencer as the coupling strengthm is varied at
F=0. The transitions between the IS and CS phases are first order in
r.
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(iv) For continuous pinning forces, the depinning thresh-
old F↑

csmd vanishes form above a criticalmT. In contrast,
discontinuous pinning forces exhibit a finite depinning
threshold for all finite values ofm with F↑

csmd decreasing
with increasingm.

Analytical expressions have been obtained for the critical
linesF↑

csmd andF↑
i smd, which give the depinning force values

for the coherent and the incoherent static phases, respec-
tively, as well as for the phase boundariesmdsFd andmusFd,

which separate the coherent and incoherent static phases.
Numerical simulations of finite mean-field systems have also
been used to obtain these boundaries, confirming the analytic
stability criteria. The repinning curvessF↓smdd, where mov-
ing solutions stop upon lowering the driveF, have been de-
termined numerically.

Part of the motivation for our work comes from the well-
known result that the mean field critical exponents for the
depinning transition in purely elastic models depend on the
details of the pinning force. For instance, the exponentb
controlling the vanishing of the mean velocityv with driving
force at threshold,v,sF−FTdb, has a mean field valueb
=3/2 for generic smooth continuous pinning forces andb
=1 for a discontinuous piecewise linear pinning force[Fig.
1(e)].63 Using a functional RG(FRG) expansion in 4−e di-
mensions, Narayan and Fisher showed3 that the discontinu-
ous force captures a crucial intrinsic discontinuity of the
large scale, low-frequency dynamics. The FRG calculations
give b=1−e /6+Ose2d, in good agreement with numerical
studies in two and three dimensions. The mean field elastic
medium also has zero depinning field,FT=0, for small pin-
ning strengthsh, in contrast with finite-dimensional simula-
tions and predictions for a finite depinning field in any di-
mension based on Imry–Ma/Larkin–Ovchinnikov and rare
region arguments.2 The RG calculation and the numerics
show that a discontinuous pinning force must be used in the
mean field theory to incorporate the inherent jerkiness of the
motion of finite-dimensional systems at slow velocities. Al-
though there is no reason to believea priori that the same
will hold for models with phase slips, it is clearly important
to understand how the properties of the pinning potential
affect the nonequilibrium phase diagram of the model. Fur-
thermore, for large coupling strengthm and bounded pinning
force the phase slip model reduces to the elastic model,
where the nature of the pinning force strongly affects the
mean field theory.

For further applications and connections, we note that
models of driven disordered systems with nonmonotonic in-
teractions are also relevant for arrays of nonlinearly coupled
oscillators. An example is the Kuramoto model used to de-
scribe the onset of synchronization in many biological and
chemical systems.64 The model consists of a large number of
oscillators with random natural frequencies and a sinusoidal
coupling in their local phase differences. Although there is
no external drive, this model can exhibit a transition to a
synchronized phase as the strength of the coupling is in-
creased. In this phase, all the degrees of freedom oscillate at
a common frequency. In the Kuramoto model the natural
frequency acts as a random driving force that varies for each
oscillator, but there is no random pinning. The model con-
sidered here, in contrast, consists of coupled phases, or os-
cillators, in a random pinning environment at fixed(constant)
drive. The onset of coherence(either in a moving or in a
static state) corresponds to the onset of the synchronization
in the Kuramoto model.

We conclude this introduction by briefly summarizing the
remainder of the paper. In Sec. II we describe the model of
driven CDWs with phase slips and introduce the mean field
limit. In Sec. III we obtain the static solutions of the mean
field model atF=0 for the selection of pinning forces shown

FIG. 3. Typical numerical results, found by integrating numeri-
cally the equations of motion[Eq. (4)], for the behavior of the mean
velocity v and the coherencer as the driving force is slowly varied.
For each pair of plots, the couplingm is held constant, while the
drive forceF is raised fromF=0 to F=1.2 and then decreased. The
pinning potential is the same as for Fig. 2. The top framessm
=0.5d show the hysteretic behavior between the IS and the CM
phases, where the coherence and velocity jump between zero and
nonzero values at the same locations. The next two sets of frames
sm=1.14d are obtained by preparing the system in the IS–CS coex-
istence region, starting from either an initial incoherentsId or co-
herentsCd state. When the system is prepared in an incoherent state,
the velocity and coherence jump at the same value of
F s<0.42d as F is raised, but change continuously asF is de-
creased, albeit with a change in the slopedr /dF at the repinning
force F<0.32, wherev goes to zero. When the system is prepared
in a coherent state, there is no hysteresis andv andr are continuous,
thoughr again shows a singularity at depinning. The bottom frames
sm=1.5d display the behavior at the continuous depinning transition
from the CS phase. The results are similar to those form=1.14,
when starting from the coherent statesCd. In general, depinning
from the coherent state is continuous and nonhysteretic, while de-
pinning from the incoherent state is discontinuous and hysteretic.
Numerical evidence for the hysteresis does not change over the size
ranges studied, strongly suggesting that these simulations accurately
represent the infinite-volume limit.
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in Fig. 1. We show that the existence of a transition between
incoherent and coherent static states can be inferred pertur-
batively. A full nonperturbative treatment is then applied to
understand the nature of the transition. In Sec. IV we con-
sider static states at finite drive. Again, the region of stability
of the incoherent static phase can be established by pertur-
bation theory, but the nonperturbative treatment described in
Sec. V is needed to map out all the static states and their
boundaries of stability to the moving state. The resulting
phase diagrams for the various classes of pinning forces are
discussed in Sec. V; the analytic calculations supporting
these phase diagrams are presented in Appendixes A and B.
As the analytic treatment we present here is restricted to
finding boundaries starting from the static phases, the lower
boundaryF↓smd of the hysteretic region where static and
moving state coexist has been obtained numerically. Section
VI addresses the effect of a broad distribution of pinning
strengths. We conclude in Sec. VII with a discussion of the
results and avenues for further studies.

II. THE MODEL

Though the results of our analysis are more general, we
motivate the model with a detailed discussion of the physics
of CDWs. The general ideas of phase slip also apply to other
systems, most directly to coupled layers of vortices, where
the vortices are confined to the planar layers, or to colloidal
particles in a disordered background.

A CDW is a coupled periodic modulation of the electronic
density and lattice ion positions that exists in certain quasi-
one-dimensional conductors, due to an instability of the
Fermi surface. The undistorted CDW state is a periodic con-
densate of electrons, characterized by a complex order pa-
rameter, with an amplituder1 and a phaseu. The electron
density can be expanded asresxd=r0+r1 cosfQcx+usxdg,
with Qc=2kF, kF being the Fermi wave vector. The phase
usxd describes the position of the CDW with respect to the
lattice ions and is a constant for an undistorted CDW. When
Qc is incommensurate with the lattice, the CDW can “slide”
and CDW transport can be modeled using uniform transla-
tions and small gradients ofusxd, to a first approximation. An
applied electric field exceeding a threshold field causes the
CDW to slide relative to the lattice at a rate]tu, giving rise to
a CDW current. Amplitude fluctuations(changes inr1) are
often neglected because they cost a finite energy, while a
vanishingly small energy is required to generate long-
wavelength phase excitations, in an ideal crystal. This has
led to the well-known phase-only model of CDW dynamics
introduced by Fukuyama, Lee, and Rice(FLR) that incorpo-
rates long wavelength elastic distortions of the phase.65

Strong disorder or regions of unusually low pinning can lead
to large strains, however, so that the amplitude can no longer
be regarded as constant. Large local strains can be relieved
by a transient collapse of the CDW amplitude. One approach
to describe such a strongly strained system is a “soft spin”
model that considers the coupled dynamics of both phase and
amplitude fluctuations. This has been attempted by some
authors,20,38,39but generally leads to models that have to be
treated numerically. An alternative, more tractable approach,

is to continue to treat the amplitude as constant, while modi-
fying the interaction between phases. This modification
should incorporate the crucial feature that the phase becomes
undefined at the location where the amplitude collapses. At a
strong pinning center, phase distortions can be large and lead
to the accumulation of a large polarization that suppresses
the CDW amplitude, driving it toward collapse. When the
distortion is released through an amplitude collapse, the
phase abruptly advances of order<2p, while the amplitude
quickly regenerates.62 This process is known as phase slip-
page in superconductors and superfluids, although it is modi-
fied in CDWs because of the physical coupling to the phase.
On time scales large compared to those of the microscopic
dynamics, it can be described approximately as a “phase
slip:” an instantaneous 2p (modulo 2p) hop of the CDW
phase. Following the literature, phase slips will be modeled
here as phase couplings periodic in the phase difference be-
tween neighboring domains. This leads to a simple model
that can be analyzed in some detail.

When modeling CDWs, especially numerically, displace-
ments and amplitudes are coarse grained to a length scale of
order of the Imry–Ma–Larkin–Ovchinikov length. At and be-
low this scale, the CDW behaves roughly as a rigid object,
referred to as a correlated domain. This domain is taken to
move uniformly and is acted upon by driving forces and
interactions with neighboring domains and the pinning po-
tential. The continuum space description is replaced with a
discrete set of degrees of freedom. The coarse-grained equa-
tion of motion for the phaseui of a CDW domaini is given
by

u̇i = F + mo
k jl

sinsu j − uid + hiYsui − bid, s3d

where the overdot denotes the time derivative(we have cho-
sen to scale time so that the damping constant is unity) andF
is the driving force. The second term on the right-hand side
of Eq. (3) represents the force due to the coupling to other
domains, wherek jl ranges over sitesj that are nearest neigh-
bor to i andm is the coupling strength. The third term is the
pinning force which tends to pin the phase of each domain to
a random valuebi uniformly distributed in f−p ,pg. The
function Ysxd is periodic with period 2p and represents the
pinning forces. We chooseYs0d=0 to fix the location of the
minimum of the pinning potential and setY9s0d=0 to main-
tain reflection symmetry in the absence of an external drive.
As the potential is minimized atui =bi, Y8s0d,0. The ran-
dom pinning strengthshi are independently chosen from a
probability distributionrshd.

The key difference between our model equation of motion
and the well-known FLR elastic model of driven CDWs is in
the form of the coupling between domains. Instead of assum-
ing a linear elastic force,ok jlsu j −uid between neighboring
domains, we have assumed a nonlinear, sinusoidal coupling
that allows for phase slip processes. For large phase distor-
tions (exceedingp) the restoring force in Eq.(3) becomes
negative and the phases slip by an amount 2p relative to one
another in order to relax the strain.
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The starting point for many finite-dimensional theories is
the mean field picture where every local phase(or domain) is
equally coupled to every other. In this limit, the equation of
motion (3) becomes

u̇sb,hd = F − u sinsu − cd + hYsu − bd, s4d

where

u ; mr s5d

measures the effective strength of coupling between the do-
mains and the mean field, withr and c defined in Eq.(1).
This coupling will only be nonzero if there is some coher-
ence between the phases of different domains, i.e., ifr Þ0.
For simplicity, we have dropped the subscripts, labeling each
phase by the values ofb andh, which are now both continu-
ous variables. Theb are distributed uniformly inf−p ,pg and
the h have the distributionrshd.

The self-consistency condition for the mean field theory is
given by

reic =
1

2p
E

−p

p

dbE dh rshdeiusb,hd. s6d

In this paper we will for the most part consider a narrow
distribution of pinning strengths, i.e.,rshd=dsh−1d. The ef-
fects of a broad distributionrshd will be addressed in Sec.
VI.

When the phases are not coupledsm=0d, the equation of
motion reduces to that of a single particle, which depins at
the single particle threshold force,Fsp, given by the maxi-
mum pinning force. Note that when the coherencer is zero,
thenu=0, and the system may also depin atFsp for a finite
value ofm, as long asr remains zero.

III. STATIC STATES FOR ZERO DRIVE

We first consider static solutionssu̇=0d to Eq. (4) for the
case of zero drivesF=0d. These solutions are the first step in
determining the phase diagram and their derivation intro-
duces most of the techniques and concepts used for nonzero
drive. WhenF=0, the coherencer is determined by compe-
tition between two effects: the disordering effect of the ran-
dom impurities and the ordering tendency arising from the
coupling of each degree of freedom to the mean field. The
outcome of this competition gives them dependence ofr. At
zero drive, the system can exist in one of two possible
phases: the disorderedsr =0d IS phase and the orderedsr .0d
CS phase. These phases can coexist. In this section we ex-
amine the nature of the transition between these two phases
obtained by varyingm at F=0. We find that the nature of the
transition depends on the shape of the pinning force,Ysxd.

For static solutions at zero drive, the equation of motion
(4) reduces to the condition that the pinning force on each
degree of freedom be balanced by the force due to deforma-
tions from coupling to the mean field,

0 = −u sinsu − cd + hYsu − bd, s7d

where the reader is reminded that the effective couplingu
results from the coupling strengthm and coherencer, u

=mr. For any value ofm this equation has the trivial solution
u=b, r =u=0, where all phases rest at the minima of their
pinning potentials and the coherence and effective coupling
are both zero. It turns out, however, that such a static inco-
herent solution becomes unstable above a characteristic
value of the coupling strengthm.

In order to study the competition between the impurity
disordering and mean-field ordering effects, it is useful to
rewrite the equation in terms of the deviationd of each phase
from its value in the disorder dominated incoherent state,d
;u−b. A direct and important symmetry of the solution of
Eq. (7) is global phase invariance, which holds due to the
uniform choice ofb. In the static state, this statistical rota-
tional invariance means that we can simply fixc to be zero.
Given a solution withc=0, all related solutions withcÞ0
can then be obtained by lettingu→u+c andb→b−c. With
this transformation, and specializing to the case of fixed pin-
ning strength,h=1, the force balance equation becomes

0 = −u sinsd + bd + Ysdd. s8d

To solve this force balance equation, we need to determineu
self-consistently. The self-consistency condition Eq.(6) can
be rewritten, by separating out its real and imaginary parts,
as

r =
1

2p
E

2p

db cossd + bd ; fsud, s9d

where we have implicitly used Eq.(8) to solve for d as a
(possibly multivalued) function of b andu to define a func-
tion fsud as the above average overb, and

0 =E
2p

db sinsd + bd. s10d

Next, we will use a straightforward linear stability analysis
to show that the ISsr =0d phase becomes unstable to the CS
sr .0d phase above a critical valuemu of the coupling
strength. A perturbative calculation ofrsmd allows us to es-
tablish that this transition from the IS to the CS phase is
continuous or hysteretic, depending on the shape of the pin-
ning potential near its minimum. We will then obtain the full
solution rsm , F=0d for a variety of pinning forces.

A. Stability of the incoherent static phase

To investigate the linear stability of the IS phase, we cal-
culate the time evolution of a configuration near the static
solution dsbd=0. A convenient perturbed configuration is
dsb , t=0d=−es0dsinb with es0d!1. This perturbation gives
nonzero coherence while maintainingc=0 and reflects the
most rapidly growing eigenvector in the stability analysis,
with dsb ,td=−estdsinb to lowest order ine. By Eq. (9), the
coherence of the perturbed state is

r =
1

2p
E

−p

p

db cossb − e sinbd,

=e/2 + Ose2d. s11d

The equations of motion Eq.(4) then give
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ḋ = − mr sinsb + dd + hYsdd = − mse/2dsinb + hY8s0dd

+ Ose2d = Sm

2
+ hY8s0dDd + Ose2d. s12d

As r and d are both proportional toe (to lowest order), it
immediately follows thatṙ <fsm /2d+hY8s0dgr. The critical
value ofm for linear stability is therefore

mu = − 2hY8s0d. s13d

For coupling strengthm.mu, the perturbed coherence grows
and the IS phase is linearly unstable to a CS phase. At larger
m, the interactions that drive theu towards a coherent state
are larger in magnitude than the restoring force for the indi-
vidual u. Note thatmu depends only on the strength of the
pinning force at the minimum of the pinning potential.

B. Perturbation theory

The onset of coherence form just abovemu can be studied
perturbatively by assuming that both the phased and the
coherencer are small in this region. Neard=0 the pinning
force can quite generally be written as a power series ind,

Ysdd = − ad − bd2 − cd3 + ¯ , s14d

with a=−Y8s0d.0. For smallr, and henceu, one can ex-
panddsb ,ud in powers ofu,

dsb,ud = ud1sbd + u2d2sbd + u3d3sbd + ¯ . s15d

Substituting these terms into the force balance equation(8),
and equating terms of the same order inu, we obtain

d1sbd = −
sinb

a
, s16ad

d2sbd =
sinb cossbd

a2 −
b sin2 b

a3 , s16bd

d3sbd = S c

a4 +
2b2

a5 −
1

2a3Dsin3 b −
sinb cos2 b

a3

+
3b sin2 b cosb

a4 . s16cd

Substituting the expandeddsb ,ud into Eq.(9) and evaluating
the integrals to each order inu we find

fsud = ur1 + u2r2 + u3r3 + ¯ , s17d

with

r1 =
1

2a
, s18ad

r2 = 0, s18bd

r3 = −
3

8
Sac− 2b2

a5 D . s18cd

Finally, the coherencer is given by the solution of

r = fsrmd = srmdr1 + srmd3r3 + ¯ . s19d

For simplicity of discussion we specialize to pinning poten-
tials with reflection symmetry and chooseb=0 (although the
nonzerob result will prove useful in the analogous finiteF
perturbation theory). Thenr3=−3c/ s8a4d and the nonvanish-
ing solution for the coherence can be written as

rsmd =5S
mu

4

3ucum3D1/2Smu − m

mu
D1/2

, c , 0,

S mu
4

3cm3D1/2Sm − mu

mu
D1/2

, c . 0,

s20d

wheremu=2a.
The behavior ofrsmd for m<mu and the nature of the

transition between the IS and CS phases are controlled by the
sign of the coefficientc of the cubic term ofYsdd. The three
types of behavior that can occur are shown in Fig. 4. For
c.0, corresponding to a “hard” pinning potential that grows
more steeply than a parabola near its minimum, the coher-
encer grows monotonically with increasingm, with r ,sm
−mud1/2. This indicates a continuous transition atm=mu be-
tween the IS and CS phases. On the other hand, whenc,0,
corresponding to a “soft” pinning potential, the coherence
starts out with a negative slope atmu and grows with de-
creasingm. We expect this solution to be unstable, indicating
that the transition from the IS phase to the CS phase occurs
with a discontinuous jump inr from r =0 for m,mu to a
nonzero value ofr for m.mu on a stable upper branch not
accessible in perturbation theory. In fact we show below that
when m is decreased back down throughmu from the CS
phaser will remain nonzero down to a lower valuemd,mu,
indicating a hysteretic transition between the IS and CS
phases. In the marginal case of piecewise linear pinning
forces withc=0, i.e.,Ysdd=−ad neard=0, there is a discon-

FIG. 4. The behavior of the coherencer for couplingsm<mu,
i.e., near the instability point of the incoherent static phase(IS) at
F=0. The three curves showr with pinning forceYsd!1d=−ad
−cd3 for c positive (hard pinning potential), negative(soft pinning
potential) and zero(piecewise linear pinning force.)
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tinuous jumprsmd at m=mu. In this case the perturbation
theory breaks down and the solution must be obtained by the
method described in Sec. III C. This calculation will show
that no hysteresis occurs in the case of strictly linear pinning
force. We stress that the transition from the IS to the CS state
at F=0 is controlled entirely by the shape of the pinning
potential near its minimum. Specifically, the behavior is un-
affected by the existence of discontinuities in the pinning
force at the edges of each pinning well.

C. Beyond perturbation theory: The general staticr„m ,F =0…
solution

In this section we outline a nonperturbative method for
calculating the integralfsud used in the self-consistency
equation, Eq.(9). This allows for the determination of the
coherencer for all values ofm. In addition to confirming the
perturbative results obtained above, this method allows the
precise study of the discontinuous and hysteretic transitions
between the IS and CS phase, which cannot be done within
perturbation theory.

To obtain fsud by direct integration overb in Eq. (9) one
would need to solve the transcendental equation, Eq.(8), for
dsb ,ud. Such a solution cannot in general be obtained ana-
lytically. Hence we take an alternative approach in which we
solve Eq.(8) for bsd ,ud and integrate overd, rather thanb,
i.e.,

r =
1

2p
E ddS ]b

]d
Dcossd + bsd,udd. s21d

The change of variable in Eq.(21) provides an important
simplification that allows us to calculate analytically the co-
herence of the undriven static state for a general pinning
potential. This simplification does rely on understanding the
subtleties of howd depends onb, asd can be multivalued
function of b.66 The history of the sample can determine
which branch(es) are included in the configuration.

For a givenu, there is an infinite set of solutions to Eq.
(8). We index each with an integern,

bnsd,ud = − d + np + s− 1dn sin−1sYsdd/ud, s22d

where we choose thef−p /2 ,p /2g branch for sin−1sxd. The
range for d is constrained to −dmaxsudødødmaxsud, with
dmaxsud;Y−1sud.

The calculation of the average in Eq.(21) is easily carried
out whenu,a, where the phase is single valued. For values
of u.a the functiondsbd is multivalued, allowing for the
existence of many metastable static configurations at fixedu.
Figure 5 shows one such multivalueddsbd. Because of the
metastability, the coherence can vary over some range. For a
fixed u, the range in coherence results in a range of couplings
m. When uùa and dsbd is multivalued, one chooses the
(stable) branch of thebsdd curve that is consistent with the
particular metastable state one wishes to describe and also
ensures thatc=0, or equivalently that Eq.(10) is satisfied.
For simplicity and correspondence with “typical” sample
preparation, we focus on those metastable states accessed by
adiabatically increasingu from zero.67 These correspond, for

a givenu, to the solid portions of the curve shown in Fig. 5.
The details of the calculation for the scenario of adiabatically
increasingu, which selects one branch, are given in Appen-
dix A. It is relatively straightforward to show that for a given
u these are the states which have the largest coherence. This
selection of largest-u states is consistent with our numerical
calculations. Note that the form of thedsbd curve and the
discussion of multiple solutions is formally quite similar to
parts of the calculation for the purely elastic case, though the
physical motivation is rather different.2

The behavior of the coherence as a function ofm is shown
in Fig. 6 for four pinning potentials(for histories where the
effective couplingu is adiabatically increased.) As antici-

FIG. 5. A sample plot ofd, the displacement of a degree of
freedom from the minimum of the pinning potential, versus the
pinning phasebnsdd for branch numbers −2ønø2. The solid por-
tions correspond to evenn, while the dashed portions correspond to
odd n. The global phasec is chosen to be zero. Here, the effective
interaction is large enough,u.a, that dsbd is multivalued. The
maximum magnitude ofd is denoted bydmax.

FIG. 6. The coherence of the static state atF=0 as a function of
the coupling strengthm for four pinning forces:(a) hard sc.0d
cubic pinning force, witha=c=1/sp+p3d; (b) piecewise linear pin-
ning force, witha=1/p; (c) soft sc,0d cubic pinning force, with
a=1/p and c=−1/p3; (d) sine pinning force whose maximum
strength is 1/p. Also shown is the valuemd where the coherence
jumps from a finite value to zero upon decreasingm.
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pated on the basis of the perturbation theory, for a hard pin-
ning force [curve (a) of Fig. 6] the coherence is a single-
valued function ofm. The system exists in the zero-r IS
phase form,mu. At mu there is a continuous transition to the
CS phase, withr growing continuously from zero. For soft
pinning forces[curves(c), cubic pinning force, and(d), sine
pinning force, of Fig. 6] with c,0 the coherence is a mul-
tivalued function ofm. In this case the IS phase is stable up
to mu whenm is ramped up from below. Atmu the coherence
jumps discontinuously to the stable upper branch of the
curve corresponding to the CS phase. Whenm is ramped
down from abovemu, the system remains in the CS phase
down to the lower valuemd. For this class of pinning forces,
the IS–CS transition is always hysteretic atF=0. In the mar-
ginal case of a piecewise linear pinning force[curve (b)], r
jumps discontinuously at the transition, but there is no hys-
teresis.

The coherence curves shown in Fig. 6 correspond to the
metastable states that would result through adiabatically in-
creasingu. As mentioned earlier, for a givenu, this is the
state whose phases are as close as possible to the global
phasec=0, and hence is the state with the largest coherence.
Thus, the curves shown in Fig. 6 are upper bounds on the
coherence for each type of pinning force. In order to calcu-
late the lowest possible coherence at eachu, one must con-
sider the metastable state whose phases are as far as possible
from the global phase. To obtain this lowerrsmd bound ana-
lytically is tedious, and we have done so only for the saw-
tooth linear case. This result for the lower bound is displayed
in Fig. 7, along with the upper bound, which, again, is the
relevant state for the histories we consider here.

In addition to determining the transitions between the IS
and CS phases, the nonperturbative treatment at zero drive
can also be used to determine if there is a critical value ofm,
mT, above which the depinning threshold vanishes and the
system is always sliding for allF.0. We present an outline
of the argument here and relegate the details of the calcula-
tion of mT to Appendix A. The threshold force can be thought
of as the largest value of the driving force at which there still

exists a stable static solution to the equation of motion. All
such solutions satisfy the static self-consistency condition.
For incoherent static solutions, in which the domains are
completely decoupled, this threshold force is simply the
single particle depinning force. For coherent static states the
solutiondsbd is multivalued, but only those metastable states
which satisfy the imaginary part of the self-consistency con-
dition are acceptable solutions. Consider a system in which
there are multiple metastable static solutions at zero drive.
When an infinitesimal driving force is applied a correspond-
ingly infinitesimal number of these states becomes unstable
as they no longer satisfy the self-consistency condition. The
system remains, however, pinned provided there still exist
other accessible static metastable states. As the force is fur-
ther increased, more static states become unstable, but the
system does not depin until the “last” of the available static
solutions, that is the one corresponding to the largest value of
F for which a metastable static state exist, becomes unstable.
This value ofF defines the depinning threshold. On the other
hand, if there is a unique metastable static solution at zero
drive, the system will depin immediately upon an infinitesi-
mal increase of the driving force. Whenever there is a unique
solution atF=0, the depinning force is therefore zero. As
shown in Appendix B, for discontinuous forces there are al-
ways a variety of metastable static states at zero drive for any
finite value ofm (see also Fig. 7), so thatmT=`. For con-
tinuous pinning forces, there is a finite couplingmT above
which there is a single static state at zero drive and where the
threshold force vanishes. This is for instance the case for the
sinusoidal pinning force, where the upper and lower bounds
of rsmd (shown in Fig. 6) coincide andmT=mu. For a general
continuous pinning forcemT is given by

mT =
puY8spdu

E
0

p

ddÎ1 − sYsdd/Y8spdd2

. s23d

IV. STABILITY OF THE STATIC INCOHERENT
PHASE

AT NONZERO DRIVE

We next consider static states in the presence of a finite
driving force,FÞ0, starting with incoherent static solutions.
We will use a perturbative treatment analogous to that of
Sec. III to analyze the limit of stability of the IS phase
against varyingm andF. For finite F, the IS phase can be-
come unstable to either the coherent static phase or the mov-
ing phase. The perturbative analysis described in this section
allows us to establish whether the transition from the IS to
CS phase at finiteF is continuous or hysteretic, in much the
same way as done in Sec. III B forF=0. Again we find that
the nature of the transition depends on the type of pinning
potential, but the addition of a driving force changes the
shape of the effective pinning force. This change can, in
some cases, change a continuous IS↔CS transition atF=0
to a hysteretic transition at finiteF. The value ofF above
which the CS phase becomes unstable to a moving state
cannot be determined perturbatively and we defer its calcu-
lation to the next section.

FIG. 7. Upper and lower bounds forrsud, plotted as the coher-
encersm=u/ rd, corresponding to the maximal and minimal coher-
ence static metastable states. The pinning force is taken to be piece-
wise linear with a=1/p. A single static coherent solution is
obtained only in the limitm→`.
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The perturbation theory described below is of course only
valid for forces less than the single particle depinning force,
Fsp. This force is the maximum value ofuYsxdu and is the
driving force required to set in motion a single independent
domain. It is hence the threshold force for an incoherent
group of domains.

We will study the stability of the incoherent phase to
small changes in the coherencer. Taking the initial static
phase to be incoherent, the effective couplingu=mr =0 and
the static solution is obtained by simply balancing the pin-

ning and driving forces. From Eq.(4) (with u̇=0 andh=1)
the noninteracting static solution isu=b−Y−1sFd. It is con-
venient to choose the global phase to be nonzero,c=

−Y−1sFd, and to work with the deviationd̃=u−b+Y−1sFd
from the incoherent static solution at a givenF. The static
solutions are then given by

0 = F − u sinsd̃ + bd + Ysd̃ + d0d, s24d

whered0=c=−Y−1sFd. For smallu we can expand the pin-

ning force in powers ofd̃,

Yeffsd̃d ; Ysd̃ + d0d + F = ãsFdd̃ + b̃sFdd̃2 + c̃sFdd̃3 + . . . .

s25d

The effective pinning forceYeffsd̃d has precisely the same
form asYsdd for zeroF, but the coefficients now depend on
F throughd0=Y−1sFd. These modified coefficients are given
by

ãsFd = Y8sd0d, s26ad

b̃sFd = Y9sd0d/2, s26bd

c̃sFd = Y-sd0d/6. s26cd

At nonzero drive the coefficientb̃sFd is always finite, reflect-
ing the fact that the external drive makes the pinning force

asymmetric aboutd0. The equation ford̃sbd is then formally
identical to that for dsbd in the F=0 case, withYsdd
→Yeffsd̃d,

0 = −u sinsd̃ + bd + Yeffsd̃d. s27d

Similarly, the self-consistency conditions can be expressed in

terms ofd̃ as

r =
1

2p
E

2p

db cossd̃ + bd ; fsu,Fd, s28d

wherer is now a function of bothu andF, and

0 =E
2p

db sinsd̃ + bd. s29d

We can now use the results obtained in the zero drive per-
turbation theory. The value ofm at which the IS phase be-
comes unstable is given by

musFd = 2ãsFd, s30d

and will now in general depend onF. Conversely, we can
define a critical lineFusmd as the solution ofm=2ãsFud.

For drives sufficiently small that the system remains
pinned at the instability line, the form of the onset of coher-
ence nearmusFd can be determined by looking for a solution
to Eq. (28) in the form of a power series,

fsu,Fd = r1sFdu + r2sFdu2 + r3sFdu3 + ¯ . s31d

As usual in such calculations, we expect the nature of the
instability to depend on the signs of the coefficients. The
coefficientsr1sFd, r2sFd, and r3sFd are given by Eq.(18c)

with a, b, c replaced byãsFd, b̃sFd, c̃sFd, giving

r1sFd =
1

2ãsFd
, s32ad

r2sFd = 0 s32bd

r3sFd =
3

8
S ãsFdc̃sFd − 2b̃sFd2

ãsFd5 D . s32cd

Thus, the form ofrsm ,Fd nearmusFd is

rsm,Fd =
1

m3S m − musFd
r3sFdmusFd

D1/2

. s33d

As for the case ofF=0, the behavior is controlled by the sign
of the coefficientr3sFd of the cubic term in Eq.(31). If
r3sFd.0 the coherence grows as,sm−musFdd1/2 with in-
creasingm, indicating that ther versusm curve is continu-
ous. Conversely, ifr3sFd,0 the coherence grows with de-
creasingm as ,smusFd−md1/2, and ther versusm curve is
hysteretic. One important complication is that for finiteF the
coefficientr3 can change sign as a function ofF for a given
pinning force. As a result the transition between coherent and
incoherent static states can change from continuous to hys-
teretic above a characteristic forceFh defined by the solution
of r3sFhd=0.

We now specifically apply these general results to the
three classes of pinning forces(linear, hard, and soft.) Again,
these are of the general form

Ysxd = − ax− cx3, − p ø x ø p, s34d

with a.0. The three classes havec zero, positive and nega-
tive, respectively.

A. Piecewise linear pinning force„c=0…

For the piecewise linear pinning force of Fig. 1(e), where
Ysdd is given by Eq.(34) with c=0, we simply haveãsFd
=a and b̃sFd= c̃sFd=0. In this casemusFd=mus0d, indepen-
dent ofF. In fact we will show in Sec. V A that the coher-
encersmd of the entire static state is independent ofF for all
values ofm, whenever the system is pinned. The IS phase is
stable form,mu=2a andF,Fsp=ap. This region is shown
in Fig. 8.
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B. Hard cubic pinning force „c.0…

In Fig. 9 we show the region of stability of the IS phase
for the hard pinning force of Fig. 1(d). In this example, the
maximum pinning force from Eq.(34) gives the single par-
ticle depinning threshold asFsp=ap+cp3. When the cou-
pling m is ramped up adiabatically with constantF,Fsp, the
IS state becomes unstable at a valuemu given by [see Eq.
(30)],

musFd = 2fa − 3cd0
2sFdg. s35d

For the hard cubic potential this result can be inverted ana-
lytically to obtain the boundaryFusmd of the IS state shown
in Fig. 9, with the result

Fusmd =
2mu + m

6
Îm − mu

6ucu
. s36d

The maximum value ofm for which the IS state is stable is
m*, where m* is found by the intersection of the IS depin-
ning curve and theFusm* d curve. Its value is

m * = mu + 6cp2. s37d

Note that if the system is prepared in the IS state atm.mu,
then a transition to a coherent state can be achieved by de-

creasingF. This is because decreasingF allows the domains
to relax back toward the minima of their pinning potentials,
where the pinning force(determined by the curvature of the
potential) is smaller and hence the coherence can increase.

In the case of the hard cubic pinning force the coefficient
r3sFd can change sign as a function ofF. For small F,
r3sFd.0 and the transition from the IS to a coherent static
phase is continuous. Above a critical valueFh defined by
r3sFhd=0 the transition becomes hysteretic. The forceFh is
given by

Fh =
16

153/2Îa3

c
, s38d

and is small compared withFsp for the potential shapes and
parameters we have considered. Fora=c=1/sp+p3d, we
find Fsp=1, Fh<0.008, andmh<1.2mu.

C. Soft cubic pinning Force „c,0…

Soft cubic pinning forces given by Eq.(34) with c nega-
tive, can be divided into two classes:(i) forces that are
monotonic functions of the phase within each period, as plot-
ted in Fig. 1(a), and (ii ) those that reach their maximum
(minimum) within a given period and turn over, as plotted in
Figs. 1(b) and 1(c). Holding m constant, the incoherent static
state becomes unstable upon increasingF to Fusmd, with

Fusmd ;
2mu + m

6
Îmu − m

6ucu
, s39d

unless the single particle depinning force is first reached. For
pinning forces in class(i) the valuem* whereFusm* d=Fsp is
positive and the region of stability of the incoherent static
state is of the type shown schematically in Fig. 10(a). For
pinning forces in class(ii ) [for pinning forces with only cu-
bic terms, this class is given byucuù1/s3p2d], it can be
shown thatm*=0. The single particle depinning transition is
always preempted. Here, the region of stability of the inco-
herent state is determined byFusmd for all values ofm, as
shown in Fig. 10(b).

FIG. 8. The region of stability of the IS phase for a piecewise
linear pinning force. The single particle depinning forceFsp and the
coupling strengthmu for instability to the coherent or moving states
are also indicated.

FIG. 9. A plot of the region of stability of the incoherent static
phase for a hard cubic pinning force. The nature of the instability
along theFusmd curve is indicated by the thickness of the bounding
curve on the right. Form.mh sF.Fhd, the transition is hysteretic,
while for smaller couplings(or small, fixed driving force for vary-
ing couplings) the transition is continuous.

FIG. 10. Sketches of the region of stability of the incoherent
static phase for a soft cubic pinning force.(a) corresponds to a
pinning force of type(a) that does not turn over(is monotonic) in
each repeated interval.(b) corresponds to a pinning force of type(b)
that are nonmonotonic in each period.
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For a soft cubic pinning forcer3sFd is negative for allF
and the transition from the incoherent to a coherent state is
always hysteretic.

V. NONEQUILIBRIUM PHASE DIAGRAMS
IN THE m–F PLANE

In this section we present the nonequilibrium phase dia-
grams in them–F plane for the various pinning forces intro-
duced in Fig. 1. The phase diagrams are based upon both
analytical results and numerical computations. The analytical
bounds on the stability of the static phases are based on the
preceding sections’ results for the incoherent static phase and
calculations for the coherent static phase whose details are
presented in the appendixes. Numerical integration of the
equations of motion is used to determine the boundaries of
the moving phases: by starting from the moving phase and
decreasingF or m, the repinning curves can be found. Of
special interest is the nature of the depinning transition ob-
tained when the applied forceF is varied at constantm. The
curves of mean velocity as a function of driving force corre-
spond to the IV characteristics of physical systems, such as
CDWs and vortex lattices. Our focus is on classifying mod-
els or parameter ranges for which the depinning transition is
continuous or hysteretic. In general, for each of the pinning
forces we consider, the depinning transition appears to be
continuous with a unique depinning threshold at largem,
where the system is more rigid. In contrast, the velocity-
force curves generally exhibit macroscopic hysteresis at
small values ofm, where the system is more likely to display
plastic effects.

A. Piecewise linear pinning force

In Sec. IV A, perturbation theory was employed to study
the transition between incoherent and coherent static phases
for the piecewise linear pinning force. It was found that
when the coupling strengthm is changed at fixedF within
the pinned region of the phase diagram this transition is al-
ways discontinuous, although not hysteretic. Furthermore,
the critical value ofm where the transition takes places ap-
pears to be independent of the driving force. Here we show
that this remains true in a complete calculation. We also cal-
culate the depinning threshold exactly by determining the
limit of stability of the static phases. For the piecewise linear
pinning force [i.e., Eq. (34) with c=0], the force balance
equation in the static state is

0 = F − u sinsd + bd − ad, s40d

where −pødøp and we have chosenc=0. Letting d= d̃
+F /a andb=a−F /a, Eq. (40) can be written as

0 = −u sinsd̃ + ad − ad̃, s41d

with −p−F /aød̃øp−F /a. It is apparent from Eq.(41) that

d̃ is a function only ofa and u and does not depend onF
explicitly. The real part of the self-consistency condition that
determines the coherencer becomes

r =
1

2p
E

−p

p

da cossd̃ + ad, s42d

and clearlyrsu,Fd=rsu,F=0d. Thus, the coherence of the
static state is independent ofF. The line separating the inco-
herent and coherent static phases is a vertical line atm=mu
=2a in the m–F plane, as shown in Fig. 11. The IS–CS
transition is discontinuous and nonhysteretic at all valuesF
where the static phases are stable. When the force is ramped
up adiabatically at fixedm,mu from the IS phase wherer
=0, the system depins at the single particle depinning force
Fsp=ap. Form.mu the system is in the CS phase, where the

coherence is nonzero andd̃ is a multivalued function ofa.
As discussed in Sec. III C, there are many static metastable
states available to the system for a fixed value ofu. We
relabel the metastable states and denote each state by a

d̂isa ,ud which is a single valued, but generally discontinu-

ous, function ofa. Eachd̂i must satisfy the imaginary part of
the self-consistency condition which using Eq.(41) can be
rewritten as

0 =E
−p

p

da d̂isu,ad. s43d

This implies that the acceptabled̂i’s are odd functions ofa.
In addition, each static metastable solution must lie within

the upper and lower bounds,d̃usFd;p−F /a and d̃lsFd;
−p−F /a. As F is increased, the value of the upper bound

decreases, reducing the number of allowedd̂i’s, until at F
=F↑

csmd only one solution remains. This special state,

d̂sa ,ud, is equivalent to the one that would be obtained

FIG. 11. Phase diagram for the piecewise linear pinning force,
Ysxd=−x/p [see Fig. 1(b)]. The lightly shaded portion is the coex-
istence region of the IS and CM phasesm,mud and the smaller,
darkly shaded region, is where the CS and CM phases coexist
smu,m,med. The depinning linesF↑

i =Fsp and F↑
c have been ob-

tained analytically and confirmed by numerics. The boundaryF↓
where the system repins was obtained numerically. The point
sme,Fed marks where the static-moving transition changes from
hysteretic to continuous. The boundary between the IS and CS
phases isF independent and lies atm=mu.
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through adiabatically increasingu. The associatedrsmd curve
is shown in Fig. 6 fora=1/p. The value ofF↑

csud68 is given

by d̂maxsud=p−F↑
c /a. For uøap /2 we find from Eq.(41)

d̃maxsud=u/a which gives

F↑
csud = p − u/a, u ø ap/2. s44d

For uùap /2d̂max is defined implicitly by ad̂max

=u sinsd̂maxd andF↑
c is given by

ap − F↑
csmd = u sinfpF↑

csmd − u/ag, u ù ap/2. s45d

It is then possible to calculateF↑
csmd using the expression for

rsud given in Eq. (A12). The resulting phase diagram is
shown in Fig. 11.

For m,mu the static phase is incoherent and the depin-
ning transition is hysteretic in bothv andr, as shown in the
top two frames of Fig. 12. The system depins atFsp when the
drive is ramped up adiabatically from the static phase, but
repins at the lower forceF↓ when the force is ramped back
down from the sliding state. The lineF↓ has been obtained
by numerical simulation of the mean field model. The nu-
merics have also revealed that a small region of hysteresis
persists form.mu, although the static phase is coherent
here. The behavior ofv and r in this region is shown in the

two middle frames of Fig. 12. Finally, form.me (whereme
is the value of the coupling above which the static-moving
transition is elastic in nature) the depinning is continuous, as
shown in the bottom frames of Fig. 12. The values ofme and
Fe are defined viaF↑

csmed=F↓smed=Fe. Finally, the depinning
thresholdF↑

c is nonzero and finite for allm, i.e., mT=`. This
is a general property of discontinuous pinning forces, to be
contrasted with the behavior observed for continuous pinning
forces, such as the sinusoidal one studied by Strogatz and
collaborators.25

Before closing this section, we must address the possibil-
ity of an incoherent moving(IM ) phase. Strogatz and col-
laborators25 found that an IM phase is always unstable for a
sinusoidal pinning potential. It can be shown that this re-
mains true for other continuous pinning forces. The situation
is less clear for discontinuous pinning forces. In Appendix D
we present the details of a short timest=0d stability analysis
for the IM phase for anyYsxd. This analysis will tell us
something about the long time, steady state limit, provided
rstd is a monotonic function of time. This analysis predicts a
range of stability for the IM phase for discontinuous pinning
forces, provided the jump discontinuity atx=p is taken into
account when preparing the system. However, simulations
show that rstd is in general not monotonic and that the
strength of the perturbation needs to be decreased with sys-
tem size in order to observe the IM phase, suggesting that the
perturbative short-time analysis is simply not valid in this
case. Finally, if a narrow distribution of pinning strengthsh
is introduced, we find numerically the IM phase to be un-
stable. Given these numerical findings, we believe that the
IM phase is generally unstable in mean field theory.

B. Hard cubic pinning force

The phase diagram for a hard cubic pinning force, given
by Eq.(34) with c.0 [see Fig. 1(d)] is shown in Fig. 13 for
a=c=1/sp+p3d.

Though the general topology is similar to that of the phase
diagram for the piecewise linear force, the history depen-
dence is significantly more complicated. A first difference is
that the transition between the IS and CS phases is now
continuous forF,Fh, with Fh given by Eq.(38), and hys-
teretic forF.Fh. For the parameter values displayed in Fig.
13 the value ofFh is very small, but still finite. A second new
feature of the phase diagram is the presence of a small region
(darkest gray in Fig. 13) where all three phases coexist.

The strong history dependence is manifested in the mac-
roscopic response and includes reentrant behavior for fixedm
or F histories. The mean velocity and coherence are plotted
as a function of(increasing, then decreasing) driving force
for a few typical values ofm in Fig. 14. The pinning force is
given by Ysxd=−sx+x3d / sp+p3d. The top frames show a
simple hysteretic depinning transition for a system prepared
in the incoherent static state atF=0, similar to that seen for
a linear pinning force. The middle row of frames display the
more complicated history that results when the system is
prepared in a coherent static state atF=0, with m=0.5. The
velocity shows a single hysteresis loop, but the plot of co-
herencer shows first a decrease and then a jump to the

FIG. 12. Mean velocityv and coherencer as functions of the
driving force F for the piecewise linear pinning force. The curves
are obtained numerically by first rampingF from zero to a value
well within the sliding statesF=1.2d, and then decreasingF back
down to zero, while holdingm constant. The top frames show the
behavior form=0.25, where the initial static state is incoherent: this
state starts sliding at the single particle depinning forceFsp=1 and
repins at a lower forceF<0.88. The middle frames display the
results for an initially coherent static statesm=0.64.mud, which
still displays hysteresis, both inv andr. The bottom frames are for
m=1.0, which has an initial coherent state and undergoes continu-
ous depinning.
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incoherent state as the force is increased, followed by a jump
back to a finite value when bulk depinning takes place. In
this case both the regions of IS–CS and IS–CM coexistence
are crossed whenF is ramped up. The IS–CS transition oc-
curs as the phases are pushed away from their zero-force
minima to regions of the pinning potential with higher cur-
vature, which makes the coherent state unstable. Upon de-
creasing the force, both the coherence and the velocity jump
back to zero, then the coherence increases again as the force
is decreased. The jumps in coherence whenF is ramped
down occur at values ofF different from those where the
coherence jumps during the ramp up. For rather specific val-
ues ofm, even more baroque histories can be found by cross-
ing the three-phase coexistence regions. An example is
shown in the last row of frames in Fig. 14, wherem=0.76.
Here, the sequence is CS→ IS→CM→CS, which skips the
IS phase on decreasingF. Note that the velocity vs drive
force curve is relatively unremarkable, showing simple hys-
teresis in this case. The coherence history is more compli-
cated.

Another interesting feature of the phase diagram for the
hard cubic pinning force is that at constantm, a portion of the
moving phase lies between the incoherent and coherent static
phases. This suggests the possibility of re-entrance in the
depinning transition form.me. It is not, however, straight-
forward to prepare the system in the lightly shaded portion of
the phase diagram where IS and CM phases coexist and
m.me. The static solution must either be created “by hand”
at that locationsm ,Fd in phase space or the system can be
prepared in the IS phase at a lower value ofm and the cou-
pling can then be ramped up to the relevant valuem.me.

Both the difficulty of preparing the system in the re-entrant
state and the re-entrance for a specially prepared state are
displayed in Fig. 15. Here both sets of curves correspond to
the same value of the coupling strength,m=1.25. In the top
pair of curves the system is prepared in the coherent state at
F=0. As the force is ramped up adiabatically, the system
depins continuously atF↑

c, where both velocity and coher-
ence change smoothly, withr rapidly approaching its limit-
ing value,r =1. The coexistence region is never accessed in
this case. In the bottom set of figures, the system is prepared
in an incoherent static state at finiteF, deep inside the coex-
istence region. The system is then observed to depin as the
force is ramped down at constantm across the boundary
between the coexistence region and the CM phase. Simulta-
neously, the coherence jumps from zero to a large finite
value. Upon further ramping downF, the system repins
again continuously atF↑

c.

C. Soft cubic pinning force

We distinguish three types of soft cubic pinning forces
given by Eq.(34) with c,0. These pinning forces and cor-

FIG. 13. Phase diagram in the coupling-drivesm–Fd plane for a
hard cubic pinning force of the type shown in Fig. 1(a). The form of
the pinning forceYsxd is given by Eq.(34), with a=c=1/sp+p3d.
The regions of IS–CM, CS–CM, and IS–CS–CM coexistence are
shown in light, medium, and dark gray, respectively. The incoherent
and coherent depinning lines are denoted byF↑

i and F↑
c, respec-

tively. The repinning line is denoted byF↓. The coherent depinning
line and the repinning line join atsme,Fed. Beyond this point the
static-moving transition is continuous. The curvesmusFd andmdsFd
are the values of the coupling at which the static system makes the
transition to and from finite coherence states, respectively. There
curves join at smh,Fhd where the IS–CS transition becomes
continuous.

FIG. 14. Mean velocity and coherence versus force for the hard
potential and various values ofm. Solid lines are used to display the
response obtained whenF is ramped up from zero, while dashed
lines show the jumps inv and r when rampingF back down. The
top frames show the hysteretic depinning of a system prepared in
the IS phase. Form=0.5 (middle frames) the system is initially in a
coherentsr Þ0d static state atF=0. As the force is ramped up, the
system first crosses the boundary from the CS to the IS phase,
wherer jumps discontinuously from its initial finite value to zero,
while the system remains pinnedsv=0d. At a higher force the sys-
tem depins by crossing the boundary from the IS to the CM phase
andr jumps from zero to a large finite value. The subsequent ramp-
ing down of the field goes through this sequence of phases in re-
verse order, but the jumps occur at distinct values ofF. The bottom
frames describes the complex response that takes place along a path
that crosses the dark region of three-phase coexistence. See the text
for further description.
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responding potentials are shown in Fig. 1:(a) forces that are
monotonic over the entire period and do not turn over in the
interval f−p ,pg; (b) forces that are nonmonotonic over the
period and do turn over in the intervalf−p ,pg, but are dis-
continuous; and(c) continuous forces, which are obviously
nonmonotonic. The phase diagrams for these potentials ex-
hibit qualitative differences as compared to those discussed
so far. Specifically, the CS region at nonzeroF may or may
not extend tom=` and may not even exist. For most poten-
tials, however, we do find a nontrivial coherent static phase.
The only exception is the case of a sinusoidal pinning force
studied previously by Strogatz and collaborators,25 where the
CS state is unstable.

For monotonic pinning forces(a), the boundariesF↑
i and

Fsp intersect at a finite positive valuem* of m, given by Eq.
(37) (see Sec. IV C for a full discussion). This results in a
portion of the depinning boundary being horizontal on the
m–F plane, asF↑

i =Fsp for møm* , as shown in Fig. 16. In
contrast, if the pinning force is nonmonotonic,(b) or (c), and
reaches its maximum within the period, thenm* =0 and the
phase boundary has no horizontal portion. This behavior is
shown in Fig. 2 for a nonmonotonic, but discontinuous pin-
ning force.

The results for pinning forces of type(c), that are continu-
ous (and therefore must be nonmonotonic) have two impor-
tant features:m* =0 andmT is finite. These features imply,
respectively, that there is no horizontal portion to the CS
depinning curve and that the system slides at arbitrarily small
force whenever the coupling is large, i.e., whenmùmT. The
typical phase diagram for a pinning force of this type is
shown in Fig. 17. Figure 18 shows samplevsFd and rsFd
plots for this case.

At finite drive the CS phase does not extend beyondm
=1.84. For values of the coupling betweenmd andmT the CS
phase exists at finite drive, albeit only for very small values

of F,F↑
csmd!1. This small region of the phase diagram in

Fig. 17 is magnified and shown in the inset. It is interesting
to compare these results with those obtained by Strogatz and
collaborators25 for another continuous pinning force, namely
Ysxd=−sinsxd. The corresponding phase diagram is shown in
Fig. 19. In this casemu=mT=2 and, more significantly,
F↑

csmd=0. This means that the CS phase never exists at finite
F. Thus, it seems that sinusoidal pinning forces are a special
class of more general continuous pinning forces in that they
never allow the possibility of a CS phase at finite drive. This
difference, while important qualitatively, may not be quanti-
tatively significant given thatF↑

csmd is always very small.
Finally, for any continuous pinning force, the IM phase is

not stable even in the short time analysis.(See Appendix D.)
This result is consistent with the findings of Strogatz and
collaborators25 as well as our simulations.

VI. AVERAGING OVER DISORDER

In this section we discuss the role of the shape of the
distribution rshd of pinning strengths on determining the
nonequilibrium phase diagram. In the preceding sections we
restricted ourselves to an infinitely sharp distribution,rshd
=dsh−1d. This choice is appropriate for systems with strong
pinning and allows for a direct comparison with the results
of Strogatz and collaborators.25 It is easy to show that the
nonequilibrium phase diagram of the driven system retains
the same qualitative structure for any distribution that is
sharply peaked around a finite value of the pinning strength
and vanishes below a finiteh0.0. A broad distribution of
pinning strength may, however, qualitatively alter the mean

FIG. 15. Both sets of figures show the behavior of velocity and
coherence form=1.25, but for different initial states. The top
frames are obtained by preparing the system in a coherent state at
m=1.25 andF=0, and rampingF up to a value aboveF↑

i , and then
back down to zero. In this case the depinning is continuous. The
bottom frames are obtained by preparing the system in an incoher-
ent state atm=1.25 andF=0.9, inside the lightly shaded area of
coexistence of CS and CM phases, and then ramping the force
down to zero. Note the depinning upon decreasing force in this case
and the subsequent repinning.

FIG. 16. Phase diagram in the coupling-drivesm–Fd plane for a
soft monotonic cubic pinning force of the type shown in Fig. 1(a).
The pinning forceYsxd is given by Eq.(34) with a=6/s5pd andc
=−1/5p3. The regions of IS–CM, CS–CM, and IS–CS–CM phase
coexistence are shown in light, medium, and dark gray, respectively.
The linesF↑

i andF↑
c are the forces at which the system depins upon

increasing the drive from the incoherent and coherent static states,
respectively. The lineF↓ is the force at which a moving system
stops upon lowering the drive. Thesme,Fed and the static-moving
transition becomes continuous. The curvesmusFd andmdsFd are the
values of the coupling at which the static system makes the transi-
tion to and from finite coherence states, respectively.
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field physics. Broad distributionsrshd are of interest to
model physical systems with weak pinning. Furthermore, a
broad distributions of pinning strengths yields variations of
the local stresses in the mean field theory and may give us

some insight into the behavior of the system in finite dimen-
sions.

We consider a distribution of pinning strengthsrshd that
vanishes below a minimum pinning strengthh0ù0. As will
become apparent below, it is important to distinguish three
classes of distributions:

(1) distributions that vanish below a finite pinning
strength, i.e.,rshd=0 for h,h0, with h0.0;

(2) distributions with no finite lower bound of the pinning
strength, but zero weight ath=0, i.e.,h0=0, andrs0d=0;

(3) distributions with no finite lower bound of the pinning
strength, and finite weight ath=0, i.e.,h0=0, butrs0d.0.

The nonequilibrium phase diagram depends qualitatively
on whether or not the lower boundh0 is finite. If the distri-
bution of pinning strengthsrshd vanishes below a minimum
pinning strengthh0.0, the single particle depinning thresh-
old Fsp remains finite and the system exists in an IS phase for
F,Fsp. Whenh0=0, the single particle depinning threshold
vanishes and the IS state can only be stable atF=0.

If the IS phase exists, its stability can be analyzed for an
arbitrary distributionrshd by the perturbation theory de-
scribed in Sec. IV. For arbitraryh, the static force balance
equation has the form

0 = F − u sinsu − cd + hYsu − bd, s46d

with the self-consistency condition given by Eq.(6). Clearly
this equation is identical to the equation studied in Sec. IV
for h=1, provided we rescale both the driving forceF and
the coupling strengthu by the pinning strengthh. We can
then carry out the perturbation theory described in Sec. IV as
a perturbation theory in powers ofu/h, provided of course
u!h0. This shows that the perturbation theory breaks down
whenh0→0. Furthermore we must requireF,Fsp, which is
a necessary condition for the existence of the IS phase. Pro-

FIG. 17. Phase diagram in the coupling-drivesm–Fd plane for a
soft cubic pinning force of the type shown in Fig. 1(c). The pinning
force Ysxd is given by Eq. (34) with a=3Î3/s2pd and c=
−3Î3/s2p3d. This choice of parameters gives a nonmonotonic and
continuous pinning force: the results are to be compared with
Ysxd=−sinsxd, another nonmonotonic and continuous force. The re-
gion of IS–CM coexistence is shown in light gray, while the IS–CS
coexistence is shown in medium gray. The linesF↑

i andF↑
c are the

forces at which the system depins upon increasing the drive from
the incoherent and coherent static states, respectively. The lineF↓ is
the force at which a moving system stops upon lowering the drive.
The CS region is very small for these values of parameters, corre-
sponding tomT<1.85 andmds0d<1.44, and it has been magnified
in the inset. The CS phase does not exist at finiteF for coupling
larger thanmT. Shown within this inset is the pointsme,Fed where
theF↑

c andF↓ lines join and the static-moving transition ceases to be
hysteretic. The curvesmusFd (only visible within the inset) and
mdsFd are the values of the coupling at which the static system
makes the transition to and from finite coherence states,
respectively.

FIG. 18. Mean velocity and coherence, obtained from numerical
calculations, for a continuous cubic pinning potential and parameter
values given in Fig. 17. The top frames record the hysteretic re-
sponse of a system prepared in the incoherent state atm=0.8 and
F=0, while the bottom frames show the continuousF=0 depinning
of system prepared in the coherent state atm=1.67.

FIG. 19. Phase diagram for a sinusoidal pinning forceYsxd=
−sinsxd. The IS–CM coexistence region is shaded gray. TheF=0
region in which the system can only exist in the CS phase is de-
noted by a series of3’s. The region of IS–CS coexistence is de-
noted by medium on-axis gray shading. The IS→CS and IS←
phase boundaries are the pointssm=mu=2,F=0d and sm=md

<1.49,F=0d, respectively. The lineF↑
i is the forces at which the

system depins from the incoherent state. The lineF↓ is the force at
which a moving system stops upon lowering the drive.
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ceeding precisely as in Sec. IV and using the same notation,
we obtain an expression for the coherencer as a power series
in u/h, given by

r = fsu,Fd =E dh rshdFr1sF/hd
u

h
+ r2sF/hdSu

h
D2

+ r3sF/hdSu

h
D3

+ ¯ G , s47d

with

r1sF/hd =
1

2ãsF/hd
, s48ad

r2sF/hd = 0, s48bd

r3sF/hd =
3

8

ãsF/hdc̃sFd − 2fb̃sF/hdg2

ãsF/hd5 , s48cd

and

ãsF/hd = Y8sd0d, s49ad

b̃sF/hd = Y9sd0d/2, s49bd

c̃sF/hd = Y-sd0d/6. s49cd

The boundary of stability of the IS phase,musFd, is ob-
tained like before by solving the implicit equationrsm ,Fd
= fsu=mr ,Fd with fsu,Fd given by Eq.(47), with the result

musFd = 2FE rshd
1

hãsF/hd
G−1

. s50d

If the distributionrshd vanishes below a finite minimum pin-
ning forceh0.0, thenmu remains finite and there is a range
of m and F where the IS phase is stable. Conversely, ifh0
→0, the integral in Eq.(50) may diverge, yieldingmu=0.
Below we will treat in detail the case of a piecewise linear
pinning force, withYsxd=−ax. In this case Eq.(50) reduces
to

mu = 2aFE dh
rshd

h
G−1

. s51d

For concreteness, we consider a distribution of the form

rshd = sh − h0dae−sh−h0d, h ù h0,
s52d

rshd = 0, h , h0,

with h0.0 and a.0. This form encompasses the three
classes of distribution functions introduced at the beginning
of the section. We can then obtain the boundary of the IS
phase for a piecewise linear pinning force by evaluating the
integral on the right-hand side of Eq.(51). For distributions
of the first class, corresponding here toh0.0 anda=0, we
find that mu is finite at finite F and it is given bymu
=2aeh0E1sh0d, whereE1sxd is the exponential integral. For
this type of distribution it can be shown that the nonequilib-

rium phase diagram remains qualitatively similar to the one
obtained for the sharply pinned distribution,rshd=dsh−1d,
even for all types of pinning forces studied in Sec. V. When
h0→0 the perturbation theory breaks down and the existence
of a finite value ofmu, even atF=0, depends on the form of
rshd for h→0. For distributions of the second class, with
h0=0, butrs0d=0, it can be shown thatmu is finite atF=0,
but vanishes at all finiteF. In this case there is an IS–CS
transition atF=0, which is a remnant of the transition seen at
finite F for the case of an infinitely sharp pinning strength
distribution. For instance, forrshd=he−hsa=1d, there is an
IS–CS transition atF=0 andmu.0.27. Finally, for distribu-
tions in the third class, withrs0d.0, it can be shown thatmu

vanishes as 1/ lns1/h0d whenh0→0. For such distributions,
there is no IS phase even atF=0. The phase diagrams for
this class of distributions of pinning strength are qualitatively
different from those presented in Sec. V for all pinning
forces. An example is shown in Fig. 20 for the piecewise
linear pinning force andrshd=e−h. This phase diagram has
been obtained numerically. In the limit of large system sizes
and adiabatically slow ramp ratesdF/dt, no IS phase is ob-
served even atF=0. The small region of hysteresis in the
transition between the CS and CM phases is also washed out
by the disorder averaging. The depinning curveF↑

c displays a
broad maximum at a finitem and vanishes asm→`.

In general, the numerical simulations show that a broad
distribution of pinning strengths with vanishingh0 always
washes out the IS phase and any hysteresis of the depinning
transition. Whether this behavior persists in finite dimensions
remains an open question.

VII. DISCUSSION

In this paper we have used a combination of analytical
and numerical techniques to study the nonequilibrium mean
field phase diagram of a model of an extended systems with
phase slips driven through disorder. For uniform pinning, we
generically find two stable static phases and a single moving

FIG. 20. Phase diagram in them–F plane for a piecewise linear
pinning force, witha=1/p andc=0, andrshd=e−h. The depinning
curve has been obtained numerically for a system withN=1024 and
a ramp rate ofdF/dt=10−6.
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phase. Both incoherent(IS) and coherent static(CS) phases
are possible, as well as regions where the two phases coexist.
The moving phase, in contrast, is always coherent(CM) in
mean field theory.(An incoherent moving phase can be pre-
pared by using special initial conditions, but does not appear
to be stable.) Coexistence of two, or even three, of these
phases can occur depending on the system preparation; this
coexistence results in hysteretic transitions. Such a variety of
phases was not found for the case of a sinusoidal pinning
force analyzed earlier,25 where only the IS and CM phases
were found. While a discontinuity in the pinning force is not
required for the existence of the new CS phase at large val-
ues of the coupling constantm, a jump discontinuity in the
pinning force does increase the range ofF andm over which
the CS phase is observed. This is because discontinuity in the
pinning force makes it more difficult for the system to depin,
so that the static pinned phases can exist up to large coupling
strengths, where the system is forced to acquire long range
coherence. Once the system has become coherent, and there-
fore more rigid, the depinning threshold decreases with in-
creasingm, but remains finite for all finite values of the cou-
pling strength and only vanishes form→`. For a continuous
pinning forces, on the other hand, the depinning threshold
vanishes above a finite value ofm.

In order to make some contact with particle simulations
and with experiments, it is useful to discuss the mean field
phase diagram in terms of the disorder strengthh and the
driving forceF, rather than in thesm ,Fd plane as done so far.
In most particle simulations it is the strength of the disorder
that is most easily varied rather than the strength of the cou-
pling. Disorder is also a crucial control parameter in many
experimental systems. For instance, varying the applied mag-
netic field in current-driven vortex lattices has the effect of
varying the strength of the disorder. At high fields the vortex
lattice becomes softer and can better adjust to disorder. In-
creasing the magnetic field therefore corresponds to an effec-
tive increase of the disorder strength. Figure 21 shows the
mean field phase diagram in thesh,Fd plane for the discon-

tinuous soft cubic pinning force shown in Fig. 1(b). The
corresponding phase diagram in thesm ,Fd plane was shown
in Fig. 2.

When the disorder is weak relative to the strength of the
couplingm the static phase is coherent. At strong disorder the
static phase is incoherent. The transition between the coher-
ent and incoherent static phases at fixedm is hysteretic with
a region of coexistence of the two phases. At weak disorder
there is a continuous “elastic-like” depinning transition from
the CS to the CM phase. At large disorder the static phase is
incoherent and degrees of freedom depin independently at
the single particle depinning threshold,F↑

i . The moving sys-
tem immediately acquires long-range correlations, becoming
much stiffer and harder to pin. As a result, when the force is
ramped down the CM state repins at the lower forceF↓. The
qualitative features of this phase diagram are remarkably
similar to those obtained by Olson and collaborators69 in a
numerical simulation of a model of a current-driven layered
superconductors, with magnetically interacting pancake vor-
tices. At weak disorder these authors find that the layers are
coupled and the system forms a coherent three-dimensional
static phase, with long-range correlations along the direction
normal to the layers, which depins continuously. At strong
disorder the static state consists of decoupled two-
dimensional layers. When the driving force is ramped up
from this incoherent static state, the layers depin indepen-
dently at the single-layer depinning threshold and the transi-
tion is hysteretic. One difference between our mean field
model and the numerical model studied by Olsonet al. is the
absence, in our model, of an incoherent moving phase. In the
layered superconductor at strong disorder the layers remain
decoupled upon depinning up to a second, higher threshold
force where a dynamical recoupling transition occurs. Fi-
nally, these authors also observe a sharp increase in the de-
pinning threshold at the crossover or transition from continu-
ous to hysteretic depinning, not unlike that shown in Fig. 21.
A strong crossover from elastic to plastic with increasing
disorder strength, with an associated sharp rise of the depin-
ning threshold, has also been seen in a variety of two-
dimensional simulations, such as those by Faleskiet al.49

Macroscopic hysteresis has not, however, been observed in
these two-dimensional models. Our work suggests that mean
field models with strong disorder tend to overestimate hys-
teresis. In mean field there is no range of correlation lengths
and hysteresis will always occur when the system is driven
from a strongly pinned incoherent phase, where all degrees
of freedom depin independently at the single particle depin-
ning threshold. Upon depinning, the system acquires long-
range order and becomes therefore much stiffer, so that when
the force is ramped down it can remain in the sliding state
down to much lower values of the driving force.

Early transport experiments on current-driven vortices in
NbSe3 showed S-shaped IV characteristics at high magnetic
fields with a peak in the differential resistance as a function
of driving current.54 Other puzzling effects were observed in
the region of the peak, including unusual frequency depen-
dence of the ac response and fingerprint phenomena. These
experimental findings were originally interpreted in terms of
plastic depinning of the vortex system and macroscopic co-
existence of disordered and ordered bulk vortex phases. This

FIG. 21. Phase diagram, redrawn in the disorder-drive plane, for
a discontinuous soft cubic pinning force of the type shown in Fig.
1(b) andrshd=dsh−1d. The disorderh and driveF are normalized
by the strength of the phase-slip interaction,m. The parameter val-
ues and the symbols are the same as in Fig. 2.
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interpretation was corroborated by a number of simulations
in two dimensions, where the crossover from elastic to plas-
tic depinning is clearly seen as a function of disorder
strength. For strong disorder the system exists in a disorder
static phase that depins plastically and then undergoes a dy-
namical ordering transition to a moving ordered phase. The
peak in the differential resistance corresponds to such a dy-
namical ordering transition and in simulations is clearly as-
sociated with a sharp drop in the number of topological de-
fects in the driven lattice. More recent experiments have
suggested, however, that the disordered phase is a metastable
phase that is injected at the sample’s edges and then anneals
into the stable elastic phase as it gets driven into the
sample.57–59This interpretation has been confirmed by com-
paring transport experiments in the conventional strip geom-
etry, where the edge effect is always present, to experiments
in a Corbino disk geometry, where the vortices are driven to
move in concentric circular orbits in a disk-shaped sample,
eliminating boundary effects. Although there is mounting ex-
perimental evidence that these edge contamination effects
may indeed control much of the vortex dynamics observed in
experiments, the comparison with simulations, where coex-
istence of bulk ordered and disordered phases is routinely
observed, remains puzzling. Of course one important differ-
ence is that most of the simulations are carried out at zero or
very low temperature, where the disordered phase may be
artificially stabilized.

Substantial phase slip effects have also been observed in
CDW systems, especially at the contacts,41 and have been
associated with the “switching” observed in certain materi-
als. The reported correlation between broadband noise and
macroscopic velocity inhomogeneities also supports the idea
that in these systems the dynamics may be dominated by
large scale plasticity.42 While the switching itself has also
been explained as arising from the presence of normal
carriers,26 phase slips seem crucial to account for the corre-
lation between broadband noise and macroscopic velocity
inhomogeneities.

Finally, similar behavior has also been observed in col-
loids driven over a disordered substrate. Pertsinidis and
Ling70 have studied experimentally single layers of two-
dimensional colloid crystal driven by an electric field over a
disordered substrate. They observe plasticlike or filamentary
flow of the colloids, with a velocity-force curve that is al-
ways convex upward and shows no hysteresis. Langevin
simulations by Reichhardt and Olson71 find a sharp crossover
from elastic to plastic depinning as the strength of substrate
is increased. Though the direct applicability of our mean
field model and results to experimental systems remains to
be demonstrated, this work lays out a detailed foundation for
understanding the role of phase slips and topological defects
on the dynamics of driven disordered systems. Preliminary
numerical studies of the phase slip model in three dimen-
sions, with a sinusoidal pinning potential, suggest that the
depinning transition may not be hysteretic in the thermody-
namic limit. This is similar to that suggested by studying the
mean field with a broad distribution of pinning strengths, as
shown in Fig. 20, where the distribution of pinning forces the
incoherent static(IS) phase. Clearly more work is needed to
establish if such a finding is generic in finite dimensions.

Other numerical studies of the phase slip model in finite-
dimensions have found scaling behavior in the limit of strong
pinning, suggesting some sort of dynamical critical phenom-
ena associated with plastic depinning.72 An important open
question is whether the transition from elastic to plastic de-
pinning (with or without macroscopic hysteresis) is a cross-
over or is associated with some type of tricritical point, as
suggested by the present and other mean field models.
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APPENDIX A: COHERENCE AT F =0

In this appendix we describe the calculation of the coher-
encersmd of static states atF=0. First we derive an expres-
sion for the functionfsud defined in Eq.(9) for an arbitrary
pinning force,Ysdd. Once fsud is known, the coherence is
then obtained by solving the self-consistency condition,r
= fsmrd. The calculation is complicated by multivalued solu-
tions to the self-consistency equations, which leads to mul-
tiple metastable states. A consistent selection principle is ap-
plied, namely, choosing the coherenceu to be maximal,
givenm. The range of available metastable states is also used
to determinemT, the value of coupling above which the de-
pinning field is zero.

1. Change of variables

As discussed in Sec. III C, it is convenient to perform a
change of variables in Eq.(9) and integrate overd rather
than over the random phaseb. The function fsud is then
given by

fsud =
1

2p
E

−p

p

ddS ]b

]d
Dcosfd + bsd,udg, sA1d

whereu;mr. SinceYsdd is 2p periodic, the integration in
Eq. (A1) can be carried out over any 2p interval. Here we
choose the intervalf−p ,pg. The change of variable allows us
to evaluatefsud analytically as the force balance equation,
Eq. (8), while transcendental indsb ,ud, is simply a linear
equation in the phasebsd ,ud. We can therefore immediately
write the solutionbsd ,ud of Eq. (8), substitute it in Eq.(A1),
and evaluate the integral to obtainfsud. As we will see be-
low, the only difficulty in carrying out this program is that
the phasedsb ,ud is generally a multivalued function ofb.
Therefore care must be taken in selecting the portion of the
curve that must be included in the integral. The choice is
dictated by the requirement that the imaginary part of the
self-consistency condition, which now reads

0 =
1

2p
E

−p

p

ddS ]b

]d
Dsinfd + bsd,udg, sA2d

be satisfied, and that the phasedsbd span a full 2p interval in
b.
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For static solutions andF=0 the balance equation(8) can
be written as

sinsd + bd =
Ysdd

u
. sA3d

Since usinsd+bduø1, the right-hand side of Eq.(A3) must
also be bounded in magnitude by one. This means that all
solutions to Eq.(A3) must satisfy

− dmaxsud ø d ø dmaxsud, sA4d

wheredmaxsud is defined by

uYsdmaxdu = u, sA5d

or dmaxsud;uY−1sudu, with Y−1 denoting the inverse function.
Note that ifYsdd is nonmonotonic in the intervalf−p ,pg, as
it is for instance the case for the soft cubic potential shown in
Fig. 1(b), then foru. uYspdu there are two possible values of
uY−1sudu in the rangef0,pg. In this casedmax is defined as the
smallest of these two values. At the end of this Appendix we
will discuss the relevance of the second solution and demon-
strate that it corresponds an unstable state.

2. Metastable states

For every fixed value ofu, there is in general an infinite
set of solutions for the phased in the rangef−dmax,dmaxg.
The corresponding solutions for the phaseb as a function of
d can be enumerated by indexing them with an integer,n.
They are given by

bnsd,ud = − d + np + s− 1dn sin−1sYsdd/ud, sA6d

where we only consider values of the function sin−1sxd in the
range f−p /2 ,p /2g. Since the calculation ofbnsd ,ud and
dsb ,ud is carried out at fixedu, from here on we will simply
omit the u dependence in the argument of these functions.
The typical behavior of the phased as a function ofbn, for
−2ønø2, is shown in Fig. 5.

The integral in Eq.(A1) must span a full period(in b) of
the dsbd curve. As evident from Fig. 5, this always corre-
sponds to a pair of consecutive even–odd sections. Here we
choose to work with then=0 section, and the upper and
lower halves of then=−1 and then=1 sections, respectively.
This choice is equivalent, for instance, to that of then=0 and
the full n=−1 sections(or n=0 and n=1), but it has the
advantage of being symmetric about the origin. The chosen
portion of thedsbd curve is displayed in Fig. 22 for three
different values ofu. The figure shows how the phase be-
comes multivalued asu is increased.

For uøa, with a the linear slope of the pinning forceYsdd
at d=0, the phased is single valued, as in curve(a) of Fig.
22. In this case integrating over a full period inb is equiva-
lent to integrating over the entire curve, consisting of the full
n=0 central section(solid) and the twon=±1 half sections
(dashed). Making use of the symmetry of the integrand about
d=0, we obtain

fsud =
1

p
E

0

dmax

ddSdb−1

dd
Dcosfd + b−1sd,udg

+
1

p
E

dmax

0

ddSdb0

dd
Dcosfd + b0sd,udg. sA7d

Upon substituting the expressions forb−1sdd andb0sdd from
Eq. (A6) in Eq. (A7), we obtain

fsud =
2

p
E

0

dmax

ddÎ1 − fYsdd/ug2, u ø a. sA8d

Whendsbd is single valued, the integral in Eq.(10) over the
entire period gives zero, so that the imaginary part of the
self-consistency condition is satisfied.

Whenuùa, the phased is multivalued, as exemplified in
cases(b) and (c) in Fig. 22. In this case one can no longer
simply integrate over the full curve in the rangeb
P f−p ,pg. Rather, one must select a portion, of measure 2p
in b, that satisfies the imaginary part of the self-consistency
condition, Eq.(A2). As discussed in Sec. III C we choose the
portion of the curve corresponding to the metastable states
that would be accessed by adiabatically increasingu from
zero. Forc=0, this choice corresponds to the connected part
of thedsbd curve lying betweenb=−p andp. This choice is
odd about the origin and therefore automatically satisfies Eq.
(A2). The phased now has two values atb=p, d=0, and
d=d* , which is defined implicitly as the nonzero root of the
equation

FIG. 22. The figure shows the behavior of the phasedsbd for
three values ofu. The n=±1 half-sections are dashed, while then
=0 section is solid. Curve(a) corresponds touøa and is single
valued. Curves(b) and (c) are both multivalued and correspond to
(b) a,uøYsp /2d and (c) u.Ysp /2d. The sectionb0 ends at the
points ±dmax, where the half sectionsb=71 begin. For curve(b)
these points lie within the portion of the curve that must be included
in the integral to determinefsud. For curve(c) they lie outside.d*

denotes the nonzero value of the phase atb=−p.
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− Ysd*d = u sinsd*d. sA9d

The valued* is the desired upper limit in the integration over
d in Eq. (A1). WhenaøuøYsp /2d, corresponding to curve
(b) in Fig. 22, the rootd* is smaller thandmax and the portion
of the curve to be included in the integrand spans the entire
b0sdd section(solid line) and those parts of theb±1sdd half
sections(dashed) that lie within b=f−p ,pg. For this range
of u values we find

fsud =
2

p
E

0

dmax

ddÎ1 − sYsdd/ud2 −
Ysd*d
up

−
1

p
E

0

d*

ddÎ1 − sYsdd/ud2, a ø u ø uYsp/2du.

sA10d

At u= uYsp /2du, d* =dmax. Foru. uYsp /2du, corresponding
to the situation illustrated in curve(c), dmax exceedsd* and
the portion of the curve to be included in the integrand only
spans that part of theb0sdd section(solid) that lies inbP f
−p ,pg, as seen from Fig. 22. In this case we obtain

fsud =
1

p
E

0

d*

ddÎ1 − sYsdd/ud2 −
Ysd*d
up

,

u ù uYsp/2du. sA11d

The three equations, Eqs.(A8), (A10), and (A11), give the
function fsud at all u for an arbitrary pinning force,Ysdd. It
can be shown that when Eq.(A8) is expanded for smallu,
the perturbative result, Eq.(19), is recovered.

For a piecewise linear pinning force, withYsdd=−ad for
−pødøp, the integrals in Eqs.(A8), (A10), and(A11) can
be evaluated analytically, with the result

fsud =5
u

2a
, u ø a,

u

2a
+

d*

2p
S2a

u
−

u

a
− cosd*D , a , u ø ap/2,

d*

2p
S2a

u
+

u

a
+ cosd*D , u , ap/2,

sA12d

whered* =su/adsinsd*d. The coherencer is then determined
by the solution ofr = fsmrd. For uøa the equation for the
coherence isr =mr /mu, where mu=1/s2ad. If mÞmu, the
only solution isr =0. For m=mu the equation is satisfied by
any nonzero value ofr consistent withuøa, or equivalently
r ø1/2. Thus, atm=mu the coherence jumps discontinusouly
from zero to the valuer0=1/2. By expandingfsud for u
→a+ we find that form*mu,

r − r0 ~ sm − mud2/5. sA13d

The full solutionr as a function ofm is shown in Fig. 6.
We now return to the question of the existence of solu-

tions dsbd outside the rangef−dmax,dmaxg. This is relevant
for pinning forcesYsdd that are nonmonotonic in the interval

f−p ,pg. For such pinning forces the Eq.(A9) has two non-
vanishing solutions. The smallest of these two solutions,d*
defines the range of phases that have been used in the calcu-
lation of the coherence described above. Denoting the largest
of the two solutions bydu, we note that foru. uYspdu there
will also be solutions for the phased lying in the ranges
fdu,pg andf−p ,−dug. Examples of such solutions are shown
in Fig. 23 for the soft cubic pinning force. The solutions
outside the range −dmaxødødmax are the top and bottom
branches in the figure. It can be shown that such solutions
are always unstable, while the center branch is stable. This is
easily seen by plotting the total forceFtot=−u sinsd+bd
+Ysdd acting on a domain versus the phased, for a fixed
value b. The stable solutions of the force balance equation
are the zeros ofFtotsdd with a negative slope, so that they
correspond to minima of the total potential. The zeros with a
positive slope are maxima of the potential and therefore rep-
resent unstable solutions. Of the two zeros shown for in-
stance in Fig. 24 forb=p /2, only the left-hand solution,
which lies in the rangef−dmax,dmaxg is stable, while the
right-hand solution is outside this range and is unstable.
Changing the value ofb would simply shift the curve ofFtot
along thed axis, with the stable root always remaining inside
the intervalf−dmax,dmaxg.

3. Derivation of mT

The number of metastable static states available to the
system plays an important role in determining the depinning
threshold. In general the system can exist in a large number
of static metastable states and the functiondsbd becomes
more multivalued asu increases, as shown in Fig. 22. The
number of metastable states is not, however, a monotonic
function of u as only values ofd lying in the interval
f−p ,pg are acceptable solutions. The number of available

FIG. 23. The figure shows the phased versusbn at u=0.8, for
n=0, ±1, ±2, for the continuous pinning force of Fig. 1(c), with
a=3Î3/s2pd and c=−3Î3/s2p3d. The upper and lower branches,
lying outside the rangef−dmax,dmaxg are unstable, while the central
branch is stable.
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metastable states increases with increasingu until dmaxsud
=p, corresponding tou= uYspdu. As u is increased beyond
uYspdu the number of metastable states decreases. When an
infinitesimal force is applied, all the phases are pushed for-
ward and an infinitesimal number of static metastable states
becomes unstable as they can no longer satisfy the self-
consistency condition. The system remains, however, pinned,
provided there exist other static states that are still meta-
stable. Whend*sud=p, the situation changes as there is only
one metastable static solution that becomes unstable as soon
as an infinitesimal driving force is applied to the system. The
system depins as soon asF.0, i.e., the threshold force for
depinning is zero.

It can be seen from Eq.(A9) definingd* that for pinning
forces withuYspdu.0, d* ,p for any finiteu. In this cased*

approachesp only in the limit u→`. Sincer is always fi-
nite, it is only in the limit of infinitem that the system ap-
proaches a perfectly ordered floating state and the depinning
threshold force goes to zero. For continuous pinning forces
with Yspd=0, d* =p at a finite value ofu=uT;Y8spd. For
uùuT, the system has only a single, albeit partially disor-
dered, state available. This state becomes unstable upon ap-
plication of an infinitesimal driving force, and the system
begins to slide. In other words, the threshold for depinning
vanishes for all uùuT or, equivalently, all mùmT
=uT/ fsuTd. Using Eq. (A11) we find the value ofmT dis-
played in Eq.(23).

APPENDIX B: DEPINNING FORCE F_
c
„m…

In this appendix we calculate the depinning forceF↑
csmd

for hard and soft cubic pinning forces, of the type sketched
in Fig. 1. These forces are given by Eq.(34) with c.0 for
the hard cubic force andc,0 for the soft cubic force. Due to
the periodicity of the problem, we can restrict ourselves to
any interval of d of range 2p. For simplicity we choose
againd to lie in thef−p ,pg interval. In this interval the force
balance equation, withc=0 is

0 = F − u sinsd + bd + Ysdd, sB1d

and only solutions to Eq. (B1) which satisfy −p
ødsb ,u,Fdøp should be considered.

As for the caseF=0, the transcendental nature of the
force balance equation, Eq.(B1), can be circumvented by
integrating overd rather than over the phaseb in the self-
consistency conditions. Solving forbsd ,u,Fd gives an infi-
nite set of of solutions, labeled by an integern,

bnsdd = − d + np + s− 1dn sin−1SYsdd − F

u
D , sB2d

whered is restricted to lie in the range

dminsu,Fd ø d ø dmaxsu,Fd, sB3d

with

dminsu,Fd ; − Y−1sF − ud,

dmaxsu,Fd ; − Y−1sF + ud. sB4d

The solution must satisfy the real and imaginary parts of the
self-consistency condition, given by

r = fsu,Fd, sB5d

0 =
1

2p
E

2p

ddS ]b

]d
Dsinfd + bsd,u,Fdg, sB6d

with

fsu,Fd =
1

2p
E

2p

ddS ]b

]d
Dcosfd + bsd,u,Fdg. sB7d

Throughout the analysis we will be consideringdsb ,u,Fd for
fixed values ofu and F. We will therefore writed=dsbd,
with the dependence onu andF implied.

As in the caseF=0, the phased is generally a multivalued
function of b (see Fig. 25). We consider only the metastable
state corresponding to a connected portion of the curvedsbd
in the rangedP fdL ,dRg, and it is this portion that is inte-
grated over in the self-consistency conditions. We focus in
this particular state because it is the one that controls depin-
ning. The pointsdL and dR bounding this portion are func-

FIG. 24. Plot ofFtot versusd for b=p /2, u=0.8 for the con-
tinuous pinning force of Fig. 1(c), with a=3Î3/s2pd and c=
−3Î3/s2p3d. The equationFtot =0 has two solutions. The left-hand
solution, with negative slope is stable, while the right-hand solution,
with positive slope, is unstable.

FIG. 25. The phasedsbd as a function ofbn for −2ønø2 for
two sets of values ofsu,Fd, corresponding to single-valued[for
su=0.1, F=0.2d] and multivalued[for su=0.35, F=0.2d] solutions.
Even n branches are drawn as solid lines and oddn branches are
dashed.
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tions of u and F and may in general differ fromdmin and
dmax. They are determined by the requirement that the imagi-
nary part of the self-consistency condition, Eq.(B6), be sat-
isfied and by the condition that the portion of the function
dsbd bounded by these points span a full 2p interval in b,
i.e.,

bsdLd + 2p = bsdRd. sB8d

The details on how the limits of integration are determined
and the corresponding portion of the solution forbsdd is
chosen in each case are given below.

After evaluating the coherence, we can then proceed to
compute the forceF↑

csmd where the static coherent state be-
comes unstable and the system begins to slide. AsF is in-
creased at fixedu, the wholedsbd curve shifts upward and
both dmax and dL increase. The number of static metastable
states in the rangedP f−p ,pg decreases, until at the critical
forceF↑

c only one static metastable state remains. This occurs
where the largest value ofd on the connected portion, de-
noted bydu, reachesp, i.e.,

dusu,F↑
cd = p. sB9d

Upon further increasingF the system depins. Equation(B9)
defines the boundary of stability of the coherent static state,
i.e., the depinning threshold, and can be solved to obtain
F↑

csud. It will be shown below that, depending on the value of
u, the connected portion satisfying the self-consistency con-
dition may or may not includedmax. For small values ofu it
will and du=dmax. At larger values ofu, the connected piece
does not includedmax and du=dL. Finally, the depinning
thresholdF↑

csmd as a function ofm is obtained by eliminating
u between the equation for the coherence at threshold,r
= fsu,F↑

cd and the expression forF↑
csud obtained from Eq.

(B9).

F_
c
„m… for monotonic Y„d…

The monotonic class consists of all hard cubic pinning
forces and those soft cubic pinning forces which haveucu
ùa/p2/3. Since the functionYsdd is monotonic, its inverse,
Y−1sxd, is single valued in the entire range of interest, −1
øxø1.

A full period of dsbd corresponds to a pair of consecutive
even–odd sections inn. In Fig. 25 we show plots(with even
sections shown as solid lines and odd sections shown
dashed) of d versusbnsdd for two pair of valuessu,Fd, cho-
sen so that in one case the solution is single valued and in the
other it is multivalued. In both cases the curves lack the
symmetry of those forF=0. In general, the value ofu at
which dsbd becomes multivalued depends onF. At this
value, denoted byusvsFd, each oddbnsdd develops an inflex-
ion point atd=de. In particular, forn=1, this requires

S ]b1sd,usv,Fd
]d

D
d=de

= 0, sB10ad

S ]2b1sd,usv,Fd
]d2 D

d=de

= 0. sB10bd

Using Eq.(B2) for b1sd ,u,Fd we obtain the following pair
of equations:

susvd2 = fY8sdedg2 + fY9sdedg2, sB11ad

F = − Ysded − Y9sded, sB11bd

which can be solved to determineusvsFd.
For u,usvsFd the function dsbd is single valued, as

shown in Fig. 26(a). Integrating over a 2p interval of b is
equivalent to integrating over a full odd and even section. We

FIG. 26. The phased as a function ofb for
various values ofu andF,F↑

csud. Also shown in
each frame are the values ofdmin and dmax de-
fined in Eq.(B4) and the boundary pointsdR and
dL of the connected portion of the functiondsbd
that is used to evaluate the integrals determining
the coherence in each case. The four curves cor-
responds to the four cases discussed in the text:
(a) u,usvsFd, wheredsbd is single valued. In this
case we can choosedL=dmax, which requiresdR

=dmax. As F is increased,dmax grows until dmax

=dL=p at F=F↑
c. (b) usvsFd,uøu1sFd; (c)

u1sFd,uøu2sFd; and (d) u.u2sFd.

MEAN-FIELD THEORY OF COLLECTIVE TRANSPORT… PHYSICAL REVIEW B 70, 024205(2004)

024205-23



choosedL=dmax, which requiresdR=dmax and automatically
satisfies the imaginary part of the self-consistency condition.
The functionfsu,Fd is then given by

fsu,Fd =E
dmax

dmin

ddS ]b0

]d
Dcosfd + b0sddg

+E
dmin

dmax

ddS ]b1

]d
Dcosfd + b1sddg. sB12d

Equation(B12) can be simplified as

fsu,Fd =
1

p
E

dmin

dmax

ddÎ1 −SYsdd − F

u
D2

,

u ø usvsFd. sB13d

For u.usvsFd, the functiondsbd is multivalued. In this
case there are multiple possible metastable statesdsbd. We
can use any one of these to calculatersu,Fd as long as the
chosen state satisfies the imaginary part of the self-
consistency condition, and lies in the rangef−p ,pg, but as
explained above we choose to focus on the one correspond-
ing to a connected portion ofdsbd. As u is increased at fixed
F, dLsu,Fd increases anddRsu,Fd decreases. For hard pin-
ning forcesdR reachesdmin beforedL reachesdmax. It is then
convenient to distinguish three regions.

(1) usvsFd,uøu1sFd, where u1sFd is the value ofu
wheredR=dmin. In this region the connected portion includes
all of theb0sdd piece and some of both theb−1sdd andb1sdd
pieces as shown in Fig. 26(b). The imaginary part of the
self-consistency condition is then given by

0 =E
dL

dmax

ddSdb−1

dd
Dsinfd + b−1sddg +E

dmax

dmin

ddSdb0

dd
Dsinfd

+ b0sddg +E
dmin

dR

ddSdb1

dd
Dsinfd + b1sddg, sB14d

with the additional requirement

b−1sdLd + 2p = b1sdRd. sB15d

Once the values ofdLsu,Fd anddRsu,Fd have been obtained
by solving Eqs.sB14d and sB15d, the function fsu,Fd, is
computed using Eq.sB5d, which now has the explicit form

fsu,Fd =E
dL

dmax

ddSdb−1

dd
Dcosfd + b−1sddg

+E
dmax

dmin

ddSdb0

dd
Dcosfd + b0sddg

+E
dmin

dR

ddSdb1

dd
Dcosfd + b1sddg. sB16d

(2) u1sFd,uøu2sFd, where u2sFd is the value of u
wheredL=dmax. In this region the connected portion includes
only parts of theb0sdd and b−1sdd pieces. In this region
dL.dmax, but dR,dmin, as shown in Fig. 26(c). The imagi-
nary part of the self-consistency condition is then given by

0 =E
dL

dmax

ddSdb−1

dd
Dsinfd + b−1sddg

+E
dmax

dR

ddSdb0

dd
Dsinfd + b0sddg, sB17d

where

b−1sdLd + 2p = b0sdRd. sB18d

This pair of equations yieldsdL and dR, which can then be
used to calculatefsu,Fd as

fsu,Fd =E
dL

dmax

ddSdb−1

dd
Dcosfd + b−1sddg

+E
dmax

dR

ddSdb0

dd
Dcosfd + b0sddg. sB19d

(3) u.u2sFd. In this region the simply connected portion
of the dsbd curve only contains part of then=0 branch, and
none of then=±1 branches as shown in Fig. 26(d). The
imaginary part of the self-consistency condition reads

0 =E
dL

dR

ddSdb0

dd
Dsinfd + b0sddg, sB20d

with

b0sdLd + 2p = b0sdRd, sB21d

and the functionfsu,Fd is given by

fsu,Fd =E
dL

dR

ddSdb0

dd
Dcosfd + b0sddg. sB22d

As discussed earlier, the depinning force is defined by Eq.
(B9), i.e., it is given by the value ofF wheredu=p. For all
values ofu,u2, we can obtain a simple analytical expres-
sion for F↑

c since in this regiondusu,F↑
cd=dmaxsu,F↑

cd=p.
Substituting in Eq.(B4), we obtain

dmaxsu,F↑
cd = − Y−1sF↑

c + ud = p, sB23d

which is easily solved to give

F↑
csud = 1 −u, u ø u2sF↑

cd. sB24d

For u.u2, dmax is outside the connected portion of the curve
included in the integration anddu=dL. So threshold is
reached whendL=p. In this case it is convenient to directly
solve for the depinning threshold by settingdL=p and F
=F↑

c in the self-consistency condition, which is given by

0 =E
dL=p

dRsu,F↑
cd

ddSdb0sd,u,F↑
cd

dd
Dsinfd + b0sd,u,F↑

cdg,

s25d

with

b0sdL = pd + 2p = b0sdRsu,F↑
cdd. s26d

Together these two equations yieldF↑
csud. In Fig. 27 we plot

F↑
csud vs u for the hard pinning potential,Ysxd=−sx

+x3d / sp+p3d.
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The method for obtainingF↑
csmd for monotonic soft pin-

ning forces is analogous to that for the hard pinning force,
except for one difference. In the case of a monotonic soft
pinning force, the value ofdL reachesdmax beforedR reached
dmin (the reverse takes place for monotonic hard pinning
forces). This means thatu2,u1 so that region(1) is now
defined byusv,u,u2, region(2) by u2,u,u1, and region
(3) by u.u1. Of course the single valued region remains
u,usv. It is not difficult to see that only the expressions for
region(2) will differ. In this region the imaginary part of the
self-consistency condition becomes

0 =E
dL

dmin

ddSdb0

dd
Dsinsd + b0sddd

+E
dmin

dR

ddSdb1

dd
Dsinsd + b1sddd, sB27d

which along with

b0sdLd + 2p = b1sdRd s28d

determinesdL and dR. The expression forfsu,Fd in region
(2) is now

fsu,Fd =E
dL

dmin

ddSdb0

dd
Dcosfd + b0sddg

+E
dmin

dR

ddSdb1

dd
Dcosfd + b1sddg. sB29d

2. F_
c for nonmonotonic Y„d…

The method for obtainingF↑
csmd for nonmonotonicYsdd is

analogous to that outlined for monotonicF↑
csud. Matters are

complicated, however, by the existence of additional un-

stable solutions of the kind discussed forF=0 in Appendix
A. In principle there is no difference in obtainingF↑

csmd; one
must simply be careful to ensure that only stable solutions
are being considered. The differences in the calculation are
quite technical and we spare the reader the details.

APPENDIX C: NUMERICS

To explore the phase diagrams of the mean-field model,
we numerically integrated the equations of motion to deter-
mine v and r as a function ofF andm. As seen in the main
text and earlier appendices, the macroscopic behavior can
depend on the preparation of the initial state. ForN degrees
of freedom i =1,2, . . . ,N, the bi for most studies were set
uniformly, bi =s2p /Ndi. We studied several different initial
conditions. One of the most frequently used was to set all
ui =bi at F=0, which prepares the system in the incoherent
static(IS) state, whenever it is stable. In order to prepare the
system in a static coherent state, all phases would be set
equal to zero. Coherent moving or static states were also
prepared by starting from a high fieldF with, say, random
initial positionsui. [Incoherent moving states were prepared
in some portion of the phase diagram. When preparing inco-
herent sliding states, we usedM2=N degrees of freedom,
with M distinct values forb; the values ofui for eachb
value were equally spaced in time based on the periodic
single particlesr =0d solution to the equations of motion for
the givenb.] Given the initial conditions, we typically com-
putedvsFd andrsFd at fixedm. This was done by integrating
the equations of motion Eq.(3) using the fourth-order
Runge–Kutta scheme. The force was raised in small discrete
steps: after some amount of timeteq at fixed force,v and r
are measured and thenF is increased(decreased) some small
amount dF. With this algorithm, the time average of the
ramp ratedF/dt is given bydF / teq. In some cases, we fixed
F and rampedm up and down in a similar fashion.

While the ramp rate and system size does affect the de-
pinning force, the force at whichv goes from zero to non-
zero, we find generically that for ramp rates smaller than
10−5 and sizesN greater than 256, we obtain results for both
the incoherent and coherent depinning line that are relatively
independent of actual ramp rate or system size and agree
with analytical calculations. There is agreement even though
the coherent depinning curve is analytically obtained using
the assumption thatu is adiabatically increased. For the
simulations, on the other hand,F or m is increased(de-
creased) slowly. Adiabatically rampingm is not necessarily
equivalent to adiabatically rampingu since the former does
not insure thatr changes slowly, but we do find the correct
coherent depinning line by sitting at a fixedF and ramping
up m.

The analytical analysis in Secs. V and VI provides us with
the depinning line as approached from the pinned phase, but
it does not give us insight into the nature of the depinning
transition. For example, there could be hysteresis invsFd or
rsFd for cyclical histories in the force, for sufficiently large
system sizes and arbitrarily small ramp rates. Hysteresis in
the order parameters implies that the depinning transition is
discontinuous. If there is hysteresis invsFd, then the depin-

FIG. 27. The forceF↑
csud, as a function ofu for the hard pinning

force, Ysxd=−sx+x3d / sp+p3d. The arrows indicate the valuesusv
* ,

u1
* , andu2

* separating the four different regions discussed in the text.
These values are defined by the relationsusvsF↑

csusv
* dd=usv

* ,
u1sF↑

csu1
*dd=u1

* , andu2sF↑
csu2

*dd=u2
* . The plot becomes nonlinear be-

yond u2
* where the threshold goes from being determined bydmax

=p to being determined bydL=p.
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ning line as approached from the moving phase must be
different from the depinning line computed in Secs. VI and
V. To numerically search for hysteresis, we prepare the sys-
tem in a coherent moving state and lower the force until the
system stops. If this repinning line is different from the ana-
lytical depinning result, hysteresis between the static(IS or
CS) and moving phases is present and there is a region where
the two phases coexist.

For every potential investigated, we find that there is a
range of 0,m,me where there is a coexistence of the mov-
ing and stationary solutions. In general, there is hysteresis
between coherent moving(CM) and incoherent static(IS)
phases. For the piecewise linear pinning force, the hysteresis
extends into the coherent pinned CS region. In other words,
the coherencer jumps from one finite value to another at the
depinning transition and there is hysteresis in bothr and v
sF↓ÞF↑

cd. The numerical evidence for this is shown in Fig.
28, which shows the area of the hysteresis loop,
e0

` dF fv↓sFd−v↑sFdg, wherev↓sFd and v↑sFd are the histo-
ries of vsFd for ramping the field down or up, respectively.
The amount of hysteresis, as measured by this quantity, is
independent of system size anddF/dt, which suggests that
the simulations are close the adiabatic and infinite-volume
limit. There is a jump down in the area of the hysteresis loop
whenm exceedsmu, but the area is still nonzero form.mu.

For the hard potential, with the history described above,r
jumps to zero when the system becomes pinned. When the
drive is increased back up again, the system depins at a dif-
ferentF↑

i whenm,me. However, we do not observe hyster-
esis between the CM and CS phases. In fact, the hysteresis
when rampingF vanishes suddenly atm=me. See Fig. 29.
This is because the slope of the coherent depinning line starts
to increase rapidly atsme,Fed and eventually becomes infi-
nite before curling over to possible hysteresis. Above the
point at which the slope becomes infinite, the analytic calcu-
lations suggest that coherent depinning can be observed by
increasingm at fixed F. This was verified numerically. For
the soft-potential cases tested we did not observe hysteresis

between the CS and CM phases. Hysteresis is only observed
between the IS and CM phases.

APPENDIX D: STABILITY OF THE IM PHASE

In this section we investigate the existence of a stable
incoherent sliding(IM ) phase. We note that the velocity of a
single degree of freedom is always a periodic function of
time. To obtain a constant steady state velocity for a collec-
tion of incoherent degrees of freedom, we assume that at
some initial timeti the ith degree of freedom is at the mini-
mum of its own potential well, which in turn is randomly
shifted byb, and perform an average over the random start-
ing times ti. These are chosen to be random variables uni-
formly distributed on the intervalf0,Pg, with P being the
period, that is the time over which the phases advance by 2p.
This procedure guarantees that we sample uniformly all pos-

FIG. 28. (a) Area of the hysteresis loop in
vsFd asF is cycled from large values to zero and
then back up again nearme<0.75 for the scal-
loped potential. Different system sizes and ramp
ratesdF/dt are shown. Plot(b) is just a blowup
of (a) very nearme.

FIG. 29. Area of the hysteresis loop invsFd nearme for the hard
case, whereme is the intersection ofF↑

i and F↑
c. Different system

sizes and ramp rates are shown.
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sible incoherent moving states such that the system reaches a
steady state.

Proceeding as in the study of the incoherent static state,
we assume that the IM phase exists and study its stability.
The self-consistency condition that must be satisfied by the
mean field solution is given by

rstdeicstd =E
P

dti
P
E

−p

p db

2p
eiust−ti,bd, sD1d

where the phaseust− ti ,bd is the phase at a timet. ti ob-
tained by solving the equation of motion. In Eq.(D1), both
the coherencer and the mean phasec are functions of time.
As in the static stability analysis, we letdst− ti ,bd=ust
− ti ,bd−b. We then perturb the IM state at the timet=0, with
a perturbation of the form

dps− ti,bd = d0s− tid − e sinsb + d0s− tidd, sD2d

with e!1. After inserting this in Eq.(D1), we evaluate the
right-hand side att=0 to Osed, obtaining rst=0d=e /2 and
cst=0d=0. We then use this to computeṙs0d to linear order,
with the result

ṙs0d =
e

2Fm

2
+E

P

dti
P

Y8sd0s− tiddG . sD3d

If rstd is monotonic in time, then its stability is entirely de-
termined by the sign ofṙs0d. We would then conclude that
there is a critical valuemcsFd of the coupling strength below
which the IM phase is stable, with

mcsFd = −
2

P
E

P

dti
P

Y8sd0s− tidd. sD4d

With a change of variable fromti to d0 (using the equation of
motion), one finds thatmc=0 for all F.Fsp for any continu-
ous pinning force[sinceYspd=0]. For discontinuous pinning
forces, however, we can evaluate the integral in Eq.(D4) by
splitting the integral in a contribution from the smoothly

varying part ofY8sd0d on the intervalf−p ,pd and a jump at
d0=p. This gives

mcsFd = −
2

P
FlnSF + uYspdu

F − uYspduD − 2
Yspd

F + uYs− pduG , sD5d

whereP is a function ofF. For the piecewise linear force,
one can evaluateP and findmcsFd.0 for someF.Fsp. The
critical value ofmcsFd is given by

mcsFd = mu31 −
2

lnSF + ap

F − ap
DsF + apd4 . sD6d

In the limit of largeF, mc approaches zero. AsF approaches
Fsp, on the other hand,mc=mu. In other words, the IM sta-
bility curve abruptly ends atsmu,Fspd as there can be no IM
phase for anyF less thanFsp. A transition from an incoherent
to a coherent moving phase was indeed obtained theoreti-
cally by Vinokur and Nattermann28 in a model of for layered
charge density waves and also observed by Olsonet al.69 in
numerical simulations of layered superconductors. For strong
disorder, these authors found a transition as the drive is in-
creased from a 2D state of decoupled moving layers to a 3D
state where the moving layers become coupled. Our short
time results suggest that a similar transition may occur in the
isotropic system studied here. However, our numerical stud-
ies indicate that this transition may be an artifact of the short
time analysis. When testing the stability of a system prepared
in the IM phase numerically, we find thatrstd is generally not
a monotonic function of time. Furthermore, a perturbation of
strengthe always destabilizes the IM phase in the limit of
large system size, unless the strength of the perturbation is
made to decrease with system size. Finally, we verified that
the IM phase remains unstable if the somewhat artificial av-
erage over the starting timesti is replaced by an average over
a narrow distribution of pinning strengths. Given these nu-
merical findings, we conclude that the IM phase is typically
unstable in the isotropic mean field model studied here, al-
though of course we cannot rule out that the system could be
prepared in such a state by some special initial condition.
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