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The suppression of ferroelectricity by quantum fluctuations is investigated within a nonlinear polarizability
model. A mass dependence of the quantum fluctuation dominated state is discovered which can extend to rather
high temperatures as compared to known quantum paraelectrics. In addition a crossover from order-disorder to
displacive dynamics is observed when ferroelectricity is suppressed. A phase appears in a regime where
deviations from the high-temperature behavior set in, where polar precursors coexist with paraelectric quantum
fluctuations. Elastic stiffness is found to crucially contribute to mode-mode coupling and the stability of the
system.
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Polar dielectrics have been a field of intense research for
many decades because of their enormous potential for
applications.1 In this regard, mainly the huge static dielectric
constants«0 are of interest, which are intimately related to
the dynamical properties of the system. A limiting factor for
applications is the strong temperature dependence of«0. Re-
cently enormous progress has been achieved here with the
discovery of the perovskite-based system CaCu3Ti4O12,
which exhibits a nearly temperature-independent dielectric
constant over a broad temperature regime and does not show
any lattice instability.2 A similar stabilization of the dielectric
constant is known to take place in quantum paraelectrics,
e.g., SrTiO3 (Ref. 3) and KTaO3,

4 where complete mode
softening is suppressed by quantum fluctuations. A stabiliza-
tion of the soft mode at small frequencies and consequently
large dielectric constants is observed over extended tempera-
ture regimes, since here the temperature is an ineffective
parameter and the system reacts only upon changing direct or
higher order interactions.4 In this quantum limit the effective
dimensionality is enhanced toD=4.5 The unexpected finding
of isotope-induced ferroelectricity in SrTiO3 (Ref. 6) has re-
newed the interest in the quantum fluctuation dominated re-
gime, since conventional anharmonic lattice interaction mod-
els predict the absence of any isotope effect onTc. Its origin
is still debated, but a consistent explanation has been given
in Ref. 7, where it has been shown that in the quantum re-
gime, with the ineffectiveness of temperature, an anomalous
mass dependence of the effective potential sets in, favoring a
lattice instability.

Here we focus on this regime and investigate thecompe-
tition between ferroelectricity and quantum paraelectricity in
perovskite-type ferroelectrics. This regime has also previ-
ously been investigated theoretically, where a phenomeno-
logically derived equation has been proposed in Ref. 8 to
account for the deviations from the high-temperature regime.
An approach based on ann-component vector model for
structural phase transitions has been presented in Ref. 9,
where specifically the critical exponents have been shown to
change discontinuously in the limitn→`. Here we use the
nonlinear polarizability model in its simplest diatomic linear
chain representation,10 where the BO3 unit is represented by
a polarizable cluster massm1 while theA sublattice is given

by the rigid ion massm2. The model has various advantages
as compared toab initio approaches, e.g., first principles
methods11 or effective Hamiltonian approaches,12 since it is
parameter free, highly transparent, and, to a large extent,
analytically tractable. It also reproduces, in quantitative
agreement with experimental data, many temperature-
dependent dynamical properties.13 The success of the model
is based on the fact thatelectron-latticeinteractions are ex-
plicitly incorporated. Those have long been believed to be
irrelevant to ferroelectric systems, since these are mostly in-
sulators with a band gap of several eV. The importance of
electron-phonon interactions in ferroelectrics, however, is
based on the fact that small charge transfer between the oxy-
gen ionp and transition metald states triggers the soft mode
dynamics and induce an anisotropic charge distribution fa-
voring the polar state.14 Phenomenologically this is incorpo-
rated in a shell model representation where a nonlinear core
shell coupling atm1 is considered.15 This coupling consists
of an attractive harmonic termg2 and a fourth order repulsive
termg4 which tend to compensate each other with decreasing
temperature. Lattice stability is guaranteed by a second
nearest-neighbor core-core couplingf8 between the polariz-
able units, whereas the nearest-neighbor couplingf is
through the shells only. Since the double well potential de-
fined throughg2 andg4 is in the relative core shell displace-
ment coordinate atm1 and siten, i.e., w1n, which defines an
integrated dipole moment, the exact solutions of the model
differ considerably from conventionalF4-type models. In the
continuum limit kink, breather, and traveling pulse excitons
exist16 and in the lattice case nonlinear periodic wave solu-
tions have been found17 together with pseudoperiodic dis-
placement patterns on new length scales accompanied by
charge ordering.18

A very convenient way to study the quantum paraelectric
and ferroelectric states is provided by using the self-
consistent phonon approximation(SPA), which corresponds
to a cumulant expansion of the third order term inw1n in the
equations of motion7,10

g2w1n + g4w1n
3 = w1nsg2 + 3g4ksw1nd2lT = gTw1n s1d

with
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ksw1nd2lT = o
q,j

"

2Nvq,j
w1

2sq, jdcothF"vq,j

2kBT
G , s2d

where all dynamical information is provided through the
SPA eigenvalues and corresponding eigenvectors
vq,j ,w1sq, jdfor phonon branchj and all wave vectorsq. The
phase transition temperature is defined by the conditiongT
=0, i.e.,

ug2u
3g4

= o
q,j

"

2Nvq,j
w1

2sq, jdcothF "vq,j

2kBTc
G . s3d

In this approximation the temperature dependent soft mode
frequency is given by

mv f
2sq = 0d =

2fgT

s2f + gTd
, s4d

wherem is the unit cell reduced mass. Whileg2 andg4 have
to be determined self-consistently,f and f8 are obtained from
the experimental optic and acoustic zone boundary frequen-
cies which are explicitly given by

vTO
2 sq = 2p/ad = 2f/m2,vTA

2 sq = 2p/ad

= 1/m1f4f8 + mv f
2sq = 0dg.

In addition measurements of the elastic constants provide
further information onf8. It is important to note here, that at
high temperatures and in the limitm1@m2 the soft mode is
localized with zero group velocity approaching the value
v f

2=2f /m2. In this limit each atom is independent of its
neighbors and feels only the surrounding electron gas. This
corresponds to a large value ofgT and a large amount of
screening. With decreasing temperature the ions begin to in-
teract with each other and transfer energy to their neighbours
to finally become acoustic phonons with frequencyv f

2

=4f /m2sin2sqad when the limit gT=0 is reached. Simulta-
neously the acoustic mode is strongly depressed whenm1
@m2 andT is large and starts interacting with the soft mode
with decreasing temperature, which results in anomalies in
the elastic properties of the system. In addition, for highT
the shell is infinitely separated from its core and the ion fully
ionized, while for decreasing temperature localization sets in
and charge density wave formation becomes possible.

In the quantum regime the limitgT=0 is never fulfilled
since the lattice instability is suppressed by quantum fluctua-
tions. Using Eqs.(4) and(2) this limit can be investigated as
a function of the double-well potential barrier height, and
typical results for the soft mode frequency as function of
temperature are shown in Fig. 1. The barrier height is rel-
evant to the transition mechanism, as deep wells correspond
to the order-disorder limit while shallow wells are typical for
the displacive limit. Thusg2 has been limited to small values
to guarantee that the displacive limit is realized.

In all the cases we investigated the soft mode frequency
saturates at low temperatures by quantum fluctuations and is
nearly independent of temperature for a rather broad regime
which increases with decreasing barrier height. Simulta-
neously, a nearly parallel shift in the soft mode frequency to
higher values is observed. This is due to the fact that the

self-consistently derived value ofgT increases with decreas-
ing barrier height. This increase is caused by the fact that the
dipole moment defined by Eq.(2) decreases faster thangT
indicating increased electron localization. The parallel shifts
of the soft mode frequency to higher values with decreasing
potential barrier height demonstrate that the barrier height in
the displacive limit does not affect the Curie constant. Ex-
trapolating the linear in temperature regime of the soft mode
frequency to zero yields the high-temperature extrapolated
Tc,extrapolated, which is shown as a function ofg2 in the inset of
Fig. 1, and the expected linear relation between both is ob-
served. From Fig. 1, it is obvious that a certain critical value
of g2 exists at which the ferroelecric transition takes place. In
the above example, transitions take place for all values of
ug2u.1.52.

The mass dependence of the soft mode in the quantum
regime is shown in Figs. 2 and 3. While in our previous
calculations7 on isotope induced ferroelectricity only the in-
fluence of the isotope substitution has been presented, we
show here a systematic study of the variations ofm1 in the
quantum regime. We see that variations of the polarizable
massm1 have very different effects on the dynamics than
those of the rigid ion massm2. Increasingm1, the soft mode
shifts to smaller frequencies and the system is closer to a
lattice instability,9 as observed in isotope-substituted
SrTiO3.

6 The soft mode shifts have a parallel behavior here,
i.e., the Curie constant does not change with increasing mass,
while the high-temperature extrapolatedTc is strongly mass
dependent. Note that neitherm1v f

2 nor mv f
2 are constant at

any temperature, as expected from harmonic theories, but a
nonlinear variation with both is observed for smallm1 which
saturates at large masses only(see inset to Fig. 2). This ob-
servation is important to isotope effects onTc which are un-
conventional in the smallm1 limit. Varying the rigid ion
sublattice massm2 has different effects on the soft mode,
since here the extrapolatedTc is nearly independent ofm2

FIG. 1. Temperature dependence of the square of the soft mode
frequency for varying potential barrier height. The inset shows the
high temperature extrapolatedTc,extrapolatedas function ofg2. Note
that the observed seemingly trivial linear relation between
Tc,extrapolatedandg2 does not persist at very high temperatures where
saturation of the soft mode frequency sets in(Ref. 10).
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while the Curie constant becomes strongly mass dependent.
A comparison to perovskite ferroelectrics is possible here
only if g2 andg4 do not change with changing massm2. This
is, however, mostly not the case, since the experimentally
determined temperature dependencies of the soft modes vary
considerably from compound to compound, and it is just this
temperature behaviour which yields the self-consistent val-
ues ofg2 andg4. Correspondingly our results are not appli-
cable to replacing, e.g., Sr in SrTiO3 by Ba. Instead these
results apply to systems where theA ion sublattice mass is
replaced by its isotope, and it is hoped that corresponding
experiments will be performed in the future.

A mass-dependent phase diagram can be constructed by
calculating, for given mass, the critical value ofg2 at which
the ferroelectric instability takes place(Fig. 4). While, as
expected from Fig. 3, the variation ofm2 has nearly no effect
on the phase diagram, changes inm1 are crucial to the exis-
tence regime of both phases. For smallm1 quantum fluctua-
tions dominate the dynamics. In addition the critical value
ug2u increases strongly in this limit indicative of a crossover

from displacive to order-disorder dynamics. In this regime
ferroelectricity can easily be induced by small variations in
m1.

On the other hand, in the displacive limit the mass depen-
dence is less pronounced and nearly vanishes for sufficiently
largem1. Obviously small masses more easily facilitate tun-
neling dynamics between the potential wells and freezing
into either of the wells at the critical temperature than heavy
units which follow the displacive soft mode dynamics with a
much longer time scale. The crucial role of the polarizable
sublattice mass for the phase diagram can be further investi-
gated by comparing the onset temperature of quantum fluc-
tuations, i.e., the deviations from the high-temperature be-
havior of the soft mode, with the extrapolated meanfield
Tc,extrapolated, respectively, the real instability pointTc, where
ug2u is larger than the critical value beyond which a ferroelec-
tric instability sets in. This is shown in Fig. 5. A new regime
in the phase diagram appears which is dominated by quan-
tum fluctuations but simultaneously carries polar character
due to the proximity to the ferroelectric state. We term this a
“polar quantum” state. In this state the elastic properties are

FIG. 2. Temperature dependence of the square of the soft mode
frequency for varying massm1. The inset shows the squared soft
mode frequency as function ofm1 at different temperatures.

FIG. 3. Temperature dependence of the squared soft mode fre-
quency for varying massm2. The straight lines correspond to ex-
trapolations from the high-temperature regime and their intersec-
tions with the temperature axis defineTc,extrapolated.

FIG. 4. The phase diagram of the quantum fluctuation domi-
nated regime and the ferroelectric regime as a function of the in-
volved massesm1, m2. The valueg2,critical defines the potential bar-
rier height at which a ferroelectric state appears.

FIG. 5. The high-temperature extrapolatedTc,extrapolatedand the
temperature at which quantum fluctuations set in, i.e., the tempera-
ture where deviations from meanfield behavior occur, as functions
of m1.
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anomalous19 and indicative of the formation of preformed
polar clusters. With increasing massm1, which corresponds
to a stabilization of the polar instability, the new phase de-
creases and the phase boundary lines merge.

As can be seen in Fig. 5, quantum fluctuations are not
restricted to small temperatures but can be present at rather
high temperatures if the polarizable mass is small. In this
regime an unexpected and interesting role is played by the
core-core coupling between the polarizable unitsf8, which
determines the elastic properties of the material since in the
limit q→0 the acoustic mode is given byvTA

2 sq→0d
>4f8q2a2/m1. As is obvious from Eq.(4), the soft mode
itself does not depend directly onf8 but only indirectly from
the dynamical information provided through Eq.(2). On the
other hand, pronounced optic acoustic mode coupling is
known to set in in the vicinity of the phase transition, since
there the optic mode approaches the acoustic mode limit.
Stiffening the interaction between the polarizable units then

has competing effects on the dynamics since it would lead to
complete electron localization at finite wave vector, i.e.,
charge-density-wave formation, but this is inhibited by the
soft mode induced precursor effects. Increases inf8, “stiff-
ening,” lead to dramatic decreases ingT, which brings the
system to its stability limit where optic and acoustic modes
start mixing (Fig. 6). This in turn induces anomalies in the
acoustic mode dispersion at small wave vectors which cru-
cially affect the elastic properties(see inset to Fig. 6). Thus
the stiffening has the paradoxied role of simultaneously soft-
ening not only the transverse optic mode but also inducing
elastic softening on new length scales. Experimentally, ex-
actly this behavior has been observed—not in the quantum
limit but in the vicinity of the structural phase transition—in
PbTiO3 (Ref. 20) where an increased softening of the soft
mode occurs close toTc coinciding with anomalies in the
transverse acoustic branch at small wave vector. Varying the
core-shell couplingf has no effect at all on the soft mode or
the Curie constant, since the selfconsistency loop[Eqs. (4)
and (2)] automatically adjusts the value ofgT to keepv f

2

constant.
In conclusion, we have studied the existence regimes of

quantum fluctuations in ferroelectric systems as functions of
the double-well potential barrier height, the masses, and the
elastic properties. While the variation of the rigid sublattice
mass has nearly no effect on the phase diagram, the role
played by the polarizable mass is crucial: it defines not only
the phase boundary between the polar and the quantum
paraelectric state, but also governs the dynamics, which are
driven from displacive to order-disorder with decreasing
massm1. A phase is observed whenm1 is varied wherein
quantum fluctuationscoexistwith polar precursor dynamics
evidenced by anomalies in the elastic constants.19 An inter-
esting role is found to be played by the elastic properties of
the system: a stiffening interaction between the cluster
masses induces strong softening of the optic mode in addi-
tion to anomalies of elastic constants on new length scales.
The stiffening also induces a strong competition between
charge-density-wave formation and ferroelectricity, but the
latter always prevails. A stabilization of the dielectric con-
stant at rather high values and over a broad temperature in-
terval can be obtained in this regime and also in the limit of
small massesm1.
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