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It is shown that the exchange term in the quantum mechanical second virial coefBgieanishes for
hard-core particles moving in only one dimension. The formulatioB,ods an integral over scattering phase
shifts is discussed.
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I. INTRODUCTION In Sec. Il this result is obtained by a second argument and

the relation to resultsfor a more realistic mod&lof “He is

There is a dictum that there are no observable effects Ofjiscssed. In Sec. Ill, the use of scattering phase shifts to
quantum statistics for hard-core particles in one d'mens'onevaluateBd is reviewed.

Inert gas systems that are effectively one-dimensional now
can be realizedand the quantum mechanical second virial 4
coefficientB,(T) has been evaluatédor “He in one dimen- Il. B(T) FOR "HE IN ONE DIMENSION

sion. Thus, it is timely to examine how that dictum is satis- A second derivation of the absence of an exchange term
fied for By(T) of a one-dimensional quantum gas and, morefor hard-core potentials id=1 uses properties of the eigen-
generally, to review the formulatidrof B, in terms of scat-  functions ¢;(x) in a Slater-sum representation for the terms
tering phase shifts. Note, however, that exchange terms d@ the integrands of Eqg2) and (3):
remain in more general correlation functions such as the mo-
mentum distributiorf. (xlexp(- BH)|y) = > % (X) ;(y) exp(— BE)). (4)

The quantum mechanical second virial coefficient at tem- i

peratureT in d-dimensions i$ For a potential with a hard core of radiasthe eigenstates

are doubly degenerate and the even and odd parity normal-

B,(T) =By(T) = LB (T) (1) ized wave functionscan be expressed in terms of for
2S+1 ¢ 0<x<® by
for particles of spinS and massmn, where the upper/lower P+ (x) = (1/v"§)[UJ(X) +u(-x)], 5

sign applies for fermions/bosons, respectively. The direct an

exchange terms are given by Because there is no overlap,(x)u;(-x)=0 for x#0. The

combination ¢, (—x) . (X) + #;_(—X) ;_(x) vanishes and,
=0.
By(T) = - 1 Ad f dx(x|e A" — e AHo|x) 2) The arguments thus far assume that the pair potential has
2 a hard coreV(x) — for |x| <a. The situation for realistic
helium pair potentiafsis not so extreme. However, solutions
for the scattering wave functions at energies in the range
L 1-100 K show that there is a negligible effect of tunneling
—_2ad | Adu/e ula-BH through the core. For instance, changing the starting point in
B(D)= 2A Jd X xle ), ) the numerical integration fromx=1.3 A to x=1.0A
(V>10* K) changes the calculated phase shift by less than 1
where the thermal wavelength for reduced massm/2 is  part in 1¢. ThusB, must be negligibly small.
A=h\27Bl . and the free and interacting-particle Hamilto-  The conclusion is that the ideal gas exchange term should
nians for relative motion arely=p?/2u andH=Hy+V(|x|).  be omitted from the calculation &,(T) for “He ind=1, i.e.,
For “He, it has been shown by calculation in fvand  B,=B,. Further, because the classical second virial coeffi-
thre€ dimensions,d=2 andd=3, thatB,(T) effectively is cient is a lower bound to By,
absent, exponentially small, except at low temperatures "
where A becomes larger than the core radaisn the pair By(T) = - }f [exp{~ AV(X)} — 1]dx= B, 4(T) (d=1)
potential. This is explain€dn terms of the requirement that 2)_..
the exchange paths fromto —x in a path integral forfhof 6)
B. must avoid the hard core and have a minimum leredh
so thatB, exp(-ma/ A?). Ford=1 there are no paths that there is a bound®,(T) =B, .(T). This was applied to a cal-
avoid the hard core and the conclusion is even stroriBier, culation of the total second virial coefficient for the SAPT1
=0, in accord with the more general rule stated at the outsepotentiaf used by Sibef.At T=10 K, the classical calcula-

and
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tion givesB,=0.84 A/atom while Siber’s result iB,=0.1  the ideal and hard-rod gases, both confined in a long box
-0.2 A per atom. Therefore something has slipped in hig-L,L). Then the sum-over-states gives

calculation. The error is identified in Sec. Ill. o 5
A B’ ,
B,=By=-—|2X exp| - -————n?
Ill. FORMULATION OF B, USING PHASE SHIFTS n;=1 2L -a)
The expression that Siber gives 85 has an appearance _ i exol - B’ n2 ®8)
quite similar to that used =2 andd=3. In the present = 8ul? 2
notation it is ?
A A
BAS) == 5 A expl- e g b ©
b
A (*d Bh2 where the explicit eigenstate energies for a particle in a box
L e/ )dk. (7)  are used and the factor 2 in the first term on the right-hand
mJo dk 2 side of Eq.(8) arises from the degeneracy of states discussed

) _ o in Eq.(5). The Euler-Maclaurin summation formula has been
The first term on the right-hand side is equal to the secondseq to convert the sums to integrals and the last term in Eq.

virial coefficient for an ideal gas &=0 bosons. The second (9) is the only surviving correction term to the integrés.
term is a sum over bound states, with energigof the pair The corresponding modification for more general cases

pOtentiaI and the third term arises from the Change in thQ\”th hard-core potentia|s was given a|ready by Giﬁson
density of two-body states, expressed using the scattering

i A A(“d %2
phase Sh!ﬁn(k)- . . B,=By=—-A2 exp- Be) - — = exp(— ph )dk.
There is a problem with Eq7) that can be seen by using 4 b m)o dk 2u
it to calculate B, for the hard-rod ga$!* with potential (10)
o(r)==,|x| <a; =0,|x| >a. The phase shift for this case has
dn/dk=-a and the result from Eq(7) is B,(S)=a—(A/4).
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