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Mean-field theory of collective transport with phase slips
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The driven transport of plastic systems in various disordered backgrounds is studied within mean field
theory. Plasticity is modeled using nonconvex interparticle potentials that allow for phase slips. This theory
most naturally describes sliding charge density waves; other applications include flow of colloidal particles or
driven magnetic flux vortices in disordered backgrounds. The phase diagrams exhibit generic phases and phase
boundaries, though the shapes of the phase boundaries depend on the shape of the disorder potential. The
phases are distinguished by their velocity and coherence: the moving phase generically has finite coherence,
while pinned states can be coherent or incoherent. The coherent and incoherent static phases can coexist in
parameter space, in contrast with previous results for exactly sinusoidal pinning potentials. Transitions between
the moving and static states can also be hysteretic. The depinning transition from the static to sliding states can
be determined analytically, while the repinning transition from the moving to the pinned phases is computed by
direct simulation.
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I. INTRODUCTION ing regionst® The depinning transition may become discon-

The collective dynamics of extended systems drivenfinuous (first ordey, possibly with macroscopic hysteresis
through quenched disorder is a rich and challenging problenfind “Switching” between pinned and sliding stat€s‘The
with many experimental realizations. Such systems inclugdeoretical understanding of the dynamics of such “plastic

vortices in type Il superconductors, charge density waves iFYSt€ms is much less developed than that of driven elastic

anisotropic conductors, domain walls in random ferromagM€dia. A number of mean-field models of driven extended

nets, and planar cracks in heterogeneous matérdlsch of systems with locally underdamped relaxation or phase slips

: . 33
the theoretical work to date has focused on modeling thesgave been proposed in the literatd€; > but many open

; ; uestions remain.
systems as extended elastic media. In these models the 2 Much of the original theoretical work on driven disor-

storing forces are monotonically increasing functions of thedered systems was motived by charge density WEBRW)
relative displacements, and the system Is not gllowe_d to teatrr‘ansport in anisotropic conductors, which display a nonlin-
At zero temperature, overdamped elastic media subject to

; ) o . r current-voltage characteristic with a threshold voltage for
applied forceF and quenched disorder exhibit a nonequilib- .ective charge transpot:3® It has been known for some

rium phase transition from a pinned state to a sliding state g{me that the elastic depinning transition may not be physi-
a critical value Fr, of the driving force? The depinning tran- cally relevant to real CDW materiaf€-37 Coppersmith ar-
Sition, first fu"y studied for collective models with disorder ued that in elastic models with weak disorder’ unbounded
in the context of charge density waves, displays the UniVefogtrains can build up at the boundaries of an atypically low
critical behavior of continuous equilibrium phase transitions,pinning region, resulting in large gradients of displacement
with the mean velocity of the medium playing the role of that lead to the breakdown of the elastic motfélopologi-
the order parametér For monotonic interactions, it has cal defects or phase slips will occur at the boundaries of such
been shown that the system’s velocity is a unique function of region, yielding a spatially nonuniform time-averaged ve-
the driving force! The sliding state is therefore unique and locity. Theoretical and numerical studies of models that in-
there is no hysteresis or history dependence. The depinningprporate both phase and amplitude fluctuations of the CDW
transition of driven elastic media has been studied extenerder parameter have indicated that phase slips from large
sively, both by functional renormalization group methtti$  amplitude  fluctuations can destroy the critical
and large scale numerical simulatich$® Universality  behavior?383° The depinning may become discontinuous
classes have been identified, which are distinguished, for exand hysteretic, or rounded, in the infinite system limit. Ex-
ample, by the range of the interactions or by the periodicityperiments show that varying the temperature of the CDW
(or nonperiodicity of the pinning force. More recent work, material can lead to a transition from continuous depinning
while still focusing on elastic media, has shown that the dyto hysteretic depinning with sharp “switching” between
namics is quite rich well into the uniformly sliding pinned and sliding statéd*%4! Furthermore, the observed
statel4-18.20 correlation between the amplitude of broadband noise and
The elastic medium model is often inadequate to describenacroscopic velocity inhomogeneities also suggest the pres-
many real systems which exhibit plasticigue, for instance, ence of phase slig&.It should be mentioned, however, that
to topological defects in the mediyror inertial effects that in many samples a substantial amount of phase slips occurs
violate the assumption of overdamped equations of motionat the contact$3 while less clear evidence exists for substan-
The dynamics of plastic systems can be both spatially antlal phase slip effects in the bulk. In general, CDW experi-
temporally inhomogeneous, with coexisting pinned and moviments display considerable sample-to-sample variaBity,
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X)

making the comparison between theoretical models and ex- Potential ‘ﬁ Force Y(

periments quite challenging. (a) * T monotonic
Related slip effects or plastic behavior have been pro- Séofo N AN

posed to explain the complex dynamics of many other dissi-

pative systems, including vortex arrays in type-ll supercon- é'g}t \/\/\/ nonmonotonic
ductors. Simulations(mainly in two dimensiong!”#4-49 c<0
imaging?850-53 and transport and noise experiméfits® (©)

have shown that driven flux lattices often do not respond as °°="‘_i27;§>515\/\/\/
elastic media. Instead, the driven lattice tears as small-scale

topological defect structures are generated and healed by theh(gzd \M/
interplay of drive, disorder and interactions. The tearing re- ¢>0

sults in a “plastic” response, with highly defective liquidlike  (e)
regions flowing around the boundaries of pinned solidlike Sca"oped\/\/\/
. 9 . . . . - c=0
regions?® This kind of response is most prominent in the
region near vortex lattice melting, where the so-called peak F|G. 1. Sketches of the pinning potentials and forces studied in
effeCt OCcurs, |e, the Cl’ltlca| current ShOWS a Sudden |nth|s paper. The p|nn|ng forces are per|0d|c with pen@d@’]d the
crease with temperature or applied field. Reproducible noisginning potential for a degree of freedo has minima atg,
or “fingerprint phenomena” have been observed in the:onz, for integern. The cases are organized primarily by the sign
Current-dependent differential resistance and attributed to th@‘ ¢, with the pinning forceY(x):—ax—Cx3+O(x5) for small x=6,
sequential depinning of various chunks of the vortex-g;. The coefficient of the harmonic part of the force satiséies0.
lattice>* Images of driven vortex arrays in irradiated thin The casesa), (b) and(c) are for “soft” pinning forcegc <0); they
films of Niobium obtained by Lorentz microscopy have differ near the potential maxima, corresponding to monotonic, non-
shown clearly that vortex rivers flowing past each other aimonotonic, and continuous forces, respectively. Geses a “hard”
the boundaries of pinned regions of the latfiteScanning potential (c>0). The “scalloped” potential, cas@), is precisely
tunneling microscopy, which can resolve individual vorticesquadratic(c=0) in the interval -7 <x< . The form of the poten-
at high density, has also revealed a clear evolution of th&al especially affects the stability of the coherently pinned phase
vortex dynamics with disorder strengthin samples with and whether “re-entrant” pinning is possible upon increasing or
weak disorder the vortex array was observed to creep cohefiecreasing the force.
ently along one of the principal crystal axes near the onset of
motion. In samples with strong disorder, the depinning isthis paper we use a combination of analytical methods and
plastic and the path of individual vortices can be followed asnumerical simulations to obtain the nonequilibrium mean
they meander through the pinned crystal. Finally, as in thdield phase diagram of the phase slip model for a variety of
case of CDWs, a correlation between plasticity and broadpinning forces(see Fig. 1 Note that most of the pinning
band noise has been observed in several sarfpRscently  forces we consider are discontinuous. This form of the force
it has been argued that some of the observed behavior mayimics the cusped potentials that are the starting points for
be due to edge contamination effects that are responsible fonean field theories that best reproduce the finite-dimensional
the coexistence of a metastable disordered phase and a stabdsults. The discontinuous pinning forces also reflect the
ordered phas®°1t is clear that more work is needed to abrupt changes in the effective for¢gsum of elastic and
understand the rich dynamics of these driven systems. pinning force$ that occur when a neighboring region of the
In this paper we study the driven dynamics of a disor-medium suddenly moves forward. We find that discontinuous
dered medium with phase slips, in order to better addres®rces, and even continuous nonsinusoidal pinning forces,
questions about these and related physical systems. We rgield a rich nonequilibrium phase diagram, with novel stable
strict ourselves to systems which are periodic along the distatic phases that are not present for exactly sinusoidal pin-
rection of motion, such as CDWSs, vortex lattices or 2D col-ning forces.
loids, and consider only the dynamics of a scalar In mean field theory, the nonequilibrium state of the sys-
displacement field. For concreteness, the model is describédm can be described in terms of two order parameters. As
in the context of driven CDWSs, but it also applies to otherthe pinning potential for each domainis periodic in 6,
driven systems with pinning periodic in the displacementhaving minima atB,+2#n, for integern, and taking the in-
coordinate. Assuming overdamped dynamics and discretizeractions to be periodic in the differengg-6; between
ing spatial coordinates, the dynamics of the ph@saf each  neighboring phases with the same period, a natural order
CDW domain is controlled by the competing effects of theparameter is the coherence of the phases. This coherence is
external driving force, the periodic pinning from quenchedmeasured by the amplitudeof a complex order parameter
disorder, and the interaction among neighboring domainsdefined via
Following the literaturé>8%-62phase slips are introduced by N
modeling the interactions as a nonlinear sine coupling in the it = 12 o)
Niz ’

(1)

phase difference of neighboring domains. The mean field
limit for this type of model has been studied by Strogatz,
Westervelt, Marcus, and Mirolté for the case of the smooth with ¢ a mean phase. In the absence of interactions among
sinusoidal pinning force and was shown to exhibit a firstthe phases or external drive, thé are locked to the random
order depinning transition, with hysteresis and switching. Inphasesg,=g;, and the state is incoherent, witk0. In the
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three distinct zero-temperature nonequilibrium phases:

(i) anincoherent static phas@S) at low drives and small
coupling strengths, witlh=0 andr=0;

(i) a coherent static phaseCS) at low drives and large
coupling strengths, witlk=0 andr > 0;

(iii) a coherent moving phasg€€M) at large drives, with
v>0 andr>0.

We have investigated the possibility of an incoherent
moving (IM) phase. For continuous pinning forces, there is
no IM phase. For discontinuous pinning forces, we speculate
that the IM phase is unstable genericallyee Sec. V where
the stability of a possible IM phase is discus$ed.

An important new feature of the phase diagram is the
occurrence of a coherent static phase at fiRitén contrast,
for the sinusoidal pinning force studied previously by Stro-
gatz and collaboratof$the static state is always incoherent
(1S) for all finite values of the driving force and the CS phase
is only present aF=0.

The location of the transitions between these phases de-

FIG. 2. Phase diagram in the coupling-driige—F) plane for a
discontinuous soft cubic pinning force of the type shown in Fig.
1(b). The equation of motion is Eq4). The correspondiny(x) is
given by Eq.(42) with a=15/(87) andc=-4a%/27. The strength of L . .
the pinning ish=1 for all degrees of freedom. The diagonally lined pends on the system’s history. Changing the coupfingt

region indicates the IS phase, while the cross-hatched region ind]c-'xed driveF can give a hysteretlc transition be_tween _'nCO'
cates the CS phase. The light gray shaded region denotes the regiBRr€nt and coherent static phases, as shown in the inset of
of coexistence of the CM and IS phases, while the medium grayi9- 2 for F=0. Figure 3 shows the behavior of both the
shaded region denotes the region of coexistence of the IS and dB€an Velocity and the coherencefass first increased and
phases. The line§} and F¢ are the forces at which the system then decreased across the boundaries between static and
depins upon increasing the drive from the incoherent and cohererfioving phases of Fig. 2, while keeping fixed. The most
static states respectively. The liffe is the force at which a coher- important features of the phase diagrams are
ently moving system stops upon lowering the drive. The point (i) The transition between the IS and CS phases is gener-
(e, Fe) indicates where the static-moving transition goes from hys-ally discontinuous. The region of coexistence of coherent
teretic to nonhysteretic. The curveg(F) and uq(F) are the values  and incoherent static states is bounded by cupgf) and
of the coupling at which the static system makes the transition tqy, (F) [or equivalentlyF4(u) andF,(x)]. When the coupling
and from finite coherence states, respectively. The inset displays thgrengthy is increased at fixeB within the static region, the
hysteresis in th_e_ coherencas the coupling strength is var_ied at system jumps from an incoherent to a coherent state at the
F=0. The transitions between the IS and CS phases are first order Kitical value u,(F), with a discontinuous change in(see
r inset of Fig. 2. Whenu is ramped back down, the coherent
static state remains stable down to the lower valér).
opposite limit of very strong interactions we expect perfectthe boundarieg:q(F) and u,(F) coincide for the piecewise
coherence of the static state, with all phases becoming equghear pinning force. In this case the transition is still discon-
andr—1 as the interactions become strafeg the pinning  tinyous, but not hysteretic. An exception to this general be-
becomes weak Another order parameter is the average ve-hayjor is found for the hard pinning potential at very small

locity of the system, given by values ofF, where the transition between coherent and inco-
N herent static states is continuous.
b= 12 é-(t) ) (i) The depinning to the moving phase is discontinuous
NiS e and hysteretic when the system depins from the IS phase

(except whenu=0). WhenF is increased adiabatically from

The mean velocity is the order parameter for the transitiorzero at fixedu for a system prepared in the IS phase, both
between static and moving phases. the velocity and the coherence jump discontinuously from

The central results of this paper are the nonequilibriunzero to a finite value aIF'T(,u). For an example, see the top
phase diagrams describing the static and moving phases, filames of Fig. 3. When the force is ramped back down from
the various pinning forces shown in Fig. 1. The parametershe sliding state the system gets stuck again at the lower
for the phase diagrams are the driving forEeand the valueF (u).
strengthu of the interaction between the domairisor a (i) The depinning to the moving phase is generally con-
phase diagram in the drive force vs pinning strength planetinuous when the system depins from the CS phase. In this
see Sec. VI). Although the precise shape of the phasecase both the velocity and the coherence change continu-
boundaries depends on the detailed form of the pinning poeusly at the transition, although they may be nonanalytic
tential, the types of phases and the schematic topology of thieinctions of the control parameters. An example of this be-
phase diagram are general. This topology and set of phaseshavior is displayed in the bottom frames of Fig. 3. An excep-
exemplified in the phase diagram for the discontinuous softion is found for piecewise linear pinning forcgsase(e) of
cubic pinning forcesee Fig. 1b)] shown in Fig. 2. We find  Fig. 1] for u= pu,,.
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which separate the coherent and incoherent static phases.
Numerical simulations of finite mean-field systems have also
been used to obtain these boundaries, confirming the analytic
stability criteria. The repinning curve$ (u)), where mov-

ing solutions stop upon lowering the dri¥e have been de-
termined numerically.

Part of the motivation for our work comes from the well-
known result that the mean field critical exponents for the
depinning transition in purely elastic models depend on the
details of the pinning force. For instance, the expongnt
controlling the vanishing of the mean velocitywith driving
force at thresholdy ~ (F—F7)#, has a mean field valug
=3/2 for generic smooth continuous pinning forces ahd
=1 for a discontinuous piecewise linear pinning foféég.
1(e)].6% Using a functional RGFRG) expansion in 4 di-
mensions, Narayan and Fisher show#tht the discontinu-
ous force captures a crucial intrinsic discontinuity of the

0.4 0.8 12 large scale, low-frequency dynamics. The FRG calculations
1.05 - - give B=1-€/6+0(€), in good agreement with numerical
p=1.5 studies in two and three dimensions. The mean field elastic
V os5 c i c 05 7 medium also has zero depinning fieke;=0, for small pin-
_ ning strengthdy, in contrast with finite-dimensional simula-
p=15 . .. .. . . . . .
0.05 ’ , 0 tions and predictions for a finite depinning field in any di-

0.4

F

0.8

1.2

0.4

F

0.8

1.2

mension based on Imry—Ma/Larkin—Ovchinnikov and rare

region argument$.The RG calculation and the numerics
FIG. 3. Typical numerical results, found by integrating numeri- Show that a discontinuous pinning force must be used in the
cally the equations of motiofEq. (4)], for the behavior of the mean mean field theory to incorporate the inherent jerkiness of the
velocity v and the coherenaeas the driving force is slowly varied. motion of finite-dimensional systems at slow velocities. Al-
For each pair of plots, the coupling is held constant, while the though there is no reason to belieaepriori that the same
drive forceF is raised fromF=0 to F=1.2 and then decreased. The will hold for models with phase slips, it is clearly important
pinning potential is the same as for Fig. 2. The top franjes to understand how the properties of the pinning potential
=0.5 show the hysteretic behavior between the IS and the CMaffect the nonequilibrium phase diagram of the model. Fur-
phases, where the coherence and velocity jump between zero amidermore, for large coupling strengthand bounded pinning
nonzero values at the same locations. The next two sets of framggrce the phase slip model reduces to the elastic model,

(1=1.14 are obtained by preparing the system in the IS-CS coexwhere the nature of the pinning force strongly affects the
istence region, starting from either an initial incoheréntor co- mean field theory.

herent(C) state. When the system is prepared in an incoherent state, For further applications and connections, we note that

the velocity and coherence jump at the same value oOfnqqels of driven disordered systems with nonmonotonic in-
F (=0.42 asF is raised, but change continuously Bsis de-

.o . o teractions are also relevant for arrays of nonlinearly coupled
creased, albeit with a change in the slajigdF at the FepINNING  scillators. An example is the Kuramoto model used to de-
force F=0.32, wherev goes to zero. When the system is prepared

in a coherent state, there is no hysteresisiaaddr are continuous, scribe the onset of synchronization in many biological and

thoughr again shows a singularity at depinning. The bottom framesChemICaI system&: The model consists of a large number of

(n=1.5 display the behavior at the continuous depinning transitionosc'""?‘tors, with .random natural .frequenC|es and a smusoujal
from the CS phase. The results are similar to thoseuferl.14,  COUPling in their local phase differences. Although there is
when starting from the coherent stai€). In general, depinning NO external drive, this model can exhibit a transition to a
from the coherent state is continuous and nonhysteretic, while deSynchronized phase as the strength of the coupling is in-
pinning from the incoherent state is discontinuous and hystereticcreased. In this phase, all the degrees of freedom oscillate at
Numerical evidence for the hysteresis does not change over the sife common frequency. In the Kuramoto model the natural
ranges studied, strongly suggesting that these simulations accuratdigquency acts as a random driving force that varies for each
represent the infinite-volume limit. oscillator, but there is no random pinning. The model con-
sidered here, in contrast, consists of coupled phases, or os-
(iv) For continuous pinning forces, the depinning thresh-cijllators, in a random pinning environment at fix@bnstant
old F{(u) vanishes foru above a criticalur. In contrast, drive. The onset of coherenceither in a moving or in a
discontinuous pinning forces exhibit a finite depinning static statg corresponds to the onset of the synchronization
threshold for all finite values ofx with F(u) decreasing in the Kuramoto model.
with increasingu. We conclude this introduction by briefly summarizing the
Analytical expressions have been obtained for the criticalemainder of the paper. In Sec. Il we describe the model of
IinesF‘T’(,u,) andF'T(,u), which give the depinning force values driven CDWSs with phase slips and introduce the mean field
for the coherent and the incoherent static phases, respelimit. In Sec. Ill we obtain the static solutions of the mean
tively, as well as for the phase boundarjegF) and u,(F), field model at==0 for the selection of pinning forces shown
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in Fig. 1. We show that the existence of a transition betweeris to continue to treat the amplitude as constant, while modi-
incoherent and coherent static states can be inferred pertuiying the interaction between phases. This modification
batively. A full nonperturbative treatment is then applied toshould incorporate the crucial feature that the phase becomes
understand the nature of the transition. In Sec. IV we conundefined at the location where the amplitude collapses. At a
sider static states at finite drive. Again, the region of stabilitystrong pinning center, phase distortions can be large and lead
of the incoherent static phase can be established by pertute the accumulation of a large polarization that suppresses
bation theory, but the nonperturbative treatment described ithe CDW amplitude, driving it toward collapse. When the
Sec. V is needed to map out all the static states and thedistortion is released through an amplitude collapse, the
boundaries of stability to the moving state. The resultingphase abruptly advances of ordeR, while the amplitude
phase diagrams for the various classes of pinning forces awguickly regenerate®. This process is known as phase slip-
discussed in Sec. V; the analytic calculations supportingpage in superconductors and superfluids, although it is modi-
these phase diagrams are presented in Appendixes A and fed in CDWSs because of the physical coupling to the phase.
As the analytic treatment we present here is restricted t@®n time scales large compared to those of the microscopic
finding boundaries starting from the static phases, the lowedynamics, it can be described approximately as a “phase
boundaryF (u) of the hysteretic region where static and slip:” an instantaneous 72 (modulo 27) hop of the CDW
moving state coexist has been obtained numerically. Sectiophase. Following the literature, phase slips will be modeled
VI addresses the effect of a broad distribution of pinninghere as phase couplings periodic in the phase difference be-
strengths. We conclude in Sec. VII with a discussion of theiween neighboring domains. This leads to a simple model
results and avenues for further studies. that can be analyzed in some detalil.

When modeling CDWs, especially numerically, displace-
ments and amplitudes are coarse grained to a length scale of
order of the Imry—Ma—Larkin—Ovchinikov length. At and be-

Though the results of our analysis are more general, wéw this scale, the CDW behaves roughly as a rigid object,
motivate the model with a detailed discussion of the physicgeferred to as a correlated domain. This domain is taken to
of CDWs. The general ideas of phase slip also apply to othemove uniformly and is acted upon by driving forces and
systems, most directly to coupled layers of vortices, wherénteractions with neighboring domains and the pinning po-
the vortices are confined to the planar layers, or to colloidatential. The continuum space description is replaced with a
particles in a disordered background. discrete set of degrees of freedom. The coarse-grained equa-

A CDW is a coupled periodic modulation of the electronic tion of motion for the phasé, of a CDW domaini is given
density and lattice ion positions that exists in certain quasiby
one-dimensional conductors, due to an instability of the
Fermi surface. The undistorted CDW state is a periodic con-
densate of electrons, characterized by a complex order pa-
rameter, with an amplitude; and a phas&. The electron

density can be expanded §(x)=po*p, CO3Qux+ 0X)], where the overdot denotes the time derivatwe have cho-

with Q.=2kg, ke being the Fermi wave vector. The phase ; . : .
6(x) describes the position of the CDW with respect to the>eN 10 sc;a]e time so that the damping constant is VarglF .
lattice ions and is a constant for an undistorted CDW. Wher): the driving force. The second term on the right-hand side

Q. is incommensurate with the lattice, the CDW can “slide” of Eq. (3) represents the force due to the coupling to other

and CDW transport can be modeled using uniform translagomams’ whergj) ranges over sitegthat are nearest neigh-

tions and small gradients @fXx), to a first approximation. An b_or t.Oi andu is t_he coupling s_trength. The third term is t_he
applied electric field exceeding a threshold field causes thgmmng force \INh'Ch tef}ds t? pg? tth%pth%se. of_each d(_)rr;nam to
CDW to slide relative to the lattice at a ral@, giving rise to ? random va ues unriorm’y distribute in[~a,7]. The

a CDW current. Amplitude fluctuation&hanges irp;) are u_nc_tlon Y(¥) is periodic with period Er and reprgsents the
often neglected because they cost a finite energy, while BiNNINg forces. We choos¥(0)=0 to fix the location of the
vanishingly small energy is required to generate long-Minimum of the pinning potential and s¥t(0)=0 to main-
wavelength phase excitations, in an ideal crystal. This hat@in reflection symmetry in the absence of an external drive.
led to the well-known phase-only model of CDW dynamicsAS the potential is minimized a#=4;, Y'(0) <0. The ran-
introduced by Fukuyama, Lee, and Ri@R) that incorpo- ~ dom pinning strengths; are independently chosen from a
rates long wavelength elastic distortions of the pifise. Probability distributionp(h).

Strong disorder or regions of unusually low pinning can lead The key difference between our model equation of motion
to large strains, however, so that the amplitude can no longeind the well-known FLR elastic model of driven CDWs is in
be regarded as constant. Large local strains can be relievé@e form of the coupling between domains. Instead of assum-
by a transient collapse of the CDW amplitude. One approacid a linear elastic force-Z;, (6, - &) between neighboring

to describe such a strongly strained system is a “soft spintlomains, we have assumed a nonlinear, sinusoidal coupling
model that considers the coupled dynamics of both phase aritlat allows for phase slip processes. For large phase distor-
amplitude fluctuations. This has been attempted by som#ons (exceedingm) the restoring force in Eq3) becomes
authors2%-38:39put generally leads to models that have to benegative and the phases slip by an amountéative to one
treated numerically. An alternative, more tractable approachanother in order to relax the strain.

Il. THE MODEL

6,=F+u> sin(6,- 6)+hY(6-B), 3)
{4y
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The starting point for many finite-dimensional theories is=ur. For any value oju this equation has the trivial solution
the mean field picture where every local ph&sedomair) is 0=, r=u=0, where all phases rest at the minima of their
equally coupled to every other. In this limit, the equation of pinning potentials and the coherence and effective coupling

motion (3) becomes are both zero. It turns out, however, that such a static inco-
: herent solution becomes unstable above a characteristic
6(B,h) =F —usin(6- ) +hY(6 - B), (4)  value of the coupling strength.

where In order to study the competition between the impurity

disordering and mean-field ordering effects, it is useful to
U= ur (5) rewrite the equation in terms of the deviatiéof each phase

. . from its value in the disorder dominated incoherent stéte,
measures the effective strength of coupling between the da-

. . ) ) . = 0— . A direct and important symmetry of the solution of
mains and. the mean field, wmhand.z,b deflngd in Eq.(D). Eq. (7) is global phase invariance, which holds due to the
This coupling will only be nonzero if there is some coher-

betw the oh £ diff td D Or 0 uniform choice ofB. In the static state, this statistical rota-
ence between the phases of difierent domains, 1.€.#10. 4,101 invariance means that we can simply §ixo be zero.
For simplicity, we have dropped 'Fhe subscripts, Iabelm_g eaCIZ'.%iven a solution withy=0, all related solutions withy# 0
phase k.)y the values qﬁapdh, which are now both continu- can then be obtained by lettirly— 6+ and 8— B— . With

ous variables. Thg are distributed uniformly ifj—, ] and this transformation, and specializing to the case of fixed pin-

the h have the d?stributiorp(h)_._ _ _ning strengthh=1, the force balance equation becomes
The self-consistency condition for the mean field theory is

given by 0=-usin(d+ B) +Y(9). (8)

. 1 (" . To solve this force balance equation, we need to determine
re'’ = Z-rf dﬁf dhp(h)e"&n. (6)  self-consistently. The self-consistency condition E&).can
- be rewritten, by separating out its real and imaginary parts,

In this paper we will for the most part consider a narrow?as
distribution of pinning strengths, i.eo(h)=46(h-1). The ef-

1
fects of a broad distributiop(h) will be addressed in Sec. r=-_ dgcogé+p) = f(u), 9
VI. 2m

When the phases are not coupled=0), the equation of \yhere we have implicitly used E@8) to solve for 8 as a
motion reduces to that of a single particle, which depins apossibly multivaluegifunction of 8 andu to define a func-
the single particle threshold forc€g, given by the maxi- tjon f(u) as the above average overand
mum pinning force. Note that when the coherends zero,
thenu=0, and the system may also depinFg}, for a finite 0 :J dBsin(s+ B) (10)
value of u, as long ag remains zero. o '

lll. STATIC STATES FOR ZERO DRIVE Next, we will use a straightforward linear stability analysis

. . . D to show that the 1Sr=0) phase becomes unstable to the CS
We first Con§|der static solutlor(sﬁ.:O) to Eq.(4). for the _ (r>0) phase above a critical valug, of the coupling
case of zero drivéF=0). These solutions are the first step in strength. A perturbative calculation ofx) allows us to es-

determining the phase diagram and their derivation ir‘tro'tablish that this transition from the IS to the CS phase is

duces most of the techniques and concepts used for nonze - ; - .
drive. WhenF =0, the coherence is determined by compe- Bntinuous or hysteretic, depending on the shape of the pin

" i . : ning potential near its minimum. We will then obtain the full
tition between two effects: the disordering effect of the ran'solutionr(,u, F=0) for a variety of pinning forces.

dom impurities and the ordering tendency arising from the
coupling of each degree of freedom to the mean field. The A. Stability of the incoherent static phase

outcom(_a of this competition gives th.edependence at. At . To investigate the linear stability of the IS phase, we cal-
zero drive, the system can exist in one of two possible

) : culate the time evolution of a configuration near the static
phases: the disorderéd=0) IS phase and the ordered>0) solution &8)=0. A convenient perturbed configuration is

CS phase. These phases can coexist. In this section we ex-, . _~ _ . . 3 . . )
amine the nature of the transition between these two phas% o[ri ,z(ta;o())c_ohz(rct)a)r?lcr(]aﬁ Wv;lllitlg i}cgi:t;i'n-:—hlsg (jar;léirbrzﬂgztgl\t/ﬁ:

obtained by varying: atF=0. We find that the nature of the most rapidly growing eigenvector iﬁhe stability analysis
transition depends on the shape of the pinning fo¥¢g). pidly g g €9 Y SIS,

For static solutions at zero drive, the equation of motionWIth A, )=~€(t)sin 5 to lowest or_der ine. By Eq.(9), the
oherence of the perturbed state is

(4) reduces to the condition that the pinning force on eactt

degree of freedom be balanced by the force due to deforma- 1 (" ,
tions from coupling to the mean field, =oa] dBcodB - esinp),
0=-usin(6- ) +hY(6-P), (7)
=€/2+0(€). 11

where the reader is reminded that the effective coupling
results from the coupling strength and coherence, u The equations of motion E@4) then give
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6=—pur sin(B+ 8) + hY(8) = — w(el2)sin B+ hY'(0)8

+0() = (‘—2‘ + hY’(O))§+ o).

As r and é are both proportional t& (to lowest ordey, it
immediately follows thatr =~[(u/2)+hY’(0)]r. The critical

value of u for linear stability is therefore

wy=—2hY'(0).

B. Perturbation theory

The onset of coherence farjust aboveu, can be studied
perturbatively by assuming that both the phasand the
coherence are small in this region. Nea¥=0 the pinning
force can quite generally be written as a power serie§ in

(14)

Y(§)=-as-b&*-c+ -,

with a=-Y’(0)>0. For smallr, and henceu, one can ex-

pand §(B,u) in powers ofu,

8(B,u) = udi(B) + U?S(B) + uds5(B) + -+ .

(12

(13)

For coupling strengthw > w,,, the perturbed coherence grows
and the IS phase is linearly unstable to a CS phase. At larger
wu, the interactions that drive thé towards a coherent state
are larger in magnitude than the restoring force for the indi-
vidual 6. Note thatu, depends only on the strength of the
pinning force at the minimum of the pinning potential.

(15

PHYSICAL REVIEW B 70, 024205(2004)

1, ©) L

FIG. 4. The behavior of the coherencdor couplingsu= w,,
i.e., near the instability point of the incoherent static phdSg at
F=0. The three curves showwith pinning forceY(6<1)=-ad
—c&® for ¢ positive (hard pinning potentia) negative(soft pinning
potentia) and zero(piecewise linear pinning force.

r=f(rw)=(mwry+rwirg+ - . (19

For simplicity of discussion we specialize to pinning poten-
tials with reflection symmetry and choobe 0 (although the
nonzerob result will prove useful in the analogous finike

Substituting these terms into the force balance equa8pn  Perturbation theory Thenr;=-3c/(8a") and the nonvanish-

and equating terms of the same ordewujnwe obtain

sm=-=F,
5(8) = sin,B:zos(,B) ~ bsfiirfﬂ’
20> 1 i S
o41=( o+ T = A%
3bsir? B cosp
+T_

(16b

(160

ing solution for the coherence can be written as

it \Y2( -\ 2
(163 ( ug) (“ “) , ¢<0,
_ 3|C|:U“ My
r(u) = 4 \12/ _ 1/2 (20
(M_3> (u) N
3cu My
where u,,=2a.

The behavior ofr(u) for w=w, and the nature of the
transition between the IS and CS phases are controlled by the
sign of the coefficient of the cubic term ofY(5). The three
types of behavior that can occur are shown in Fig. 4. For
¢>0, corresponding to a “hard” pinning potential that grows
more steeply than a parabola near its minimum, the coher-

the integrals to each order inwe find
f(uy=ury+ury+ Wrg+ -+,

with

oz 2
37 g\ &

Finally, the coherence is given by the solution of

_ 3<ac— 2b2>

- Y2 This indicates a continuous transition @t u,, be-

(17) tween the IS and CS phases. On the other hand, wke®,

corresponding to a “soft” pinning potential, the coherence
starts out with a negative slope at, and grows with de-
creasingu. We expect this solution to be unstable, indicating

(183 that the transition from the IS phase to the CS phase occurs

with a discontinuous jump im from r=0 for u<pu, to a
nonzero value of for u> u, on a stable upper branch not

(18  accessible in perturbation theory. In fact we show below that

when w is decreased back down through, from the CS
phaser will remain nonzero down to a lower valye; < u,,

(180 indicating a hysteretic transition between the IS and CS

phases. In the marginal case of piecewise linear pinning
forces withc=0, i.e.,Y(5)=—ad near5=0, there is a discon-
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tinuous jumpr(u) at u=pu,. In this case the perturbation 5
theory breaks down and the solution must be obtained by the
method described in Sec. Il C. This calculation will show
that no hysteresis occurs in the case of strictly linear pinning 1 Smax
force. We stress that the transition from the IS to the CS state {
at F=0 is controlled entirely by the shape of the pinning | \
potential near its minimum. Specifically, the behavior is un- 2n - LT 2 B
affected by the existence of discontinuities in the pinning i
force at the edges of each pinning well.

T —Srnax
C. Beyond perturbation theory: The general staticr(u,F=0) / /

solution n=-2 =1 | n=1 D=2

In this section we outline a nonperturbative method for
calcul_atlng the mtegralf(u) used in the seI_f-can|stency FIG. 5. A sample plot ofs, the displacement of a degree of
equation, Eq(9). This allows for the determination of the freedom from the minimum of the pinning potential, versus the

coherence for all values ofu. In addition to confirming the  pinning phases, () for branch numbers -2 n<2. The solid por-
perturbative results obtained above, this method allows thgons correspond to evem while the dashed portions correspond to

precise study of the discontinuous and hysteretic transitionsdd n. The global phase’ is chosen to be zero. Here, the effective

between the IS and CS phase, which cannot be done withiiateraction is large enoughy>a, that &(B8) is multivalued. The

perturbation theory. maximum magnitude ob is denoted bySay

To obtainf(u) by direct integration oveg in Eq. (9) one

would need to solve the transcendental equation(&qfor 3 givenu, to the solid portions of the curve shown in Fig. 5.

&(,u). Such a solution cannot in general be obtained anathe details of the calculation for the scenario of adiabatically

lytically. Hence we take an alternative approach in which weincreasingu, which selects one branch, are given in Appen-

solve Eq.(8) for B(5,u) and integrate oves, rather thanB,  dix A. It is relatively straightforward to show that for a given

i.e., u these are the states which have the largest coherence. This

selection of largestr states is consistent with our numerical
r:i f dg(‘ig>cos(5+ B(5,u)). (21)  calculations. Note that the form of th&p) curve and the
27 96 discussion of multiple solutions is formally quite similar to
parts of the calculation for the purely elastic case, though the

The change of variable in Eq21) provides an important ) AN b
physical motivation is rather differeft.

simplification that allows us to calculate analytically the co- ) .
herence of the undriven static state for a general pinning 1he Pehavior of the coherence as a functiop.a$ shown
potential. This simplification does rely on understanding the" Fig. 6 for four pinning potentialgfor histories where the
subtleties of hows depends onB, as & can be multivalued effective couplingu is adiabatically increasedAs antici-
function of 8.6 The history of the sample can determine
which brancles are included in the configuration.

For a givenu, there is an infinite set of solutions to Eg.
(8). We index each with an intege, 0.8

Bn(6,u) == 8+ nm+ (- 1)"sinX(Y(8)/u), (22)

1

where we choose the-7/2,7/2] branch for siil(x). The 0.6

range for & is constrained to ,,(U) < 6< SnadU), With
Smad W) =Y7H(u). 0.4
The calculation of the average in EQ1) is easily carried
out whenu<a, where the phase is single valued. For values
of u>a the function8(B) is multivalued, allowing for the
existence of many metastable static configurations at fixed
Figure 5 shows one such multivaluég). Because of the 0
metastability, the coherence can vary over some range. For a
fixed u, the range in coherence results in a range of couplings
p. Whenu=a and &(B) is mUIt'Valugd’ on? Choos_es the FIG. 6. The coherence of the static staté&at0 as a function of
(stablg branch of theB(d) curve that is consistent with the 4,0 coupling strength. for four pinning forces:(@) hard (c>0)
particular metastable state one wishes to describe and alg@pic pinning force, witta=c=1/(m+3); (b) piecewise linear pin-
ensures thaty=0, or equivalently that Eq.10) is satisfied. ning force, witha=1/; (c) soft (c<0) cubic pinning force, with
For simplicity and correspondence with “typical” sample a=1/7 and c=-1/#3 (d) sine pinning force whose maximum
preparation, we focus on those metastable states accessedsigngth is 14. Also shown is the valug, where the coherence
adiabatically increasing from zero®” These correspond, for jumps from a finite value to zero upon decreasing
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1 T

exists a stable static solution to the equation of motion. All
such solutions satisfy the static self-consistency condition.
For incoherent static solutions, in which the domains are
completely decoupled, this threshold force is simply the
single particle depinning force. For coherent static states the
lower bound solution 8(B) is multivalued, but only those metastable states
T which satisfy the imaginary part of the self-consistency con-
04 . dition are acceptable solutions. Consider a system in which
there are multiple metastable static solutions at zero drive.
When an infinitesimal driving force is applied a correspond-
ingly infinitesimal number of these states becomes unstable
as they no longer satisfy the self-consistency condition. The
0 : : : ' : : : system remains, however, pinned provided there still exist
' n ' other accessible static metastable states. As the force is fur-
ther increased, more static states become unstable, but the
FIG. 7. Upper and lower bounds fofu), plotted as the coher- system does not depin until the “last” of the available static
encer(u=u/r), corresponding to the maximal and minimal coher- solutions, that is the one corresponding to the largest value of
ence static metastable states. The pinning force is taken to be piece-for which a metastable static state exist, becomes unstable.
wise linear with a=1/7. A single static coherent solution is This value ofF defines the depinning threshold. On the other
obtained only in the limitu— . hand, if there is a unique metastable static solution at zero

pated on the basis of the perturbation theory, for a hard pingxﬁhé?:azisgimgglrisiip'?Jg?iﬂﬁ;ﬁg\/ﬁ?ﬁeﬁgi;ngndlﬁs'l;e
ning force [curve (a) of Fig. 6] the coherence is a single- 9 ; q

valued function ofu. The system exists in the zerolS solution_ atF=0, t_he depinn_ing fqrce is therefore zero. As
phase foru < u,. At u, there is a continuous transition to the SNOWn in Appendix B, for discontinuous forces there are al-
CS phase, withr growing continuously from zero. For soft Ways a variety of metastable static states at zero drive for any
pinning forces[curves(c), cubic pinning force, andd), sine  finite value of . (see also Fig. )7 so thatur=9. For con-
pinning force, of Fig. §with c<0 the coherence is a mul- tinuous pinning forces, there is a finite couplipg above
tivalued function ofu. In this case the IS phase is stable upWhich there is a single static state at zero drive and where the
to u, when u is ramped up from below. A, the coherence threshold force vanishes. This is for instance the case for the
jumps discontinuously to the stable upper branch of thesinusoidal pinning force, where the upper and lower bounds
curve corresponding to the CS phase. Whers ramped  Of () (shown in Fig. § coincide andur=u,. For a general
down from aboveu,, the system remains in the CS phasecontinuous pinning forcg.y is given by

upper bound

06

0.2 J

down to the lower valugy. For this class of pinning forces, alY! ()|

the IS-CS transition is always hysteretid=at 0. In the mar- ur p (23
ginal case of a piecewise linear pinning foff@airve (b)], r f 1= / 2

jumps discontinuously at the transition, but there is no hys- o dov1 = (Y(§/Y'(m))

teresis.

The coherence curves shown in Fig. 6 correspond to the
metastable states that would result through adiabatically in-
creasingu. As mentioned earlier, for a given, this is the
state whose phases are as close as possible to the global
phasey/=0, and hence is the state with the largest coherence. We next consider static states in the presence of a finite
Thus, the curves shown in Fig. 6 are upper bounds on thdriving force,F # 0, starting with incoherent static solutions.
coherence for each type of pinning force. In order to calcuWe will use a perturbative treatment analogous to that of
late the lowest possible coherence at eacbne must con- Sec. Ill to analyze the limit of stability of the IS phase
sider the metastable state whose phases are as far as possdgeinst varyingu andF. For finite F, the IS phase can be-
from the global phase. To obtain this lowgp) bound ana- come unstable to either the coherent static phase or the mov-
lytically is tedious, and we have done so only for the saw-ing phase. The perturbative analysis described in this section
tooth linear case. This result for the lower bound is displayedillows us to establish whether the transition from the IS to
in Fig. 7, along with the upper bound, which, again, is theCS phase at finit€& is continuous or hysteretic, in much the
relevant state for the histories we consider here. same way as done in Sec. Il B fér=0. Again we find that

In addition to determining the transitions between the 1Sthe nature of the transition depends on the type of pinning
and CS phases, the nonperturbative treatment at zero driymtential, but the addition of a driving force changes the
can also be used to determine if there is a critical valug,of shape of the effective pinning force. This change can, in
wr, above which the depinning threshold vanishes and thsome cases, change a continuous-ISS transition aF=0
system is always sliding for alf >0. We present an outline to a hysteretic transition at finite. The value ofF above
of the argument here and relegate the details of the calculavhich the CS phase becomes unstable to a moving state
tion of ur to Appendix A. The threshold force can be thoughtcannot be determined perturbatively and we defer its calcu-
of as the largest value of the driving force at which there stilllation to the next section.

IV. STABILITY OF THE STATIC INCOHERENT
PHASE
AT NONZERO DRIVE
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The perturbation theory described below is of course only

PHYSICAL REVIEW B 70, 024205(2004)

wuy(F) =2a(F), (30)

valid for forces less than the single particle depinning force,

Fsp This force is the maximum value ¢¥(x)| and is the

and will now in general depend dn. Conversely, we can

driving force required to set in motion a single independenfdefine a critical lineF,(x) as the solution ofu=2a(F,).
domain. It is hence the threshold force for an incoherent For drives sufficiently small that the system remains

group of domains.

pinned at the instability line, the form of the onset of coher-

We will study the stability of the incoherent phase to €Nce neaj,(F) can be determined by looking for a solution

small changes in the coherenceTaking the initial static
phase to be incoherent, the effective couplingur=0 and

the static solution is obtained by simply palancing the pin-

ning and driving forces. From E@4) (with #=0 andh=1)

the noninteracting static solution & 8—Y~X(F). It is con-
venient to choose the global phase to be nonzefrs,
-YY(F), and to work with the deviatior’=6-8+Y (F)

from the incoherent static solution at a given The static
solutions are then given by

0=F-usin(d+ B) + Y(5+ &), (24)

where 8,=¢=-Y"XF). For smallu we can expand the pin-

ning force in powers ofb,

Yer(9) = Y(8+ &) + F=3(F) 8+ b(F) P +T(F) B+ ... .
(25

The effective pinning forcé{eﬁ(?S) has precisely the same
form asY(6) for zeroF, but the coefficients now depend on
F through8,=Y"1(F). These modified coefficients are given

by
a(F) =Y (&), (262
b(F) = Y"(8,)/2, (26b)
B(F) = Y"(8,)16. (260

At nonzero drive the coefficierﬁ(F) is always finite, reflect-

ing the fact that the external drive makes the pinning forc

asymmetric aboud,. The equation fo%(,B) is then formally
identical to that for 8(8) in the F=0 case, withY(J)

- Yeff( 5)!

0=-usin(6+ B) + Yei(9). (27

Similarly, the self-consistency conditions can be expressed i\r)v

terms of§ as

1 ~
r=— dBcogs+ B) = f(u,F), (28)
27T 2
wherer is now a function of bothu andF, and
o:J dBsin(s+B). (29)
2

to Eq.(28) in the form of a power series,

f(U,F) =ry(F)u+ry(F)u?+ry(F)ud+ - (31

As usual in such calculations, we expect the nature of the
instability to depend on the signs of the coefficients. The
coefficientsr(F), ro(F), andrs(F) are given by Eq(180

with a, b, c replaced bya(F), B(F), ‘¢(F), giving

1

r(F) = ZF) (323
r,(F)=0 (32b)

3( A(F)E(F) - 2b(F)?
rg(F):é(a( )C(_é()F)S F) ) (320

Thus, the form ofr(x,F) nearu,(F) is

_ 1 p-my(F) )1’2

)= M3<r3(F)Mu(F) ' 3

As for the case oF =0, the behavior is controlled by the sign

of the coefficientr;(F) of the cubic term in Eq(31). If
rs(F)>0 the coherence grows as(u—u,(F))Y? with in-
creasingu, indicating that the versusu curve is continu-
ous. Conversely, if;(F) <0 the coherence grows with de-
creasingu as ~(uy(F)- )2, and ther versusu curve is
hysteretic. One important complication is that for firfitehe
coefficientrz can change sign as a function lffor a given
pinning force. As a result the transition between coherent and
incoherent static states can change from continuous to hys-

Seretic above a characteristic forEg defined by the solution

of I’3(Fh)=0.

We now specifically apply these general results to the
three classes of pinning forcémear, hard, and softAgain,
these are of the general form

(34)

ith a> 0. The three classes haveero, positive and nega-
tive, respectively.

Y(x)=—ax—-cX, —m<X<m,

A. Piecewise linear pinning force(c=0)

For the piecewise linear pinning force of Figel, where
Y(6) is given by Eq.(34) with c=0, we simply havea(F)
=a and b(F)=¢(F)=0. In this caseu,(F)=u,(0), indepen-
dent of F. In fact we will show in Sec. V A that the coher-
encer(u) of the entire static state is independentofor all

We can now use the results obtained in the zero drive pewalues ofu, whenever the system is pinned. The IS phase is
turbation theory. The value q& at which the IS phase be- stable foru <u,=2a andF <Fg,=am. This region is shown

comes unstable is given by

in Fig. 8.
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FIG. 10. Sketches of the region of stability of the incoherent
static phase for a soft cubic pinning fora@) corresponds to a
pinning force of typga) that does not turn oveiis monotonig in
each repeated intervgb) corresponds to a pinning force of tyf®
that are nonmonotonic in each period.

FIG. 8. The region of stability of the IS phase for a piecewise
linear pinning force. The single particle depinning fofeg and the
coupling strengthy,, for instability to the coherent or moving states
are also indicated.

B. Hard cubic pinning force (c>0) creasingrF. This is because decreasikgllows the domains

In Fig. 9 we show the region of stability of the IS phaseto relax back toward the minima of their pinning potentials,
for the hard pinning force of Fig.(d). In this example, the where the pinning forcédetermined by the curvature of the
maximum pinning force from Eq.34) gives the single par- potentia) is smaller and hence the coherence can increase.
ticle depinning threshold aBs,=am+cm?. When the cou- In the case of the hard cubic pinning force the coefficient
pling w is ramped up adiabatically with constdit<Fg, the  r3(F) can change sign as a function &f For small F,

IS state becomes unstable at a vajuyggiven by [see EQ. r4(F)>0 and the transition from the IS to a coherent static

(301, phase is continuous. Above a critical valig defined by
11(F) = 2[a— 3cR(F)]. (35) ;f/l;?]) ES the transition becomes hysteretic. The foFgeis

For the hard cubic potential this result can be inverted ana-

lytically to obtain the boundar¥ () of the IS state shown 16 /a’

in Fig. 9, with the result Frn= AN (39)

Fu(u) = 2t \/ ® ’u”. (36) and is small compared withg, for the potential shapes and
6 6lc| parameters we have considered. Ferc=1/(7+7°), we
The maximum value ofx for which the IS state is stable is find Fs,=1, F,~0.008, andup~1.2u,.
u*, where u* is found by the intersection of the IS depin-
ning curve and thé (u*) curve. Its value is

p* =yt e, (37) Soft cubic pinning forces given by E¢34) with ¢ nega-
Note that if the system is prepared in the IS statgaty,,  tive, can be divided into two classed) forces that are
then a transition to a coherent state can be achieved by d&onotonic functions of the phase within each period, as plot-
ted in Fig. Xa), and (ii) those that reach their maximum
(minimum) within a given period and turn over, as plotted in
Figs. Ib) and Xc). Holding u constant, the incoherent static
state becomes unstable upon increastng F,(u), with

2upt g

unless the single particle depinning force is first reached. For
pinning forces in clas@) the valueu* whereF (u*)=Fgyis
positive and the region of stability of the incoherent static
state is of the type shown schematically in Fig(e)0For

FIG. 9. A plot of the region of stability of the incoherent static p!nnlng forces in Class,") [f_or pinning forces W't_h only cu-
phase for a hard cubic pinning force. The nature of the instabili2iC t€rms, this class is given by| 21/(?’7’2‘)]’ it can be
along theF,(x) curve is indicated by the thickness of the bounding Shown thatu*=0. The single particle depinning transition is
curve on the right. For> u;, (F>F,), the transition is hysteretic, always preempted. Here, the region of stability of the inco-
while for smaller couplinggor small, fixed driving force for vary- herent state is determined () for all values ofu, as
ing couplings the transition is continuous. shown in Fig. 10b).

C. Soft cubic pinning Force (c<0)

F

IS E(w

Ak |
mO
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For a soft cubic pinning forces(F) is negative for allF F
and the transition from the incoherent to a coherent state is £
always hysteretic.

V. NONEQUILIBRIUM PHASE DIAGRAMS
IN THE u—F PLANE

In this section we present the nonequilibrium phase dia-
grams in thew—F plane for the various pinning forces intro-
duced in Fig. 1. The phase diagrams are based upon both
analytical results and numerical computations. The analytical
bounds on the stability of the static phases are based on the 0 . . . ;
preceding sections’ results for the incoherent static phase and 0 0.5 W, 1 1.5
calculations for the coherent static phase whose details are B
presented in the appendixes. Numerical integration of the
equations of motion is used to determine the boundaries qf
the moving phases: by starting from the moving phase an%/
decreasing= or u, the repinning curves can be found. Of
special interest is the nature of the depinning transition ob

tained when the appll_ed forgeis Va”ed at qo,nStam" The tained analytically and confirmed by numerics. The boundary
curves of mean velocity as a function of driving force corre-\ nere the system repins was obtained numerically. The point
spond to the IV characteristics of physical systems, such ag, ) marks where the static-moving transition changes from

CDWs and vortex lattices. Our focus is on classifying mod-pysteretic to continuous. The boundary between the IS and CS
els or parameter ranges for which the depinning transition ighases i independent and lies at= .

continuous or hysteretic. In general, for each of the pinning

forces we consider, the depinning transition appears to be -

continuous with a unique depinning threshold at lajge r:if da cos(~5+ a), (42)
where the system is more rigid. In contrast, the velocity- 27 )_,

force curves generally exhibit macroscopic hysteresis at

small values ofu, where the system is more likely to display @nd clearlyr(u,F)=r(u,F=0). Thus, the coherence of the
plastic effects. static state is independent Bf The line separating the inco-

herent and coherent static phases is a vertical line=gt,
=2a in the u—F plane, as shown in Fig. 11. The IS-CS
A. Piecewise linear pinning force transition is discontinuous and nonhysteretic at all valies
In Sec. IV A, perturbation theory was employed to Studywhere the static phases are stable. When the force is ramped
the transition between incoherent and coherent static phasg adiapatically at f!xed‘<'““ frpm the IS phasel Where
for the piecewise linear pinning force. It was found that _™" the system depins at the sln_gle particle depinning force
when the coupling strengtp is changed at fixed within P~ 27 For_'“>'“U the S&St_em IS in t_he CS phasg, where the
the pinned region of the phase diagram this transition is alcoherence is nonzero anfllis a multivalued function of.
ways discontinuous, although not hysteretic. FurthermoreAs discussed in Sec. Il C, there are many static metastable
the critical value ofu where the transition takes places ap- States available to the system for a fixed valueuofwe
pears to be independent of the driving force. Here we shovelabel the metastable states and denote each state by a
that this remains true in a complete calculation. We also cals(«,u) which is a single valued, but generally discontinu-
culate the depinning threshold exactly by determining theous, function ofa. Eachd, must satisfy the imaginary part of

limit of stability of the static phases. For the piecewise linear, self-consistency condition which using Ed1) can be
pinning force[i.e., Eq.(34) with c=0], the force balance | o\ritten as

equation in the static state is

FIG. 11. Phase diagram for the piecewise linear pinning force,
(x)=—x/ [see Fig. b)]. The lightly shaded portion is the coex-
Istence region of the IS and CM phage< u,) and the smaller,
darkly shaded region, is where the CS and CM phases coexist
(pu<m<pe). The depinning lines, =F¢, and F§ have been ob-

0=F-usin(é+p)-asd, (40) 0=J da 8(u, ). (43)
where -m< <= and we have choset=0. Letting 5=o N .
+F/a and 8=a—-F/a, Eq.(40) can be written as This implies that the acceptablis are odd functions ofr.

In addition, each static metastable solution must lie within
the upper and lower bound%u(F)Ea-r—F/a andh[i(F)E
with -m—F/a<d< m—F/a. Itis apparent from Eq41)that ~7~F/a AsF is increased, the value of the upper bound
5 is a function only ofe andu and does not depend dgh ~ decreases, reducing the number of allowgd, until at F

explicitly. The real part of the self-consistency condition that=F7(«) only one solution remains. This special state,
determines the coherencébecomes S(a,u), is equivalent to the one that would be obtained

0=-usin(6+a)-as, (42)
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1 ‘ ' ' ‘ 1 two middle frames of Fig. 12. Finally, fou > u. (where u,
w=0.25 p=0.25 is the value of the coupling above which the static-moving
Vs | d 1 ! los 7 transition is elastic in natuy¢he depinning is continuous, as
’ ) shown in the bottom frames of Fig. 12. The valueupfand
F. are defined vii‘,i(,ue) =F | (ue) =Fe. Finally, the depinning
‘ . , ‘ thresholdF% is nonzero and finite for all, i.e., uy=o. This
0 04 0.8 120 0.4 0.8 12 is a general property of discontinuous pinning forces, to be
‘ ' ' ‘ contrasted with the behavior observed for continuous pinning
n=065 ﬂ forces, such as the sinusoidal one studied by Strogatz and
|..»  collaboratorg?®
c | Before closing this section, we must address the possibil-
11=0.65 ity of an incoherent movingIM) phase. Strogatz and col-
0 ‘ . . ‘ 0 laborators?® found that an IM phase is always unstable for a
0 04 08 120 04 08 12 sinusoidal pinning potential. It can be shown that this re-
‘ ' - —— mains true for other continuous pinning forces. The situation
w10 is less clear for discontinuous pinning forces. In Appendix D
Vosl € 11 los r  We present the details of a short tirtte-0) stability analysis
¢ for the IM phase for anyY(x). This analysis will tell us
=10 something about the long time, steady state limit, provided
0, v o5 2 0 o o 70 r(t) is a monotonic function of time. This analysis predicts a
F F range of stability for the IM phase for discontinuous pinning
forces, provided the jump discontinuity et 7 is taken into
FIG. 12. Mean velocity) and coherence as functions of the account when preparing the System' However, simulations
driving force F for the piecewise linear pinning force. The curves ghow thatr(t) is in general not monotonic and that the
are obtained numerically by first rampirigfrom zero to a value  grangih of the perturbation needs to be decreased with sys-
well within the sliding statdF=1.2), and then decreasirlg back o g6 in order to observe the IM phase, suggesting that the
down to zero, while holding. constant. The top frames show the perturbative short-time analysis is simply not valid in this
behavior foru=0.25, where the initial static state is incoherent: this case. Finally, if a narrow distribution of pinning strengths
stat_e starts sliding at the single particle_depinning fd?ggcl and is int.roduced,, we find numerically the IM phase to be un-
repins at a lower forcd=0.88. The middie frames display the stable. Given these numerical findings, we believe that the

results for an initially coherent static statg=0.64> u,), which h . I ble i field th
still displays hysteresis, both mandr. The bottom frames are for IM phase is generally unstable in mean field theory.

©=1.0, which has an initial coherent state and undergoes continu-
ous depinning. B. Hard cubic pinning force

. . . . , The phase diagram for a hard cubic pinning force, given
through adiabatically increasing The associated x) curve by Eq.(34) with c> 0 [see Fig. 1d)] is shown in Fig. 13 for
is shown in Fig. 6 fom=1/. The value 011:‘T:(u)68 IS given  g=c=1/(mr+ 7).

by Snafu)=m—F{/a. Foru<aw/2 we find from Eq.(41) Though the general topology is similar to that of the phase
BmadU)=u/a which gives diagram for the piecewise linear force, the history depen-
dence is significantly more complicated. A first difference is

FS(u)=7-ula, u<amn/2. (44)  that the transition between the IS and CS phases is now

- . , L - continuous forF <F,, with F}, given by Eq.(38), and hys-
For u=am/20na is defined implicitly by adnax  teretic forF > F,,. For the parameter values displayed in Fig.
=usin(8pna) andF{ is given by 13 the value of, is very small, but still finite. A second new
CEC( ) =1 i cl feature of the phase diagram is the presence of a small region
am = Fi(w) =usinaFi(u) -ual, u=amf2. (49 (darkest gray in Fig. )3where all three phases coexist.
It is then possible to calculafeﬁ(,u) using the expression for The strong history dependence is manifested in the mac-
r(u) given in Eqg.(A12). The resulting phase diagram is roscopic response and includes reentrant behavior for fixed
shown in Fig. 11. or F histories. The mean velocity and coherence are plotted
For u< u, the static phase is incoherent and the depin-as a function of(increasing, then decreasingdriving force
ning transition is hysteretic in both andr, as shown in the for a few typical values of in Fig. 14. The pinning force is
top two frames of Fig. 12. The system depin§giwhen the ~ given by Y(x)=—(x+x%)/(m+°). The top frames show a
drive is ramped up adiabatically from the static phase, busimple hysteretic depinning transition for a system prepared
repins at the lower forc&, when the force is ramped back in the incoherent static state &t=0, similar to that seen for
down from the sliding state. The linfe, has been obtained a linear pinning force. The middle row of frames display the
by numerical simulation of the mean field model. The nu-more complicated history that results when the system is
merics have also revealed that a small region of hysteresigrepared in a coherent static stateé~at0, with £=0.5. The
persists foru>u,, although the static phase is coherentvelocity shows a single hysteresis loop, but the plot of co-
here. The behavior af andr in this region is shown in the herencer shows first a decrease and then a jump to the
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FIG. 13. Phase diagram in the coupling-driye-F) plane for a w=0.76 n=0.76
hard cubic pinning force of the type shown in Figa)l The form of Vost ¢ 1 ¢ Jos 7
the pinning forceY(x) is given by Eq.(34), with a=c=1/(7+ 7).
The regions of IS-CM, CS-CM, and IS-CS—-CM coexistence are
shown in light, medium, and dark gray, respectively. The incoherent o : . . : 0
LT i c 0 0.4 0.8 12 0 0.4 0.8 1.2
and coherent depinning lines are denotedFannd F{, respec- F F
tively. The repinning line is denoted By,. The coherent depinning
line and the repinning line join &fue,Fe). Beyond this point the FIG. 14. Mean velocity and coherence versus force for the hard

static-moving transition is continuous. The curyggF) and uy(F) potential and various values pf Solid lines are used to display the
are the values of the coupling at which the static system makes thesponse obtained when is ramped up from zero, while dashed
transition to and from finite coherence states, respectively. Therines show the jumps im andr when ramping= back down. The
curves join at (uh,Fn) where the IS-CS transition becomes top frames show the hysteretic depinning of a system prepared in
continuous. the IS phase. For=0.5(middle frame$the system is initially in a

) o ~ coherent(r #0) static state aF=0. As the force is ramped up, the
incoherent state as the force is increased, followed by a jumgystem first crosses the boundary from the CS to the IS phase
back to a finite value when bulk depinning takes place. INyherer jumps discontinuously from its initial finite value to zero,
this case both the regions of IS-CS and IS-CM coexistencgile the system remains pinnéd=0). At a higher force the sys-
are crossed wheh is ramped up. The IS-CS transition 0C- tem depins by crossing the boundary from the IS to the CM phase
curs as the phases are pushed away from their zero-forgggr jumps from zero to a large finite value. The subsequent ramp-
minima to regions of the pinning potential with higher cur- jng down of the field goes through this sequence of phases in re-
vature, which makes the coherent state unstable. Upon dgerse order, but the jumps occur at distinct valueg 6Fhe bottom
creasing the force, both the coherence and the velocity jumpames describes the complex response that takes place along a path
back to zero, then the coherence increases again as the forggt crosses the dark region of three-phase coexistence. See the text
is decreased. The jumps in coherence wilkems ramped for further description.

down occur at values of different from those where the o ) )

coherence jumps during the ramp up. For rather specific vaoth the difficulty of preparing the system in the re-entrant
ues ofu, even more baroque histories can be found by crossstaté and the re-entrance for a specially prepared state are
ing the three-phase coexistence regions. An example i isplayed in Fig. 15. Here bpth sets of curves correspond to
shown in the last row of frames in Fig. 14, whese=0.76.  n€ same value of the coupling strengiiw 1.25. In the top
Here, the sequence is CSIS— CM— CS, which skips the pair of curves the system is prepared in the coherent state at

IS phase on decreasirfg Note that the velocity vs drive F=0. As the force is ramped up adiabatically, the system

X ; c : )
force curve is relatively unremarkable, showing simple hys-delolns continuously a;, where both velocity and coher

L : . . ence change smoothly, withrapidly approaching its limit-
teresis in this case. The coherence history is more comphi-ng value,r=1. The coexistence region is never accessed in
cated. "I th

) , , this case. In the bottom set of figures, the system is prepared
Another interesting feature of the phase diagram for the, 4 incoherent static state at finfe deep inside the coex-
hard cubic pinning force is that at constanta portion of the  istence region. The system is then observed to depin as the

mOVing phase |ieS betWeen the inCOherent and COheI’ent Staq'iﬁrce is ramped down at Constam across the boundary
phases. This suggests the possibility of re-entrance in thgetween the coexistence region and the CM phase. Simulta-
depinning transition fop > w.. It is not, however, straight- neously, the coherence jumps from zero to a large finite
forward to prepare the system in the lightly shaded portion of/alue. Upon further ramping dowf, the system repins
the phase diagram where IS and CM phases coexist anghyain continuously aﬁ

u> e The static solution must either be created “by hand”

at that location(u,F) in phase space or the system can be C. Soft cubic pinning force

prepared in the IS phase at a lower valueuocnd the cou- We distinguish three types of soft cubic pinning forces
pling can then be ramped up to the relevant value u..  given by Eq.(34) with c<0. These pinning forces and cor-
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FIG. 15. Both sets of figures show the behavior of velocity and [

coherence foru=1.25, but for different initial states. The top

frames are obtained by preparing the system in a coherent state at FIG. 16. Phase diagram in the coupling-driye-F) plane for a
#=1.25 and==0, and rampingF up to a value abovE', and then  Soft monotonic cubic pinning force of the type shown in Figa)1
back down to zero. In this case the depinning is continuous. Thd he pinning forceY(x) is given by Eq.(34) with a=6/(57) andc
bottom frames are obtained by preparing the system in an incohe~1/57>. The regions of IS-CM, CS-CM, and IS-CS—-CM phase
ent state ajx=1.25 andF=0.9, inside the lightly shaded area of Coexistence are shown in light, medium, and dark gray, respectively.
coexistence of CS and CM phases, and then ramping the forcEhe linesF andF{ are the forces at which the system depins upon
down to zero. Note the depinning upon decreasing force in this Ca§@creasing the drive from the incoherent and coherent static states,
and the subsequent repinning. respectively. The liné=| is the force at which a moving system
stops upon lowering the drive. ThHe,,F¢) and the static-moving
transition becomes continuous. The curygéF) and uy(F) are the
values of the coupling at which the static system makes the transi-
qion to and from finite coherence states, respectively.

responding potentials are shown in Fig.(4) forces that are
monotonic over the entire period and do not turn over in th
interval [-7r, 7]; (b) forces that are nonmonotonic over the
period and do turn over in the intervigtsr, 7], but are dis- c ) , ) )
continuous; andc) continuous forces, which are obviously °f F<Fj(x)<1. This small region of the phase diagram in
nonmonotonic. The phase diagrams for these potentials ef/9- 17 is magnified and shown in the inset. It is interesting
hibit qualitative differences as compared to those discusse® cOmpare these results with those obtained by Strogatz and
so far. Specifically, the CS region at nonzéranay or may collaborr?\tor%5 for another continuous pinning forc_e, namely
not extend tgu=o and may not even exist. For most poten- Y (X)=~Sinx). The corresponding phase diagram is shown in
tials, however, we do find a nontrivial coherent static phase'.:'cg- 19. In this casew,=ur=2 and, more significantly,
The only exception is the case of a sinusoidal pinning forcd {(#)=0. This means that the CS phase never exists at finite
studied previousiy by Strogatz and Co”aboraﬁ?mhere the F. ThUS, it seems that sinusoidal plnnlng forces are a SpeCIal
CS state is unstable. class of more general continuous pinning forces in that they
For monotonic pinning forceg), the boundarief;;iT and never allow th(_e ppssibility of a Cs phase at finite drive. This
F,, intersect at a finite positive valye™ of x, given by Eq.  difference, while important qualitatively, may not be quanti-
(37) (see Sec. IV C for a full discussignThis results in a tatively significant given thak{(u) is always very small.
portion of the depinning boundary being horizontal on the Finally, for any continuous pinning force, the IM phase is
u—F plane, ag:IT:Fsp for u<u', as shown in Fig. 16. In ot stable even in the short time analysSee Appendix D.
contrast, if the pinning force is nonmonotorﬂb) or (c), and This result is consistent with the findings of Strogatz and
reaches its maximum within the period, theh=0 and the collaborator® as well as our simulations.
phase boundary has no horizontal portion. This behavior is

showfn in Fig. 2 for a nonmonotonic, but discontinuous pin- VI. AVERAGING OVER DISORDER
ning force. _ _ _
The results for pinning forces of tyfge), that are continu- In this section we discuss the role of the shape of the

ous(and therefore must be nonmonotoni@ve two impor-  distribution p(h) of pinning strengths on determining the
tant featuresu' =0 and uy is finite. These features imply, nonequilibrium phase diagram. In the preceding sections we
respectively, that there is no horizontal portion to the CSestricted ourselves to an infinitely sharp distributipfh)
depinning curve and that the system slides at arbitrarily smak §(h—1). This choice is appropriate for systems with strong
force whenever the coupling is large, i.e., wheer u1. The  pinning and allows for a direct comparison with the results
typical phase diagram for a pinning force of this type isof Strogatz and collaboratof?.It is easy to show that the
shown in Fig. 17. Figure 18 shows sampléF) andr(F) nonequilibrium phase diagram of the driven system retains
plots for this case. the same qualitative structure for any distribution that is
At finite drive the CS phase does not extend beypnd sharply peaked around a finite value of the pinning strength
=1.84. For values of the coupling betweggpandu; the CS  and vanishes below a finite,>0. A broad distribution of
phase exists at finite drive, albeit only for very small valuespinning strength may, however, qualitatively alter the mean
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FIG. 17. Phase diagram in the coupling-driye-F) plane for a
soft cubic pinning force of the type shown in Figcl The pinning  —sin(x). The IS-CM coexistence region is shaded gray. Fhed
force Y(x) is given by Eq.(34) with a=3y3/(2m) and c= region in which the system can only exist in the CS phase is de-
-3y3/(273). This choice of parameters gives a nonmonotonic andioted by a series ok’s. The region of IS-CS coexistence is de-
continuous pinning force: the results are to be compared witthoted by medium on-axis gray shading. The-4&S and I1S—
Y(x)=-sin(x), another nonmonotonic and continuous force. The rephase boundaries are the pointa=u,=2,F=0) and (u=puq
gion of IS-CM coexistence is shown in light gray, while the IS-CS ~1.49 F=0), respectively. The IineF'T is the forces at which the
coexistence is shown in medium gray. The IirIFéTsand F% are the  system depins from the incoherent state. The knpes the force at
forces at which the system depins upon increasing the drive fromvhich a moving system stops upon lowering the drive.
the incoherent and coherent static states, respectively. ThE [iise
the force at which a moving system stops upon lowering the drivegome nsight into the behavior of the system in finite dimen-
The CS region is very small for these values of parameters, COIMe&sions.
sponding touy~1.85 anduq(0)~1.44, and it has been magnified v consider a distribution of pinning strengthé) that
in the inset. The CS phase does not exist at fiRiteor coupling vanishes below a minimum pinning strengdtfe 0. As will

larger thanut. Shown within this inset is the poirtj,, Fe) where R L .
theF‘{ andF | lines join and the static-moving transition ceases to bebecome apparent below, it is important to distinguish three

hysteretic. The curveg,(F) (only visible within the inset and Classes,Of ,d'St,”bUtlonS: ) . L

uq(F) are the values of the coupling at which the static system @ dlst.rlbutlons that vanlsh' below a finite pinning

makes the transiton to and from finite coherence statesStrength, i.e.p(h)=0 for h<h,, with hy>0;

respectively. (2) distributions with no finite lower bound of the pinning
strength, but zero weight &t=0, i.e.,hy=0, andp(0)=0;

field physics. Broad distributiong(h) are of interest to (3) distributions with no finite lower bound of the pinning

model physical systems with weak pinning. Furthermore, astrength, and finite weight &=0, i.e.,hy=0, butp(0) >0.

broad distributions of pinning strengths yields variations of The nonequilibrium phase diagram depends qualitatively

the local stresses in the mean field theory and may give usn whether or not the lower bourig is finite. If the distri-

FIG. 19. Phase diagram for a sinusoidal pinning fowG®)=

1

bution of pinning strengthp(h) vanishes below a minimum

u=0-8l u=0-8l 1 pinning strengtthy >0, the single particle depinning thresh-
1 1 old F¢,remains finite and the system exists in an IS phase for
Vost {os T F<Fs, Whenhy=0, the single particle depinning threshold
vanishes and the IS state can only be stable=0.
If the IS phase exists, its stability can be analyzed for an
? 0;4 0;3 1o 0;4 0;3 12? arb.itrary. distribution p(h) by the perturbgtion theory de-
scribed in Sec. IV. For arbitrarip, the static force balance
p=1.67 p=1.67 .
c c equation has the form
Vs 3 {09 7 .
0=F-usin(8-¢)+hY(6- B), (46)
o , , , , 08 with the self-consistency condition given by K§). Clearly
0.4 F 038 12 0 0.4 F 038 127 this equation is identical to the equation studied in Sec. IV

for h=1, provided we rescale both the driving forEeand

FIG. 18. Mean velocity and coherence, obtained from numericafe coupling strengthu by the pinning strengttn. We can
calculations, for a continuous cubic pinning potential and parametet€n carry out the perturbation theory described in Sec. IV as
values given in Fig. 17. The top frames record the hysteretic re@ perturbation theory in powers af’h, provided of course

sponse of a system prepared in the incoherent state=&8 and
F=0, while the bottom frames show the continudusO depinning

of system prepared in the coherent statg.atl.67.

u<<h,. This shows that the perturbation theory breaks down
whenhy,— 0. Furthermore we must requife<Fg, which is
a necessary condition for the existence of the IS phase. Pro-
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ceeding precisely as in Sec. IV and using the same notation, 0.15 ; ' ' -
we obtain an expression for the coherenes a power series
in u/h, given by I CM
u u\? 01 b ]
r=f(u,F)= | dhp(h) rl(F/h)H+r2(F/h) h
3 F
u
+r3(F/h)<—> + } (47
h 0.05 - H
with CS
I‘l(F/h) = y (486) ) ) ) )
2a(F/h % 1 2 3
i
ro(F/h) =0, (48b)

FIG. 20. Phase diagram in the-F plane for a piecewise linear
- - ~ 5 pinning force, witha=1/r andc=0, andp(h)=e™. The depinning
ro(F/h) = § a(F/hye(F) — 2[b(F/h)] (480 curve has been obtained numerically for a system Wit1024 and
3 8 a(F/h)® ’ a ramp rate ofiF/dt=107°.

and . . . i -
rium phase diagram remains qualitatively similar to the one

a(F/h) =Y'(&), (499 obtained for the sharply pinned distributiop(h)=8(h-1),
even for all types of pinning forces studied in Sec. V. When
hy— 0 the perturbation theory breaks down and the existence
of a finite value ofu,, even atF=0, depends on the form of
~ —um p(h) for h—0. For distributions of the second class, with
C(F/h) =Y"()/6. (499 hy=0, butp(0)=0, it can be shown that, is finite atF=0,
The boundary of stability of the IS phase,(F), is ob-  but vanishes at all finité=. In this case there is an IS-CS
tained like before by solving the implicit equatiaiu,F) transition atF=0, which is a remnant of the transition seen at
=f(u=ur,F) with f(u,F) given by Eq.(47), with the result ~ finite F for the case of an infinitely sharp pinning strength
o distribution. For instance, fop(h)=he"(a=1), there is an
(F)=2 j ) (50) IS-CS transition aF=0 andu,=0.27. Finally, for distribu-
Hu P ha(F/h) | tions in the third class, witp(0) >0, it can be shown that,
o i . . _vanishes as 1/ [d/hy) whenhy— 0. For such distributions,
If.the distributionp(h) vanlshes_ beIpvyaﬂmte mINIMUM pin- w00 s no 1S phase even BEO. The phase diagrams for
ning forceny>0, then, remains finite and there is a range hjs class of distributions of pinning strength are qualitatively
of u andF where the IS phase is stable. Converselyiif gifferent from those presented in Sec. V for all pinning
—0, the integral in Eq(50) may diverge, yieldingu,=0.  f4rces. An example is shown in Fig. 20 for the piecewise
Below we will treat in detail the case of a piecewise linear|jnaar pinning force ang(h)=e™. This phase diagram has

pinning force, withY(x)=-ax. In this case Eq(S0) reduces oo ghtained numerically. In the limit of large system sizes

b(F/h) = Y"(8,)/2, (49b)

to and adiabatically slow ramp ratelé/dt, no IS phase is ob-
p(h) -1 served even aE=0. The small region of hysteresis in the
=2 f th (51)  transition between the CS and CM phases is also washed out

by the disorder averaging. The depinning cuﬁ?&jisplays a

For concreteness, we consider a distribution of the form  broad maximum at a finitgz and vanishes ag — .
In general, the numerical simulations show that a broad

p(h) = (h—hg)*e "™, h = hy, distribution of pinning strengths with vanishiry, always
(52)  washes out the IS phase and any hysteresis of the depinning
p(h)=0, h<hy, transition. Whether this behavior persists in finite dimensions

with hg>0 and «>0. This form encompasses the three remains an open question.

classes of distribution functions introduced at the beginning

of the section. We can then obtain the boundary of the IS VIl. DISCUSSION
phase for a piecewise linear pinning force by evaluating the '
integral on the right-hand side of E¢h1). For distributions In this paper we have used a combination of analytical

of the first class, corresponding herehg>0 anda=0, we  and numerical techniques to study the nonequilibrium mean
find that w, is finite at finite F and it is given by u, field phase diagram of a model of an extended systems with
=2aevE,(hy), where E;(x) is the exponential integral. For phase slips driven through disorder. For uniform pinning, we
this type of distribution it can be shown that the nonequilib-generically find two stable static phases and a single moving
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12 ' tinuous soft cubic pinning force shown in Fig(bl The
corresponding phase diagram in the, F) plane was shown
1r in Fig. 2.
When the disorder is weak relative to the strength of the
0.8 | couplingu the static phase is coherent. At strong disorder the
static phase is incoherent. The transition between the coher-
Fip o6l ent and incoherent static phases at fixets hysteretic with
a region of coexistence of the two phases. At weak disorder
64 |- there is a continuous “elastic-like” depinning transition from
the CS to the CM phase. At large disorder the static phase is
incoherent and degrees of freedom depin independently at
02 the single particle depinning threshok'?lp. The moving sys-
Y 5 , tem immediately acquires long-range correlations, becoming
99 57 04 0F 9B 4 1P iz e much stiffer and harder to pin. As a result, when the force is

hin ramped down the CM state repins at the lower fdfgeThe
qualitative features of this phase diagram are remarkably
FIG. 21. Phase diagram, redrawn in the disorder-drive plane, fosimilar to those obtained by Olson and collaborétdis a
a discontinuous soft cubic pinning force of the type shown in Fig.numerical simulation of a model of a current-driven layered
1(b) and p(h)=8(h-1). The disordeh and driveF are normalized ~Superconductors, with magnetically interacting pancake vor-
by the strength of the phase-slip interactipn, The parameter val- tices. At weak disorder these authors find that the layers are
ues and the symbols are the same as in Fig. 2. coupled and the system forms a coherent three-dimensional
static phase, with long-range correlations along the direction
phase. Both incoheretilS) and coherent stati@CS) phases normal to the layers, which depins continuously. At strong
are possible, as well as regions where the two phases coexislisorder the static state consists of decoupled two-
The moving phase, in contrast, is always cohe(@il) in  dimensional layers. When the driving force is ramped up
mean field theory(An incoherent moving phase can be pre-from this incoherent static state, the layers depin indepen-
pared by using special initial conditions, but does not appeadently at the single-layer depinning threshold and the transi-
to be stablg. Coexistence of two, or even three, of thesetion is hysteretic. One difference between our mean field
phases can occur depending on the system preparation; thisodel and the numerical model studied by Olgbml. is the
coexistence results in hysteretic transitions. Such a variety adbsence, in our model, of an incoherent moving phase. In the
phases was not found for the case of a sinusoidal pinningayered superconductor at strong disorder the layers remain
force analyzed earliéf, where only the IS and CM phases decoupled upon depinning up to a second, higher threshold
were found. While a discontinuity in the pinning force is not force where a dynamical recoupling transition occurs. Fi-
required for the existence of the new CS phase at large vahally, these authors also observe a sharp increase in the de-
ues of the coupling constapt, a jump discontinuity in the pinning threshold at the crossover or transition from continu-
pinning force does increase the rangd~adnd u over which  ous to hysteretic depinning, not unlike that shown in Fig. 21.
the CS phase is observed. This is because discontinuity in th® strong crossover from elastic to plastic with increasing
pinning force makes it more difficult for the system to depin, disorder strength, with an associated sharp rise of the depin-
so that the static pinned phases can exist up to large couplingng threshold, has also been seen in a variety of two-
strengths, where the system is forced to acquire long ranggimensional simulations, such as those by Faleskal*®
coherence. Once the system has become coherent, and thedgacroscopic hysteresis has not, however, been observed in
fore more rigid, the depinning threshold decreases with inthese two-dimensional models. Our work suggests that mean
creasingu, but remains finite for all finite values of the cou- field models with strong disorder tend to overestimate hys-
pling strength and only vanishes far— . For a continuous teresis. In mean field there is no range of correlation lengths
pinning forces, on the other hand, the depinning thresholénd hysteresis will always occur when the system is driven
vanishes above a finite value pf from a strongly pinned incoherent phase, where all degrees
In order to make some contact with particle simulationsof freedom depin independently at the single particle depin-
and with experiments, it is useful to discuss the mean fielching threshold. Upon depinning, the system acquires long-
phase diagram in terms of the disorder strengtand the range order and becomes therefore much stiffer, so that when
driving forceF, rather than in théu,F) plane as done so far. the force is ramped down it can remain in the sliding state
In most particle simulations it is the strength of the disorderdown to much lower values of the driving force.
that is most easily varied rather than the strength of the cou- Early transport experiments on current-driven vortices in
pling. Disorder is also a crucial control parameter in manyNbSe showed S-shaped IV characteristics at high magnetic
experimental systems. For instance, varying the applied madields with a peak in the differential resistance as a function
netic field in current-driven vortex lattices has the effect ofof driving current®* Other puzzling effects were observed in
varying the strength of the disorder. At high fields the vortexthe region of the peak, including unusual frequency depen-
lattice becomes softer and can better adjust to disorder. Irdence of the ac response and fingerprint phenomena. These
creasing the magnetic field therefore corresponds to an effeexperimental findings were originally interpreted in terms of
tive increase of the disorder strength. Figure 21 shows thelastic depinning of the vortex system and macroscopic co-
mean field phase diagram in tlie,F) plane for the discon- existence of disordered and ordered bulk vortex phases. This
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interpretation was corroborated by a number of simulation®©ther numerical studies of the phase slip model in finite-
in two dimensions, where the crossover from elastic to plaseimensions have found scaling behavior in the limit of strong
tic depinning is clearly seen as a function of disorderpinning, suggesting some sort of dynamical critical phenom-
strength. For strong disorder the system exists in a disordefna associated with plastic depinniffgAn important open

static phase that depins plastically and then undergoes a dijuestion is whether the transition from elastic to plastic de-
namical ordering transition to a moving ordered phase. Theinning (with or without macroscopic hysteresis a cross-

peak in the differential resistance corresponds to such a dysyer or is associated with some type of tricritical point, as

namical ordering transition and in simulations is clearly asgyggested by the present and other mean field models.
sociated with a sharp drop in the number of topological de-

fects in the driven lattice. More recent experiments have
suggested, however, that the disordered phase is a metastable ACKNOWLEDGMENTS
hase that is injected at the sample’s edges and then anneals__ . .
ﬁ]to the stableJ elastic phase :Es it gegts driven into the This work was supported in part by NSF Grants Nos.
sample?’-9 This interpretation has been confirmed by com-PMR-9730678, DMR-0109164, and DMR-0305407.
paring transport experiments in the conventional strip geom-
etry, where the edge effect is always present, to experiments APPENDIX A: COHERENCE AT F=0
in a Corbino disk geometry, where the vortices are driven to
move in concentric circular orbits in a disk-shaped sample, In this appendix we describe the calculation of the coher-
eliminating boundary effects. Although there is mounting ex-encer () of static states a@=0. First we derive an expres-
perimental evidence that these edge contamination effectdon for the functionf(u) defined in Eq(9) for an arbitrary
may indeed control much of the vortex dynamics observed ifpinning force,Y(5). Oncef(u) is known, the coherence is
experiments, the comparison with simulations, where coexthen obtained by solving the self-consistency condition,
istence of bulk ordered and disordered phases is routinel#f(ur). The calculation is complicated by multivalued solu-
observed, remains puzzling. Of course one important differtions to the self-consistency equations, which leads to mul-
ence is that most of the simulations are carried out at zero gjple metastable states. A consistent selection principle is ap-
very low temperature, where the disordered phase may bglied, namely, choosing the coherenueto be maximal,
artificially stabilized. given u. The range of available metastable states is also used
Substantial phase slip effects have also been observed {§ determineus, the value of coupling above which the de-
CDW systems, especially at the contattsind have been pinning field is zero.
associated with the “switching” observed in certain materi-
als. The reported correlation between broadband noise and
macroscopic velocity inhomogeneities also supports the idea
that in these systems the dynamics may be dominated by As discussed in Sec. Il C, it is convenient to perform a
large scale plasticit§? While the switching itself has also change of variables in Eq9) and integrate ovep rather
been explained as arising from the presence of normahan over the random phagg The functionf(u) is then
carriers?® phase slips seem crucial to account for the corregiven by
lation between broadband noise and macroscopic velocity L p
inhomogeneities. N
Finally, similar behavior has also been observed in col- f(u) = 27Tf_wd5< (95>cos{5+,8(5,u)], (A1)
loids driven over a disordered substrate. Pertsinidis and
Ling’® have studied experimentally single layers of two-Whereu=ur. SinceY(d) is 27 periodic, the integration in
dimensional colloid crystal driven by an electric field over aEq. (A1) can be carried out over anyn2interval. Here we
disordered substrate. They observe plasticlike or filamentarghoose the interval-, 7r]. The change of variable allows us
flow of the colloids, with a velocity-force curve that is al- to evaluatef(u) analytically as the force balance equation,
ways convex upward and shows no hysteresis. Langevikq. (8), while transcendental id(3,u), is simply a linear
simulations by Reichhardt and Ols@iiind a sharp crossover equation in the phasg(s,u). We can therefore immediately
from elastic to plastic depinning as the strength of substratevrite the solutiond(s,u) of Eq.(8), substitute it in Eq(Al),
is increased. Though the direct applicability of our meanand evaluate the integral to obtaiitu). As we will see be-
field model and results to experimental systems remains tpy, the only difficulty in carrying out this program is that
be demonstrated, this work lays out a detailed foundation fothe phases(3,u) is generally a multivalued function g8.
understanding the role of phase slips and topological defectgherefore care must be taken in selecting the portion of the
on the dynamics of driven disordered systems. Preliminargyrye that must be included in the integral. The choice is
numerical studies of the phase slip model in three dimengictated by the requirement that the imaginary part of the

sions, with a sinusoidal pinning potential, suggest that theself-consistency condition, which now reads
depinning transition may not be hysteretic in the thermody-

namic limit. This is similar to that suggested by studying the 0= 1
mean field with a broad distribution of pinning strengths, as T om ).

shown in Fig. 20, where the distribution of pinning forces the i

incoherent stati¢lS) phase. Clearly more work is needed to be satisfied, and that the pha¥) span a full 2r interval in
establish if such a finding is generic in finite dimensions.g.

1. Change of variables

w

d5<%‘;)sir{5+ B(s,u)], (A2)
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For static solutions anB=0 the balance equatidi8) can 5 o
be written as ma 48
Y(5 P50
sin(6+ ) = Q- (A3) P 4
u N
% H smax
Since|sin(6+ B)| <1, the right-hand side of EqA3) must
also be bounded in magnitude by one. This means that al N T B
solutions to Eq(A3) must satisfy - EN
= Omand W) = 8= SnafU), (A4) g

where 8,,(U) is defined by @ 3

[Y(Smadl = u, (A5) M et

or Sma{W) =|Y~X(u)|, with Y~* denoting the inverse function. @

Note that if Y(&8) is nonmonotonic in the intervat, 7], as FIG. 22. The figure shows the behavior of the pha&g) for

it is for instance the case for the soft cubic potential shown irthree values ofi. Then==+1 half-sections are dashed, while the
Fig. 1(b), then foru>|Y(w)| there are two possible values of =0 section is solid. Curv¢a) corresponds tai<a and is single
|Y‘1(u)| in the rangd 0, 7]. In this cases,.is defined as the valued. Curvegb) and(c) are both multivalued and correspond to
smallest of these two values. At the end of this Appendix welb) a<u=Y(m/2) and(c) u>Y(w/2). The sections, ends at the

will discuss the relevance of the second solution and demor0iNts #ma, Where the half sectiong==1 begin. For curveb)
strate that it corresponds an unstable state. these points lie within the portion of the curve that must be included

in the integral to determin&u). For curve(c) they lie outside 5

denotes the nonzero value of the phasg@atr.
2. Metastable states

For every fixed value ofi, there is in general an infinite 1 (Omax  [dB_,
set of solutions for the phas@in the rangel—&max Omax- f(u) = ;f d5<¥)cos{5+,8_1(5,u)]
The corresponding solutions for the phaas a function of 0
S can be enumerated by indexing them with an integer, 1 (° dB,
They are given by + ;f d5<5)00i5+ Bo(su)]. (A7)

5ma><
Bn(8,u)==8+nm+(-1)"sinX(Y(HIu), (A6)
. o Upon substituting the expressions 8r;(5) and By(5) from

where we only consider values of the function${r) in the Eqg. (A6) in Eq. (A7), we obtain
range [-m/2,m/2]. Since the calculation of3,(5,u) and
(B, u) is carried out at fixed, from here on we will simply
omit the u dependence in the argument of these functions. ) = Efﬁmax
The typical behavior of the phaseas a function ofg,, for B
—-2=<n=<2, is shown in Fig. 5.

The integral in Eq(A1) must span a full perio¢in B) of
the 8(B) curve. As evident from Fig. 5, this always corre- When §(B) is single valued, the integral in E¢L0) over the
sponds to a pair of consecutive even—odd sections. Here wantire period gives zero, so that the imaginary part of the
choose to work with then=0 section, and the upper and self-consistency condition is satisfied.
lower halves of thex=-1 and then=1 sections, respectively. Whenu= a, the phaseS is multivalued, as exemplified in
This choice is equivalent, for instance, to that of te0 and  caseg(b) and (c) in Fig. 22. In this case one can no longer
the full n=-1 sections(or n=0 andn=1), but it has the simply integrate over the full curve in the rangg
advantage of being symmetric about the origin. The choser: [, 7]. Rather, one must select a portion, of measure 2
portion of the 8(B) curve is displayed in Fig. 22 for three in g, that satisfies the imaginary part of the self-consistency
different values ofu. The figure shows how the phase be- condition, Eq(A2). As discussed in Sec. Ill C we choose the
comes multivalued as is increased. portion of the curve corresponding to the metastable states

Foru=a, with a the linear slope of the pinning foré€5)  that would be accessed by adiabatically increasinigom
at 5=0, the phase is single valued, as in curv@) of Fig.  zero. Fory=0, this choice corresponds to the connected part
22. In this case integrating over a full periodnis equiva-  of the &(B) curve lying betweerB=-1 and . This choice is
lent to integrating over the entire curve, consisting of the fullodd about the origin and therefore automatically satisfies Eq.
n=0 central sectiorisolid) and the twon=%1 half sections (A2). The phases now has two values gB=, 6=0, and
(dashedl Making use of the symmetry of the integrand abouté=é., which is defined implicitly as the nonzero root of the
6=0, we obtain equation

dovl -[Y(d)/u]?>, u<a. (A8)
m™Jo
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- Y(8) =usin(s.). (A9) o o -

The valuesd. is the desired upper limit in the integration over
8in Eq.(Al). Whena<u<Y(#x/2), corresponding to curve
(b) in Fig. 22, the roo®. is smaller thars,,,, and the portion ~
of the curve to be included in the integrand spans the entire <
Bo(S) section(solid line) and those parts of thg,,(5) half . B max
sections(dashegl that lie within 8=[-,]. For this range

n=0 \ ’,"

of u values we find
2 (max —  Y(5
f(u) = —J dovl - (Y(8)Iu)? - L P Y

TJo um max

|

1(%, ————
- —f doVl - (Y(8)/u)?, a<u=<|Y(w/2)|.
T

0 S~ u

(A10) /\ Tl g

At u=|Y(7/2)|, 8= Smnax FOru>|Y(w/2)|, corresponding n=-2
to the situation illustrated in curv), omay exceedss. and FIG. 23. The figure shows the phaseversusg, at u=0.8, for
the portion of the curve to be included in the integrand onlyn=0, %1, +2, for the continuous pinning force of Fig(c}, with
spans that part of thgy(8) section(solid) that lies inge[  a=3y3/(2m) andc=-3\3/(27°). The upper and lower branches,

-, 7], as seen from Fig. 22. In this case we obtain lying outside the rangg-dmax. dnaxl are unstable, while the central
N branch is stable.
1 — Y(&
== [ asi-vomr- 12, .
7Jg um [, #]. For such pinning forces the EGA9) has two non-
vanishing solutions. The smallest of these two solutighs,
u=|Y(m/2)]. (A11)  defines the range of phases that have been used in the calcu-

lation of the coherence described above. Denoting the largest
The three equations, Eq&A8), (A10), and(All), give the  of the two solutions bys,, we note that fou>|Y(m)| there
function f(u) at all u for an arbitrary pinning forceY(d). It will also be solutions for the phasé lying in the ranges
can be shown that when E(A8) is expanded for small, [, 7] and[-,-8,]. Examples of such solutions are shown
the perturbative result, Eq19), is recovered. in Fig. 23 for the soft cubic pinning force. The solutions
For a piecewise linear pinning force, witt(§)=-ad for  gutside the range Smax= 0= Snax are the top and bottom
-m< §<, the integrals in EqYA8), (A10), and(All) can  pranches in the figure. It can be shown that such solutions

be evaluated analytically, with the result are always unstable, while the center branch is stable. This is
( u easily seen by plotting the total forcE,,=-usin(é+p)
2’ u<sa, +Y(6) acting on a domain versus the phagefor a fixed
a value B. The stable solutions of the force balance equation
u 4 (2a u are the zeros ofF (5 with a negative slope, so that they
= —+—|—=-—-- <us ot : ' :
fw) = 2a 277( u COS&)’ a<usam?, correspond to minima of the total potential. The zeros with a
s (2a u positive slope are maxima of the potential and therefore rep-
—(— +—+cos&), u<am/2, resent unstable solutions. Of the two zeros shown for in-
(| 2m\u a stance in Fig. 24 forB=/2, only the left-hand solution,

(A12)  which lies in the rangd—3dmnax Smaxl IS Stable, while the

. . . right-hand solution is outside this range and is unstable.
where&z(u(a)sm(&). The coherence is then Qetermlned C%anging the value g8 would simply shifgt’ the curve oF

by the solu'qon ofr =f(ur). Foru=a the equation for the along theé axis, with the stable root always remaining inside
coherence is=ur/u,, where u,=1/(2a). If w#u, the e intervall— 8, Smad-

only solution isr=0. For =y, the equation is satisfied by

any nonzero value af consistent withu=<a, or equivalently

r<1/2. Thus, aju=pu, the coherence jumps discontinusouly 3. Derivation of pr
from zero to the valueo=1/2. By expandingf(u) for u The number of metastable static states available to the
—a" we find that foru= p,, system plays an important role in determining the depinning

F =1y o (1= )2 (A13) threshqld. In general the system can exist_in a large number
07 KT K of static metastable states and the functi§{g) becomes
The full solutionr as a function ofu is shown in Fig. 6. more multivalued asl increases, as shown in Fig. 22. The
We now return to the question of the existence of solunumber of metastable states is not, however, a monotonic
tions 8(B) outside the rang@-omax Smax- This is relevant  function of u as only values ofé lying in the interval
for pinning forcesY($) that are nonmonotonic in the interval [-, ] are acceptable solutions. The number of available
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FIG. 24. Plot ofF versusé for B=m/2, u=0.8 for the con- n=0

tinuous pinning force of Fig. (t), with a=3y3/(2m) and c=
-3y3/(273). The equatiorF,;=0 has two solutions. The left-hand

solution, with negative slope is stable, while the right-hand solution
with positive slope, is unstable.

FIG. 25. The phasé(B) as a function of3, for -2<n<2 for
two sets of values ofu,F), corresponding to single-valuddor
(u=0.1, F=0.2] and multivaluedfor (u=0.35, F=0.2)] solutions.
Evenn branches are drawn as solid lines and odbdranches are
metastable states increases with increasingntil &,,,{(u) dashed.

=, corresponding tai=|Y(m)|. As u is increased beyond As for the caseF=0, the transcendental nature of the
|Y(7)| the number of metastable states decreases. When rce balance equation, E@B1), can be circumvented by
infinitesimal force is applied, all the phases are pushed forfntegrating overs rather,than 0\,/er the phasgin the self-
ward and an infinitesimal number of static metastable State?onsistency conditions. Solving fg#(8,u,F) gives an infi-
becomes unstable as they can no longer satisfy the seln—ite set of of solutions.labeled by an,ir;teger
consistency condition. The system remains, however, pinned, '

provided there exist other static states that are still meta- (YO -F

stable. Whens.(u) =, the situation changes as there is only Bn(8) == 6+nm+(-1)"sin (T) (B2)
one metastable static solution that becomes unstable as soon

as an infinitesimal driving force is applied to the system. Thewhered is restricted to lie in the range

system depins as soon &s$>0, i.e., the threshold force for
depinning is zero.

It can be seen from EqA9) defining é. that for pinning
forces with|Y(m)| >0, 8. < for any finiteu. In this cases.
approachesr only in the limit u— . Sincer is always fi-
nite, it is only in the limit of infinite x that the system ap-
proaches a perfectly ordered floating state and the depinning SmaU,F) ==Y {(F+u). (B4)
th.reshold _force 9°es to zero. For cont|rlu0LE, pinning forcesrhe solution must satisfy the real and imaginary parts of the
with Y(m)=0, 8= at a finite value ofu=ur=Y’(w). For self-consistency condition, given by
u=uy, the system has only a single, albeit partially disor- '
dered, state available. This state becomes unstable upon ap- r="F(uF), (B5)
plication of an infinitesimal driving force, and the system

begins to slide. In other words, the threshold for depinning
vanishes for all u=u; or,

1 17 .
equivalently, all u= pur OZZ—J d§<—€;)5|r{5+ﬂ(5,u,F)], (B6)
=u{/f(ur). Using Eq.(A11) we find the value ofu; dis- mlom \O
played in Eq.(23).

Smin(U,F) < < 62U, F), (B3)
with

Smin(U,F) ==Y {F -u),

with
APPENDIX B: DEPINNING FORCE F%(;L) 1 Y
In this appendix we calculate the depinning foﬁfg{,u) f(u.F)= 2m 27d5<(7—5)c0i5+,8(5,u,F)]. (B7)
for hard and soft cubic pinning forces, of the type sketched

in Fig. 1. These forces are given by E&4) with ¢>0 for ~ Throughout the analysis we will be considerié@, u,F) for
the hard cubic force anc< 0 for the soft cubic force. Due to fixed values ofu and F. We will therefore write 5=48(8),
the periodicity of the problem, we can restrict ourselves towith the dependence amandF implied.

any interval of § of range 2r. For simplicity we choose As in the casé-=0, the phas@is generally a multivalued
againdto lie in the[—, 7] interval. In this interval the force function of 8 (see Fig. 25 We consider only the metastable
balance equation, witg=0 is state corresponding to a connected portion of the cdt3

P in the rangede[§.,dg], and it is this portion that is inte-

0=F-usin(5+ ) +Y(9), (B1) grated over in the self-consistency conditions. We focus in
and only solutions to Eg.(B1) which satisfy -7  this particular state because it is the one that controls depin-
< §(B,u,F) <= should be considered.

ning. The points§, and 8z bounding this portion are func-
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6R = 3 max

) : ‘\_/7-\_\//—-\ (a)
)

min

0
-10 -5 0 5 10
3

FIG. 26. The phasé as a function of for
R & (b) various values ofi andF < F%(u). Also shown in

S N 3 max : N . each frame are the values 6f,, and Smay de-
I3 o == R fined in Eq.(B4) and the boundary points; and

-1 ! : . 8, of the connected portion of the functia¥iB3)
that is used to evaluate the integrals determining

o E I = or (C) ] the coherence in each case. The four curves cor-
) 0 \\‘B 5 \\X y responds to the four cases discussed in the text:
3 Tmax o> M~ O . (8) u<ug,(F), whered(B) is single valued. In this

-2 | min 4
4 . R ! case we can choosg = 8, Which requiresdg
4—10 =Smax AS F is increaseddyay grows until 8pay
5T =6 =m at F=F{. (b) ug(F)<u=suy(F); (c)
S ol uy(F) <u=u,(F); and(d) u> uy(F).
) Smax
10 5 0 / 5 10
B
tions of u and F and may in general differ fron#,,, and F{(p) for monotonic Y(4)

Smax They are determined by the requirement that the imagi-
nary part of the self-consistency condition, EB6), be sat-
isfied and by the condition that the portion of the function
&8(B) bounded by these points span a fult tnterval in 3,
ie.,

The monotonic class consists of all hard cubic pinning
forces and those soft cubic pinning forces which haje
=a/ 7?3, Since the functior¥(8) is monotonic, its inverse,
Y~1(x), is single valued in the entire range of interest, —1
=x=1.

A full period of &8) corresponds to a pair of consecutive
even—odd sections in. In Fig. 25 we show plotswith even
dsections shown as solid lines and odd sections shown
dashegl of & versusp,(d) for two pair of valuequ,F), cho-
sen so that in one case the solution is single valued and in the
8ther it is multivalued. In both cases the curves lack the
symmetry of those foFF=0. In general, the value af at
which 8(8) becomes multivalued depends énh At this
d value, denoted by, (F), each odd3,(8) develops an inflex-
ion point até=4,. In particular, forn=1, this requires

B(6) + 2= B(6R). (B8)

The details on how the limits of integration are determine
and the corresponding portion of the solution #8¢) is
chosen in each case are given below.

After evaluating the coherence, we can then proceed t
compute the forcﬁ(,u) where the static coherent state be-
comes unstable and the system begins to slideFAs in-
creased at fixed, the whole&(8) curve shifts upward an
both &, and &, increase. The number of static metastable

states in the rangé e [—, 7| decreases, until at the critical 9B1(8.Ug F)
force F{ only one static metastable state remains. This occurs (1—5”> =0, (B10g
where the largest value of on the connected portion, de- 96 525,
noted byé,, reachesr, i.e.,
8u(u,FS) = . (B9) <M> =0. (B10b)
98" 5=0,

Upon further increasing the system depins. EquatigB9) i ) _ _
defines the boundary of stability of the coherent static stateSing Ed.(B2) for 8,(5,u,F) we obtain the following pair
i.e., the depinning threshold, and can be solved to obtaiff equations:

F$(u). It will be shown below that, depending on the value of

2 ’ 2 1" 2
u, the connected portion satisfying the self-consistency con- (Ug) =Y (817 + [Y"(80) )%, (B11a
dition may or may not includé,,,, For small values ot it
will and 8,=dmay At larger values ofi, the connected piece F=-Y(5)-Y"(5), (B11b)

does not included,,, and §,=4,. Finally, the depinning

thresholdF%(,u) as a function ofu is obtained by eliminating which can be solved to determing,(F).

u between the equation for the coherence at threshold, For u<ug(F) the function §(B8) is single valued, as
=f(u,F$) and the expression fdF{(u) obtained from Eq. shown in Fig. 26a). Integrating over a 2 interval of 8 is
(B9). equivalent to integrating over a full odd and even section. We
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choosed, = Smayx Which requiresdz= énax @nd automatically

satisfies the imaginary part of the self-consistency condition.

The functionf(u,F) is then given by

‘5min
f(u,F) = f d5<a—ﬂo)cos{5+ Bo(d)]
S a0

(Smax
+f d§<&—'31>cos{6+ﬁl(5)]. (B12)

Equation(B12) can be simplified as

Smax _ 2
f(u,F)zlf dg‘/l_(m> '
mJ s u

U< ug(F). (B13)

For u>ug,(F), the function&(B) is multivalued. In this
case there are multiple possible metastable sté({gs We

PHYSICAL REVIEW B 70, 024205(2004)

_ Omax %)
O—LL dJ( 4o siné+ B-4(9)]
R
+ f d5<%>sir{5+ Bo(9)], (B17)
5 do

max

where
B-1(8.) + 27 = Bo(dR). (B18)

This pair of equations yield$, and 6z, which can then be
used to calculaté(u,F) as

5m ax

d/s_1>
f(u,F) = da(— S5+ B8
(u,F) s 96 cogd+ B_4(0)]

‘)

5m ax

R
d6(%)coi5+ Bo(d)].  (B19)

(3) u>uy(F). In this region the simply connected portion

can use any one of these to calculate,F) as long as the  f the 5) curve only contains part of the=0 branch, and
chosen state satisfies the imaginary part of the selfyone of then=+1 branches as shown in Fig. @. The

consistency condition, and lies in the rarger, 7], but as

explained above we choose to focus on the one correspond-

ing to a connected portion &f(B). As u is increased at fixed

F, 6.(u,F) increases andg(u,F) decreases. For hard pin-

ning forcesdy reachess,,, before §, reachess, . It is then
convenient to distinguish three regions.
(1) ug,(F)<u=uy(F), where uy(F) is the value ofu

where 3= 6nin- In this region the connected portion includes

all of the By(6) piece and some of both th& ;(5) and B1(9)
pieces as shown in Fig. @8. The imaginary part of the
self-consistency condition is then given by

: 6max %) ) ﬁmin 6{%) .
O—LL dé( 4e S|r{5+,8_1(5)]+Lmaxd 48 sin o

R (dBi)
+ Bo(9)] + do| — = |siné+ B1(9)], (B14)
Omin d5
with the additional requirement
B-1(8) + 27 = B1(6R). (B15)

Once the values of, (u,F) and 8z(u,F) have been obtained
by solving Egs.(B14) and (B15), the functionf(u,F), is
computed using EqB5), which now has the explicit form

5max
f(u,F) = f d5<%)coi5+ B_1(0)]
a

‘Smin d
+ Lmax d5(£’>c05{5+ Bo(d)]

d!

Smin

oR
d5<%>005{5+ B1(5)]. (B16)

(2) uy(F)<u=uy(F), where u,(F) is the value ofu

whered, = dnax In this region the connected portion includes

only parts of theBy(8) and B_,(5) pieces. In this region
8> Omax DUt Sr< Omin, @S shown in Fig. 2@). The imagi-

imaginary part of the self-consistency condition reads
R dﬂ )

0= d b PN o+ 9],

LL a( 1 s+ Bo(d)]

Bo(8) + 27 = Bo(6R),
and the functiorf(u,F) is given by

(B20)

with
(B21)

%R
d5<%>cos{5+ Bo(I)]. (B22)

f(u,F) =

As discussed earlier, the depinning force is defined by Eq.
(B9), i.e., it is given by the value df where §,=. For all
values ofu<u,, we can obtain a simple analytical expres-
sion for F{ since in this regions,(u,F{)=8nau,Ff)=.
Substituting in Eq(B4), we obtain

Smal U, F$) = = YHF§ +u) = 7, (B23)
which is easily solved to give
Fi(u)=1-u, usuy(F9). (B24)

Foru>u,, 8,axiS outside the connected portion of the curve
included in the integration and,=¢6,. So threshold is
reached wher = . In this case it is convenient to directly
solve for the depinning threshold by settidg== and F
=F% in the self-consistency condition, which is given by

o- fﬁaww g ﬁ(dﬁo(%ﬁ)sirw Bo(8,uF)],

o =m
(25)
with
Bo(8. = m) + 27 = Bo(5r(U,FY)). (26)

Together these two equations yiéF@(u). In Fig. 27 we plot
F$(u) vs u for the hard pinning potential,Y(x)=-(x

nary part of the self-consistency condition is then given by +x%)/(7+ 7).
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1 e stable solutions of the kind discussed fo=0 in Appendix
A. In principle there is no difference in obtainifg(u); one
08 - . i must simply be careful to ensure that only stable solutions
ug ] are being considered. The differences in the calculation are
06 lluﬂ quite technical and we spare the reader the details.
FCT(u) fz APPENDIX C: NUMERICS
0.4 .
To explore the phase diagrams of the mean-field model,
we numerically integrated the equations of motion to deter-
o2r | minev andr as a function of and . As seen in the main
text and earlier appendices, the macroscopic behavior can
P U S S S depend on the preparation of the initial state. Rodegrees

0 n 1 " Il n Il "
0 02 04 06 08 1 12 14 16 18 2

" of freedomi=1,2,... N, the B, for most studies were set

uniformly, B;=(27/N)i. We studied several different initial
FIG. 27. The forcé=5(u), as a function ofi for the hard pinning conditions. One of the most frequently used was to set all
force, Y(X)——(X+X3)/(7T+773) The arrows indicate the valuegj 6,=B, at F=0, which prepares the system in the incoherent
u;, andu, separating the four different regions discussed in the textstatic(IS) state, whenever it is stable. In order to prepare the
These values are defined by the relationg,(F§(ug,)) = U, system in a static coherent state, all phases would be set
uy(F§ (ul)) Uy, anduy(FS(uy)) =uj. The plot becomes nonlinear be- equal to zero. Coherent moving or static states were also
yond u, where the threshold goes from being determinedsy,  prepared by starting from a high fiel with, say, random
= to being determined by, =m initial positions é. [Incoherent moving states were prepared
in some portion of the phase diagram. When preparing inco-
The method for obtamln@(m for monotonic soft pin-  herent sliding states, we uséd?=N degrees of freedom,
ning forces is analogous to that for the hard pinning forcewith M distinct values forg; the values ofé, for eachg
except for one difference. In the case of a monotonic sofvalue were equally spaced in time based on the periodic
pinning force, the value of reachess,,, beforeds reached  single particle(r=0) solution to the equations of motion for
Smin (the reverse takes place for monotonic hard pinningthe giveng.] Given the initial conditions, we typically com-
forceg. This means thati,<u, so that region(1) is now putedv(F) andr(F) at fixed u. This was done by integrating
defined byug, <u<u,, region(2) by u,<u<us, and region the equations of motion Eq(3) using the fourth-order
(3) by u>u,. Of course the single valued region remains Runge—Kutta scheme. The force was raised in small discrete
u<ug,. Itis not difficult to see that only the expressions for steps: after some amount of tinig, at fixed forcep andr
region(2) will differ. In this region the imaginary part of the are measured and thénis increaseddecreasedsome small

self-consistency condition becomes amount 6F. With this algorithm, the time average of the
5 ramp ratedF/dt is given by dF/te, In some cases, we fixed
0 :f m'"ds(%>sin(5+ Bo(6)) F and ramped« up and down in a similar fashion.
ds While the ramp rate and system size does affect the de-

pinning force, the force at which goes from zero to non-
+ f d5< 'Gl)sin(5+ B1(9)), (827)  zero, we find generically that for ramp rates smaller than
s 1075 and sizesN greater than 256, we obtain results for both
, ) the incoherent and coherent depinning line that are relatively
which along with independent of actual ramp rate or system size and agree
Bo(6L) + 27 = B1(R) (28)  With analytical calculations. There is agreement even though
the coherent depinning curve is analytically obtained using
determinesd, and &z. The expression fof(u,F) in region  the assumption that is adiabatically increased. For the

min

(2) is now simulations, on the other hand, or w is increased(de-
5 creasey slowly. Adiabatically rampingu is not necessarily
min dIBO . | . . Il . - he f
f(u,F) = do| —— |cog s+ ()] equivalent to adiabatically rampingsince the former does
5 do not insure that changes slowly, but we do find the correct

coherent depinning line by sitting at a fixédand ramping

+ f d5< 9 1)cos{5+ﬁl<6>] (B29)  UPn . o . .

s do The analytical analysis in Secs. V and VI provides us with
the depinning line as approached from the pinned phase, but
it does not give us insight into the nature of the depinning
transition. For example, there could be hysteresis(F) or
r(F) for cyclical histories in the force, for sufficiently large

The method for obtaining$(w) for nonmonotonicY(é) is  system sizes and arbitrarily small ramp rates. Hysteresis in
analogous to that outlined for monotorﬁ@(u). Matters are the order parameters implies that the depinning transition is
complicated, however, by the existence of additional un-discontinuous. If there is hysteresisufF), then the depin-

min

2. F% for nonmonotonic Y(48)
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a b
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<C L A 4 0.003 FIG. 28. (a) Area of the hysteresis loop in
o I 8 ] v(F) asF is cycled from large values to zero and
8 0.15 . then back up again near,~0.75 for the scal-
-~ % 1 loped potential. Different system sizes and ramp
% B A 1 0-002 ratesdF/dt are shown. Plotb) is just a blowup
> 01 F R a ] of (a) very nearue.
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ning line as approached from the moving phase must bbeetween the CS and CM phases. Hysteresis is only observed
different from the depinning line computed in Secs. VI andbetween the IS and CM phases.

V. To numerically search for hysteresis, we prepare the sys-

tem in a coherent moving state and lower the force until the

system stops. If this repinning line is different from the ana- APPENDIX D: STABILITY OF THE IM PHASE

lytical depinning result, hysteresis between the stdfcor

CS) and moving phases is present and there is a region where In this section we investigate the existence of a stable
the two phases coexist. incoherent slidingIM) phase. We note that the velocity of a

For every potential investigated, we find that there is asingle degree of freedom is always a periodic function of
range of 0< u < u, Where there is a coexistence of the mov-time. To obtain a constant steady state velocity for a collec-
ing and stationary solutions. In general, there is hysteresigon of incoherent degrees of freedom, we assume that at
between coherent movingCM) and incoherent stati¢lS) some initial timet; theith degree of freedom is at the mini-
phases. For the piecewise linear pinning force, the hysteresisum of its own potential well, which in turn is randomly
extends into the coherent pinned CS region. In other wordsshifted by 3, and perform an average over the random start-
the coherence jumps from one finite value to another at the ing timest;. These are chosen to be random variables uni-
depinning transition and there is hysteresis in bogndv  formly distributed on the interval0,P], with P being the
(F,#F%). The numerical evidence for this is shown in Fig. period, that is the time over which the phases advancerby 2
28, which shows the area of the hysteresis loop,This procedure guarantees that we sample uniformly all pos-
J5 dF [v}(F)=v'(F)], wherev!(F) andv'(F) are the histo-
ries of v(F) for ramping the field down or up, respectively. 04 . - .
The amount of hysteresis, as measured by this quantity, is
independent of system size ad&/dt, which suggests that
the simulations are close the adiabatic and infinite-volume
limit. There is a jump down in the area of the hysteresis loop
when u exceedsu,,, but the area is still nonzero far> w,,.

For the hard potential, with the history described abaove,
jumps to zero when the system becomes pinned. When the
drive is increased back up again, the system depins at a dif-
ferentF'T when u < u.. However, we do not observe hyster-
esis between the CM and CS phases. In fact, the hysteresis
when rampingF vanishes suddenly at=u.. See Fig. 29.
This is because the slope of the coherent depinning line starts
to increase rapiplly atue,Fo) and gventually bepomes infi- 07 0755 075 0775 0B Toiss To8s
nite before curling over to possible hysteresis. Above the i
point at which the slope becomes infinite, the analytic calcu-
lations suggest that coherent depinning can be observed by FIG. 29. Area of the hysteresis loopuiiF) nearu, for the hard
increasingu at fixed F. This was verified numerically. For case, whereu, is the intersection oFiT and F{. Different system
the soft-potential cases tested we did not observe hysteresizes and ramp rates are shown.

o]
0.3 gmogooeao@oooaogooee

O Rate=5 x 10°, N=256
ORate=5x 107, N=256
I ©Rate=5x 107° N=1024 e

Hyst. Loop Area

o
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Ly
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sible incoherent moving states such that the system reachewarying part ofY’(&) on the interval-, ) and a jump at

steady state.

Proceeding as in the study of the incoherent static state, 2
we assume that the IM phase exists and study its stability.
The self-consistency condition that must be satisfied by the

mean field solution is given by

r(t)e“/’“)=f %fw %eia(t—ti,ﬁ),
p PJ_,2m

where the phasé#(t-t;,8) is the phase at a time>t; ob-
tained by solving the equation of motion. In E@1), both
the coherence and the mean phasfkare functions of time.
As in the static stability analysis, we lef(t-t;,8)=0(t
-1;, 8)— 8. We then perturb the IM state at the tirwe0, with
a perturbation of the form

Op(=1,B8) = (= 1) — esiN(B+ &(- 1),
with e<1. After inserting this in Eq(D1), we evaluate the
right-hand side at=0 to O(e), obtainingr(t=0)=¢/2 and

Y(t=0)=0. We then use this to computé)) to linear order,
with the result

. dt
r(0)=§[§ +f Pt'Y’(50(—ti))]
P

If r(t) is monotonic in time, then its stability is entirely de-
termined by the sign of (0). We would then conclude that
there is a critical valug:(F) of the coupling strength below
which the IM phase is stable, with

2
MC(F):_EIP

With a change of variable fromto &, (using the equation of
motion), one finds thaj.=0 for all F> F, for any continu-
ous pinning forcdsinceY(a) =0]. For discontinuous pinning
forces, however, we can evaluate the integral in (Bg}) by

(D1)

(D2)

(D3)

dt

FY'((SO(_ t)). (D4)

o= This gives
F+|Y(7r)|) Y(m)
F)=-—]I -2
pelF) P[”(F—Mwn F+[Y(-m)

whereP is a function ofF. For the piecewise linear force,
one can evaluate and findu(F)>0 for someF >Fg, The
critical value of u.(F) is given by

} , (D5)

2

F+am
)(F+aﬂ')
F-am

(D6)

me(F) =yl 1 -
of

In the limit of largeF, u. approaches zero. As approaches
Fsp On the other handy = u,. In other words, the IM sta-
bility curve abruptly ends afu,,Fsy as there can be no IM
phase for any less tharF, A transition from an incoherent

to a coherent moving phase was indeed obtained theoreti-
cally by Vinokur and Nattermarifin a model of for layered
charge density waves and also observed by Otcal 8 in
numerical simulations of layered superconductors. For strong
disorder, these authors found a transition as the drive is in-
creased from a 2D state of decoupled moving layers to a 3D
state where the moving layers become coupled. Our short
time results suggest that a similar transition may occur in the
isotropic system studied here. However, our numerical stud-
ies indicate that this transition may be an artifact of the short
time analysis. When testing the stability of a system prepared
in the IM phase numerically, we find thet) is generally not

a monotonic function of time. Furthermore, a perturbation of
strengthe always destabilizes the IM phase in the limit of
large system size, unless the strength of the perturbation is
made to decrease with system size. Finally, we verified that
the IM phase remains unstable if the somewhat artificial av-
erage over the starting timgds replaced by an average over

a narrow distribution of pinning strengths. Given these nu-
merical findings, we conclude that the IM phase is typically
unstable in the isotropic mean field model studied here, al-
though of course we cannot rule out that the system could be

splitting the integral in a contribution from the smoothly prepared in such a state by some special initial condition.
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