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Superconducting strip in an oblique magnetic field
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As an example for a seemingly simple but actually intricate problem, we study the Bean critical state in a
superconducting strip of finite thicknedsind width 2v>d placed in an oblique magnetic field. The analytical
solution is obtained to leading order in the small parameter. The critical state depends on how the applied
magnetic field is switched on, e.g., at a constant tilt angle, or first the perpendicular and then the parallel field
component. For these two basic scenarios we obtain the distributions of current density and magnetic field in
the critical states. In particular, we find the shapes of the flux-free core and of the lines separating regions with
opposite direction of the critical currents, the detailed magnetic field lialesg the vortex lings and both
components of the magnetic moment. The component of the magnetic moment parallel to the strip plane is a
nonmonotonic function of the applied magnetic field.
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I. INTRODUCTION field is completely screened by the currents flowing in the

Platelet-like type-ll superconductors in a magnetic fieldregion|x| <a, i.e., one has,=0 there. The lengtha is de-
applied at some anglé to the normal of their plane are Scribed by the simple formula
frequently investigated in various experiments, see, e.g., 1
Refs. 1-5. However, even for the simplest case of an infi- alhy=————.
nitely long strip placed in an oblique magnetic field, the criti- costth cos )

cal state was theoretically studied only in the situation wher]_|ere and belovn=H,/H, H.=J./, J.=j.d, andw is taken
—ta C c—vc L vl Norgl]

the magnitude of the applied magnetic fiélg considerably . a . X :
exceeds the field of full-flux penetration into the sa as the unit of lengthw=1). In /ch'S region of the strip,

The attempt to investigate the critical state in fiellg X/ <a the sheet currend(x)=[%F,j(x,2)dz (with current

<H, led to incorrect result$,since an essential feature of densityj alongy) is given by

this state was overlooked, as will be evident from our analy- 5 1=

sis in Sec. Il B. vi-
In this paper we consider the following basic situation: A I =~ 7_7‘10 arcta VaZ—x2 (2)

thin superconducting strip fills the spagd <w, |y| <c,

|z| <d/2 with d<w; a constant and homogeneous externalOn the other hand, a<|x| <1 whereH,(x) # 0, one has

magnetic fieldH, is applied at an angl@ to the z axis  J=-sign(x)J. with signx)=+1 for x>0 andx<0, respec-

(Hax=Hasin 6, Hay =0, Hy,=H, cos 6). Itis assumed that the  tively. The explicit form ofH,(x) in this region of the strip is

thickness of the stripd, exceeds the London penetration presented in Appendix A.

depth, the critical current densify does not depend on the In the region|x| <a of the real stripwith d+ 0), the flux

local inductionB (Bean modé€lt®), and the lower critical field lines are practically parallel to the planes of the strip and

CH(;; s||sd§:1 g/lv%esngleyn;:?oegIo??svt/ri]t?:thivr\wlg (;?ﬁ)r/]etiﬁzeﬁ]o; .mvz\algneti enetrate into the sample across its thickness from the upper
field: First, the magnitude of the external field increases frorr} nd lower surfaces of the superconductor. The penetrating
0 to H, at a fixed angleg; second, one turns dH, first and lux fronts form the boundary of a flux-free core,(x),

2 i . a which thus consists of an upper and a lower branch. Below

thenH,,. Interestingly, these scenarios lead to different criti- : ;
cal states. we consider only the upper branch since from symmetry con-

Taking into account the result of Ref.(See also Refs. 10 Siderations one hasz?"*(-x)=2,"*(x) = z,(x).
and 11, the smallness of the paramettw enables us to Following our idea of splitting the critical state problem,
split the two-dimensional critical state problem for the stripwe consider a small section of the strip around an arbitrary
of finite thickness into two simpler problems: A one- pointx (x| <a) as an “infinite” slab of thickness placed in
dimensional problem across the thickness of the sample, aralparallel dc magnetic fielt,, and carrying a sheet current
a problem for the infinitely thin strip. This splitting becomes J(x), Eg. (2). The critical state in such a slab is well
possible since under the conditimw<1 the magnetic known;}3#and this enables us to find the flux fronts, the
fields and currents in the critical state essentially changéistribution of the magnetic fields, and the currents across
along thex direction only on scales which considerably ex- the thickness of the strip in the regidr| <a. Since the
ceed the thickness. critical state in the slab depends on hdty, and J was
The solution of the critical state problem for the infinitely turned on, the above-mentioned dependence of the critical
thin strip is knownt?>~4 The z component of the magnetic state in the strip on the prehistory f,, and ofH,, appears.

1)
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Of course, a similar procedure may be used in the region z
a<|x| <1 to find the distribution of the magnetic fields, but a2 -& - -d-Q)bz- S
there the appropriate analysis is trivial sinid&,z) is con- , / .
stant; thus we do not discuss it below. I 0=45
v H,=06H <H,
Il. MAGNETIC FIELD IS INCREASED AT CONSTANT z,
TILT ANGLE

In the case of the first scenario of switching on the mag-
netic field whend=const anch has increased monotonically,
it is convenient to introduce the function

2 , x\V1 —a(h)?
F(x,h)=—| hsino- arctan—% : (3
T va(h)* - x
which is proportional to thex component of the magnetic
field on the upper surface of the strip ptf <a, Hyd(X) FIG. 1. Bean profiles of the magnetic fiettj(z) across the strip
=H,+0.5J(x)=(J./2)F(x,h). Below we shall also use the at 5 positionsx in the strip at h<h; Here §=45° H,
two Charactenstlc f|e|ds :O.G'|p< Hf:O834'|p, thus X1:0.478, X020597, X2:0.617, a
=0.677 in unitsw (see Fig. §. The characteristiz valuesz,(x),
ho= T 4 z(x)=-z,(-x), and z(x) are defined in the text and in Fig. 2.
P" 9o sing’ (4) Shown are(a) 0<x=0.35<Xxq, (b) X, <x=0.57<Xp, (C) Xg<X
) _ =0.61<xy, (d) x,<x=0.65<a, (e) x=a=0.677. For all these pro-
andh; defined by the equations: files, 2H,/J; is F(x,h) on the upper surface, arfd(—x,h) on the

lower surface. The continuation of the increasing parts of the pro-

arctaifitan ¢ th(u cos )] files (b) and(c) intersects the upper surfaceR(x, h).

sin

hf:hp_u+

) x=a(h.)sin 6. 9
coshu cos ) = sin # coshh; cos 6), (5)

whereu is some parameter. The meaning of these fields wiIIThus' in this interval one has

become clear below. 2,3 = (d2)[1 - F(xh)]. (10)

A. Interval 0 <h <hy In the same interval there is also a fratx) separating the

Consider first the flux front in the intervalOh<h;. Itis  regions of the strip with opposite signs of the critical current
essential that there exists a point on the upper plane of th@ensity, see Figs. 1 and 2. This front is described by the
strip where the derivativeH,{x)/dx vanishes. A simple cal- formula
culation gives that this occurs at the point with the coordi-

natex,, z(x) = (di4)[2 +F(x,h) = F(x,h-)]. (12)

x1(h) =a(h)sin 6. (6) At the pointx,(h) the frontz;(x) reaches the boundary of the
corez,(x), and, hence, thig,(h) is determined by the con-

Thus, whenh increases, the flux lines atath) <x<x;(h) . _ , i
monotonically penetrate into the strip through its upper surdition 2,0¢)=2(x;). Using formulas(9)(11), one then ob

face, and the shape of the core in this intervaka$ deter- tains forx,,
mined by the equation X, = a(u)sin 6,
z,(x) = (d/2)[1 - F(x,h)]. (7
This formula follows from the well-known distribution of the F(xg,h) + F(xp,u) = 0. (12

magnetic field in the “slab” shown in Fig. ¢‘Bean pro- » i
files”). On the other hand, in the intervai(h) <x<xo(h) the Al Xa() <x<a(h) the critical current density has only a
flux linesleavethe sample, and at>x, vortices of opposite  Negdative signj=-j, atz>z, and we arrive at

sign penetrate into the strip, Fig. 1. Here the pogih) is

found from the conditiorH %) =0, i.e., from
F(xo,h) = 0. ) We see thgt in the interval of the magnetic fields
' 0<h<hy the width of the flux-free core is equal ta@),
It is clear from the inspection of Fig. 1 that in the interval but its size along is less thard; see Fig. 2. Wheh— hy, the
x1(h) <x<x,(h) the shape of the core is determined by thedifference a(h)—x,(h) tends to zero, and di=h; one has
flux front occurring at the fielch. which has to be found xy(h)=a(h). With the use of Eqs(1) and(12) this condition
from the equation may be rewritten as Eq$5).

2,(x) = (dI2)[1 +F(x,h)]. (13)

014520-2



SUPERCONDUCTING STRIP IN AN OBLIQUE.

05
0.4r
0.3f

-04 -02 X?W 02

0.45F

z/d

0.4

0.45 0.55

0.4

FIG. 2. The flux and current fronts in a thin strip in an increas-
ing magnetic fieldH, that is inclined by a constant ange=45°
away from the normal of the strip plane. Shown is the state whe
H,=0.M,<H{=0.8341, where H,=(J./2)/sin # is the field of
full penetration; see the text. The current-free core is delimited b
the functionsz,(x) (bold line) and —z,(-x). The current density to
the left of this core and of the “tails?;(x), —z(-X), is j=j., and to

the rightj=—j.. The lower plot enlarges the region near the points

n
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FIG. 3. Bean profiles of the magnetic figttj(z) across the same
strip as in Fig. 1 but for a higher applied field>h;, H,
=0.9H,>H;=0.834,; thus x;=0.311, x3=0.422, x,=0.438, a
=0.440 in unitsw (see Fig. 4 The characteristiz valuesz,(x),
z(x)=-2,(-x), z1(x), andz,(x) are defined in the text and in Fig. 4.
Shown are the 5 profilega) 0<x=0.15< X4, (b) X; <x=0.40< X3,

(c) x=x3=0.422,(d) x3<x=0.43<a, () x=a=0.440. Profile(d)
does not cut the field-free core and Hagz) >0 everywhere. The
values ofH, on the upper and lower surfaces are given by the same
expression$=(x,h) andF(-x,h) as in Fig. 1.

becomes equal th, defined by formula(4), the pointxs

reaches(;, and moreover, the core disappears at all since at
this field the diﬁerence‘;ppe"(x)—z';’we’(x) vanishes even for
IX| <x;. Thus,hy=0.57/sin @ is the field of full penetration

of flux into the strip in the obligue magnetic field. This field

"has a simple meaning. In usual units one finds for xhe

component of the penetration field:hysin 6=J3./2, i.e., the
penetration occurs when tirecomponent of the applied field

X=Xy, X=X,, andx=a on these curves; see the text. The two dashed'@S completely penetrated into the slab.

lines are extensions of the fronts depicted in the regioasx
<x; andx;<x=a and cut the upper surface=d/2 at the point
X=Xy where the locaH, vanishes, Eq(8).

B. Interval hi<h<h,

Whenh; <h<h,, the upper and the lower branches of the
flux-free core merge in the intervakg <|x| <a, and hence
the size of the flux-free core in thedirection, X3(h), be-
comes less thana?h); see Figs. 3 and 4. Hepg(h), which
lies betweerx;(h) anda(h), is determined by the condition,
2PP%(x9) =29"*(x3), or in the explicit form by the equations

Xz =a(u)sin 6,

F(=X3,h) + F(x3,u) =2, (14)

where we have taken into account the symmetry of the flux
free core and formula&’), (9), and(10). In other words, we
find that not only thez-size of the core is less thah but also

its x-size is less than the width of the region in the strip,
2a(h), where H,=0. In the interval %g(h) <x<x,(h), the
core is again described by Eg7), while in the interval
x1(h) <x<xs(h) it is given by Egs.(9) and (10). Whenh

Interestingly, the part of the boundary of the core in the
interval x;(h) <x<xs(h), as well as its part in the interval
xq(h) <x<xy(h) for the fields 0<h<h;, is described by a
universal function ofz on x which does not depend dmat
all; see Eqs(9) and(10). The upper corner of the core, i.e.,
the point x,(h) for O<h<h; or the point x3(h) for
ht<h<h,, moves just along the line described by this func-
tion whenh increases; Fig. 5.

As to the front separating the regions of the strip with
opposite signs of the critical current density, it is still de-
scribed by Eqg.(11) in the region x;<x<a even for
h<<h<h,. However, in the intervak;<x<a, apart from
this upper branch of the frong;(x), a lower branchz,(x)
appears, and these branches join each other with vertical
slope atx=a(h), Fig. 4. Knowing the upper branch, one can
find the lower branch from the given value of the sheet cur-
rentJ(x), Eq.(2), yielding

Z,(X) = (d/4)[F(= x,h) = F(x,h+)], (15
whereh.(x) is found from

x=a(h)sin 6.
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FIG. 4. The same fronts as in Fig. 2 but at a larger fidld
=0.9H,>Hs. As in Fig. 2 the flux-free core is formed by the
curvesz,(x), —z,(-x), but the tail separating regions wijk £ is
now composed of two functiong(x) and z,(x), which join verti-
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cally atx=a and reach the core at=x3.
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This result disproves the main assumption of Ref. 6 that the
currents can change only at the flux front but the critical
currents remain unchanged in the regions penetrated by flux
lines. In Ref. 6 the flux fronts in the inclined field are thus
incorrect.

C. Regionh>h,

Although ath>h, the z component of the magnetic field
does not penetrate into the regipm=a(h) of the strip, itsx
component completely penetrates into the sample, and the
flux-free core is absent; Fig. 7. The two branches of the
boundary separating the regions of the strip with opposite
signs of the critical current density are still described by Egs.
(11) and(15) in the intervalx; <x<a. In the intervalx| <x;
only one of these branches exists, which is the continuation
of the z,(x) and is described by the formula

d xyl1-a? d
2,(X) = —arctan% =—[F(=x,h) = F(x,h)]. (16)
T yas—X 4

This formula follows from the given value of the sheet cur-
rentJ(x), Eq. (2).

Interestingly, even at high magnetic fields- h, the cur-
rent front is S-shaped and does not tend to a straight line as
it was assumed in Ref. 3. Probably, it is for this reason that
there is a disagreement between the theoretical and experi-
mental results in Ref. 3 &t~ 7/2. However, it is necessary
to keep in mind the following: Our approximation based on
the splitting procedure is valid ifiz,/dx<1 anddz ,/dx
< 1. These inequalities are fulfilled almost everywhere in the
strip when the characteristic scales in #héirection(i.e., Xy,
and a-x;) considerably exceed the thicknedsThus, the

A complete set of flux and current fronts is shown in Fig.regionh>h, may be considered within our approximation
6 for three tilt angle®y=30°, 45°, and 60°. Note that when only when(m/2)cot #<In(2ew/d), i.e., when the anglé is
H, increases, not only does the flux-free core shrink but alsmot too small; see the inset in Fig. 7. Otherwise, the compo-

the current front separating the regions wjth+j. shifts in

nentH, completely penetrates into the sample at lowgr

the sample. In other words, the current distribution changethan does the componeht,. In this case the field of full
not only near the core but also in the region away from it.penetration isﬁé/cosﬁ WhereH;=(JC/7r)In(2eW/d) is the

0.5

0.4

0.3

0.2

0.1

FIG. 5. Two flux-free cores in a thin strip in
increasing magnetic fielt, inclined by §=45°
as in Figs. 2 and 4. The bold dotted line shows
the universal curve, Eq$9) and (10), on which
the upper park; <x=<Xx, or x; of all flux fronts
lies whenH,<H; see the text. The depicted
cores belong toH,/H,=0.5 andH,/H,=0.95.
The circles mark the characteristic points x,,
andxz on the fronts.
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H/H =02 : /’ . . . _ ‘
0.3t : / _ 0354 03 w02 o1 0 0.1 02 03 04
o X/w
Noz2f 04 FIG. 7. The current fronts separating the regions with critical
: currents of opposite direction in a thin strip in increasing magnetic
0.1} ] field H, inclined by 6=45°. At the depicted fieldsl,/Hy=1, 1.4, 2,
06 080 f 3 abovethe penetration field,=(J./2)/sin 6, the flux-free core
OF e Y A AT HS S S . has collapsed into one line, and the front is composed of the three
L L curvesz(0=x=<x;) [EQ. (16)], zo(x;<x=<a) [lower branch, Eq.
05 ' ' ' ' ' s " (15)], andzy(a=x=x,) [upper branch, Eq11)]. Note that even at
6 =60° 5 [/ large H, these front linesare not straight linesas it might be ex-
0.4 HyH, =02 : /’ ] pected. Ata<<w these fronts collapse into one curve when plotted
: ' versusx/a. Inset: the dashed line~In(2ew/d)/cos 8 schemati-
0.3f 0.4 : 4 I cally shows the boundary above which our splitting procedure fails;
° : / see Sec. IIC. The solid line gives the penetration fibjd6)
N o2} : H = 7H,/ J;=min[In(2ew/d)/cos 6,0.57/sin ¢] and the dash-dotted
0.6 é line showshy(6), Eq. (5).
0.1H ;
0.8 .y oz o8 o6 core, A, is less than the width&=2/cosltth cos 6) of the
O fro e e P T A region whereH,=0. This a; is determined by the formula
1 08 -06 04 w02 0 02 04 o6 o8 1 J@)=HaJ, orexplicitly, by
X/w
FIG. 6. Flux and current fronts in a thin strip in an increasing a = a cogh,/2) 17)
magnetic fieldH, inclined by three anglesi=30°, §=45°, andé 17 [1-a%siré(h/2)]M2

=60° away from the strip normal. Shown are the complete fronts
for six fields H,/Hp=0.2, 0.4, 0.6, 0.8, 0.93, and (bold line),

whereH,=(J./2)/sin 6; also see Figs. 1-5. whereh,=h sin 6=H,,/H.. One more characteristic scale is

X,(h) determined by the relatiod(X;) =-H,,, which leads to

L S the explicit expression fox;:
penetration field ap=0,1®> and the current fronts will differ P P !

from those shown in Fig. 7. Note that the angular depen- _
dence of the true penetration field is given Iby,(6) 5% = a sin(h/2)

=min(H,/cos 6,J./2 sin6) and is a nonmonotonic func- 17 [1-a? cof(h/2)]V
tion; see the inset in Fig. 7.

(18

In the interval -a; <x<YX, the shape of the flux-free core

is described by formulé7). But in the regiork; <x=<a, one
I1l. MAGNETIC FIELD COMPONENTS ARE SWITCHED has

ON SUCCESSIVELY

Consider now the scenario when the fiélg, is switched d 2 xy1 - a2
on first and then one switches bh,. The resulting magnetic z,(x) = > 1-—arctan —; |. (19
field again isHa=Hgsin 6, Ha=0, Hy,=Hgcos 6. In this m var—x
case the analysis of the critical state is quite similar to that
presented in Sec. Il, and we present only the results here. In this interval ofx there is also a boundamg(x) separating
The field of full penetration of flux is still described by the regions of the strip with opposite directions gfsee Fig.
formula(4). However, at anyi<h, thex size of the flux-free 8. This horizontal line is described by
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FIG. 8. Current and flux fronts in a thin strip to which first the FIG. 9. The flux and current fronts in a thin strip in which first
perpendicular magnetic field,, is applied and then the in-plane H,,=J./4 is applied and them, is increased from zero to full
component H,, is increased from zero toH,=H,=Ha/\2 penetration, Bl,,/J.=0, 1, 2, 3, 4(scenario 2, Sec. Il The com-
=0.7J./2, resulting in a final tilt angl@=45° (scenario 2, Sec. Il plete front forH,,=J./4 is depicted as a bold line; see also Fig. 8.
The solid linez, from x=-a, viaXy, a;, =%, to —a; forms a flux-free  The front 4 through the strip centéd,0) applies to allH,=>J./2
core. This core is connected to the surfaces by tails composed ofand depends only oH,,. Note that the depicted fronts correspond
horizontal parizz(X; <x<a,), and a curved pars(a; <x<a), end-  to different tilt anglesy, e.g., the saturated front corresponds#to
ing at the poin{a,d/2). The dashed lines give the extensions of the =arctar{H,,/H,,) = arctan 2<=63°.
fronts which exactly coincide with the dashed lines shown in Fig. 2

and end atg. The dash-dotted lines are the current fronts of thising our splitting approximatioriFig. 11). The z component
scenario above full penetration, at the same fields as in Fig. 7 fop| (x), in this approximation does not depend prand is,
—_ o H H _ .Z 1 .
_0—45 . Note that th(_ase f_ront_s amonoto[wlcwhlle the correspond given by the formulas of Refs. 12-1r by Eq. (A8) in
ing fronts of scenario 1 in Fig. 7 are S-shaped. .
compact forn, and thex component is

d hy z

z3(x) = > 1-—1. (20) Hy(X,2) = Hy(x,— d/2) + f jy(x,z')dz, (22)
m -di2

This boundary continues in the regiap=<x=<a where it is

given by an expression coinciding with EQ.6): where H,(x,-d/2) is the field on the lower surface of the

strip. At [x| <a one hasH,(x,-d/2)=(J./2)F(-x,h), while

_d xV1 -a? H,(x,—-d/2)=H, sin 6+(J./2)sign(x) at a<|x|<1. Taking
Z3(x) = _arcta - 2D into account thaj,(x,2) has only the valuek, —j, or 0, and

_ 5 knowing z,(x) and the boundaries between the regions with
When h approaChefﬂp, the pointa, tends toX;, and the  +j  one can easily calculaté,(x,2) everywhere in the strip
differencez,’**{x) - z;**(x) vanishes simultaneously for all and near the strip explicitly.
x| <%;. At h=h, the flux-free core disappears, while the  As an example, Figs. 10 and 11 show the magnetic field
boundaryzs(x) exists ath=h,, and it is described by the |ines (parallel to the Abrikosov vortex lingsn the strip and
expression(21) in the whole interval a<x<a; see Figs. 8 near the strip for the first scenario of switching on the mag-
and 9. WhenHa,=Jc/2 is increased further, this saturated netic field at constant tilt anglé until H,=0.7H,, is reached.
current front does not change anymore. Both figures show the field lines obtained as contour lines of

Thus, we see that the shape of the flux-free core and thghe vector potentialA,(x,2) related toH(x,2)=V X (JA).

boundary between the regions with opposite directions of thgjgure 10 depicts the field lines calculated directly from
critical current density do not coincide with those describedAmpére'S law using the currents obtained in Sec. Il A and

in Sec. Il and thus depend on the magnetic history. formula (A1) of Appendix A atd/w=0.08. It is important
that this current distribution indeed leads to a flux-free core
IV. MAGNETIC FIELD LINES which is close to that obtained in Sec. Il A. On the other

hand, Fig. 11 uses expressiqie)—(A8) of Appendix A for
Using the obtained results, it is easy to find the distribu-the samed/w=0.08. These expressions were derived with
tion of the magnetic fields in the critical state of the strip. our splitting procedure. It can be seen that the agreement of
One may either integrate over the current-carrying area, nototh field-line patterns is good, but the fine details near the
ing that each current path has the magnetic field of a straighdurrent fronts can be more easily resolved in Fig.(tbp)
wire (Fig. 10. Or one may derive analytical expressions us-which is based on the simple analytical formulas. In particu-
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FIG. 10. The magnetic field lines for a strip of
width 2w and thicknesgl=0.08v in an applied
field inclined by #=45° and increased from zero
to H,=0.7H, as in Fig. 2(scenario 1 These field
lines were computed as equidistant contour lines
of the vector potentiah(x,2), Eq.(Al), yielding
a density of lines proportional to the local mag-
netic fieldH(x,z). The gray area shows the cur-
rent and field-free core. The dashed line is along
H,. The upper plot is to scale, the lower plot is
stretched along by a factor of 4.

Z

=

-1 -08 -06 -04 -02 1

lar one can see that the field lines exactly flow around thedere M, is given per unit length along, and we have taken
core in whichj=0, and some field lines cut the li&ail”) into account that only the region of the strjp| <a, gives a
that separates regions wifp=+j. and runs fromx=x; on  nonzero contribution toM,. The saturation value oM,
the upper surface to the cusp of the corexak,; also see which is achieved in high fields ford==/2, is M
Fig. 2. The slight wiggle of the field lines occurring near =-J dw/2, see Appendix B.

x| =a in Fig. 11 (bottom) is an artifact, since the condition ¢ js known for the infinitely thin strif? that whatever its

However, a more detailed anaIyS|s shows that the dlfferencgom”butlon toM, as that caused by the curresflowing
between the field-line patterns of Figs. 10 and 11 manifestg, the y direction. WhenM, is calculated, it is necessary to
itself only in narrow intervals near=+a. allow for the fact that near the ends of the strip the currents
may have not onlyy and z components but also ancom-
V. MAGNETIC MOMENT ponent, i.e., the problem becomes three dimensional. How-
_ o ever, using the conservation law for the current,jdi®d, one
In an oblique magnetic field, apart from ta@omponent  can show that even in this three dimensional case the ends of
of the magnetic moment of the stribl,, anx componenM,  the strip strictly doubld\,. It is for this reason that the factor
appears, and both can be investigated experimeritdlhe 1/2 was omitted in formula24).
expression foM, (per unit length along) is known'® In Fig. 12 we compare thel,-dependences d¥l, for the
two scenarios of switching on the magnetic field. Note that
Wz_tanr(h cos6). (23) Mf(z)(Ha) of scenario 2 is always larger thaMf(l)(Ha) of
J scenario 1, except for the trivial angl&s0 whereM,=0,

. 4 the boundaries b h _ @ and 6=m/2 where M,/M?=1~(1-H,/Hp% All M,(H,)
Knowmg Zy(X) and the boundaries between the regions wit exhibit a maximum of helgl‘ﬂ/lmax/Msat~20/7TOCCUI‘I’Ing at

opposite signs of the critical current density, given in Secs. I} JH.~26/7, and they have the same slogdl,/dH,
and lll, one can calculathl, for the strip from the formula: t @ _ a0
—2M§""/Hp atH,=0. The differenceM,” -M," is also maxi-

m,= -

a2 mum nearH,, see the dashed curve in Fig. 13. Figure 13
f de zj,(x,2dz. (24) plots the M(X) of scenario 1 as in Fig. 12 but with both
dr2 abscissa and ordinate stretched by a faet6{26) =1 such
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FIG. 11. The magnetic field lines for the same
strip as in Fig. 1Qd=0.08n, §=45°,H,=0.7TH))
from Eqgs.(A2)—«A7). To reveal the details near
the current fronts, the field lines here are non-
equidistant contour lines of the analytic vector
potential A/(x,y) of Appendix A, with levelsA,
=12 sign(v), v=0, +1, +2,..., yielding more
lines at low fields. The gray area shows the cur-
rent and field-free core. The dashed line marks
- the surface of the strip and the dotted line shows
042 044 046 048 05 052 054 056 058 06 X=X, Eq. (8), defined byH,(x;,d/2)=0. Note

X/w that field lines cut the lingfrom x=X; to X=X,
7 T marked by bold dotsthat separates regions with
/ jy==%]jc. The lower plot shows the same case on
o1 differentx andz scales.
2 I
- 0
N ]
2 %

-08 -06 -04 -02 0 0.2 0.4 0.6 0.8

1

that the approximate scaling of tmef(l)(Ha) at not too large  =Hj, sin 6, leads to an asymmetric distribution of the currents
Ha/H, is seen. Tha1?(H,) curves of scenario 2 scale even OVerz see Figs. 1-9. It is this asymmetry that generates the
better. M, component. ThusM, can be estimated as follow,

The nonmonotonic dependence Mf, on H, can be un- ~M5*-(a/w)(H,/Hy). The factora/w decreases wittH,,
derstood from the following arguments: In the reglgh<a  see Eq(1), and its product with the increasing factdg/H,
the x component of the external magnetic fielt,, leads to the observed nonmonotonic behavioMgfH,).

1 T T T —= T T T T
parabola —— =
0.9r fore =90° 7 =85 ]
Vs
0.8F , -
FIG. 12. Magnetic-cmoment component
0.71 PP 7 My(Ha) /M52 from Eq.(24) and Appendix B, for
0.6k W 75° ] scenario 1(solid lineg and scenario Zdashed
B = P lines) plotted versus the applied magnetic field
= 05t /’ o i Ha in units of the penetration fieldH,
Tx /87 s =J./2 sin 6 for tilt angles#=15°, 30°, 45°, 60°,
= g4l 7 . 75°, and 85°. HereM$®=-J.dw/2. The dot-
/. 60 dashed parabolaV,/M*=1~(1-H,/H)? ap-
0.3f p, SN . plies to #=90° (H, along x), and for #=0 (H,
I/ \\ along z) one hasM,=0. For all other angles the
o2r J_ ‘ ] [M,(H,)| for scenario 2 is larger than for scenario
2o 15° 30° 45° 1.
0.1}/ X i
0 . . . " . N
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
H /H
a p
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FIG. 13. The same magnetization curves as in
Fig. 12 for scenario 1, plotted aM,/(M3™
X 201 ) versusH,/(H,X 26/ ). The dots mark
the point whereH,=H,. The dot-dashed curve
gives the limitd=90°. The dashed line shows the
difference of theM, of scenarios 2 and 1 fof
=45° in form of 15<(MZ-MP)/(MS
X 20/ ).

VI. CONCLUSIONS The above general features of the critical state are robust
N ] ~and hold even if the strip is not very thin or if its cross
‘We solve the critical state problem for a strip of finite section is not rectangular, i.e., these features are common for
thickness in an oblique magnetic field. Two scenarios ofy|| critical states innonsymmetricsituations. However, the
switching on the external magnetic field are conside@fl: fine details of our resultée.g., the short tail fromx, to x, in
the magnetic field is increased at a constant tilt agland  Fig. 2) require that all characteristic lengths in the plane of
(2) the magnetic field components are switched on succesne strip considerably exceed its thickness. If some length of
sively. The resulting critical states are different in these twone flux-free core does not satisfy this condition, one may
caseseven after the flux has fully penetrated the strip expect deviations from the presented results in this region of
Another characteristic feature of both states is that, belowhe core. Furthermore, the temperature should be low enough
the field of full penetration, the height of the flux-free core isthat flux creep does not smear these details, i.e., the creep
lessthan the strip. thickness, i.e., the core d.oes not reach th@xponentn in the current-voltage lavE(j) = (j/j.)" should
flat surfaces but is connected to them by linails”) that  he |arge. A detailed numerical investigation of the effect of
separate regions with an opposite direction of the criticayy creep is under way. Note that the detailed shape of the
currents.” Moreover, the width of the core may be narrower f,y free core and of the boundaries between regions with
than the region of the strip in which ti'ecomponent of the  phqsite critical current in principle can be investigated via

magnetic fieldi.e., the component perpendicular to the planee in-plane component of the magnetic moment, while it has

of the strip vanishes. - __ little influence on the magnetic field on the surface within
One more interesting feature of the critical states in stripg, thin-strip approximation.

in an obliqgue magnetic field follows from the data of Figs. 6

and 9: When the applied field increases, and hence the flux

lines further penetrate into the sample, the current distribu- ACKNOWLEDGMENTS

tion changes not only near the flux front but also away from ] ]

it, i.e., in the regions where the critical state was established This work was supported by the German Israeli Research
before. Note that this feature is also seen in figures of Ref. 1&rant Agreemen(GIF) No. G-705-50.14/01 and by the Eu-
in which the critical state of a rotating cylinder was consid-opéan INTAS project 01-2282.

ered in magnetic fields perpendicular to its axis. These find-
ings mean that this property of the current distributions in the
critical states is characteristic of the general case when the

geometry of experiment is not too symmetric, while the  The magnetic field lines of a strip parallel yocoincide
usual change of currents at the penetrating flux front occurgth the contour lines of the vector potenti&j(x,2) related
only in special symmetric situatiorge.g., when the tilt angle tg the current density,(x,2) by V?A,=-j, or

0=0, /2, or when the cylinder does not rotat€inally, we

found the somewhat unexpected result that in an oblique

magnetic fieldH, exceeding the penetration field, the current A1) :J erij(r )
front separating the regions of the strip witf.fjenerally is

not a straight lineand can shift in the sample whéeth, is

increased further. with r=(x,2).

APPENDIX A: VECTOR POTENTIAL

Injr —r’|

27

(A1)
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For the special case of a thin strip in an oblique appliedRef. 12. Using formulas arctatit/u)=arctanlfu)+i=/2 (at

field, we can also find\(x,2) using our splitting procedure.
Here, as an example, we give the expressionsAfoin the

luf<1) and arctanfiu)=i arctarfu), we may write one
single expression valid for allo=<x<< (Re means the real

case of scenario 1 di<h; (see Fig. 2 Inside the core part:

delimited by the two linez,(x) and -z,(-x), one hasH,

=H,=],=0, and we may puA =0 there Within the core

width (|x| <a) one obtains

z
A/x,2) =~ f
2,(X)

H(x,2')dZ . (A2)

Inserting theH, from Sec. IV into Eq.(A2), one finds ex-
plicit formulas forA Equivalently, theA, inside the core

width can be calculated directly from the equatiéi, / iz*

Je [1-a?/x?
H =—R (. A
4%,0) - e{ arctan 1o (A8)

APPENDIX B: MAGNETIC MOMENT

From the general definition of the magnetic moment of
the strip per unit length(M,,M,)=fdx[dZ~-z,x)J,(x,2),
one obtains the following saturation values in the two limit-

=-j, and the current density of Sec. II. Eventually, we obtaining cases: FoH,= H$=(Jc/ m)In(2ew/d)*® alongz, one has

the following expressions foA,=(j./2)a,(x,2), depending

0N a, X, Xp, Z,(X), and z;(x): For -a<x<x, z,<z<d/2
and forx; <x<Xp, 2,<z<z:

ay=2A/j.=~(z-z)? (A3)
for x; <x<xy, zy<z<d/2:
a,=(z-2)(z-3z+2z2) - (z,~-2)? (A4)
for x,<x<a, z,<z<d/2:
a,=(z-z)% (A5)
For -a<x<a, z=d/2 (above the stripone has
A/(x,2) = Ay(x,d/2) - JJ2F(x,h)(z-d/2).  (AB)

The appropriate expressions below the core follows from the
Ay(-x,2). Outside the
core width one has fox>a and allz inside or close to the

symmetry relationshipA,(x,-2z)=-

strip [for x<-a useA(x,2)=-Ay(-X,-2)]:

X J
H,(x",0)dx’ — Haz + Ecg(X,Z),

A/(x,2) =Ay(a,0) + f

a

(A7)

where Ay(a,0)=dH%,/2J,, g=2%/d inside andg=|z|-d/4
outside the strip fov<<w g=0 for x>w, andH,(x,0) from

j(x,2=—j¢ signx) and M,=M3$*=—-j.dw?=-Jw?. For H,
=J./2 along x, one hasj(x,2)=j. signz) and M,=M;*"
=-j.d’w/2=-J.dw/2. The reduced magnetic moment,
=M,/M$* along z depends only orH,,=H.cos 6, and is
given by Eq.(23). The magnetic moment along Eq. (24),

in general depends on both components and has to be com-
puted from the current fronts. Explicit formulas fan,
=M,/M:* can be obtain for anH,, but here we present
them only in the casél,=H,=J./2 sin 6. Namely, for sce-
nario 1 the formulas of Sec. Il yield, fdr=h,,

\1 2 2 a
m, = f dx| 1 arctanﬁ +f dx| 1
ya®—X Xq

2 2 2 _
- —arctan=—; | X 1+—(h-hs)sin @
a

Xyl -a
™ \ra2 X
2 VSinPe — x2

+ —arctan——— |, (B1)
T 0os 46

with h.=arcoslisin 6/x)/cos 6, Eq. (9). For scenario 2 the
formulas of Sec. lll yield, foh=h,,

2\ 2
xyl-a
my = fdx{ ( arctan—) ] (B2)
va?-

which does not depend dd,, (See Figs. 12 and 33
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