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There is compelling evidence from inelastic-neutron-scattering and tunneling experiments that the heavy-
fermion superconductor UPd2Al3 can be understood as a dual system consisting of magnetic excitons, arising
from crystal-field-split U4+ levels, coupled to delocalizedf electrons. We have computed the superconducting
transition temperature and the mass renormalization arising from a dual model with maximal spin anisotropy
using a strong-coupling approach. We find an instability to two possible opposite-spin-pairing states with even-
or odd-parity gap functions. Each has a line node perpendicular to thez direction, in agreement with NMR
relaxation-rate, specific-heat and thermal-conductivity measurements. In addition, both have total spin compo-
nentSz=0, compatible with the observation of a pronounced Knight shift andHc2 Pauli limiting. For parameter
values appropriate to UPd2Al3, the calculated superconducting transition temperature and mass renormalization
agree well with experiment for representative values of the coupling constant.
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I. INTRODUCTION

Heavy-fermion superconductors are complicated materi-
als which possess a fascinating and rich variety of physical
properties and which have stimulated the creation of an
equally diverse range of theories in an effort to understand
them. These materials are dominated by strong electronic
correlations giving rise to magnetic and superconducting in-
stabilities. Accordingly, most theories ignore phononic de-
grees of freedom.

One of the most extensively studied models of heavy-
fermion superconductivity is a phenomenological model
based on the exchange of spin fluctuations between heavy
quasiparticles. The latter originate in periodic resonant scat-
tering of conduction electrons close to the Fermi level as
described within the Kondo lattice model of Ce
compounds.1,2 Pairing via spin fluctuations can be considered
as a one-component model to the extent that the spin fluc-
tuations originate in the system of heavy quasiparticles and
any interaction between conduction electrons and more lo-
calized electrons, or conduction electrons and phonons, is
neglected. In spite of its simplicity this model has proved to
be very useful in our attempts to understand heavy-fermion
compounds on the border of magnetic long-range order, such
as CePd2Si2,

3 CeIn3,
3 and CeRhIn5.

4 Its success probably
derives from the fact that the spin-fluctuation-induced effec-
tive interaction tends to dominate all other channels of inter-
action when a material is tuned close to the border of mag-
netism by doping or, as in the Ce compounds mentioned
above, by applying pressure. The spin-fluctuation mechanism
in the Kondo lattice may also be appropriate for the Ce-
based heavy-fermion superconductors at ambient pressure,
CeCu2Si2 and CeCoIn5.

4,5

It has become increasingly evident that the Kondo-lattice
model is, however, not adequate in the case of heavy-
quasiparticle formation in some uranium heavy-fermion
compounds,6,7 where 5f electrons are partly localized and

partly itinerant. The former occupy crystalline-electric-field
(CEF) split 5f2 states. The latter, more itinerant, 5f electrons
have a strongly enhanced effective mass due to a coupling to
virtual excitations between CEF states. This notion of heavy-
quasiparticle formation is especially appropriate for UPd2Al3
and it is the starting point of our theoretical model for heavy-
fermion superconductivity in this compound. Specifically, we
consider an effective pairing mechanism which is based on
the virtual exchange of collective CEF excitations known as
“magnetic excitons.” They are propagating bosonic modes in
contrast to the overdamped modes which give rise to pairing
in the itinerant spin-fluctuation model.

The interplay of conduction electrons and CEF excitations
is a well studied subject. Initially, research was focused in
two areas:8 transport anomalies and superconducting pair
breaking or enhancement due to conduction-electron scatter-
ing from dilute CEF-split impurities; and periodic lattices of
CEF ions interacting with one another via conduction-
electron polarization. In the latter case attention was focused
on collective effects within the CEF system due to the
RKKY interactions mediated by itinerant electrons. Later,
White and Fulde9 showed that the inverse effect, viz.
conduction-electron mass enhancement via virtual emission
and absorption of magnetic excitons, is also important. They
demonstrated that this mechanism explains the enhanced ef-
fective electron masses in praseodymium metal.

It is then natural to ask whether the exchange of magnetic
excitons between quasiparticles can also mediate supercon-
ductivity. Until recently, no theoretical work had been carried
out to answer this question, mainly for two reasons. First,
when the effects on superconductivity of paramagnetic im-
purities with CEF-split energy levels were studied in detail
for the s-wave case,10 it was found that for rare-earth ions the
pair-breaking transition matrix elements usually dominate
the pair-enhancing matrix elements. Second, no good ex-
ample of a superconducting compound with this dual nature,
i.e., magnetic excitons arising from localizedf electrons
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coupled to delocalizedf electrons, was known. Recently,
however, evidence has been accumulating that the heavy-
fermion compound UPd2Al3 (TN=14.3 K, Tc=1.8 K, see
Ref. 11) is the first example where such a mechanism is
responsible for superconductivity. Since this mechanism is
pair breaking in the s-wave channel(as was already known
from the impurity models mentioned above), the supercon-
ducting gap function must change sign as a function ofp
(i.e., the gap must have a node) as is the case with spin-
fluctuation-mediated superconductivity.

An early indication that UPd2Al3 is a localized-
delocalized f system came from magnetic-susceptibility
measurements. Grauelet al.12 measured the dc magnetic sus-
ceptibility in UPd2Al3 and argued that the anisotropy which
they observed arose from a tetravalent configuration of the
uranium ions, i.e., U4+ s5f2d. Since then Knight-shift13 and
optical14 measurements have supported the notion that
UPd2Al3 contains both localized and delocalizedf electrons.

However, the most direct evidence in favor of the dual-
system hypothesis comes from inelastic neutron scattering
(INS) and tunneling experiments. A dispersive crystal-field
excitation (magnetic exciton) was observed by Mason and
Aeppli15 in INS experiments within the antiferromagnetic
(AF) phase. Later higher-resolution experiments16–18 re-
vealed a resonance feature which appears in the INS spec-
trum upon entering the superconducting state. This result
demonstrates that a strong interaction exists between the lo-
calized and delocalized components of thef-electron system.
Pioneering tunneling experiments19 performed on
UPd2Al3-AlOx-Pb tunneling junctions allowed experimenters
to view, for the first time, the tunneling density of states
(DOS) of a heavy-fermion superconductor. Strong-coupling
features appear in the DOS around 1 meV close to the su-
perconducting gap energy reinforcing the view that the ex-
changed bosons are the magnetic excitons. Taken together,
INS and tunneling experiments led Sato and co-workers20 to
the conclusion that superconductivity arises in this material
from an effective interaction between itinerant electrons me-
diated by magnetic excitons. Using a model two-component
Hamiltonian they were able to explain qualitative features of
the INS scattering spectrum and the superconducting tunnel-
ing spectrum.

Subsequently, the origin of the magnetic excitons and
their global dispersion, as measured in Ref. 15, was investi-
gated in more detail.21 Using anxy-type interaction, where
only the s± components of the conduction-electron spin
couples to the magnetic excitons, the effective nonretarded
pair potential was derived. The gap equations were solved
within a weak-coupling approach demonstrating that the
highestTc is obtained by an odd-parity state. In this model,
however, the structure of the pairing amplitudes in spin space
is complicated, making it unsuitable for going beyond the
nonretarded approximation.

In this paper, therefore, we investigate an alternative
model with a simplified interaction between localized and
itinerant 5f electrons. This interaction is of the Ising type,
i.e., only thesz component of the conduction-electron spin
can scatter magnetic excitons. In this case, the gap equations
naturally divide into those for equal- and opposite-spin pair-
ing, in contrast to the usual “singlet” and “triplet” classifica-

tion that arises in spin-rotation-symmetric models. In the
present work we treat this simplified dual model for UPd2Al3
in a more sophisticated strong-coupling approach using a
mapping to an electron-boson Hamiltonian and solving the
Éliashberg equations for the frequency- and momentum-
dependent self-energy and gap functions. The level scheme
which we use here, and which gives rise to the Ising-type
interaction, is quite realistic: recent band-structure calcula-
tions based on this level scheme account well for experimen-
tal de Haas-van Alphen frequencies in UPd2Al3.

7 We dem-
onstrate that our model can yield a superconducting
transition temperature and a mass renormalization which are
consistent with experiment for reasonable values of the cou-
pling constant.

II. MODEL

Band structure calculations based on the supposition that
two of the three uranium 5f electrons are localized reproduce
the observed de Haas-van Alphen frequencies in UPd2Al3
very well.7 These calculations suggest a level scheme for the
localized U 5f states which we adopt here. According to the
j j -coupling scheme the U4+s5f2d ions have total angular mo-
mentumJ=4. The twofold degeneracy of the ionic ground
state is lifted by a crystalline electric field. We consider only
the excitation between the non-degenerate ground stateuG4l
= 1

Î2suJz=3l− uJz=−3ld and the first excited stateuG3l= 1
Î2suJz

=3l+ uJz=−3ld. The CEF energy splitting is of the orderD

.6 meV, as obtained from fitting the magnetic-exciton dis-
persion obtained from INS measurements15 to theoretical
results.21

The dual model of 5f electrons may also exhibit a mag-
netic instability which is completely dominated by the local-
ized electronssTN!EFd. Because of the singlet-singlet split-
ting the ordered moments must be of the induced moment
variety: non-zero magnetic moments arise because the states
uG3l and uG4l are mixed by effective interionic exchange in-
teractions. Indeed this mechanism was proposed in Ref. 21
as the origin of the AF order observed atTN=14.3 K. With
the work in Ref. 21 in mind, we take the view here that the
underlying AF order is not an important consideration in the
description of heavy-fermion superconductivity in UPd2Al3.
AF order mainly leads to a folding down of the conduction
bands into the AF Brillouin zone. Also, the magnetic-exciton
dispersion in the ordered phase is not appreciably different
from that in the paramagnetic phase, due to the fact that
TN!D.21 Furthermore, in mean-field theory, the AF order
parameter will only modify the superconductingTc to the
extent that the conduction-electron states are reconstructed
close to the AF Bragg planes.

Accordingly we consider a three-dimensional lattice of
localized 5f2 CEF states and itinerantf electrons. In the sub-
spacehuG3l , uG4lj we may write the CEF part of the Hamil-
tonian as

HCEF= Do
i

Siz, s1d

whereS denotes a pseudospinsS= 1
2

d. In this representation
we interpret the CEF ground state as havingSz=−1

2 and en-
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ergy −D /2 and the excited CEF state as havingSz=
1
2 and

energyD /2. In the pseudospin representation, the only non-
zero component of the physical total angular momentumJ is
the Jz component:

Jz = g10
1

2

1

2
02 = gSx, s2d

whereg=6. Then the full two-component Hamiltonian may
be written as

H = o
ps

epcps
† cps + Do

i

Siz − Jo
id

Sx
i Sx

i+d − Io
i

sizSix. s3d

The third term in H is a nearest-neighbor superexchange in-
teraction between localized 5f states. The last term is the
exchange interaction between localized 5f CEF states and
the delocalized 5f conduction electrons; the conduction-
electron spin operator is

si = ca
†sr idsabcbsr id. s4d

After carrying out a Holstein-Primakoff-like transformation
(valid at low temperaturesT!D) and an additional Bogoliu-
bov transformation involving the resulting bosons(see Ap-
pendix A), H takes the form

H = o
ps

epcps
† cps + o

q
vqsaq

†aq + 1/2d

− I E drca
†sr dsab

z cbsr dfsr d s5d

where

fsr d =
1

ÎV
o
q

1

2
lqsaq + a−q

† deiqr , lq
2 =

D

vq
. s6d

vq is the dispersion of those bosons which have creation and
destruction operatorsaq

† andaq, respectively(see Appendix
A).

We define the electron and magnetic-exciton Green’s
functions as follows:

Gabsr − r 8,t − t8d = − kTcasr ,tdc̄bsr 8,t8dl, s7d

Dsr − r 8,t − t8d = − kTfsr ,tdfsr 8,t8dl. s8d

Note thatfsr d,Sxsr d, as can be seen immediately by com-
paring the terms,I in Eqs. (3) and (5), and soD is essen-
tially a pseudospin susceptibility. Furthermore, as in the
theory of phonon-mediated superconductivity,fsr d is real,
fsr d=f†sr d, and commutes with itself,ffsr d ,fsr 8dg=0,
conditions which allow us to use Wick’s theorem. We as-
sume that we may write the superconducting order parameter
Fabsp , ivnd as the product of a part which contains the mo-
mentum and frequency dependenceFsp , ivnd and a part that
represents the spin state of the paired quasiparticlesuxl,

Fabsp,ivnd = Fsp,ivndkabuxl. s9d

Then the Éliashberg equations for the conduction-electron
self-energySsp , ivnd and gap functionFsp , ivnd which fol-
low from the Hamiltonian Eq.(5) are

Ssp,ivnd =
T

No
p8vn8

Ksp − p8,ivn − ivn8dGsp8,ivn8d, s10d

Fsp,ivnd = p
T

N o
p8vn8

Ksp − p8,ivn − ivn8d

3uGsp8,ivn8du
2 Fsp8,ivn8d. s11d

N is the total number of lattice sites. The kernelK is given by

Ksq,innd = − I2D0sq,innd = S I2D

2
D 1

nn
2 + vq

2 . s12d

We have decided not to renormalizeD0 by the interactionI
between magnetic excitons and electrons. This interaction is,
however, already included inD0 to the extent that we model
the exciton dispersionvq by the true experimental disper-
sion. A particularly noteworthy feature of this formulation is
that the effective interaction is dominated by its static part
and is strongly peaked inq space at the antiferromagnetic
wave vectorQ=s0,0,p /cd. This strong dependence on wave
vector contrasts with the practically wave-vector-
independent interaction in the usual phonon-mediated super-
conductivity. The difference arises because, in the phonon
problem, the quantity corresponding tolq has an additional
factor, vq, leading to a wave-vector-independent static pho-
non propagator. A strong interaction between the collective
modes of the localized moments and the heavy conduction
electrons atQ=s0,0,p /cd has actually been observed17,18 in
UPd2Al3. The electron Green’s function is related to the elec-
tron self-energy via the Dyson equation

G−1sp,ivnd = ivn − sep − md − Ssp,ivnd. s13d

The prefactorp in Eq. (11) is the expectation value of the
Ising spin-spin interactionŝzŝz in the spin partuxl= uS,Szl of
the pair wave function(S here should not be confused with
the pseudospin introduced earlier):

p = kxuŝzŝzuxl. s14d

In the opposite-spin pair(OSP) states,

uxl =5
1
Î2

su↑↓l − u↓↑ld

1
Î2

su↑↓l + u↓↑ld,

s15d

p reduces top=k↑↓uŝzŝzu↑↓l=−1. On the other hand, for
each of the equal-spin pair(ESP) states,uxl= u↑↑l and u↓↓l, p
is +1. Note that spin rotational symmetry is broken in a
maximal (Ising-type) way in Eq. (11). Consequently the
usual classification of pairing states into an(even-parity) sin-
glet with S=0 and an(odd-parity) triplet with S=1 is not
appropriate. In our model, theu1,0l pair state no longer has
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the same energy as that of theu1, ±1l pair states. The result
is a different classification into an ESP doublet and two OSP
singlet states belonging to irreducible representations of the
D6h group (Table I). We refer the reader to Appendix B
where it is shown how the prefactorp arises in Eq.(11).

Finally, the conduction-band filling, defined as the ratio of
the number of electrons to the number of lattice sites, is

n =
1

No
p

np, s16d

wherenp is the quasiparticle occupation factor:

np = np↑ + np↓ = 2To
vn

Gsp,ivnd. s17d

Experimentally, the magnetic exciton has its strongest dis-
persionvq along thez direction. Neglecting the weaker dis-
persion in thex-y plane allows us to reduce the three-
dimensional problem to one dimension:

Sspz,ivnd =
T

Nz
o
pz8vn8

Kspz − pz8,ivn − ivn8d

3E dp'8

s2pd2Gsp'8 ,pz8,ivn8d, s18d

Fspz,ivnd = p
T

Nz
o
pz8vn8

Kspz − pz8,ivn − ivn8dFspz8,ivn8d

3E dp'8

s2pd2uGsp'8 ,pz8,ivn8du
2, s19d

n =
1

Nz
o
pz

AE dp'

s2pd2np, s20d

provided we can carry out the integrals along the perpendicu-
lar direction analytically. Here,Nz is the number of lattice
sites in thez direction andA is the area of the(hexagonal)
unit cell in the plane. We model the exciton dispersion by

vsqzd = vexf1 + b cossqzdg; 0 , b . 1. s21d

This form of the dispersion along thez direction describes
qualitatively the observed excitation branch.15 Here 2bvex
.8 meV is the overall dispersion width ands1−bdvex

.1 meV is the exciton gap at the AF wave vectorQ
=s0,0,p /cd. The quantityvex is a characteristic exciton en-
ergy. We chooseb=0.8 andvex.5 meV.60 K. The de-
tailed RPA theory of the magnetic-exciton dispersion and a

fit to the INS data of Ref. 15 was given in Ref. 21.
That sheet of the Fermi surface of UPd2Al3 thought to be

most important in bringing about heavy-fermion behavior21

has the shape of a corrugated cylinder with its axis aligned
along thez direction of the hexagonal lattice. We therefore
choose to model the electron dispersion as the sum of a
strongly dispersive part in the planeep'

and a weakly dis-
persive part in thez directionepz

. We approximate the hex-
agonal unit cell in the planespx,pyd by a circle with radius
p0, chosen so that the hexagon and circle have the same area.
(The areas must be the same in order that the maximum
value of the band filling is two in both cases.) Then, assum-
ing a parabolic dispersion in the planeep'

=e'w2 s0,w
=p' /p0,1d, we may carry out the integrals in Eqs.
(18)–(20) analytically. In the following, when not explicitly
stated, we measure all energies, temperatures and frequen-
cies in units ofe'. The reduced Éliashberg equations are

Sspz,ivnd =
T

Nz
o
pz8vn8

Kspz − pz8,ivn − ivn8dGzspz8,ivn8d,

s22d

lsTdFspz,ivnd = p
T

Nz
o
pz8vn8

Kspz − pz8,ivn − ivn8d

3Mzspz8,ivn8dFspz8,ivn8d, s23d

n = 1 −
2T

Nz
o

pz,vn.0
lnF sz8 − 1d2 + sz9d2

sz8d2 + sz9d2 G , s24d

where

Ksqz,innd =
g

svqz
/vexd2 + snn/vexd2 , s25d

Gz8spz8,ivnd = −
1

2
lnF sz8 − 1d2 + sz9d2

sz8d2 + sz9d2 G , s26d

Gz9spz8,ivnd = −Htan−1S1 − z8

z9
D − tan−1S−

z8

z9
DJ , s27d

Mzspz8,ivnd =
1

z9
Htan−1S1 − z8

z9
D − tan−1S−

z8

z9
DJ . s28d

and

lsTd = 1 for T = Tc. s29d

We have lumped together numerical prefactors and the origi-
nal coupling constantI into a new coupling constantg hav-
ing dimensions of energy:

g =
I2D

2
S 1

2c

p0
2

2p
D 1

vex
2 , s30d

wherec is the lattice constant in thez direction. The value of
g is not calculated; rather it is considered a model parameter
motivated by experiment. The complex numberz has a real
part

TABLE I. Spin and orbital structure of the possible gap func-
tions which are solutions of the Éliashberg equations for the dual
model of UPd2Al3 used in this paper.

p uxl= uS,Szl D6h repres. Spin pairing Fspzd

−1 u0,0l= 1
Î2

su↑↓l− u↓↑ld G1
+sA1gd OSP cosscpzd

−1 u1,0l= 1
Î2

su↑↓l+ u↓↑ld G1
−sA1ud OSP sinscpzd

+1 u1, ±1l= u↑↑l , u↓↓l G1
−sA1ud ESP sins2cpzd
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z8 = − fepz8
− m + S8spz8,ivndg s31d

and an imaginary part

z9 = vn − S9spz8,ivnd. s32d

We choose a simple tight-binding form forepz8

epz8
= e'Sa

2
Dcosspz8d; a ! 1, s33d

wherea determines the degree of corrugation of the FS cyl-
inder along thez axis.

The momentum convolutions in Eqs.(22) and (23) were
evaluated with the aid of a fast-Fourier-transform algorithm
on a 32332 lattice. The corresponding frequency sums were
carried out using the renormalization group technique of Pao
and Bickers22 which allows a considerable reduction of the
computational effort. Between 240 and 480 Matsubara fre-
quencies were kept at each stage of the renormalization
group procedure. The renormalization procedure was started
at a temperatureT0=0.01e' and the frequency sum cut-off
used wasVc<15e'. The renormalization procedure restricts
us to discrete temperatures so that the point at which the
condition in Eq.(29) is met must be determined by interpo-
lation. The discrete temperatures were sufficiently close that
a linear interpolation was adequate.

III. RESULTS AND DISCUSSION

To begin with a comment is in order regarding vertex
corrections to the self-consistent Éliashberg theory presented
in Sec. II. In Migdal’s analysis of the electron-phonon prob-
lem these corrections were shown to scale as the ratio
vD /EF!1, wherevD is the Debye energy. Althoughvex is
of the same order of magnitude asvD, one might be inclined
to think thatEF in UPd2Al3 is comparable tovex because of
the low velocity of the heavy quasiparticles. However, this is
not the case. Vertex corrections involve an integration over
momentum transfers of the order of the Fermi momentum.
Note also that the low-frequency boson propagator is peaked
at large momenta. But the quasiparticles are renormalized
only in a shell of ordervex close to the Fermi surface. There-
fore most of the intermediate scattering states are associated
with the conventional band mass. We have, therefore, ne-
glected vertex corrections in this paper.

Scattering by isolated impurities with CEF excitations is
usually pair breaking in the s-wave channel8 because the
dipolar exchange interactions which break the singlet state
are stronger than spin-conserving quadrupolar interactions
between conduction electrons and CEF states. The s-wave
state[whereFspzd is nodeless] is also not favorable in our
case of a periodic lattice of partly localized 5f electrons
which has dispersive CEF excitations. One can most clearly
see this in the following way. In the singlet channelp=−1.
Because the kernelKsq , innd is strongly peaked atqz=p /c
and nn=0, the gap equation may then be crudely approxi-
mated in the following way:

Fspz,ipTd . − CSpz,
p

c
DFSpz −

p

c
,ipTD , s34d

whereCspz,p /cd is a positive number. Therefore a finite gap
Fspz, ipTd must change sign on translation throughQz

=p /c, i.e., the gap must possess the symmetryFspz−p /cd
=−Fspzd, which excludes an s-wave gap function.

However a non-s-wave superconducting state with nodes
may take advantage of the exciton dispersion and become
stable. From numerical solutions of the linearized gap equa-
tions for our model we find that the instability with the high-
estTc is accidentally doubly degenerate. The corresponding
gap functions transform as the even- and odd-parity OSP
states, cosscpzd and sinscpzd. The former is the usual singlet
state; the latter is theSz=0 part of the triplet which would
appear in a theory with full spin rotational symmetry. We
also find an instability in the ESP channel but at a much
lower temperature. The corresponding pairing symmetry is
Fspzd,sins2cpzd. We summarize our results in Table I.

The symmetries of the orbital pair wave functions can be
understood in the following way. By comparing our self-
energy equations with those obtained from a four-fermion
interaction we see that the effective interaction between qua-
siparticles in our theory is

kg2g4uV̂ug1g3l = I2D0sg1g2

z sg3g4

z , s35d

or equivalently

V̂ = I2D0ŝzŝz. s36d

Hence the pairing interaction in someuxl channel is

Vxsq,innd = kxuŝzŝzuxlI2D0sq,innd. s37d

We note that our equations go beyond previous
calculations6,21 in that our formulation includes the full mo-
mentum and frequency dependence of the effective interac-
tion Vxsq , innd.

In the OSP channel the static interaction is

Vsqzd = − I2D0sqzd =
I2D/2

vsqzd2 , s38d

which is strongly peaked atqz=p /c. The corresponding in-
teraction in real space is therefore attractive when the quasi-
particles are separated by a lattice spacing in thec direction.
Now cosscpzd and sinscpzd are peaked with equal amplitude
in real space atz=c. Hence they are equally well suited to
take advantage of the attractive part of the interaction and
have equal superconducting transition temperatures. The
ESP interaction is the negative of the OSP interaction and so
it first becomes attractive atz=2c in real space. The only
odd-parity wave function which is peaked in real space at
this position is sins2cpzd.

Ultimately, the degeneracy of the OSP states is a peculiar-
ity of the particular CEF level scheme we adopt for the lo-
calized 5f states and of the approximate form of their exciton
dispersion which we assume(viz. strongly wave-vector de-
pendent only in thez direction). Both OSP states are, in fact,
compatible with present experimental evidence. OSP states,
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regardless of the value of total spin angular momentumS,
give rise to a reduction in the paramagnetic susceptibility on
entering the superconducting state. This reduction comes
about because oppositely paired spins have no magnetiza-
tion. Furthermore, such a reduction in the Pauli susceptibility
leads to an upper critical fieldHc2 which, in some cases, can
be smaller than that due to the Meissner effect. This effect is
called Pauli limiting.23 A pronounced Knight-shift reduction
at Pd sites belowTc (Refs. 13 and 24) and Hc2
Pauli-limiting25 have both been observed in UPd2Al3. Note
also that both OSP gap functions have node lines perpendicu-
lar to thez direction. In the even-parity case they are located
at pz= ± 1

2Qz, i.e., at the Bragg planes and zone boundaries of
the AF Brillouin zone, whereas in the odd-parity case they
are located atpz=0. Experimentally, the existence of node
lines was inferred from NMR relaxation-rate,26,27

specific-heat28 and thermal-conductivity measurements.29

These experiments did not, however, locate the node position
along thez direction and so the correct gap symmetry in
UPd2Al3 presently remains an open problem. To distinguish
between the possible nodal gap functions, it is very impor-
tant to perform field-angle dependent measurements of the
specific heat or of the thermal conductivity at low tempera-
ture. As proposed in Ref. 30, such measurements may be
able to locate the node line inq space.

The results of our numerical calculations of the supercon-
ducting transition temperature in the ESP and OSP channels
are shown in Fig. 1. The superconducting instability occurs
first in the OSP channel. We have carried out the calculations
with vex=0.01e'. This exciton energy corresponds to about
60 K for an electronic bandwidth of 0.5 eV. One therefore
obtains a transition temperature in the OSP channel close to
the experimental value11 sTc=1.8 Kd with a dimensionless
coupling constantg/e' of about 0.5. At this point we remind
the reader that this temperature is in the range of validity of
our theoryTc!vex,D.

That contribution to the mass renormalizationm* /mb (mb
is the band mass) arising from the momentum dependence of
the real part of the self-energy is small and som* /mb simply

reduces to the Éliashberg renormalization factor,Zsp , ivnd,
which is practically momentum-independent. The weak de-
pendence ofZsp , ivnd on p follows from the combined effect
of a strong exciton dispersion along thez axis and a weak
electron dispersion in the same direction. Our results for the
mass renormalization are shown in Fig. 2. Note that the mass
renormalization is approximately linear ing, I2 (see Ref.
31). Ab initio calculations of the band massesmb/m0 (m0 is
the free electron mass) for the g ring and b ring of the
cylindrical Fermi surface have been carried out by confining
two of the three 5f electrons to the uranium ions.7 These
values, in conjunction with a mass enhancement ofm* /mb of
about 10, yielded values ofm* /m0 which were in good
agreement with experiment.32 We find that such a large value
of the mass renormalization corresponds to a value of the
coupling constantsg/e'<2d which is roughly a factor of 4
larger than that required to reproduce the transition tempera-
ture sg/e'<0.5d. One should note that the AF long-range
order may act to reduceTc, an effect which has not been
considered here. Therefore the proper value ofg/e' may
indeed be larger than 0.5.

We have also carried out our calculations in the case that
the Fermi surface is purely cylindricalsa=0d. The results are
practically unchanged. This case, however, has the appealing
feature that the bracketed factor in the definition of the cou-
pling parameter[see Eq.(30)] is related in the following
simple way to the(constant) density of states per spin,Nsvd,

g =
I2D

2
Nsmde'

1

vex
2 . s39d

The dimensionless coupling constant can now be written

g/e' = 1
2sl1l2d2l3, s40d

where the dimensionless constantsli are defined by

FIG. 1. The dependence of the superconducting transition tem-
peratureTc on the coupling constantg [Eq. (30)]. The band fillingn
is 0.6.

FIG. 2. The dependence of the mass renormalizationm* /mb on
the coupling constantg [Eq. (30)]. The band fillingn is 0.6 as in
Fig. 1. mmin

* and mmax
* are the extremal effective masses over all

values ofqz. mmin
* occurs atqz=0; mmax

* occurs atqz= p/ c. m* is
practically constant over the Fermi surface for the range of values
of g which we consider in this works0.5,g/e',4d.
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l1 = INsmd, s41d

l2 = D/vex, s42d

l3 =
1

DNsmd
. s43d

Of these three parameters, the first,l1, is not presently
known for the uranium 5f systems. The second,l2, is about
unity. The third,l3, is approximately 167, if we make the
estimateNsmd<1 eV−1 per cell per spin. The value of the
coupling parameter we require to get the experimentally ob-
served transition temperature then leads to the estimatel1
<0.08. A value ofl1 which is a factor of 2 larger would
yield a mass renormalization in good agreement with experi-
ment, but thenTc would be larger than the experimental
value s1.8 Kd by roughly a factor of 1.6. As already men-
tioned, this discrepancy may be alleviated by the effects of
AF order. The values forl1 obtained here for a dual 5f
compound are of the same order of magnitude as for 4f
systems.9,31

IV. CONCLUSIONS AND OUTLOOK

Motivated by experiments on UPd2Al3, we have exam-
ined a magnetic-exciton model of superconductivity within a
strong-coupling retarded framework. The model naturally
explains the strong interaction between the collective modes
of the localized moments and the heavy conduction electrons
which is observed atQ=s0,0,p /cd in UPd2Al3. Solutions of
the Éliashberg equations show that the model favors a super-
conducting instability for the even- or odd-parity OSP states.
Each state has line nodes perpendicular to thez direction and
total z component of spinSz=0, characteristics which are
compatible with measurements of UPd2Al3. We find that a
superconducting transition temperature and mass renormal-
ization, each in good agreement with their experimental val-
ues in UPd2Al3, can be obtained using reasonable values of
the parameters in the theory. Taken together, these results
strengthen the argument in favor of a magnetic-exciton sys-
tem in UPd2Al3.

The evidence for dualf systems in other uranium com-
pounds does not weigh as heavily as it does in the case of
UPd2Al3. In UPt3 the number of itinerantf electrons remains
controversial. However band-structure calculations based on
the assumption that two of the three 5f electrons are local-
ized reproduce the observed de Haas-van Alphen frequencies
as well as the anisotropic heavy electron masses in this com-
pound very well.7

Recently unconventional superconductivity with split-Tc
superconductivity has been discovered in the Pr-based skut-
terudite PrOs4Sb12.

33,34 Thermodynamic and transport mea-
surements suggest that the observed heavy-fermion state
arises from the interaction of electric quadrupole moments of
the CEF-split 4f2 states of Pr3+ with the conduction
electrons.33 The ground state is probably a singlet and the
first excited state is probably a triplet, approximately
0.5 meV higher, with large off-diagonal quadrupolar matrix
elements connecting the two states. The largeness of these

matrix elements, together with the very small singlet-triplet
splitting, strongly suggests an effective mass renormalization
via virtual CEF excitations. Finally, experiments reveal that
the superconducting order parameter is anisotropic, making
this compound another candidate for CEF-exciton-mediated
superconductivity, but this time of quadrupolar nature.

UPd2Al3 provides a strong motivation for the study of
dual f-electron models such as the one discussed in this
work. We have restricted our study to the case in which all
parameters are fixed except the coupling constant. It will be
interesting to investigate the dependence of the transition
temperature on conduction-band filling and on the form of
the exciton dispersion, and to look for a mechanism that can
discriminate between the even- and odd-parity superconduct-
ing OSP states.
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APPENDIX A: THE ELECTRON-PHONON-LIKE
HAMILTONIAN

In this appendix we sketch the derivation of Eq.(5). Our
starting point is a set of Holstein-Primakoff-like transforma-
tions where the spin operators of the pseudo spinsS= 1

2
d de-

scribing the two singlet states are replaced by bosonic opera-
tors, a and a†, which correspond to the excitation from the
singlet ground state to the singlet excited state at energyD.
This replacement is valid for sufficiently small temperature
sT!Dd when ka†al!1.35 We then have

Sz = −
1

2
+ a†a, sA1d

HS+ = a

S− = a†J ⇒ Sx =
1

2
sa + a†d. sA2d

Inserting these expressions into the second, third, and fourth
sums in Eq.(3) and Fourier transforming, we arrive at the
following form,

o
q
FW1sqdaq

†aq −
W2sqd

2
saq

†a−q
† + aqa−qdG

−
I

2No
pq

cpa
† sab

z cp+qbsaq + a−q
† d, sA3d

where

W1sqd = D − W2sqd. sA4d

The first sum can be diagonalized,35 while at the same time
introducing only a factorlq in the second sum. To do this we
use the Bogoliubov transformation
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S aq

a−q
† D = Suq vq

vq uq
DS aq

a−q
† D , sA5d

where uq=coshsuqd and vq=sinhsuqd. If uq is chosen such
that

− W2sqd/W1sqd = tanhs2uqd, sA6d

then (ignoring constant additive terms) the first sum in Eq.
(A3) takes the form,

o
q

vqsaq
†aq + 1/2d, sA7d

where the dispersionvq satisfies

vq
2 = W1

2sqd − W2
2sqd. sA8d

Finally, it is easy to show that

aq + a−q
† = lqsaq + a−q

† d, sA9d

where

lq = coshsuqd − sinhsuqd. sA10d

Using Eqs.(A4) and (A6), together with the identity

D − 2W2sqd =
vq

2

D
, sA11d

we can then show that

lq
2 =

D

vq
. sA12d

The interaction term in Eq.(5) follows immediately.

APPENDIX B: THE LINEARIZED GAP EQUATION

The purpose of this appendix is to show how the Ising-
like pairing interaction, Eq.(36), leads naturally to two equa-
tions for the anomalous self-energy depending on whether
the pairing is between spins oriented in the same direction
(ESP) or in opposite directions(OSP).

Very recently it has been pointed out36 that a second-order
superconducting phase transition can cross over to a first-
order one as one approaches a quantum critical point. There
are, however, no indications that UPd2Al3 is close to a quan-
tum critical point. Accordingly we assume that the supercon-
ducting phase transition is second-order, so that, close to the
superconducting transition temperature, the equation for the
anomalous self-energyF may be linearized,

Fg2g4
spd = −

T

N o
p8,g1g3

kg2g4uV̂p−p8ug1g3luGsp8du2Fg1g3
sp8d.

sB1d

We have adopted a four-vector notationp=sp , ivnd. Accord-
ing to Eq.(36) the matrix elements of the pairing interaction

V̂ are given by

kg2g4uV̂ug1g3l = I2D0kg2g4uŝzŝzug1g3l. sB2d

Now the anomalous self-energy is proportional to the pair
wave function. Assuming that we may factorize the latter
into a four-momentum-dependent partFp and a spin-
dependent partuxl, we have

Fabspd = Fpkabuxl. sB3d

By inserting Eqs.(B2) and(B3) into Eq.(B1), and using the
resolution of the identity,

o
g1g3

ug1g3lkg1g3u = 1, sB4d

we obtain

Fpuxl = ŝzŝzuxl
T

N
o
p8

Kp−p8uGsp8du2Fp8, sB5d

whereK=−I2D0 is the kernel defined in the main text. Tak-
ing the scalar product withkxu leads to the gap equation
quoted in the main text, Eq.(11), with the prefactorp
=kxuŝzŝzuxl. (This p should not be confused with the four
momentum.) The Ising-type pairing interaction, Eq.(B2),
now allows us to decouple the gap equation into the ESP and
OSP channels by virtue of the fact

p = H+ 1 ESP

− 1 OSP.
sB6d

It is useful to consider the spin structure of the anomalous
self-energy in Eq.(B3). The matrixkab uxl has the formisy

in the singlet state,S=0. In the triplet state,S=1, its structure
is given bykab uxl=sid ·ssydab, whered is a complex vec-
tor. The ESP statesu1, +1l and u1,−1l correspond, respec-
tively, to the d vectors s−1

2 ,−1
2 ,0d and s 1

2 ,−1
2 ,0d, both of

which lie in the hexagonal plane. On the other hand, the OSP
stateu1,0l corresponds to thed-vectors0,0,1/Î2d, which is
parallel to thez axis.
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