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A method for calculating the photon-induced hopping ac conductivity of a Coulomb glass by computer
simulation is proposed. Results obtained by using an effective relaxation algorithm for two three-dimensional
models of a Coulomb glass are reported. ac conductance data clearly demonstrate the transition from super-
linear to a sub-quadratic power law. We argue that the same qualitative behavior should be expected for
compensated semiconductors. It is shown that the transition is driven by the Coulomb energy of sites forming
resonant pairs and not by the width of the Coulomb gap.
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I. INTRODUCTION

It is widely accepted now,1 that the electron-electron in-
teraction plays an important role in forming the properties of
disordered systems of localized electrons, so-called Coulomb
glasses(CG), of which lightly doped semiconductors at low
temperatures are the best known examples. The conductivity
in such systems is due to tunneling of electrons between
impurity sites accompanied by phonon and/or photon absorp-
tion (emission). At zero temperature such systems cannot
conduct direct current, but still there is a possibility for
photon-assisted ac conductance.

In 1981 Efros and Shklovskii(ES),2,3 using arguments
outlined below, showed that if the Coulomb correlations are
taken into account, the phononless hopping ac conductivity
spectra should change its frequency dependence from
roughly linear at low frequencies to roughly a quadratic
power law(predicted earlier by Mott4) at higher frequencies
where the photon energy is much larger than the Coulomb
interaction between the sites forming the “resonant pair” ab-
sorbing the photon. Recent experiments5,6 confirmed this
change in the power law, but the crossover from one power
to the other is much sharper than that predicted by ES. Al-
though there were many efforts to compute by Monte Carlo
simulation the density of states near the Fermi level where it
goes to zero7 (this is called the Coulomb gap, see, e.g., Refs.
8–11), to calculate the dc conductivity of a Coulomb
glass,12–14and other effects of phonon-assisted hopping,15 we
found no reports on calculation of the phononless hopping ac
conductance of it. Another intriguing question is that about
the nature of the transition of ac conductivity spectra from
ES to Mott power law behavior. According to ES2,3 and the
experimental study of Helgren, Armitage, and Grüner,6 this
transition is driven by the Coulomb energy of the sites form-
ing the resonant pair. However, Lee and Stutzmann5 claimed
that the transition occurs instead when the photon energy
equals the double Coulomb gap width. Our calculations cor-
roborate the first scenario. They show the abrupt crossover
from super-linear to sub-quadratic dependence on frequency
for an amorphous semiconductor model and for the first time
predict the same kind of crossover in compensated semicon-
ductors.

We want to stress important distinctions between theoret-
ical (both ours and ES) CG models and the experimental

systems in Refs. 5 and 6. These experiments were performed
on uncompensated SiB and SiP samples, respectively. In
such systems the so-called self-compensation16 phenomenon
is believed to take place. ES results as well as ours were
obtained for a compensated amorphous semiconductor with a
large Hubbard energy for electrons on the same site, thus
with in-practice forbidden double-site occupation. The appli-
cability of the ES and our models to uncompensated samples
is still a controversial issue.17,18Another distinction is due to
the densities of impurities: in order to treat the interaction
between sites as the Coulomb interaction of point charges,
we had to restrict ourselves to densities much lower than the
experimental ones(see Sec. III). One more distinction is due
to the fact that ES results as well as ours are obtained in a
two-site approximation, which does not take into account
simultaneous many-electron hops. The validity of this ap-
proximation is still a controversial issue.19 One can argue
that simultaneous hops of two or more electrons have a much
lower probability than one-electron hops.10,14 Another argu-
ment for this approximation is that the dc conductivity tem-
perature dependence, predicted in this approximation,sdc
~expf−sT0/Td1/2g, has been observed in many
experiments.20,21 In the following we restrict ourselves to the
two-site approximation and consider only one-electron hops
in the relaxation process and resonant absorption process.

Here we propose a method for calculating the photon-
induced hopping ac conductance of a Coulomb glass by
computer simulation and present results for two 3D models
of a Coulomb glass at zero temperature. Using a certain ob-
servation we were able to develop a much faster relaxation
algorithm, which allows to use systems of size up to 5.12
3105 sites.

This paper is organized as follows: in Sec. II we introduce
the models considered and describe the relaxation algorithm
and the method of ac conductance calculation. In Sec. III we
discuss finite-size effects and present results for ac conduc-
tance for two CG models. The paper concludes in Sec. IV
with a summary of results.

II. MODELS AND ALGORITHMS

Here we consider two CG models: the amorphous semi-
conductor(AS) and the classical impurity band(CIB) model.
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These models describe an ensemble of localized electrons on
the donor sites with different origin of the disorder. In the AS
model the random potential on each donor site originates
from the violation of short-range order in an amorphous
semiconductor, while in the CIB model the random potential
is generated by randomly distributed charged acceptors.

A. Relaxation algorithm

The energy of the models considered is represented by the
Hamiltonian

H = o
i=1

N

wis1 − nid +
1

2o
iÞ j

s1 − nids1 − njd
r ij

, s1d

whereni =0,1 is theoccupation number of donor sitei,22 r ij
are distances between sitesi and j , and N the number of
sites. For the AS model, the random energywi on site i is
uniformly distributed in the intervalf−A,Ag, and for the CIB
model wi =oa1/r ia, wherea=1,2, . . . ,KN denotes acceptor
sites andK=0.5 is the compensation. The sites are randomly
distributed in a sample of lengthL , N=L3L3L, and peri-
odic boundary conditions10 for calculating r ij were used.
Hereafter we use dimensionless units taking as length, en-
ergy and frequency scalen−1/3, e2n1/3/k, ande2n1/3/k" cor-
respondingly, wheren is donor density,e is electron charge,
and k is the dielectric constant. In the ground state the en-
ergy (1) fulfills a set of stability conditions with respect to
one-, two-, three-, etc., electron hops within the system. It
means that after performing such hops, the energy of the
whole system should not decrease. The simplest condition,
corresponding to one-electron hops within the system, has
the following form

«i − « j − 1/r ij ù 0, ni = 0, nj = 1, s2d

where«k=dH /dnk. As we discussed in the Introduction, we
assume, that the state satisfying(2) gives a good approxima-
tion to the true ground state of the model(1). The state of
model (1) in which condition(2) is fulfilled will further on
be referred to as the ground state.

We constructed the ground state relaxation algorithm as
follows. We start from a random distribution of occupation
numbersni satisfying the electroneutrality conditionSini
=KN and calculate the initial seth«iji=1,. . .,N. Then, according
to Ref. 8, we first satisfy the inequality(2) without the term
1/r ij (subroutine M1). Considering the efficiency of the al-
gorithm proposed by Möbius, Richter, and Drittler,10 we
noted that most of the transitions needed to satisfy condition
(2) happens for sites that are close to each other. That is why
we then, in subroutine M21, search for an energetically fa-
vorable transition(i.e., a transition of an electron from sitej
to sitei for which dH=«i −« j −1/r ij ,0) among all pairs with
r ij , r*=2 (note that the number of such “close” neighbor
pairs,N). If the search is successful we perform the transi-
tion and, after a recalculation ofh«ij, return to the entrance
point of the M1 subroutine. After the exit of subroutine M21
after having exhausted all transitions we, in the M22 subrou-
tine, search for transitions among pairs of “far” neighbors
with r ij ù r*. It is important to note that on entering subrou-

tine M22 the transition of an electron on a distancer ij ù r* is
favorable only if the energy on sitesi and j satisfy the con-
dition u«i,j −muø1/r*,10,23where the Fermi levelm is defined
as

m =
1

2
fmin

i
h«i:ni = 0j + max

i
h«i:ni = 1jg. s3d

Thus the number of pairs considered by M22 is proportional
to N as well. So, instead of searching an energetically favor-
able transition among,N2 pairs, we need to consider only
,N pairs of sites in either subroutine M21 and M22. Since
the number of transitions also increases linearly withN the
whole relaxation time is proportional toN2 and the time for
one sample(calculation of the initial stateh«ij and relaxation
to the ground state) in our case increases exactly proportional
to N2 so that forN=5.123105 and A=4.2 the time needed
per sample istsamp<1.83105 sec on an Intel P4 2.4 GHz
processor.

Another advantage of such a division of pairs into “close”
and “far” neighbors is an effective usage of memory: we do
not store allNsN−1d /2 values of 1/r ij , but only those for
close neighbors, and for far neighbors calculate 1/r ij directly
from the coordinatesxi ,yi ,zi andxj ,yj ,zj of sitesi and j .

B. Calculation of ac conductance

To calculate the ac conductance of the Coulomb glass we
follow the arguments of ES.2,3 First note that the absorption
of a photon at frequencyv occurs on rare in space pairs,
which means that we can consider the quantum overlap for
only the two sites forming the resonant pair. The Hamil-
tonian of the interaction can then be written as(we omit
constant terms here)

H = F1n1 + F2n2 +
n1n2

r12
+ Isr12dsa1a2

† + a2a1
†d, s4d

whereFk=wk+oiÞ1,2ni / r ik, ai, ai
† are creation and annihila-

tion operators of an electron on sitei, and Isr12d
= I0 exps−r12/jd. The overlap integral of the wave functions
of the electron on sites 1 and 2,j is the localization length.
To take into account the Coulomb correlation of sites, ES
considered all possibilities of occupying the sites, i.e., the
number of electrons on a pair is equal to 0, 1, or 2. But
photon absorption is possible only if a pair has one electron.
In our case Coulomb correlation is taken into account by
satisfying condition(2), and we need to consider only the
case with one electron on a pair. In this case there are two
levels with energiesE1

±:

E1
± =

1

2
sF1 + F2d ±

1

2
G, G = ÎsF1 − F2d2 + 4I2sr12d. s5d

The energy of the external fieldEW =EW0 cossvtd, absorbed by
pair per unit time,Q, is equal to
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Q = 2p
v

4
uEW0k− urWu + lu2dsv − GdexpSV − E1

− + m

T
D

3F1 − expS−
v

T
DG , s6d

where k−urWu+l is the matrix element corresponding to the
electron’s transition from the state with energyE1

− to that
with energy E1

+, exps−V /Td=expf−sE1
−−md /Tg+expf−sE1

+

−md /Tg, and the temperature scale ise2n1/3/kkB. It can be

shown thatuEW0k−urWu+lu2=sEW 0rW12d2I2sr12d /G2 and that the con-
ductivity can be found as

ssvd =
2o Q

E0
2 . s7d

ES2,3 have calculated the sum in(7) at T=0 (in their case the
definition of V had two more terms: 1 and expf−sF1+F2

+1/r12−md /Tg) and got the following expression for the con-
ductivity at frequencyv (in natural units):

sESsvd =
1

3
p2e2g2jvrv

4F"v +
e2

krv
G, rv = j ln

2I0

"v
, s8d

whereg is the density of states in the noninteracting system.
For sites inside the Coulomb gap, ES argued2,3 that one
should divide the result(8) with a term proportional torv

4,
since the DOS in the region of the Coulomb gapg,«2 and
«,e2/krv.

In a computer simulation we can consider pairs of empty
sid and filled s jd sites and calculate from Eq.(5) the reso-
nance frequency for each pairvi j =G, where G2=s«i −« j

−1/r ijd2+4I2sr ijd with «i and « j defined as in(2), and its
contribution to the conductivityQij ,xij

2I2sr ijd /vi j , where the
field is supposed to be in thex direction andxij is the dis-
tance between the sites in this direction calculated using pe-
riodic boundary conditions. Dividing thev axes into small
bins and summing up the contributionsQij of every pair with
its resonance frequency within a given bin, we get a histo-
gramssvd, which could be considered as proportional to the
ac conductance of our sample.

III. RESULTS

The length of a sample considerably influences the den-
sity of states(DOS), gs«d=1/N·Sids«−«id, measured in
computer simulations, especially in the vicinity of the Fermi
level. Particularly, it follows from (2) that for a
D-dimensional sample the DOS will be exactly 0(“hard
gap”) in the segment«[ fm−1/ÎDL ,m+1/ÎDLg, since in a
sample of lengthL there are no sites on a distance more than
ÎDL /2 (note that this is the case for periodic boundary con-
ditions). Another phenomenon noticed in Ref. 24 is a slightly
increased DOS with respect to its thermodynamical limit,
limL→`gs« ,Ld, in a region next to the “hard gap” described
above. We estimated the whole region of finite size effects to
be

u«i − mu ø 2/L. s9d

Thus we considered only sites with energies outside this re-
gion during the calculations of the ac conductance.

A. AS model

Before proceeding to a discussion of results, we present
what parameters we have taken for the model. The parameter
I0 is determined by the Bohr energy of the localized electron,
which gives us in dimensionless unitsI0=1/j. Near the
metal-insulator transitionj diverges and we cannot take the
localization length large(compared to the mean distance be-
tween sites) if we want to use formula(1) for the energy of
the system. In that case one should replace the Coulomb
interaction of point charges with that of smeared ones10 and
take into account hybridization and polarization. So we used
j=0.8. Then, according to McMillan’s scaling theory25 of the
metal-insulator transition, when the density of impurities is
approaching the critical densitync the localization length di-
verges as(in dimensionless units)

j = S n

nc
D1/3S1 −

n

nc
D−n

, s10d

where n<1. The valuej=0.8 corresponds ton/nc<0.23.
Note that this is much less than the smallest values used in
experiments, 0.855 and 0.39.6 Finally, we can evaluateA
from the impurity band width dataDEb<0.1 eV21 and get
2A=DEb/ se2n1/3/kd=DEb/ se2nc

1/3/kdsnc/nd1/3, which gives
A<2.6snc/nd1/3. Thus we getA=4.2. For this value ofA we
found the Coulomb gap width to beD<0.2.

Figure 1 presents results for samples withL=70 (crosses)
and 80(stars). One can see the convergence of results with
increasingL (inset shows a comparison with results for
samples with smaller sizes). Solid lines are minimum squares
fit of low- and high-frequency data to the formula lns=g1
+g ln v for L=80. We obtainedg=1.42 forvø2·10−2 and
g=1.93 for data withvù5310−2.

Together with the ac conductance we calculated the num-
ber of sitesoutsidethe Coulomb gap to the total number of
sites participating in the ac conductance at given frequency
v, to clarify the nature of the transition from ES to Mott
power-law behavior for the ac conductivity. Our calculations
show that sites with energy«i lying outside the Coulomb gap
begin to contribute to ac conductance forv*0.5 which
means that all data presented in Fig. 1 are related to sites
inside the Coulomb gap. The dotted line in Fig. 1 is the ES
formula (8) modified for sites inside the Coulomb gap,
namely

sESCG, vFv +
1

j lns2I0/vdG . s11d

One can see that our data show larger exponents and a
more abrupt transition to sub-quadratic dependence than that
predicted by(11). We believe that this is due to the assump-
tion, made by ES when deriving(8), about a uniform spatial
distribution of sites with different energies, whereas “cluster-
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ing” of sites with energies from the same side of the Fermi
level in computer simulations has been reported9,12 and sup-
ported by recent analytical results.26

B. CIB model

One of the suggestions made by ES in Ref. 3 is that since
the largest energy scale in the CIB model is the Coulomb
interaction on the mean distance between two sites(1 in our
units), it will define the ac conductance behavior and for
small v one should expect the super-linear behavior de-
scribed by(11) without thev term in the brackets. For larger
v, one should see a rapidly decreasing conductivity withv
without transition to sub-quadratic form. But, as we have
seen in case of the AS model, the sub-quadratic region could
be formed by sites from within the Coulomb gap region, thus
it is interesting to see whether such a kind of transition takes
place in the CIB model.

In Fig. 2, results for the ac conductivity for the CIB model
with j=0.8, I0=1/j=1.25, andL=80 are presented. Solid
lines are fits for low-sg=1.6d and high-sg=2.4d frequencies.
The larger slopes for this model could be explained by its
more peaked DOS(see inset in Fig. 2). Again, as for the AS
model, the transition between the two regions with different
v-dependence occurs long before sites outside the Coulomb

gap begin to participate in the ac conductance.
Based on the results of our simulations we argue that, if

one performs experiments analogous to Refs. 5 and 6, but on
compensated samples, the same behavior of the ac conduc-
tivity should be observed, namely, a sharp increase of the
exponent over a small frequency range with increasing fre-
quency before it rapidly drops.

IV. CONCLUSION

In conclusion, we have proposed a method for calculating
the phononless hopping ac conductance of a Coulomb glass
by means of a fast ground-state relaxation algorithm. We
have calculated the ac conductance for the AS model and our
calculations show larger exponents and a more abrupt tran-
sition than predicted of the ac conductance from a power law
of ES type at low frequencies to Mott type at higher ones.
We performed calculation for the CIB model as well and
showed that in the ac conductance there is a region of super-
quadratic behavior in contradiction to ES arguments about its
absence.3 The calculation of the relevant number of sites
outside the Coulomb gap that take part in the ac conductance
shows that the transition is driven by the Coulomb energy of
the sites forming the resonant pairs rather than by the width
of the Coulomb gap.

FIG. 1. ssvd for the AS model; sample lengths areL=70
(crosses) and 80(stars), averaging were performed overNs=22 and
23 samples respectively. Solid lines are fits with exponentsg
=1.42 and 1.93. A fit to ES formula(11) is given by the dotted line.
Inset showsssvd for differentL=10 (circles), 20 (squares), 50 (dia-
monds), and 80(stars). Solid lines are just a guide to the eye. Here
we use dimensionless units taking as conductance and frequency
scalee6n2/3j5/"k2sDEbd2 ande2n1/3/k", wheren, is donor density;
e, electron charge;k, dielectric constant;j, localization length; and
DEb, impurity band width.

FIG. 2. ssvd for the CIB model; sample length isL=80 (stars),
averaging were performed overNs=4 samples. Solid lines are fits
with exponentsg=1.64 and 2.53. The dotted line represents ES
formula (11). Inset shows DOS for the AS(dotted line) and CIB
(solid line) models. Here we use dimensionless units taking as con-
ductance, frequency and DOS scalee6n2/3j5/"k2sDEbd2, e2n1/3/k",
and e2n1/3/DEbk, wheren is donor density;e, electron charge;k,
dielectric constant;j, localization length; andDEb, impurity band
width.
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