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As an example for a seemingly simple but actually intricate problem, we study the Bean critical state in a
superconducting strip of finite thicknessd and width 2w@d placed in an oblique magnetic field. The analytical
solution is obtained to leading order in the small parameterd/w. The critical state depends on how the applied
magnetic field is switched on, e.g., at a constant tilt angle, or first the perpendicular and then the parallel field
component. For these two basic scenarios we obtain the distributions of current density and magnetic field in
the critical states. In particular, we find the shapes of the flux-free core and of the lines separating regions with
opposite direction of the critical currents, the detailed magnetic field lines(along the vortex lines), and both
components of the magnetic moment. The component of the magnetic moment parallel to the strip plane is a
nonmonotonic function of the applied magnetic field.
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I. INTRODUCTION

Platelet-like type-II superconductors in a magnetic field
applied at some angleu to the normal of their plane are
frequently investigated in various experiments, see, e.g.,
Refs. 1–5. However, even for the simplest case of an infi-
nitely long strip placed in an oblique magnetic field, the criti-
cal state was theoretically studied only in the situation when
the magnitude of the applied magnetic fieldHa considerably
exceeds the field of full-flux penetration into the sample,3 Hp.
The attempt to investigate the critical state in fieldsHa
øHp led to incorrect results,6 since an essential feature of
this state was overlooked, as will be evident from our analy-
sis in Sec. II B.

In this paper we consider the following basic situation: A
thin superconducting strip fills the spaceuxu øw, uy u ,`,
uzu ød/2 with d!w; a constant and homogeneous external
magnetic fieldHa is applied at an angleu to the z axis
(Hax=Ha sin u, Hay=0, Haz=Ha cosu). It is assumed that the
thickness of the strip,d, exceeds the London penetration
depth, the critical current densityjc does not depend on the
local inductionB (Bean model7,8), and the lower critical field
Hc1 is sufficiently small so that we may takeB=m0H. We
consider two scenarios of switching on the external magnetic
field: First, the magnitude of the external field increases from
0 to Ha at a fixed angleu; second, one turns onHaz first and
thenHax. Interestingly, these scenarios lead to different criti-
cal states.

Taking into account the result of Ref. 9(see also Refs. 10
and 11), the smallness of the parameterd/w enables us to
split the two-dimensional critical state problem for the strip
of finite thickness into two simpler problems: A one-
dimensional problem across the thickness of the sample, and
a problem for the infinitely thin strip. This splitting becomes
possible since under the conditiond/w!1 the magnetic
fields and currents in the critical state essentially change
along thex direction only on scales which considerably ex-
ceed the thicknessd.

The solution of the critical state problem for the infinitely
thin strip is known.12–14 The z component of the magnetic

field is completely screened by the currents flowing in the
region uxu ,a, i.e., one hasHz=0 there. The lengtha is de-
scribed by the simple formula

ashd =
1

coshsh cosud
. s1d

Here and belowh;Ha/Hc, Hc=Jc/p, Jc= jcd, andw is taken
as the unit of lengthsw=1d. In this region of the strip,
uxu ,a, the sheet currentJsxd=e−d/2

d/2 jsx,zddz (with current
density j alongy) is given by

Jsxd = −
2

p
Jc arctan

xÎ1 − a2

Îa2 − x2
. s2d

On the other hand, ata, uxu ,1 whereHzsxdÞ0, one has
J=−signsxdJc with signsxd= ±1 for x.0 andx,0, respec-
tively. The explicit form ofHzsxd in this region of the strip is
presented in Appendix A.

In the regionuxu ,a of the real strip(with dÞ0), the flux
lines are practically parallel to the planes of the strip and
penetrate into the sample across its thickness from the upper
and lower surfaces of the superconductor. The penetrating
flux fronts form the boundary of a flux-free core,zgsxd,
which thus consists of an upper and a lower branch. Below
we consider only the upper branch since from symmetry con-
siderations one has −zg

lowers−xd=zg
uppersxd;zgsxd.

Following our idea of splitting the critical state problem,
we consider a small section of the strip around an arbitrary
point x suxu ,ad as an “infinite” slab of thicknessd placed in
a parallel dc magnetic fieldHax and carrying a sheet current
Jsxd, Eq. (2). The critical state in such a slab is well
known,13,14 and this enables us to find the flux fronts, the
distribution of the magnetic fields, and the currents across
the thickness of the strip in the regionuxu ,a. Since the
critical state in the slab depends on howHax and J was
turned on, the above-mentioned dependence of the critical
state in the strip on the prehistory ofHax and ofHaz appears.
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Of course, a similar procedure may be used in the region
a, uxu ,1 to find the distribution of the magnetic fields, but
there the appropriate analysis is trivial sincejsx,zd is con-
stant; thus we do not discuss it below.

II. MAGNETIC FIELD IS INCREASED AT CONSTANT
TILT ANGLE

In the case of the first scenario of switching on the mag-
netic field whenu=const andh has increased monotonically,
it is convenient to introduce the function

Fsx,hd ;
2

p
Fh sin u − arctan

xÎ1 − ashd2

Îashd2 − x2G , s3d

which is proportional to thex component of the magnetic
field on the upper surface of the strip atuxu øa, Hussxd
=Hax+0.5Jsxd=sJc/2dFsx,hd. Below we shall also use the
two characteristic fields:

hp =
p

2 sin u
, s4d

andhf defined by the equations:

hf = hp − u +
arctanftan u thsu cosudg

sin u
,

coshsu cosud = sin u coshshf cosud, s5d

whereu is some parameter. The meaning of these fields will
become clear below.

A. Interval 0 ,h,hf

Consider first the flux front in the interval 0,h,hf. It is
essential that there exists a point on the upper plane of the
strip where the derivativedHussxd /dx vanishes. A simple cal-
culation gives that this occurs at the point with the coordi-
natex1,

x1shd = ashdsin u. s6d

Thus, whenh increases, the flux lines at −ashd,x,x1shd
monotonically penetrate into the strip through its upper sur-
face, and the shape of the core in this interval ofx is deter-
mined by the equation

zgsxd = sd/2df1 − Fsx,hdg. s7d

This formula follows from the well-known distribution of the
magnetic field in the “slab” shown in Fig. 1(“Bean pro-
files”). On the other hand, in the intervalx1shd,x,x0shd the
flux lines leavethe sample, and atx.x0 vortices of opposite
sign penetrate into the strip, Fig. 1. Here the pointx0shd is
found from the conditionHussx0d=0, i.e., from

Fsx0,hd = 0. s8d

It is clear from the inspection of Fig. 1 that in the interval
x1shd,x,x2shd the shape of the core is determined by the
flux front occurring at the fieldh* which has to be found
from the equation

x = ash*dsin u. s9d

Thus, in this interval one has

zgsxd = sd/2df1 − Fsx,h*dg. s10d

In the same interval there is also a frontz1sxd separating the
regions of the strip with opposite signs of the critical current
density, see Figs. 1 and 2. This front is described by the
formula

z1sxd = sd/4df2 + Fsx,hd − Fsx,h*dg. s11d

At the pointx2shd the frontz1sxd reaches the boundary of the
core zgsxd, and, hence, thisx2shd is determined by the con-
dition zgsx2d=z1sx2d. Using formulas(9)–(11), one then ob-
tains forx2,

x2 = asudsin u,

Fsx2,hd + Fsx2,ud = 0. s12d

At x2shd,x,ashd the critical current density has only a
negative sign,j =−jc, at z.zg, and we arrive at

zgsxd = sd/2df1 + Fsx,hdg. s13d

We see that in the interval of the magnetic fields
0,h,hf the width of the flux-free core is equal to 2ashd,
but its size alongz is less thand; see Fig. 2. Whenh→hf, the
differenceashd−x2shd tends to zero, and ath=hf one has
x2shd=ashd. With the use of Eqs.(1) and(12) this condition
may be rewritten as Eqs.(5).

FIG. 1. Bean profiles of the magnetic fieldHxszd across the strip
at 5 positions x in the strip at h,hf. Here u=45°, Ha

=0.6Hp,Hf =0.834Hp; thus x1=0.478, x0=0.597, x2=0.617, a
=0.677 in unitsw (see Fig. 6). The characteristicz valueszgsxd,
zlsxd=−zgs−xd, and z1sxd are defined in the text and in Fig. 2.
Shown are(a) 0,x=0.35,x1, (b) x1,x=0.57,x0, (c) x0,x
=0.61,x2, (d) x2,x=0.65,a, (e) xùa=0.677. For all these pro-
files, 2Hx/Jc is Fsx,hd on the upper surface, andFs−x,hd on the
lower surface. The continuation of the increasing parts of the pro-
files (b) and (c) intersects the upper surface atFsx,h*d.
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B. Interval hf ,h,hp

Whenhf ,h,hp, the upper and the lower branches of the
flux-free core merge in the intervalsx3, uxu ,a, and hence
the size of the flux-free core in thex direction, 2x3shd, be-
comes less than 2ashd; see Figs. 3 and 4. Herex3shd, which
lies betweenx1shd andashd, is determined by the condition,
zg

uppersx3d=zg
lowersx3d, or in the explicit form by the equations

x3 = asudsin u,

Fs− x3,hd + Fsx3,ud = 2, s14d

where we have taken into account the symmetry of the flux-
free core and formulas(7), (9), and(10). In other words, we
find that not only thez-size of the core is less thand, but also
its x-size is less than the width of the region in the strip,
2ashd, where Hz=0. In the interval −x3shd,x,x1shd, the
core is again described by Eq.(7), while in the interval
x1shd,x,x3shd it is given by Eqs.(9) and (10). When h

becomes equal tohp defined by formula(4), the point x3
reachesx1, and moreover, the core disappears at all since at
this field the differencezg

uppersxd−zg
lowersxd vanishes even for

uxu ,x1. Thus,hp=0.5p /sin u is the field of full penetration
of flux into the strip in the oblique magnetic field. This field
has a simple meaning. In usual units one finds for thex
component of the penetration field,Hchpsin u=Jc/2, i.e., the
penetration occurs when thex component of the applied field
has completely penetrated into the slab.

Interestingly, the part of the boundary of the core in the
interval x1shd,x,x3shd, as well as its part in the interval
x1shd,x,x2shd for the fields 0,h,hf, is described by a
universal function ofz on x which does not depend onh at
all; see Eqs.(9) and (10). The upper corner of the core, i.e.,
the point x2shd for 0,h,hf or the point x3shd for
hf ,h,hp, moves just along the line described by this func-
tion whenh increases; Fig. 5.

As to the front separating the regions of the strip with
opposite signs of the critical current density, it is still de-
scribed by Eq. (11) in the region x1,x,a even for
hf ,h,hp. However, in the intervalx3øxøa, apart from
this upper branch of the front,z1sxd, a lower branchz2sxd
appears, and these branches join each other with vertical
slope atx=ashd, Fig. 4. Knowing the upper branch, one can
find the lower branch from the given value of the sheet cur-
rent Jsxd, Eq. (2), yielding

z2sxd = sd/4dfFs− x,hd − Fsx,h*dg, s15d

whereh*sxd is found from

x = ash*dsin u.

FIG. 2. The flux and current fronts in a thin strip in an increas-
ing magnetic fieldHa that is inclined by a constant angleu=45°
away from the normal of the strip plane. Shown is the state when
Ha=0.7Hp,Hf =0.834Hp where Hp=sJc/2d /sin u is the field of
full penetration; see the text. The current-free core is delimited by
the functionszgsxd (bold line) and −zgs−xd. The current density to
the left of this core and of the “tails”z1sxd, −z1s−xd, is j = jc, and to
the right j =−jc. The lower plot enlarges the region near the points
x=x1, x=x2, andx=a on these curves; see the text. The two dashed
lines are extensions of the fronts depicted in the regions −aøx
øx1 and x2øxøa and cut the upper surfacez=d/2 at the point
x=x0 where the localHx vanishes, Eq.(8).

FIG. 3. Bean profiles of the magnetic fieldHxszd across the same
strip as in Fig. 1 but for a higher applied fieldh.hf, Ha

=0.93Hp.Hf =0.834Hp; thus x1=0.311, x3=0.422, x0=0.438, a
=0.440 in unitsw (see Fig. 4). The characteristicz valueszgsxd,
zlsxd=−zgs−xd, z1sxd, andz2sxd are defined in the text and in Fig. 4.
Shown are the 5 profiles:(a) 0,x=0.15,x1, (b) x1,x=0.40,x3,
(c) x=x3=0.422, (d) x3,x=0.43,a, (e) xùa=0.440. Profile(d)
does not cut the field-free core and hasHxszd.0 everywhere. The
values ofHx on the upper and lower surfaces are given by the same
expressionsFsx,hd andFs−x,hd as in Fig. 1.
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A complete set of flux and current fronts is shown in Fig.
6 for three tilt anglesu=30°, 45°, and 60°. Note that when
Ha increases, not only does the flux-free core shrink but also
the current front separating the regions withj = ± jc shifts in
the sample. In other words, the current distribution changes
not only near the core but also in the region away from it.

This result disproves the main assumption of Ref. 6 that the
currents can change only at the flux front but the critical
currents remain unchanged in the regions penetrated by flux
lines. In Ref. 6 the flux fronts in the inclined field are thus
incorrect.

C. Regionh.hp

Although ath.hp the z component of the magnetic field
does not penetrate into the regionuxu øashd of the strip, itsx
component completely penetrates into the sample, and the
flux-free core is absent; Fig. 7. The two branches of the
boundary separating the regions of the strip with opposite
signs of the critical current density are still described by Eqs.
(11) and(15) in the intervalx1,x,a. In the intervaluxu ,x1
only one of these branches exists, which is the continuation
of the z2sxd and is described by the formula

z2sxd =
d

p
arctan

xÎ1 − a2

Îa2 − x2
=

d

4
fFs− x,hd − Fsx,hdg. s16d

This formula follows from the given value of the sheet cur-
rent Jsxd, Eq. (2).

Interestingly, even at high magnetic fieldsh@hp the cur-
rent front is S-shaped and does not tend to a straight line as
it was assumed in Ref. 3. Probably, it is for this reason that
there is a disagreement between the theoretical and experi-
mental results in Ref. 3 atu,p /2. However, it is necessary
to keep in mind the following: Our approximation based on
the splitting procedure is valid ifdzg /dx!1 and dz1,2/dx
!1. These inequalities are fulfilled almost everywhere in the
strip when the characteristic scales in thex direction(i.e., x1,
and a−x1) considerably exceed the thicknessd. Thus, the
region h.hp may be considered within our approximation
only whensp /2dcot u, lns2ew/dd, i.e., when the angleu is
not too small; see the inset in Fig. 7. Otherwise, the compo-
nent Hz completely penetrates into the sample at lowerHa
than does the componentHx. In this case the field of full
penetration isHp

' /cosu whereHp
'=sJc/pdlns2ew/dd is the

FIG. 4. The same fronts as in Fig. 2 but at a larger fieldHa

=0.93Hp.Hf. As in Fig. 2 the flux-free core is formed by the
curveszgsxd, −zgs−xd, but the tail separating regions withj = ± jc is
now composed of two functionsz1sxd and z2sxd, which join verti-
cally at x=a and reach the core atx=x3.

FIG. 5. Two flux-free cores in a thin strip in
increasing magnetic fieldHa inclined by u=45°
as in Figs. 2 and 4. The bold dotted line shows
the universal curve, Eqs.(9) and (10), on which
the upper partx1øxøx2 or x3 of all flux fronts
lies when HaøHp; see the text. The depicted
cores belong toHa/Hp=0.5 and Ha/Hp=0.95.
The circles mark the characteristic pointsx1, x2,
andx3 on the fronts.
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penetration field atu=0,15 and the current fronts will differ
from those shown in Fig. 7. Note that the angular depen-
dence of the true penetration field is given byHpsud
=minsHp

' /cosu ,Jc/2 sin ud and is a nonmonotonic func-
tion; see the inset in Fig. 7.

III. MAGNETIC FIELD COMPONENTS ARE SWITCHED
ON SUCCESSIVELY

Consider now the scenario when the fieldHaz is switched
on first and then one switches onHax. The resulting magnetic
field again isHax=Hasin u, Hay=0, Haz=Hacosu. In this
case the analysis of the critical state is quite similar to that
presented in Sec. II, and we present only the results here.

The field of full penetration of flux is still described by
formula(4). However, at anyhøhp thex size of the flux-free

core, 2a1, is less than the width 2a=2/coshsh cosud of the
region whereHz=0. This a1 is determined by the formula
Jsa1d=Hax−Jc, or explicitly, by

a1 =
a cosshx/2d

f1 − a2 sin2shx/2dg1/2, s17d

wherehx=h sin u=Hax/Hc. One more characteristic scale is
x̃1shd determined by the relationJsx̃1d=−Hax, which leads to
the explicit expression forx̃1:

x̃1 =
a sinshx/2d

f1 − a2 cos2shx/2dg1/2. s18d

In the interval −a1øxø x̃1 the shape of the flux-free core
is described by formula(7). But in the regionx̃1øxøa1 one
has

zgsxd =
d

2
F1 −

2

p
arctan

xÎ1 − a2

Îa2 − x2G . s19d

In this interval ofx there is also a boundaryz3sxd separating
the regions of the strip with opposite directions ofjc; see Fig.
8. This horizontal line is described by

FIG. 6. Flux and current fronts in a thin strip in an increasing
magnetic fieldHa inclined by three angles:u=30°, u=45°, andu
=60° away from the strip normal. Shown are the complete fronts
for six fields Ha/Hp=0.2, 0.4, 0.6, 0.8, 0.93, and 1(bold line),
whereHp=sJc/2d /sin u; also see Figs. 1–5.

FIG. 7. The current fronts separating the regions with critical
currents of opposite direction in a thin strip in increasing magnetic
field Ha inclined byu=45°. At the depicted fieldsHa/Hp=1, 1.4, 2,
3 above the penetration fieldHp=sJc/2d /sin u, the flux-free core
has collapsed into one line, and the front is composed of the three
curvesz2s0øxøx1d [Eq. (16)], z2sx1øxøad [lower branch, Eq.
(15)], andz1saùxùx1d [upper branch, Eq.(11)]. Note that even at
large Ha these front linesare not straight linesas it might be ex-
pected. Ata!w these fronts collapse into one curve when plotted
versusx/a. Inset: the dashed lineh, lns2ew/dd /cosu schemati-
cally shows the boundary above which our splitting procedure fails;
see Sec. II C. The solid line gives the penetration fieldhpsud
;pHp/Jc=minflns2ew/dd /cosu ,0.5p /sin ug and the dash-dotted
line showshfsud, Eq. (5).
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z3sxd =
d

2
F1 −

hx

p
G . s20d

This boundary continues in the regiona1øxøa where it is
given by an expression coinciding with Eq.(16):

z3sxd =
d

p
arctan

xÎ1 − a2

Îa2 − x2
. s21d

When h approacheshp, the point a1 tends to x̃1, and the
differencezg

uppersxd−zg
lowersxd vanishes simultaneously for all

uxu ø x̃1. At h=hp the flux-free core disappears, while the
boundaryz3sxd exists athùhp, and it is described by the
expression(21) in the whole interval −aøxøa; see Figs. 8
and 9. WhenHaxùJc/2 is increased further, this saturated
current front does not change anymore.

Thus, we see that the shape of the flux-free core and the
boundary between the regions with opposite directions of the
critical current density do not coincide with those described
in Sec. II and thus depend on the magnetic history.

IV. MAGNETIC FIELD LINES

Using the obtained results, it is easy to find the distribu-
tion of the magnetic fields in the critical state of the strip.
One may either integrate over the current-carrying area, not-
ing that each current path has the magnetic field of a straight
wire (Fig. 10). Or one may derive analytical expressions us-

ing our splitting approximation(Fig. 11). The z component,
Hzsxd, in this approximation does not depend onz and is
given by the formulas of Refs. 12–14[or by Eq. (A8) in
compact form], and thex component is

Hxsx,zd = Hxsx,− d/2d +E
−d/2

z

jysx,z8ddz8, s22d

where Hxsx,−d/2d is the field on the lower surface of the
strip. At uxu øa one hasHxsx,−d/2d=sJc/2dFs−x,hd, while
Hxsx,−d/2d=Ha sin u+sJc/2dsignsxd at aø uxu ø1. Taking
into account thatj ysx,zd has only the valuesjc, −jc, or 0, and
knowing zgsxd and the boundaries between the regions with
± jc, one can easily calculateHxsx,zd everywhere in the strip
and near the strip explicitly.

As an example, Figs. 10 and 11 show the magnetic field
lines (parallel to the Abrikosov vortex lines) in the strip and
near the strip for the first scenario of switching on the mag-
netic field at constant tilt angleu until Ha=0.7Hp is reached.
Both figures show the field lines obtained as contour lines of
the vector potentialAysx,zd related toHsx,zd= = Ã sŷAyd.
Figure 10 depicts the field lines calculated directly from
Ampère’s law using the currents obtained in Sec. II A and
formula (A1) of Appendix A atd/w=0.08. It is important
that this current distribution indeed leads to a flux-free core
which is close to that obtained in Sec. II A. On the other
hand, Fig. 11 uses expressions(A2)–(A8) of Appendix A for
the samed/w=0.08. These expressions were derived with
our splitting procedure. It can be seen that the agreement of
both field-line patterns is good, but the fine details near the
current fronts can be more easily resolved in Fig. 11(top)
which is based on the simple analytical formulas. In particu-

FIG. 8. Current and flux fronts in a thin strip to which first the
perpendicular magnetic fieldHaz is applied and then the in-plane
component Hax is increased from zero toHax=Haz=Ha/Î2
=0.7Jc/2, resulting in a final tilt angleu=45° (scenario 2, Sec. III).
The solid linezg from x=−a1 via x̃1, a1, −x̃1 to −a1 forms a flux-free
core. This core is connected to the surfaces by tails composed of a
horizontal partz3sx̃1øxøa1d, and a curved partz3sa1øxøad, end-
ing at the pointsa,d/2d. The dashed lines give the extensions of the
fronts which exactly coincide with the dashed lines shown in Fig. 2
and end atx0. The dash-dotted lines are the current fronts of this
scenario above full penetration, at the same fields as in Fig. 7 for
u=45°. Note that these fronts aremonotonic, while the correspond-
ing fronts of scenario 1 in Fig. 7 are S-shaped.

FIG. 9. The flux and current fronts in a thin strip in which first
Haz=Jc/4 is applied and thenHax is increased from zero to full
penetration, 8Hax/Jc=0, 1, 2, 3, 4(scenario 2, Sec. III). The com-
plete front forHax=Jc/4 is depicted as a bold line; see also Fig. 8.
The front 4 through the strip centers0,0d applies to allHaxùJc/2
and depends only onHaz. Note that the depicted fronts correspond
to different tilt anglesu, e.g., the saturated front corresponds tou
=arctansHax/Hazdùarctan 2<63°.
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lar one can see that the field lines exactly flow around the
core in whichj =0, and some field lines cut the line(“tail” )
that separates regions withj y= ± jc and runs fromx=x1 on
the upper surface to the cusp of the core atx=x2; also see
Fig. 2. The slight wiggle of the field lines occurring near
uxu =a in Fig. 11 (bottom) is an artifact, since the condition
for the splitting procedure,dzg /dx!1, fails at this point.
However, a more detailed analysis shows that the difference
between the field-line patterns of Figs. 10 and 11 manifests
itself only in narrow intervals nearx= ±a.

V. MAGNETIC MOMENT

In an oblique magnetic field, apart from thez component
of the magnetic moment of the strip,Mz, anx componentMx
appears, and both can be investigated experimentally.3 The
expression forMz (per unit length alongy) is known13

mz ; −
Mz

Jcw
2 = tanhsh cosud. s23d

Knowing zgsxd and the boundaries between the regions with
opposite signs of the critical current density, given in Secs. II
and III, one can calculateMx for the strip from the formula:

Mx = −E
−a

a

dxE
−d/2

d/2

zjysx,zddz. s24d

HereMx is given per unit length alongy, and we have taken
into account that only the region of the strip,uxu øa, gives a
nonzero contribution toMx. The saturation value ofMx,
which is achieved in high fields foru=p /2, is Mx

sat

=−Jcdw/2, see Appendix B.
It is known for the infinitely thin strip16 that whatever its

length iny, the ends of the strip(in y) always give the same
contribution toMz as that caused by the currentsj y flowing
in the y direction. WhenMx is calculated, it is necessary to
allow for the fact that near the ends of the strip the currents
may have not onlyy and z components but also anx com-
ponent, i.e., the problem becomes three dimensional. How-
ever, using the conservation law for the current, divj =0, one
can show that even in this three dimensional case the ends of
the strip strictly doubleMx. It is for this reason that the factor
1/2 was omitted in formula(24).

In Fig. 12 we compare theHa-dependences ofMx for the
two scenarios of switching on the magnetic field. Note that
Mx

s2dsHad of scenario 2 is always larger thanMx
s1dsHad of

scenario 1, except for the trivial anglesu=0 whereMx=0,
and u=p /2 where Mx/Mx

sat=1−s1−Ha/Hpd2. All MxsHad
exhibit a maximum of heightMx

max/Mx
sat<2u /p occurring at

Ha/Hp<2u /p, and they have the same slope]Mx/]Ha

=2Mx
sat/Hp at Ha=0. The differenceMx

s2d−Mx
s1d is also maxi-

mum nearHp, see the dashed curve in Fig. 13. Figure 13
plots the Mx

s1d of scenario 1 as in Fig. 12 but with both
abscissa and ordinate stretched by a factorp / s2udù1 such

FIG. 10. The magnetic field lines for a strip of
width 2w and thicknessd=0.08w in an applied
field inclined byu=45° and increased from zero
to Ha=0.7Hp as in Fig. 2(scenario 1). These field
lines were computed as equidistant contour lines
of the vector potentialAysx,zd, Eq. (A1), yielding
a density of lines proportional to the local mag-
netic field Hsx,zd. The gray area shows the cur-
rent and field-free core. The dashed line is along
Ha. The upper plot is to scale, the lower plot is
stretched alongz by a factor of 4.
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that the approximate scaling of theMx
s1dsHad at not too large

Ha/Hp is seen. TheMx
s2dsHad curves of scenario 2 scale even

better.
The nonmonotonic dependence ofMx on Ha can be un-

derstood from the following arguments: In the regionuxu ,a
the x component of the external magnetic field,Hax

=Ha sin u, leads to an asymmetric distribution of the currents
over z; see Figs. 1–9. It is this asymmetry that generates the
Mx component. Thus,Mx can be estimated as follows:Mx

,Mx
sat·sa/wdsHa/Hpd. The factora/w decreases withHa,

see Eq.(1), and its product with the increasing factorHa/Hp
leads to the observed nonmonotonic behavior ofMxsHad.

FIG. 11. The magnetic field lines for the same
strip as in Fig. 10(d=0.08w, u=45°, Ha=0.7Hp)
from Eqs.(A2)–(A7). To reveal the details near
the current fronts, the field lines here are non-
equidistant contour lines of the analytic vector
potentialAysx,yd of Appendix A, with levelsAn

~n2 signsnd, n=0, ±1, ±2, . . . , yielding more
lines at low fields. The gray area shows the cur-
rent and field-free core. The dashed line marks
the surface of the strip and the dotted line shows
x=x0, Eq. (8), defined byHxsx0,d/2d=0. Note
that field lines cut the line(from x=x1 to x=x2

marked by bold dots) that separates regions with
j y= ± jc. The lower plot shows the same case on
different x andz scales.

FIG. 12. Magnetic-moment component
MxsHad /Mx

sat from Eq. (24) and Appendix B, for
scenario 1(solid lines) and scenario 2(dashed
lines) plotted versus the applied magnetic field
Ha in units of the penetration fieldHp

=Jc/2 sin u for tilt anglesu=15°, 30°, 45°, 60°,
75°, and 85°. HereMx

sat=−Jcdw/2. The dot-
dashed parabolaMx/Mx

sat=1−s1−Ha/Hpd2 ap-
plies to u=90° (Ha along x), and for u=0 (Ha

alongz) one hasMx=0. For all other angles the
uMxsHadu for scenario 2 is larger than for scenario
1.
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VI. CONCLUSIONS

We solve the critical state problem for a strip of finite
thickness in an oblique magnetic field. Two scenarios of
switching on the external magnetic field are considered:(1)
the magnetic field is increased at a constant tilt angleu, and
(2) the magnetic field components are switched on succes-
sively. The resulting critical states are different in these two
cases,even after the flux has fully penetrated the strip.

Another characteristic feature of both states is that, below
the field of full penetration, the height of the flux-free core is
lessthan the strip thickness, i.e., the core does not reach the
flat surfaces but is connected to them by lines(“tails” ) that
separate regions with an opposite direction of the critical
currents.17 Moreover, the width of the core may be narrower
than the region of the strip in which thez component of the
magnetic field(i.e., the component perpendicular to the plane
of the strip) vanishes.

One more interesting feature of the critical states in strips
in an oblique magnetic field follows from the data of Figs. 6
and 9: When the applied field increases, and hence the flux
lines further penetrate into the sample, the current distribu-
tion changes not only near the flux front but also away from
it, i.e., in the regions where the critical state was established
before. Note that this feature is also seen in figures of Ref. 18
in which the critical state of a rotating cylinder was consid-
ered in magnetic fields perpendicular to its axis. These find-
ings mean that this property of the current distributions in the
critical states is characteristic of the general case when the
geometry of experiment is not too symmetric, while the
usual change of currents at the penetrating flux front occurs
only in special symmetric situations(e.g., when the tilt angle
u=0, p /2, or when the cylinder does not rotate). Finally, we
found the somewhat unexpected result that in an oblique
magnetic fieldHa exceeding the penetration field, the current
front separating the regions of the strip with ±jc generally is
not a straight lineand can shift in the sample whenHa is
increased further.

The above general features of the critical state are robust
and hold even if the strip is not very thin or if its cross
section is not rectangular, i.e., these features are common for
all critical states innonsymmetricsituations. However, the
fine details of our results(e.g., the short tail fromx1 to x2 in
Fig. 2) require that all characteristic lengths in the plane of
the strip considerably exceed its thickness. If some length of
the flux-free core does not satisfy this condition, one may
expect deviations from the presented results in this region of
the core. Furthermore, the temperature should be low enough
that flux creep does not smear these details, i.e., the creep
exponentn in the current–voltage lawEs jd~ s j / jcdn should
be large. A detailed numerical investigation of the effect of
flux creep is under way. Note that the detailed shape of the
flux-free core and of the boundaries between regions with
opposite critical current in principle can be investigated via
the in-plane component of the magnetic moment, while it has
little influence on the magnetic field on the surface within
our thin-strip approximation.
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APPENDIX A: VECTOR POTENTIAL

The magnetic field lines of a strip parallel toy coincide
with the contour lines of the vector potentialAysx,zd related
to the current densityj ysx,zd by ¹2Ay=−j y or

Aysr d =E d2r8 j ysr 8d
lnur − r 8u

2p
, sA1d

with r =sx,zd.

FIG. 13. The same magnetization curves as in
Fig. 12 for scenario 1, plotted asMx/ sMx

sat

32u /pd versusHa/ sHp32u /pd. The dots mark
the point whereHa=Hp. The dot-dashed curve
gives the limitu=90°. The dashed line shows the
difference of theMx of scenarios 2 and 1 foru
=45° in form of 153 sMx

s2d−Mx
s1dd / sMx

sat

32u /pd.
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For the special case of a thin strip in an oblique applied
field, we can also findAysx,zd using our splitting procedure.
Here, as an example, we give the expressions forAy in the
case of scenario 1 athøhf (see Fig. 2). Inside the core
delimited by the two lineszgsxd and −zgs−xd, one hasHx

=Hz= j y=0, and we may putAy=0 there. Within the core
width suxu ,ad one obtains

Aysx,zd = −E
zgsxd

z

Hxsx,z8ddz8. sA2d

Inserting theHx from Sec. IV into Eq.(A2), one finds ex-
plicit formulas for Ay. Equivalently, theAy inside the core
width can be calculated directly from the equation]2Ay/]z2

=−j y and the current density of Sec. II. Eventually, we obtain
the following expressions forAy=s jc/2daysx,zd, depending
on a, x1, x2, zgsxd, and z1sxd: For −a,x,x1, zg,z,d/2
and forx1,x,x2, zg,z,z1:

ay = 2Ay/ jc = − sz− zgd2, sA3d

for x1,x,x2, z1,z,d/2:

ay = sz− z1dsz− 3z1 + 2zgd − sz1 − zgd2, sA4d

for x2,x,a, zg,z,d/2:

ay = sz− zgd2. sA5d

For −a,x,a, zùd/2 (above the strip) one has

Aysx,zd = Aysx,d/2d − sJc/2dFsx,hdsz− d/2d. sA6d
The appropriate expressions below the core follows from the
symmetry relationshipAysx,−zd=−Ays−x,zd. Outside the
core width one has forx.a and allz inside or close to the
strip [for x,−a useAysx,zd=−Ays−x,−zd]:

Aysx,zd = Aysa,0d +E
a

x

Hzsx8,0ddx8 − Haxz+
Jc

2
gsx,zd,

sA7d

where Aysa,0d=dHax
2 /2Jc, g=z2/d inside andg= uzu−d/4

outside the strip forx,w, g=0 for x.w, andHzsx,0d from

Ref. 12. Using formulas arctanhs1/ud=arctanhsud+ ip /2 (at
uuu ,1) and arctanhsiud= i arctansud, we may write one
single expression valid for all −̀,x,` (Re means the real
part):

Hzsx,0d =
Jc

p
ReHarctanhÎ1 − a2/x2

1 − a2 J . sA8d

APPENDIX B: MAGNETIC MOMENT

From the general definition of the magnetic moment of
the strip per unit length,sMx,Mzd=edxedzs−z,xdJysx,zd,
one obtains the following saturation values in the two limit-
ing cases: ForHaùHp

'=sJc/pdlns2ew/dd15 alongz, one has
jsx,zd=−jc signsxd and Mz=Mz

sat=−jcdw2=−Jcw
2. For Ha

ùJc/2 along x, one has jsx,zd= jc signszd and Mx=Mx
sat

=−jcd
2w/2=−Jcdw/2. The reduced magnetic momentmz

=Mz/Mz
sat along z depends only onHaz=Hacosu, and is

given by Eq.(23). The magnetic moment alongx, Eq. (24),
in general depends on both components and has to be com-
puted from the current fronts. Explicit formulas formx
=Mx/Mx

sat can be obtain for anyHa, but here we present
them only in the caseHaùHp=Jc/2 sin u. Namely, for sce-
nario 1 the formulas of Sec. II yield, forhùhp,

mx =E
0

x1

dxF1 −S 2

p
arctan

xÎ1 − a2

Îa2 − x2D2G +E
x1

a

dxF1

−
2

p
arctan

xÎ1 − a2

Îa2 − x2G 3 F1 +
2

p
sh − h*dsin u

+
2

p
arctan

Îsin2u − x2

cosu
G , sB1d

with h* =arcoshssin u /xd /cosu, Eq. (9). For scenario 2 the
formulas of Sec. III yield, forhùhp,

mx =E
0

a

dxF1 −S 2

p
arctan

xÎ1 − a2

Îa2 − x2D2G , sB2d

which does not depend onHax (See Figs. 12 and 13).
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