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A dislocation model combining Peierls Nabarro and Galerkin methods is formulated within the framework
of the finite element technique. Complex boundary conditions, dynamic problems, as well as complex dislo-
cation structures can be addressed without any loss in the dislocation core structure description. It is shown that
the model reduces to the Peierls Nabarro and phase field techniques under specific limits. An example of a fast
moving dislocation dissociated into Shockley partials is given.
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Dislocation motion and interaction are the main mecha-
nisms that control plasticity of metals. Dislocation core
structure is known to strongly influence the applied stress
required for dislocation glide1–3 as well as the mechanism of
cross-slip.4 Though significant results as to crystal stability
and dislocation onset5 were arrived at by other routes, the
Peierls-Nabarro model1–3 (PNM) still remains one privileged
tool to calculate core structure, at a remarkably low cost but
in a somewhat approximate fashion. Recent use of physical
data such as the stacking fault energy6 as well as the consid-
eration of lattice discreteness7,8 have, however, strongly im-
proved the predictive capability of PNMs.

In a PNM, core structure emerges from minimizing with
respect to the stacking fault vectorf the sum of the elastic
energy,Ee, and the generalized stacking fault energy,Egsfsfd
(or g surface), that represents the displacement jump cost.
Input data forEgsf can be obtained from molecular dynamics
(MD) calculations(ab initio9 or classical) for a wide range of
pressures. Most of the PNM uses one-dimensional(1D) rep-
resentations of dislocation, even if in some cases 2D dislo-
cation structures can be addressed by a more complex varia-
tional formulation(as for screw dislocation cores10,11 or the
onset of a dislocation loop12,13). Yet, in spite of its simplicity,
the PNM cannot easily handle, e.g., dislocation interaction
with a precipitate, Franck–Read sources, junctions, or dy-
namic loadings. On the contrary, the alternative phase field
method(PFM) can deal with the evolution of complex dis-
location structures14–17 as well as with precipitates18 in an-
isotropic materials. There, the free energy is minimized with
respect to aphase fieldproportional to a displacivestress free
deformation, leading after minimization to domains of small
thickness the border of which are the dislocation lines. So
far, however, PFMs can predict the splitting into Shockley
partials17 but are unable topredict dislocation core width.

In this paper I introduce a hybrid model combining PNM
and a Galerkin Method(GM)19 that usesEgsf as an input. The
model allows for the calculation of core structuresand dis-
location interaction during quasistatic or dynamic(e.g.,
shock) loadings. It also admits complex boundary conditions
and multiple material structures(e.g., dislocation interactions
with precipitates). Moreover, for appropriate sets of param-
eters and for quasistatic loadings, the method is shown to
reduce either to a PNM or to a PFM. In the latter case, the
use of a modified crystalline energy removes the need for a

PFM gradient energy. Contrary to the quasi-continuum
method,20 an exact matching between the Gauss point loca-
tion and the atomistic structure is not required: the proposed
method is mesh-independent.

For clarity, a unique dislocation slip planeS is considered
hereafter but the extension to several slip surfaces can be
made following Shen and Wang16 in PFM. Two fields are
used in the formulation: a three-dimensional displacement
field usrd from which derives the strain, defined in the whole
system volumeV, and a two-dimensional fieldh̄sr̄d defined
on S (upper bars denote 2D vectors expressed in the ortho-
normal basisfe1,e2g which spansS). The field usrd repre-
sents ahomogeneousstrain. Displacement discontinuities of
PNMs are replaced here by platelet inclusions,14 and h̄sr̄d
stands for thedisplacement jumpmeasured when crossingS.
The problem consists in minimizing with respect tou andh̄
the Hamiltonian

H =E
V
HEefu,h̄g + u ·B +

1

2
ru̇2JdV+E

S

Eisffh̄gdS

with B the bulk forces andr the material density.Ee is the
elastic energy density, andEisf is the inelastic stacking fault
energy (analogous to the so-called “crystalline energy” in
PFMs). Thus nonlinearity enters theconstitutivelaw through
the evolution of the minimizingh̄sr̄d as a function of stress.
In practice, minimization with respect to the fieldh̄sr̄d is
achieved by means of a time dependent Ginzburg Landau
equation,21 whereas the Galerkin method is used to compute
the evolution ofusrd. The energyEe is expressed in terms of
the total strain«i j =1/2sui,j +uj ,id, the stress-free strain orin-
elastic stacking fault strain«isf, and thelocal stiffness tensor
Ksrd as

Eefu,h̄g =
1

2
f«srd − «isfsrdg:Ksrd:f«srd − «isfsrdg.

The local stiffnessKsrd will be adjusted within the platelet to
a value different fromK0, the stiffness in the surrounding
bulk homogeneous medium, for reasons to become clear be-
low. For a single slip plane, the stress-free strain«isf reads
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«i j
isfsrd =

1

2
fhisr̄dnj + nih jsr̄dg

1

L
g8sn · r/Ld, s1d

where n is the normal toS, hisr̄d=h̄ jsr̄dei
j and wherer̄ i

=ej
i r j is the projection ofr onto S. The functiongszd, almost

constant everywhere save in the vicinity ofz=0, defines the
spreading of the displacement and is such thatgs+`d
−gs−`d=1 andeg82szddz=1. The length scaleL is therefore
characteristic of displacement field variations. In PFMs,
g8szd is usually taken constant in a platelet of thicknessL and
equal to zero elsewhere. The specific function used in this
work is smoother and determined by the node spacing and
the degree of interpolation polynomials. This functiongszd is
hard-wired within the Galerkin method but its details are
irrelevant here since only the parameterL plays a role in the
following.

The crux of the present model is the inelastic stacking
fault energyEisf (still undetermined), which depends on ma-
terial parameters and controls the spreading of dislocation
cores. Our only external input is the generalized stacking
fault energy,Egsf, assumed to be provided by an independent
MD calculation in the nonequilibrium block-sliding BS con-
figuration of Fig. 1, where the strain is localized in the vi-
cinity of the slip surfaceS. Our concern is to expressEisf in
terms ofL, K, andEgsf, and to determine appropriate values
for L and K. To this aim, the BS configuration, i.e., a non-
equilibrium glide of two rigid blocks of crystal, is repro-
duced with the Galerkin method and I require its energy to
matchEgsf (see Fig. 1). There, the displacement fieldusrd is
prescribedin the entire volume and is a function ofz only,
and the energy in the BS configuration is the sumEe+Eisf

minimized with respect to.h̄sr̄d; h̄, assumed to be constant
over the surfaceS. In the present study, both the total and
inelastic stacking fault strain fields derive from the same
continuous representation: they are proportional to
g8sn ·r /Ld. The elastic strain«−«isf then reads

«i j − «i j
isf =

1

2L
g8Sn · r

L
Dfsf i − hidnj + nisf j − h jdg. s2d

The stiffness tensor is represented as a function ofn ·r /L
only by introducing the tensorKp of the platelet:

Ksn · r/Ld = K0 + Kpgpsn · r/Ld. s3d

Here,gpszd is any positive, symmetric function(Fig. 1) with
compact support of sizew. Since this function is chosen to

increase the stiffnessinsidethe platelet of widthL, I impose
w,L. The closed-form expression ofgp, however, depends
on the interpolation technique and is not in the scope of this
study. Using Eqs.(2) and(3), the elastic energy by unit sur-
face simplifies into

1

S
E

V

EesrddV =
1

2L
sf̄ − h̄d ·KS · sf̄ − h̄d s4d

where KS=K0S+spKpS, with Kij
0S=em

i nneo
j npKmnop

0 , Kij
pS

=em
i nneo

j npKmnop
p , and wheresp=eg82szdgpszddz is a shape pa-

rameter independent of the scaleL (a constant for all the

simulations). The 2D vectorf̄ is the restriction toS of the

stacking fault vectorf ( f̄ i =ei ·f, i =1,2). Imposing the match-
ing requirement between the energies in the BS configura-
tion, namely:

Egsfsf̄d ; min
h̄
F 1

2L
sf̄ − h̄d ·KS · sf̄ − h̄d + Eisffh̄gG , s5d

and denoting byh̄*sf̄d the minimizing value ofh̄, entails the
desired relationship:

Eisffh̄*sf̄dg = Egsfsf̄d −
L

2

] Egsf

] f̄
· sKSd−1 ·

] Egsf

] f̄
, s6d

with

h̄*sf̄d = f̄ − LsKSd−1 ·
] Egsf

] f̄
. s7d

Now, a second physical requirement is that forsmall strains,
the free energy is given by the linear elasticity law for a
volumeV surrounding the slip surface:

Egsfsfd =
1

V
E

V

«i jsrdKijkl
0 «klsrddr . s8d

Applying it to the BS configuration(which involves a limit

f̄ →0) yields the additional condition

]2Egsf

] f̄ 2
s0d =

1

L
K0S s9d

from which follows an estimate ofL:

L =
1

2
K0S:F ]2Egsf

] f̄ 2
s0dG−1

. s10d

This derivation shows thatL can be seen as a length scale
specific to the BS configuration and to the material. It relates
Egsf [a configuration- andL-dependent quantity that contains
part of an elastic energy, cf. Eq.(5)] to the more intrinsic
surface energyEisf.

The inelastic energy defined by Eq.(6) can be considered
as a generalized stacking fault energy from which the elastic
part has been removed. This splitting is then comparable to
the one proposed by Rice22 with the noticeable difference
that the length scaleL naturally emergesfrom the minimiz-
ing procedure. For aluminum, the characteristic lengthL de-

FIG. 1. Continuum(right) or atomistic(left) representation of
the Block-Sliding configuration used to calculateEgsf. The slip sur-
faceS is the planesx ,yd and f is a vector ofS that stands for the
prescribed displacement.
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duced from(10) is 1.77 Å, 25% less than the separation of
the lattice planes(2.34 Å).

For Eq. (6) to defineEisfsh̄*d for all values of h̄* , the

relationship(7) betweenh̄* and f̄ has to be one-to-one. In

other words, whateverf̄,

detS ] h̄*

] f̄
D Þ 0. s11d

This condition isa priori not guaranteed. The only remaining
free parameter is the stiffness tensorKp. It should not modify
the elastic response excepted for all shear strains in the plate-
let plane. This can be achieved by takingKp as a function of
the tensorK0S containing only shear components

Kmnop
p =

a

4sp
sem

i nn + en
i nmdKij

0Sseo
j np + ep

j nod s12d

with aù0 a scalar proportionality factor. Sinceei andn are
unit vectors,KpS=sa /spdK0S.

A suitable value ofa can in practice always be found to
insure condition(11). A choicea=0 [i.e., Ksrd=K0] makes
the method comparable to the PFM, with three noticeable
differences however:(i) the elastic field around the disloca-
tion is obtained by a Galerkin method, thus allowing for
computations on any stress field in dynamic loading;(ii ) the
crystalline energy, hereEisfshd, is defined as a function of
Egsfshd andK0 only; (iii ) a gradient energy in the crystalline
energy is no longer useful since the dislocation core(and
possibly its dissociation into partials) can be resolved. How-
ever, the choicea=0 does not allow one to verify Eq.(11)
for some materials(e.g., aluminum, see below). If such is the
case, the energyEisf is not defined and the method cannot be
used. On the other hand, the limita→` leads toEisf=Egsf

andh= f, as stems from Eqs.(7) and(6) with KS−1→0. The
platelet thickness can then be set to 0(i.e., L→0), and the
method becomes comparable to a PNM, since the elastic and
generalized stacking fault energies are minimized with re-
spect to the stacking fault vectorf.

Since high stiffness slows down the convergence proce-
dure of the TDGL kinetics, the lowesta compatible with Eq.
(11) is preferred. Thus the method lies between a PNM and a
PFM and the fieldh̄ can be attributed no immediate signifi-
cance. As it is now shown,a does not influence the total
energy and therefore does not bias the solution(if considered
in terms of the total deformation): it only modifies the parti-
tion between elastic and plastic deformations.

For the numerical examples given thereafter, an element
free Galerkin(EFG) method23,24 has been used. One advan-
tage is that the Gauss point locations(from which continuous
representation of the fields are derived) can be arbitrary, with
no constraint on the node coordination number. Moreover,
the interpolation accuracy can be tuned independently by
changing the density of nodes or by modifying the polyno-
mial basis degrees. The element free Galerkin method allows
for an easy optimization of the mesh density, a feature that is
also present in the quasi–continuum method.20 The compu-
tational cost can thus be dramatically reduced compared to a
nonoptimized mesh and is not proportional to the simulated

volume. Once the mesh is defined, the computational cost
does not change and is independent of the dislocation den-
sity. In all the following simulations,sp=1/4.

The material used is aluminum with the eigenvalues ofK
(Ref. 25) given by Ref. 26. The energyEgsfsfd has been es-
timated in the BS configuration by Hartfordet al.9 via anab
initio calculation, forf proportional tof110g and f121g, and
with atom relaxation in thez direction(at constant simulation
volume). I reconstructed the entireEgsf surface by means of a
spline interpolation between these data. The proportionality
relationship(9) holds with a maximum relative error of 10%
between each component, which insures acceptable compat-
ibility between theab initio (throughEgsf) and experimental
(throughK0) data used. For aluminum, the lowest allowed
value of a /sp for the definition ofEisf is a /sp<2.0. How-
ever, any greater value ofa can be used(as demonstrated in
Fig. 2) to give the same total energy with, however, different
elastic and inelastic energies.

In order to demonstrate that the EFG method can repro-
duce the generalized stacking fault energyEgsf, the total en-
ergy calculated by using the 3D EFG code is plotted in Fig.
2. To reproduce the total energy, the node spacing in thez
direction has to be chosen so that the displacement described
by the EFG technique is consistent with the definition of the
intrinsic characteristic scaleL. This can be explained by the
1/L dependence of the elastic energy in the BS configuration
[see Eq.(4)].

There is, however, no such mesh dependence when a dis-
location is modeled with the proposed method since the total
energy only depends uponintrinsic materials properties such
asK0, the Burgers vector, andEisf. A comparison between an
edge dislocation core structure calculated by the PN model9

and by the proposed method is presented in Fig 3. This result
is quasistaticsḣ= u̇=0d and is thus independent of the TDGL
kinetics. The splitting into Shockley partials is correctly re-
produced and in accordance with other numerical results.9

Several node spacings have been chosen with no strong in-
fluence on the final result except when the mesh becomes too

FIG. 2. (a) Energies in the BS configuration(aluminum, withf
proportional tof110g right andf121g left). a0 is the lattice param-
eter. Different values fora /sp change the partition between elastic
and inelastic energies but do not influence the total one.(b) EFG
structure to model the BS configuration(nodes are represented by
spheres). The darkened spheres are the nodes in the platelet.
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coarse to correctly represent the dislocation core.
As an illustrative example, the previous dislocation is

placed into a rectangular volume in which an initial shear
stress of 1 GPa is prescribed. This instantaneous loading
makes the dislocation accelerate. The TDGL kinetics is cho-
sen so that minimization with respect to the phase field is
achieved at each time step. The initial and final shear stress
fields are plotted in Figs. 4(b) and 4(c) as well as the disreg-
istry componentsf ·x [Fig. 4(a)]. The dislocation reaches
from the first picosecond a constant velocity of<2500 m/s,
less than 60% of the shear wave celerity for that crystal
orientation. The initial splitting into Shockley partials is
transformed in less than 2 ps into a complex and asymmetri-
cal core structure in which a strong oscillation takes place
[Fig. 4(a)]. The separation into partials eventually vanishes,
leading to core contraction as analytical calculations show.27

The stress field at 5 ps[Fig. 4(c)] shows that the left shear
lobe of the “whistling” dislocation is replaced by a zone that
gives out in the whole volume a coherent and short wave
length signal. However, this first result has to be completed
by an analysis of the role of frictional forces(phonon drag)
as well as the influence of the discreteness nature of the
material at such a length scale(Ref. 28).

This example shows one of the main differences between
the proposed method and both PNM/PFM: displacement and
disregistry are the minimization result of a functional that
contains inertial terms. Unsteady state motion as well as
propagating waves are naturally included is this formalism.

Another salient difference between the method introduced
here and PN methods is that complex microstructures can be
considered(precipitate with different stiffness, voids, free
boundary conditions…) by only defining the appropriate
mesh.

To conclude, the proposed method establishes for the first
time a link between Peierls Nabarro and Galerkin methods.
This could be achieved only through a careful splitting of the
generalized stacking fault energyEgsf (or g surface) into vol-
ume elastic energy and inelastic energy defined on the glid-
ing surface. This allows for an exact reproduction of theg
surface and thus insures a true energetic equivalence with the
correspondingab initio calculations. Such a splitting makes
the method mesh-independent, provided that the dislocation
core can be resolved. This paves the way towards the study
of complex dislocation systems within a continuum mechan-
ics framework.
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FIG. 3. (Color online) (a) Disregistry components(f ·x andf ·y)
for an edge dislocation in aluminum. The modeled structure is a 2D
plate of 26.6326.6 nm2 with free boundary conditions. The sepa-
ration into Shockley partials is comparable to the one given by a
PNM (Ref. 9). No dependence with respect to the node density(i.e.,
with the characteristic scaleL of the simulation) is found.(b) Dis-
registry (dots) plotted on the generalized stacking fault energyEgsf

in the equilibrium configuration(x=f1̄10g, y=f1̄1̄2g). The disloca-
tion closely follows the path of minimum energy, except forf ·x
<0.5. The white line is a guide for the eye. FIG. 4. (Color online) (a) Disregistry componentf ·x as a func-

tion of space plotted each 0.5 ps(curves are shifted vertically to not
overlap). The initial dislocation core(splitting into partials) is con-
tracted in less than 5 ps into a narrow one followed by oscillations.
(b) and (c) Shear stressssxzd of the dislocation(blue=−2 Gpa,
red= +4 Gpa) at t=0 (b) and att=5 ps(c). Pictures are cropped and
centered on dislocation center.
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