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It is shown that the exchange term in the quantum mechanical second virial coefficientB2 vanishes for
hard-core particles moving in only one dimension. The formulation ofB2 as an integral over scattering phase
shifts is discussed.
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I. INTRODUCTION

There is a dictum that there are no observable effects of
quantum statistics for hard-core particles in one dimension.
Inert gas systems that are effectively one-dimensional now
can be realized1 and the quantum mechanical second virial
coefficientB2sTd has been evaluated2 for 4He in one dimen-
sion. Thus, it is timely to examine how that dictum is satis-
fied for B2sTd of a one-dimensional quantum gas and, more
generally, to review the formulation3 of B2 in terms of scat-
tering phase shifts. Note, however, that exchange terms do
remain in more general correlation functions such as the mo-
mentum distribution.4

The quantum mechanical second virial coefficient at tem-
peratureT in d-dimensions is5

B2sTd = BdsTd ±
1

2S+ 1
BesTd, s1d

for particles of spinS and massm, where the upper/lower
sign applies for fermions/bosons, respectively. The direct and
exchange terms are given by

BdsTd = −
1

2
LdE ddxkxue−bH − e−bH0uxl s2d

and

BesTd =
1

2
LdE ddxk− xue−bHuxl, s3d

where the thermal wavelength for reduced massm=m/2 is
L=qÎ2pb /m and the free and interacting-particle Hamilto-
nians for relative motion areH0=p2/2m andH=H0+Vsux u d.

For 4He, it has been shown by calculation in two6 and
three5 dimensions,d=2 andd=3, that BesTd effectively is
absent, exponentially small, except at low temperatures
whereL becomes larger than the core radiusa in the pair
potential. This is explained7 in terms of the requirement that
the exchange paths fromx to −x in a path integral form8 of
Be must avoid the hard core and have a minimum lengthpa,
so thatBe~exps−p3a2/L2d. For d=1 there are no paths that
avoid the hard core and the conclusion is even stronger,Be
=0, in accord with the more general rule stated at the outset.

In Sec. II, this result is obtained by a second argument and
the relation to results2 for a more realistic model9 of 4He is
discussed. In Sec. III, the use of scattering phase shifts to
evaluateBd is reviewed.

II. B2„T… FOR 4HE IN ONE DIMENSION

A second derivation of the absence of an exchange term
for hard-core potentials ind=1 uses properties of the eigen-
functionsc jsxd in a Slater-sum representation for the terms
in the integrands of Eqs.(2) and (3):

kxuexps− bHduyl = o
j

c j
psxdc jsyd exps− bEjd. s4d

For a potential with a hard core of radiusa, the eigenstates
are doubly degenerate and the even and odd parity normal-
ized wave functions3 can be expressed in terms ofuj for
0,x,` by

c j±sxd = s1/Î2dfujsxd ± ujs− xdg, s5d

because there is no overlap,ujsxdujs−xd=0 for xÞ0. The
combinationc j+s−xdc j+sxd+c j−s−xdc j−sxd vanishes andBe

=0.
The arguments thus far assume that the pair potential has

a hard core,Vsxd→` for uxu ,a. The situation for realistic
helium pair potentials9 is not so extreme. However, solutions
for the scattering wave functions at energies in the range
1–100 K show that there is a negligible effect of tunneling
through the core. For instance, changing the starting point in
the numerical integration fromx=1.3 Å to x=1.0 Å
sV.104 Kd changes the calculated phase shift by less than 1
part in 106. ThusBe must be negligibly small.

The conclusion is that the ideal gas exchange term should
be omitted from the calculation ofB2sTd for 4He in d=1, i.e.,
B2=Bd. Further, because the classical second virial coeffi-
cient is a lower bound10 to Bd,

BdsTd ù −
1

2
E

−`

`

fexph− bVsxdj − 1gdx= B2,clsTd sd = 1d

s6d

there is a boundB2sTdùB2,clsTd. This was applied to a cal-
culation of the total second virial coefficient for the SAPT1
potential9 used by Šiber.2 At T=10 K, the classical calcula-
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tion givesB2ù0.84 Å/atom while Šiber’s result isB2=0.1
−0.2 Å per atom. Therefore something has slipped in his
calculation. The error is identified in Sec. III.

III. FORMULATION OF B2 USING PHASE SHIFTS

The expression that Šiber gives forB2 has an appearance
quite similar to that used ind=2 andd=3. In the present
notation it is

B2sSd = −
L

4
− Lo

b

exps− bebd

−
L

p
E

0

` dh

dk
expS−

bq2k2

2m
Ddk. s7d

The first term on the right-hand side is equal to the second
virial coefficient for an ideal gas ofS=0 bosons. The second
term is a sum over bound states, with energieseb, of the pair
potential and the third term arises from the change in the
density of two-body states, expressed using the scattering
phase shifthskd.

There is a problem with Eq.(7) that can be seen by using
it to calculate B2 for the hard-rod gas,4,11 with potential
fsrd=` , uxu ,a; =0,uxu .a. The phase shift for this case has
dh /dk=−a and the result from Eq.(7) is B2sSd=a−sL /4d.
On the other hand, using Eqs.(1)–(3) and the analytical ex-
pressions for the Green’s functions4 givesB2=a+sL /4d.

The source of the difference can be located by expressing
Bd in terms of the partition functions for relative motion of

the ideal and hard-rod gases, both confined in a long box
s−L ,Ld. Then the sum-over-states gives

B2 = Bd = −
L

2F2o
n1=1

`

expS−
bq2p2

2msL − ad2n1
2D

− o
n2=1

`

expS−
bq2p2

8mL2 n2
2DG s8d

=a +
L

4
L → `, s9d

where the explicit eigenstate energies for a particle in a box
are used and the factor 2 in the first term on the right-hand
side of Eq.(8) arises from the degeneracy of states discussed
in Eq. (5). The Euler-Maclaurin summation formula has been
used to convert the sums to integrals and the last term in Eq.
(9) is the only surviving correction term to the integrals.12

The corresponding modification for more general cases
with hard-core potentials was given already by Gibson3

B2 = Bd =
L

4
− Lo

b

exps− bebd −
L

p
E

0

` dh

dk
expS−

bq2k2

2m
Ddk.

s10d
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