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Dynamic dislocation modeling by combining Peierls Nabarro and Galerkin methods
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A dislocation model combining Peierls Nabarro and Galerkin methods is formulated within the framework
of the finite element technique. Complex boundary conditions, dynamic problems, as well as complex dislo-
cation structures can be addressed without any loss in the dislocation core structure description. It is shown that
the model reduces to the Peierls Nabarro and phase field techniques under specific limits. An example of a fast
moving dislocation dissociated into Shockley partials is given.
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Dislocation motion and interaction are the main mecha;PFM gradient energy. Contrary to the quasi-continuum
nisms that control plasticity of metals. Dislocation core method?® an exact matching between the Gauss point loca-
structure is known to strongly influence the applied stresgion and the atomistic structure is not required: the proposed
required for dislocation glide® as well as the mechanism of method is mesh-independent.
cross-slip* Though significant results as to crystal stability — For clarity, a unique dislocation slip plaisds considered
and dislocation onsetwere arrived at by other routes, the hereafter but the extension to several slip surfaces can be
Peierls-Nabarro modef (PNM) still remains one privileged made following Shen and Watfyin PFM. Two fields are
tool to calculate core structure, at a remarkably low cost butised in the formulation: a three-dimensional displacement
in a somewhat approximate fashion. Recent use of physicdield u(r) from which derives the strain, defined in the whole
data such as the stacking fault enérgg well as the consid- system volumeV, and a two-dimensional fielg(r) defined
eration of lattice discretenesshave, however, strongly im- on S (upper bars denote 2D vectors expressed in the ortho-
proved the predictive capability of PNMs. normal basige!,e?] which spansS). The fieldu(r) repre-

In a PNM, core structure emerges from minimizing with sents shomogeneoustrain. Displacement discontinuities of
respect to the stacking fault vectbithe sum of the elastic pNMs are replaced here by platelet inclusiéhsnd 7(r)
energy,E®, and the generalized stacking fault enef§¥(f)  stands for thelisplacement jummeasured when crossiigy

(or y surface, that represents the displacement jump costThe problem consists in minimizing with respectu@nd 7
Input data forE% can be obtained from molecular dynamics the Hamiltonian

(MD) calculationgab initio® or classical for a wide range of

pressures. Most of the PNM uses one-dimensi¢bh@a) rep-

resentations of dislocation, even if in some cases 2D dislo- H:f {Ee[u,ﬂ +u-B+ lpuz}d\”f ES7]dS
cation structures can be addressed by a more complex varia- v 2 s

tional formulation(as for screw dislocation corés! or the

onset of a dislocation lodp'd. Yet, in spite of its simplicity, with B the bulk forces angh the material densibE® is the

the PNM cannot easily handle, e.g., dislocation interactionelastiC enerav density. ari® is theinelastic stacking fault
with a precipitate, Franck—Read sources, junctions, or dy- 9y Y, X . 9 .
nergy (analogous to the so-called “crystalline energy” in

namic loadings. On the contrary, the alternative phase fiel ; ; "

oG PEM)can el with th evolon of comple cis |1 (1S sty encrs sl froug
location structuré$—17 as well as with precipitaté%in an- | i inimizati 'thg’ t to the fiell® | '
isotropic materials. There, the free energy is minimized with n practice, minimization with respect to the fielr) is

respect to phase fielproportional to a displacivstress free achie\_/er?ﬂby means of a time dependent Ginzburg Landau
deformation, leading after minimization to domains of small€duatior,” whereas the Galerkin method is used to compute

thickness the border of which are the dislocation lines. S¢he evolution ofu(r). The energyE® is expressed in terms of

far, however, PFMs can predict the splitting into Shockleythe total straine; =1/2(u;;+U;;), the stress-free strain ar-

partiald” but are unable tpredictdislocation core width. elastic stacking fault strais's, and thelocal stiffness tensor
In this paper | introduce a hybrid model combining PNM K(r) as

and a Galerkin Metho@GM)° that use€9 as an input. The

model allows for the calculation of core structumasd dis- 1 _ )

location interaction during quasistatic or dynamie.g., Eu,n]= E[S(V) = &%) 1:K(r):Le(r) = £5(n)].

shock loadings. It also admits complex boundary conditions

and multiple material structurés.g., dislocation interactions

with precipitates Moreover, for appropriate sets of param- The local stiffnesK(r) will be adjusted within the platelet to

eters and for quasistatic loadings, the method is shown ta value different fromK©, the stiffness in the surrounding

reduce either to a PNM or to a PFM. In the latter case, thdulk homogeneous medium, for reasons to become clear be-

use of a modified crystalline energy removes the need for sow. For a single slip plane, the stress-free strelfhreads
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increase the stiffnegasidethe platelet of width_, | impose

2. 2 w<L. The closed-form expression gf, however, depends
J 2°() on the interpolation technique and is not in the scope of this
study. Using Eqs(2) and(3), the elastic energy by unit sur-
‘( face simplifies into
g(z)
) Fov= TR T @
s), ot g

FIG. 1. Continuum(right) or atomistic(left) representation of
i ) g t . i S_L0S s ) oS i : 0 s
the Block-Sliding configuration used to calcul&®". The slip sur where KS=KOS+gPKPS, with KO _elmnnejonpK Kirjg

. . . . P mngy
Larzescsrilset:%igljgce(grxgn?ndf is a vector ofS that stands for the :elmnnéonpKﬁmop and Whersp:fglé(z)gp(z)dz is a shape pa-

rameter independent of the scdle(a constant for all the
1 1 simulationg. The 2D vectorf is the restriction taS of the
,g;ij(r) = —[m(?jnj +n; nj(r_)]—g’(n -r/L), (1) fstacking'fault vectof (fi=¢€ -f, i:1,2)..lmposing the matc'h—

2 L ing requirement between the energies in the BS configura-

where n is the normal toS, 7(r)=7,(e and wherer; tion, namely:

:e}rj is the projection of onto S. The functiong(z), almost — 1 = s = .
constant everywhere save in the vicinityzf0, defines the E9(f) = min Z(f -9 K> (f-np)+E°[n]|, (5
spreading of the displacement and is such thétx) "
-g(-*)=1 andfg'*(z)dz=1. The length scal is therefore  and denoting byy' (f) the minimizing value ofy, entails the
characteristic of displacement field variations. In PFMs,desired relationship:
g'(2) is usually taken constant in a platelet of thicknesmnd " "
equal to zero elsewhere. The specific function used in this isfr=— (£\7 = Eosff) Eﬁ_ S\-1, ﬁ

, : : E*Tx ()]=E%(f) — (K (6)
work is smoother and determined by the node spacing and 2 5f of
the degree of interpolation polynomials. This functgim) is _
hard-wired within the Galerkin method but its details areWith
irrelevant here since only the parametteplays a role in the o JE9S'
following. 7 =f- L(KS)™t. ——. (7)

The crux of the present model is the inelastic stacking of

fault energyE'" (still undeterminey] which depends on ma-
terial parameters and controls the spreading of dislocatio
cores. Our only external input is the generalized stackingg/
fault energyE%', assumed to be provided by an independen
MD calculation in the nonequilibrium block-sliding BS con- 1
figuration of Fig. 1, where the strain is localized in the vi- E9s((f) = —f & (DK e(r)ar. (8)
cinity of the slip surfaceS. Our concern is to expred=s' in Vv
terms ofL, K, andE%', and to determine appropriate values
for L andK. To this aim, the BS configuration, i.e., a non-
equilibrium glide of tworigid blocks of crystal, is repro-

&:ow, a second physical requirement is thatgorall straing
e free energy is given by the linear elasticity law for a
olumeV surrounding the slip surface:

Applying it to the BS configuratiortwhich involves a limit
f—0) yields the additional condition

duced with the Galerkin method and | require its energy to FPE9Sf 1
matchE% (see Fig. 1. There, the displacement fieldr) is = (0) = EKOS (9
prescribedin the entire volume and is a function afonly, af

and the energy in the BS configuration is the sEPE'f
minimized with respect toy(r) = 7, assumed to be constant
over the surfaces. In the present study, both the total and 1 [aZEQSf ]‘1

from which follows an estimate df:

— KOS
inelastic stacking fault strain fields derive from the same L= 2K == © (10)

2
continuous representation: they are proportional to of
g'(n-r/L). The elastic straim-£'' then reads This derivation shows thdt can be seen as a length scale
specific to the BS configuration and to the material. It relates
&) — Sijsf = ig'(%)[(fi - +n(f- 7l (2 E% [a configuration- andl-dependent quantity that contains
part of an elastic energy, cf. E¢5)] to the more intrinsic
surface energ§*'.
The inelastic energy defined by E&) can be considered
as a generalized stacking fault energy from which the elastic
K(n-r/L) =K%+ KPgP(n - r/L). (3)  Ppart has been removed. This splitting is then comparable to
the one proposed by Ri#ewith the noticeable difference
Here,gP(2) is any positive, symmetric functiogFig. 1) with that the length scalke naturally emergesrom the minimiz-
compact support of sizer. Since this function is chosen to ing procedure. For aluminum, the characteristic lerigthe-

The stiffness tensor is represented as a functiom of L
only by introducing the tensdfP of the platelet:
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duced from(10) is 1.77 A, 25% less than the separation of
the lattice plane$2.34 A).
For Eq. (6) to defineE(3") for all values of 7", the

relationship(7) betwegn? andf has to be one-to-one. In
other words, whatevef,
) ‘0.

This condition isa priori not guaranteed. The only remaining
free parameter is the stiffness ten&dr It should not modify

—

n

J
de*(

af

(11)

the elastic response excepted for all shear strains in the plate

let plane. This can be achieved by takidgas a function of
the tensoiK®S containing only shear components

K nop= Ep(émnn + el Ki(ehn, + ehng) (12)
with =0 a scalar proportionality factor. Sineeandn are
unit vectors KPS=(a/s,)K%.

A suitable value ofx can in practice always be found to
insure condition(11). A choice @=0 [i.e., K(r)=K° makes
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FIG. 2. (a) Energies in the BS configuratiq@aluminum, withf
proportional to[110] right and[121] left). a, is the lattice param-
eter. Different values for/s, change the partition between elastic
and inelastic energies but do not influence the total gneEFG
structure to model the BS configurationodes are represented by
spheres The darkened spheres are the nodes in the platelet.

volume. Once the mesh is defined, the computational cost

the method comparable to the PFM, with three noticeableloes not change and is independent of the dislocation den-

differences howeveri) the elastic field around the disloca-
tion is obtained by a Galerkin method, thus allowing for
computations on any stress field in dynamic loadifig;the
crystalline energy, her&s'(#), is defined as a function of
E%(#) andKC only; (iii) a gradient energy in the crystalline
energy is no longer useful since the dislocation c@ed
possibly its dissociation into partiglsan be resolved. How-
ever, the choicer=0 does not allow one to verify Eq11)
for some materialge.g., aluminum, see belgw/f such is the

sity. In all the following simulationss,=1/4.

The material used is aluminum with the eigenvalue& of
(Ref. 25 given by Ref. 26. The energg®{(f) has been es-
timated in the BS configuration by Hartfoed al® via anab
initio calculation, forf proportional to[110] and[121], and
with atom relaxation in the direction(at constant simulation
volume). | reconstructed the entig?s' surface by means of a
spline interpolation between these data. The proportionality
relationship(9) holds with a maximum relative error of 10%

case, the energg™' is not defined and the method cannot bebetween each component, which insures acceptable compat-

used. On the other hand, the limit—« leads toES =E%f
and »=f, as stems from Eq$7) and(6) with KS~*—0. The
platelet thickness can then be set tgi.e., L—0), and the

ibility between theab initio (throughE%') and experimental
(throughK®) data used. For aluminum, the lowest allowed
value of a/s, for the definition ofE®' is als,~=2.0. How-

method becomes comparable to a PNM, since the elastic araVer, any greater value af can be usedas demonstrated in
generalized stacking fault energies are minimized with reFig. 2) to give the same total energy with, however, different

spect to the stacking fault vectér

elastic and inelastic energies.

Since high stiffness slows down the convergence proce- In order to demonstrate that the EFG method can repro-

dure of the TDGL kinetics, the lowest compatible with Eq.

duce the generalized stacking fault eneEgy', the total en-

(11) is preferred. Thus the method lies between a PNM and argy calculated by using the 3D EFG code is plotted in Fig.

PFM and the fieldy can be attributed no immediate signifi-
cance. As it is nhow showng does not influence the total
energy and therefore does not bias the solutibconsidered
in terms of the total deformationit only modifies the parti-
tion between elastic and plastic deformations.

2. To reproduce the total energy, the node spacing inzthe
direction has to be chosen so that the displacement described
by the EFG technique is consistent with the definition of the
intrinsic characteristic scale. This can be explained by the
1/L dependence of the elastic energy in the BS configuration

For the numerical examples given thereafter, an elemerisee Eq(4)].

free Galerkin(EFG) method®2* has been used. One advan-
tage is that the Gauss point locatiqfr®m which continuous
representation of the fields are deriyedn be arbitrary, with

There is, however, no such mesh dependence when a dis-
location is modeled with the proposed method since the total
energy only depends upantrinsic materials properties such

no constraint on the node coordination number. MoreoverasK?®, the Burgers vector, ands’. A comparison between an
the interpolation accuracy can be tuned independently bgdge dislocation core structure calculated by the PN niodel

changing the density of nodes or by modifying the polyno-

and by the proposed method is presented in Fig 3. This result

mial basis degrees. The element free Galerkin method allowis quasistatic =0=0) and is thus independent of the TDGL
for an easy optimization of the mesh density, a feature that iginetics. The splitting into Shockley partials is correctly re-

also present in the quasi—continuum metfd@The compu-

produced and in accordance with other numerical re8ults.

tational cost can thus be dramatically reduced compared to 8everal node spacings have been chosen with no strong in-
nonoptimized mesh and is not proportional to the simulatedluence on the final result except when the mesh becomes too
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FIG. 3. (Color onling (a) Disregistry componentd -x andf-y)
for an edge dislocation in aluminum. The modeled structure is a 2D
plate of 26.6< 26.6 nnt with free boundary conditions. The sepa-
ration into Shockley partials is comparable to the one given by a
PNM (Ref. 9. No dependence with respect to the node dergsgy,
with the characteristic scale of the simulation is found. (b) Dis-
registry (dotg plotted on the generalized stacking fault enejy' .
in the equilibrium configuratiorix=[110], y=[112]). The disloca- 06 08 10 12 14 16 18
tion closely follows the path of minimum energy, except fek Sacs (nm)
~0.5. The white line is a guide for the eye.

FIG. 4. (Color online (a) Disregistry componertt-x as a func-
tion of space plotted each 0.5 @urves are shifted vertically to not
coarse to correctly represent the dislocation core. overlap. The initial dislocation corgsplitting into partial is con-

As an illustrative example, the previous dislocation istracted in less than 5 ps into a narrow one followed by oscillations.
placed into a rectangular volume in which an initial shear(b) and (c) Shear stresgo,,) of the dislocation(blue=-2 Gpa,
stress of 1 GPa is prescribed. This instantaneous loadingd=+4 Gpaatt=0(b) and att=5 ps(c). Pictures are cropped and
makes the dislocation accelerate. The TDGL kinetics is chocentered on dislocation center.

sen so that minimization with respect to the phase field ISAnother salient difference between the method introduced

?clmeved a} each'tlm'e step. The initial anﬂ flnalhshgar Sre$%ere and PN methods is that complex microstructures can be
ne ds are plotted in Flgs_.(b) and 4c) as well as the disreg- considered(precipitate with different stiffness, voids, free
istry componentsf-x [Fig. 4@)]. The dislocation reaches p,ngary conditions.) by only defining the appropriate
from the first picosecond a constant velocity=e2500 m/s,  mesh.
less than 60% of the shear wave celerity for that crystal T conclude, the proposed method establishes for the first
orientation. The initial splitting into Shockley partials is time a link between Peierls Nabarro and Galerkin methods.
transformed in less than 2 ps into a complex and asymmetrithis could be achieved only through a careful splitting of the
cal core structure in which a strong oscillation takes placgyeneralized stacking fault ener&*' (or y surfacg into vol-
[Fig. 4@)]. The separation into partials eventually vanishesume elastic energy and inelastic energy defined on the glid-
leading to core contraction as analytical calculations sHow. ing surface. This allows for an exact reproduction of the
The stress field at 5 pg-ig. 4(c)] shows that the left shear surface and thus insures a true energetic equivalence with the
lobe of the “whistling” dislocation is replaced by a zone thatcorrespondingab initio calculations. Such a splitting makes
gives out in the whole volume a coherent and short wavéhe method mesh-independent, provided that the dislocation
length signal. However, this first result has to be completedore can be resolved. This paves the way towards the study
by an analysis of the role of frictional forcgphonon drag ~ of complex dislocation systems within a continuum mechan-
as well as the influence of the discreteness nature of thigs framework.
material at such a length scalReef. 28.

This example shows one of the main differences between ACKNOWLEDGMENTS
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