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The calculation of the second virial coefficient in one dimensions1Dd is performed within a scattering shifts
approach. It is shown that when one carefully considers the(anti)symmetrization requirements for gases of
spinless bosons and fermions in 1D, the second virial coefficients turn out to be identical. These results are
used to recalculate the second virial coefficient for4He atoms adsorbed in grooves of the carbon nanotube
bundles.
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In a recent article,1 I pointed out that4He atoms adsorbed
in the grooves of carbon nanotube bundles can be treated as
interacting Bose gas in one dimension. I calculated the sec-
ond quantum virial coefficientsB2d for such 4He gas. In a
comment2 to this article, Bruch found certain inadequacies in
the treatment I presented. There are two basic points in his
comment:

(i) The “exchange” part of virial coefficient must be van-
ishingly small in 1D. This fact can easily lead to conclusion
that the formula forB2 I presented in Eq.(18) of Ref. 1 has
an odd appearance due to the fact that the ideal gas(quantum
statistic) contribution explicitly figures in it.

(ii ) The “direct” part of virial coefficient must be larger
from the classical value forB2. On the basis of this fact, he
questions the values obtained forB2 in Ref. 1, since they do
not fulfill this inequality as he explicitly shows.

The answer to point(i) is easy. Namely, the quantum
virial coefficient can be written in two ways. The first one
(used in Ref. 1) is to write the virial coefficient as a sum of
ideal gas term and the remaining part. The remaining part
can be written as an integral over the relative wave vector, in
which the phase shifts of the two-body problem figure ex-
plicitly. This representation ofB2 is very convenient from the
calculational point of view. The other way(used by Bruch in
Ref. 2) is to write theB2 as a sum of the so-called “direct”
and “exchange” terms. This “other way” is merely a specific
choice of the rearrangement of terms appearing in the ex-
pression forB2. The equivalence of the two approaches has
been demonstrated in Ref. 3. In particular, the ideal gas term
appears as the part of the “exchange” virial coefficient. Thus,
there is nothinga priori strange about the appearance of this
term in Eq.(18) of Ref. 1.

Point (ii ) is certainly more serious. I have calculated the
classical second virial coefficient and I find that at a tempera-
ture of 10 K the classical value of the second virial coeffi-
cient is 0.83 Å, in approximate agreement with the value that
Bruch finds. This confirms the problems with theB2 coeffi-
cient obtained in Ref. 1, and the appropriateness of point(ii )
raised by Bruch. The reason for inadequacy of Eq.(18) of
Ref. 1 is subtle and is not due to a “lost” minus sign. It is
related to transition from a sum over discrete states in Eq.
(17) to an integral in Eq.(18) of Ref. 1. As Bruch points out,
a correct formula has been given in Ref. 4. This reference

deals with subtleties of the virial coefficient evaluation in
3D, 2D, and 1D. A very specific behavior of the virial coef-
ficient in 1D, and the reason for the “slippage” that led to Eq.
(18) of Ref. 1 can be, however, more transparently illustrated
as follows.

In 1D, one has to(anti)symmetrize the part of the two-
body wave function in relative “radial” coordinate. This is
not the case in 2D and 3D treatments where the(anti)sym-
metrization can be performed by choosing(anti)symmetric
combinations of spherical functions in anglular variables.
When the symmetrization requirement is applied to two spin-
less particles in 1D, one obtains that the allowed relative
wave vectors for bosons are

ki
0 = si + 1/2dp/L; ki = fsi + M + 1dp − hskidg/sL − ad,

i = 0,1,2, . . . , s1d

while for fermions they are

FIG. 1. Specific heat of4He gas adsorbed in the grooves of
SWCNT bundles for three different linear densities(0.033 Å−1,
0.1 Å−1, and 0.2 Å−1). Full line: Calculation with the SAPT1 po-
tential. Dashed line: Calculation with the scaled SAPT1 potential.
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ki
0 = si + 1dp/L; ki = fsi + M + 1dp − hskidg/sL − ad,

i = 0,1,2, . . . . s2d

In the above equations,ki
0 represents the relative wave vector

for two noninteractingparticles andki is a relative wave
vector for two particlesinteracting via a hard-core potential.
2L is the length of the 1D quantization box
sf−L ,Lgd, hskid is the phase shift of the two-body problem
[see Eqs.(13) and(14) in Ref. 1], a is the hard core length of
the two-body interaction potentials0,a!Ld, andM is the
number of bound states for the particle of reduced mass
[m, see Eq.(13) in Ref. 1]. There is an important difference
in the ground state energy of two noninteracting bosons and
fermions contained in any finite length quantization box in
1D that arises due to the wave function(anti)symmetrization
requirement. The ground state energy is lower for two non-
interacting bosons, which can be seen from the difference
between the lowest allowed relative wave vectorski

0 for non-
interacting bosons and fermions, respectively. When one in-
serts Eqs.(1) and(2) in Eq. (17) of Ref. 1 and performs the
transition from summation overi to integration overki skd,
the following result5 is obtained:
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where the same notation as in Ref. 1 is used. The appearance

of additional contribution ofl /Î2 to B2 for bosons, not
present in the results of Ref. 1 is due to the mismatch(level
shift) between the interacting and noninteracting energy
spectra[factor ofp /2L in Eq. (1)]. This effect is not present
for fermions in 1D. Equation(3) should be used instead of
Eq. (18) of Ref. 1. Intriguingly(and satisfactory) enough, the
same expression forB2 is obtained both for fermions and
bosons interacting via a hard-core potential in 1D, due to the
subtle difference in allowed noninteracting relative wave
vectorsski

0d in Eqs. (1) and (2). This is in accord with the
opening sentence of Bruch’s comment.2 Equation(3) gives
values of 2.13 Å and 2.3 Å at a temperature of 10 K, forB2
calculated with SAPT1 and scaled SAPT1 potentials,
respectively.1 Both values are now larger from their classical
counterparts. This holds for all temperatures, which is the
expected behavior.

In light of this correction, Eq.(20) of Ref. 1 should be
modified to

nb2d2B2

db2 = nlÎ2F−
1

16
+

S0 + I0

4
+ bsS1 + I2d − b2sS2 + I2dG .

s4d

This modification gives rise to different behavior of specific
heat of4He atoms in grooves, namely it risesabovethe non-
interacting value as the temperature is decreased. The new
prediction for specific heat is displayed in Fig. 1, which
should be used instead Fig. 5 of Ref. 1.
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