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We measure the transverse thermoelectric coefficientaxy in simulations of type-II superconductors in the
vortex-liquid regime, using the time-dependent Ginzburg-Landau equation with thermal noise. Our results are
in reasonably good quantitative agreement with experimental data on cuprate samples, suggesting that this
simple model contains much of the physics behind the large Nernst effect due to superconducting fluctuations
observed in these materials.
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I. INTRODUCTION

The Nernst effect in the cuprate superconductors has re-
cently become a focus of attention both experimentally1–5

and theoretically.6–9 The Nernst effect is the electric field
induced when the sample has a temperature gradient,=T,
perpendicular to the magnetic field,H; this electric field is
perpendicular to both=T andH. For some cuprate supercon-
ductors the Nernst effect due to superconducting fluctuations
is detectable at temperatures far above the transition tem-
perature,Tc.

3,4 Ussishkin et al.7 calculated the low-field
Nernst effect forT.Tc due to superconducting fluctuations,
obtaining results in reasonable agreement(in absolute units)
with experimental data. They used the linearized time-
dependent Ginzburg-Landau(TDGL) equation, which is
identical to the Aslamazov-Larkin10 approximation for the
microscopics. Linearized(Gaussian) TDGL is applicable far
enough above the mean-field transition temperatureTc

MF,
where the order parameter fluctuations are small enough to
neglect the nonlinear terms in the full Ginzburg-Landau free
energy. To estimate the Nernst effect closer toTc they also
treated the nonlinearities in TDGL in the Hartree
approximation.7

Prominent in the phase diagrams of the cuprate supercon-
ductors in a magnetic field is thevortex liquid regime, where
short-range superconducting correlations are strong(because
T,Tc), but thermal phase and vortex fluctuations disrupt the
superconducting coherence on longer scales. The experimen-
tally observed Nernst effect remains large in this regime,2–5

which is not accessible to analytic calculations due to its
strong correlations and fluctuations. However, the TDGL
equation with its full nonlinearity and driven by thermal fluc-
tuations can be numerically simulated in this vortex liquid
regime, and its Nernst effect measured and compared to ex-
periments, as we demonstrate below.

When the TDGL approximation is used to model proper-
ties of cuprate superconductors, for which there is not a well-
established more microscopic theory, or more generally
when it is used well away from the zero-field critical tem-
perature, as we do here, it constitutes a standard, widely
used, but essentially phenomenological approximation. It has
the virtue that most of the parameters that enter can be de-
termined from experiments, as we discuss below. For BCS
superconductors, the TDGL approximation can be systemati-

cally derived from the microscopics in some limited
regimes,11,12but here we are instead using it more broadly, in
regimes where its justification is “only” phenomenological.

The Nernst effect in the vortex liquid can be described in
terms of the vortices as the phase-slip voltage due to vortices
being transported down the temperature gradient as heat car-
riers. However, when one calculates the Nernst effect at
higher temperatures in linearized TDGL,7 what is happening
is that superconducting order parameter fluctuations are
transported along the temperature gradient and their phase
patterns are twisted by this motion across the magnetic field,
inducing a Nernst voltage; vortices play no role in the calcu-
lation. In a TDGL treatment of the vortex liquid regime,
there is no clean distinction between order parameter fluc-
tuations and vortex motion, so both of these two different-
sounding descriptions are in some sense correct.

In this paper, we present the method for and results of
simulations of thermoelectric transport in type-II supercon-
ductors in the vortex liquid regime. We simulate the TDGL
equation with thermal noise. We work in the strongly type-II
limit, k@1, where the magnetic field in the sample is as-
sumed to be uniform and not fluctuating. Mostly we work in
two dimensions, but we also examine the crossover from
two- to three-dimensional behavior. In our study of interlayer
couplings we see some indication that a substantial part of
the entropy carried by the vortices in the vortex liquid may
be the configurational entropy of their positions.

Our simulations involve a dimensionless tunable param-
etershd which sets the strength of the thermal fluctuations in
the sample and hence can range from nearly mean-field be-
havior with very weak fluctuations to very strong fluctua-
tions with strongly suppressed superconductivity. We show
that for an intermediate value of this parameter our results
are in reasonably good qualitative and quantitative agree-
ment with available experimental Nernst-effect data on over-
doped La2−xSrxCuO4 sLSCOd.5 In this comparison all the
other parameters in the simulations are set by experimentally
measured quantities. We also discuss in brief the results of
our simulations to model experiments on Bi2Sr2CaCu2O8+x
sBSCCOd.2

II. SOME THERMO-ELECTRO-MAGNETIC TRANSPORT
THEORY

We briefly review some of the general theory of thermal
and electrical transport coefficients in linear response in the
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presence of a magnetic field. Consider a sample at tempera-
ture T subjected to small gradients in the potential¹f and
temperature¹T. One can then very generally write down the
transport current densities in the system to linear order in¹f
and¹T as

Jtr
e = − ŝ ¹ f − â ¹ T, s1d

Jtr
Q = ẫ ¹ f − k̂ ¹ T, s2d

whereJtr
e is the charge transport current density andJtr

Q is the

heat transport current density.ŝ, â, ẫ, andk̂ are the electri-
cal conductivity, thermoelectric, electrothermal, and thermal
conductivity tensors. The Onsager relations for the transport

coefficients tell us thatẫ=Tâ. The Nernst coefficentsnd can
be defined in a configuration with a magnetic fieldB i ẑ and
¹T i x̂ along with the conditionJtr

e =0 as

n = −
Ey

B ¹ T
=

1

B

axysxx − axxsxy

sxx
2 + sxy

2 . s3d

If the system shows no Hall effect(like the one we have
simulated), thensxy=0 and

n =
axy

Bsxx
. s4d

One way to obtain transport coefficients from a simulation
is via the Kubo relations, thus measuring current–current
correlations in the equilibrium dynamics. Alternatively, one
can apply an electric field and/or a temperature gradient and
measure the resulting currents. We have used both methods,
finding that our implementation of the latter method gives
higher signal-to-noise ratio per unit computer time in the
regime we have been studying. The currents flowing in the
sample have magnetization parts in addition to the transport
parts considered above. One could write down linear re-
sponse relations for the total current densities analogous to
the ones for the transport current densities but the coeffi-
cients appearing in those would not obey the Onsager rela-
tions. The total currents in the system can in general be com-
puted in a straightforward manner but one has to extract the
transport parts from these to calculate the transport coeffi-
cients. This involves identifying and subtracting out the mag-
netization currents. The procedure we use to that end in this
work is outlined below and is based on the arguments of
Cooperet al.13

Let Jtot
e sr d andJtot

Q sr d be the total charge and heat current
densities(transport + magnetization) at any pointr in the
sample. Iffsr d is the electric potential atr , there exists a
total energy currentJtot

E sr d such that

Jtot
Q sr d = Jtot

E sr d − fsr dJtot
e sr d. s5d

A similar relation holds between the transport parts of these
current densities,

Jtr
Qsr d = Jtr

Esr d − fsr dJtr
esr d. s6d

The average electric current densityJ̄tr
e and heat current den-

sity J̄tr
Q are given by averagingJtr

esr d and Jtr
Qsr d over the

whole sample. For a two-dimensional sample

J̄tr
e =

1

S
E

S

Jtr
esr ddS, s7d

and

J̄tr
Q =

1

S
E

S

Jtr
Qsr ddS, s8d

whereS is the area of the sample. Similar relations also hold
for three-dimensional samples. From Eqs.(6) and (8), we
obtain

J̄tr
Q =

1

SSES

Jtr
Esr ddS−E

S

fsr dJtr
esr ddSD . s9d

We know that

Jtot
e sr d = Jtr

esr d + Jmag
e sr d

Jtot
E sr d = Jtr

Esr d + Jmag
E sr d, s10d

whereJmag
e sr d andJmag

E sr d are the charge and energy magne-
tization current densities. It can be shown on general
grounds13 that there exist charge and energy magnetization
densitiesM esr d andM Esr d such that

Jmag
e sr d = ¹ 3 M esr d

Jmag
E sr d = ¹ 3 M Esr d. s11d

The charge magnetization of the system is nothing but the
conventional magnetic moment densityM sr d. If the material
surrounding the sample is assumed to be nonmagnetic, both
M esr d andM Esr d vanish outside the sample. The magnetiza-
tion currents are mostly at the boundaries because that is
where the change in magnetization is the largest. Thus we
see that

E
S

Jtr
esr ddS=E

S

Jtot
e sr ddS

E
S

Jtr
Esr ddS=E

S

Jtot
E sr ddS. s12d

From Eqs.(9) and (12), we obtain

J̄tr
Q =

1

SSES

Jtot
E sr ddS−E

S

fsr dJtr
esr ddSD . s13d

It should be noted that there is no “heat magnetization den-
sity” M Qsr d analogous toM esr d and M Esr d for which the
heat magnetization currentJmag

Q sr d= ¹ 3M Qsr d. A conse-
quence of this is that unlikeJe andJE,

E
S

Jtr
Qsr ddSÞ E

S

Jtot
Q sr ddS.

In fact, it can be shown that

Jmag
Q sr d = ¹ f 3 M sr d. s14d
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III. SIMULATIONS

We measure the transport coefficientãxy by turning on an
electric field −¹f i ŷ and a magnetic fieldB i ẑ and measur-

ing J̄tr
Qsxd, thex component of the average heat transport cur-

rent density at constant temperature. This is done in a system
with mixed boundary conditions: it has free surfaces at the
boundaries normal toŷ, while it has periodic boundary con-
ditions along thex direction (and alongẑ when we study
3D). If, as in our model, the system does not have a Hall
response, under these conditions thex component of the
electric transport current vanishes at all points,Jtr

esxdsr d=0.
Thus from Eqs.(2) and (13), we obtain

ãxy = −
J̄tr

Qsxd

¹yf
= −

1

S

SE
S

Jtot
Esxdsr ddSD
¹yf

. s15d

Similarly, axy can be measured by introducing a temperature
gradient¹Ti ŷ and magnetic fieldB i ẑ with no external elec-

tric potential and measuringJ̄tr
esxd. From Eqs.(1) and (12),

axy = −
J̄tr

esxd

¹yT
= −

1

S

SE
S

Jtot
esxdsr ddSD
¹T

. s16d

The two coefficientsãxy are axy can thus be obtained by
measuring only the total currents in the system. They are
related to each other by the Onsager relation and to the
Nernst coefficient by Eq.(4).

The TDGL equation that we have simulated is

t S]t + i
e*

"
fDC =

"2

2m* S¹− i
e*

"
AD2

C − a0sT − Tc
MFdC

− buCu2C + zsr ,td. s17d

We taket to be real so there is neither Hall effect nor See-
beck effect.6 This approximation of leaving out the Hall ef-
fect should be reasonable as long as the Hall angle is small,
as it generally is in the vortex liquid regime of the cuprate
superconductors. We work in the type-II limit where the
magnetic field is assumed to be uniform and not fluctuating.
The noise correlator is

kz*sr 8,t8dzsr ,tdl = 2tkBTdsr − r 8ddst − t8d. s18d

The current operators we need are6

Jtot
e = − i

e*"

2m*KC*S¹−
ie*

"
ADCL + c.c.

Jtot
E = −

"2

2m*K ] C*

] t
S¹−

ie*

"
ADCL + c.c. s19d

The TDGL equation is the simplest dynamical stochastic
equation one can obtain from the Ginzburg-Landau free en-
ergy functional. As a consequence of its simple relaxational
dynamics, it does not explicitly conserve either total charge
or total energy. It is implicitly in contact with and exchang-
ing energy and charge with local reservoirs. In reality these

reservoirs are presumably the phonons, quasiparticles and
other excitations not included in the TDGL equation. Never-
theless, the charge and energy currents carried by the super-
conducting order parameterC and its fluctuations are as
given above and can be measured and their transport prop-
erties determined within this model. Charge and energy con-
servation can explicitly be taken into account in microscopic
derivations of the TDGL theory, where only the contribution
due to superconducting fluctuations is retained. It can how-
ever be shown that other effects(normal state contributions,
etc.) do not contribute as significantly to the Nernst effect as
superconducting fluctuations.8

An important feature of TDGL for the present work is that
the parametert, which sets the time scale, does not enter in
the values of the transverse thermoelectric coefficients that
we are studying,axy and ãxy. This allows quantitative com-
parison to experiments to be done without estimatingt,
which is fortunate, because the value oft is quite uncertain.

This TDGL equation with noise has a dimensionless pa-
rameter that gives the strength of the thermal fluctuations. To
remove all the dimensional quantities, we usej0, the zero
temperature coherence length, as our unit of length;Tc

MF,
kBTc

MF, " /e* andt / sa0Tc
MFd as our units of temperature, en-

ergy, magnetic flux, and time, respectively; andC0, the zero-
temperature order parameter magnitude, as our unit for the
order parameter. The resulting TDGL equation is then

s]t + ifdC = s=− iAd2C − sT − 1dC − uCu2C + zsr ,td,

s20d

with noise correlator

kz*sr 8,t8dzsr ,tdl = 2hTdsr − r 8ddst − t8d, s21d

and

h =
bkBTc

MF

j0
dsa0Tc

MFd2 s22d

is the fluctuation parameter, whered is the number of spatial
dimensions. Whenh!1, the actual critical temperatureTc is
near the mean-field critical temperatureTc

MF, while if h@1
then Tc!Tc

MF. The model has four parameters that remain
after scaling to the units specified above: the temperature, the
magnetic field, the cutoff, and the strengthh of the noise.

We initially simulate a two-dimensional system, thus ig-
noring interlayer coupling. We discretize space and time. The
spatial grid spacing is taken to bej0. This rather coarse spa-
tial grid is used to minimize the computer time needed to
simulate samples large compared to this microscopic length.
There are noticeable quantitative effects of using such a
coarse grid. For example, in our unitsHc2sT=0d>1.18 with
this grid, while it is 1.0 for the continuum model. However,
recognizing that the model we are simulating is rather
simple, so should not be expected to give highly precise
quantitative results, our goal in the present study is to be
quantitatively only as accurate as might be expected of such
a simple model. Although we do not know how accurate that
really is, the general precision to which we have chosen to
work is roughly 10% –20%. The quantitative shifts due to
our using a coarse grid in the simulations are at most of this
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magnitude. We have also verified that using a finer grid spac-
ing would not alter our results in any significant way. Reduc-
tion of the grid spacing adds more degrees of freedom, re-
sulting in increased fluctuations, and suppression ofTc and
Hc2. However, if one also lowers the value of the fluctuation
parameterh a little, this increase in the fluctuations can be
removed, and the resulting behavior of the system is only
weakly dependent on the grid spacing.

In the simulations, the time step is chosen to be between
0.02 and 0.1 in our units, with shorter steps at higher tem-
peratures; we check that our results are not affected by dou-
bling the time step. A first-order Euler method is used, with
10 000 to 20 000 time steps used for equilibration, and
30 000 to 50 000 steps for averaging. The two-dimensional
data we show are for a 50350 square grid. We use the gauge
invariance of the TDGL equation to work as much as pos-
sible in terms of gauge-invariant quantities likeuCu and the
gauge-invariant phase differences

vsr ,r 8,td = usr 8,td − usr ,td −E
r

r8
A ·dl , s23d

where C= uC ueiu. The current densities are also written in
terms of these quantities.

At H=0, for the two-dimensional system there is a
Kosterlitz-Thouless14 transition atTc, which we locate by
measuring the helicity modulus.

To obtain ãxy, we measure the transverse energy current
due an electric field. We then use the Onsager relation to
obtain axy=ãxy/T. We find that the signal-to-noise ratio for
this measurement is significantly smaller than in a direct
measurement ofaxy. We have numerically verified the valid-
ity of this Onsager relation by measuringaxy both ways. This
also serves as a check that we are indeed measuring the
proper transport coefficients. We also confirm that our results
agree with the analytic results7 in the higher-temperature re-
gime where linearized TDGL applies.

The temperature enters the TDGL equation both in the
term linear in the order parameter and in the intensity of the
noise. It can be shown that introducing a gradient in the
linear term only adds to the magnetization currents, and thus
for measuring the transport currents it is sufficient to include
the temperature gradient only in the noise term. We have also
verified this numerically.

IV. RESULTS

Some results foraxy from the two-dimensional simula-
tions are shown in Fig. 1. We have chosen to compare these
results to the experimental results of Wanget al.5 obtained
from Nernst and resistivity measurements on an overdoped
LSCO sample withx>0.2 andTc>28 K. For this compari-
son, we present the simulation results in SI units using the
parameters from the experiment,Hc2sT=0d>45 T (thus j
>27 Å) and layer spacings=6.6 Å. The fluctuation param-
eter has been adjusted toh=0.42 to give reasonable quanti-
tative agreement between simulation and experiment. We set
the temperature scale usingTc

MF=40 K, which gives Tc
>28 K in the simulation. Note thataxy is not directly mea-

sured in the experiments. For a system with negligible Hall
effect, axy can be obtained from the measured Nernst effect
and the longitudinal resistivity. Thus for this comparison we
require both these measurements to be made on the same
sample over a substantial portion of the vortex liquid regime.
This requirement seriously limits the number of experimental
results we can compare to.

Figure 1, shows that there is reasonably good general
qualitative and quantitative correspondence between the
simulation and experiment, considering how simple the
model is and that we have adjusted only the strength of the
thermal fluctuationsh to get this agreement. The other pa-
rameters are all dictated by experiment. Our results are thus
consistent with the proposition that the superconducting fluc-
tuations modeled by the TDGL equation produce most, if not
all, of the contributions to the large Nernst effect seen in the
vortex liquid regime for this cuprate sample. Of course, the

FIG. 1. Experimental data obtained from measurements(Ref. 5)
of the Nernst effect on overdoped LSCOsx=0.2d along with the
results of our two-dimensional simulations. The parameters used in
the simulation are:Tc

MF=40 K, Hc2s0d=45 T, s=6.6 Å, h=0.42.
The critical temperature isTc<28 K in both simulation and experi-
ment here.
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agreement between experiment and this simple model is not
perfect. One difference is seen at high field in the higher-T
panel of Fig. 1, where the simulations give a nearly constant
axy, while the experiment shows more variation.

One effect that is not included in our two-dimensional
simulations is interlayer coupling. For the cuprates, this can
become important in the vortex liquid at low fields in the
vicinity of Tc, where there is a crossover to three-
dimensional behavior as the correlation length normal to the
layers becomes larger than one layer spacing. Note that the
difference between simulation and experiment is large at low
fields andT=24 K. We considered the possibility that this
difference might be due to the crossover to three-dimensional
behavior, which is not present in our two-dimensional simu-
lation. To investigate this crossover, we have also simulated
the Lawrence-Doniach15 version of the TDGL equation. In
our units this is

s]t + ifdC j = s=' − iA'd2C j − sT − 1dC j + Jse−isAzC j+1

+ eisAzC j−1 − 2C jd + uC ju2C j + z, s24d

whereJ is the interlayer Josephson coupling per unit area,
and j is the layer index. The transition temperature is located
by finding the intersections of the fourth-order cumulant
(Binder ratio) curveskucu4l / kucu2l2 for different system sizes
as functions of temperature at zero magnetic field.

Figure 2 shows results foraxy as a function of field for
various values of interlayer couplingJ at temperatureT
=24 K, from samples of size 15315310 layers. For eachJ
we set the temperature scalesTc

MFd so thatTc>28 K as in
the experiment. The values of the other parameters in the
simulations are as used in Fig. 1. As expected, the largest
value of J shows the largest deviation from the two-
dimensional behavior. Somewhat better correspondence be-
tween the behavior ofaxy obtained in simulation and experi-
ment is obtained by adding this interlayer coupling.

An interesting point to note in Fig. 2 is that at low fields
a rather small interlayer couplingJ produces a strong de-
crease inaxy. Describing this in terms of vortices, as seems
appropriate in this low-field regime belowTc, the force per
unit length on a vortex line due to the temperature gradient is
proportional toaxy. Naively, this force is also set by the
entropy per unit length transported by a moving vortex. This
transport entropy may come from internal degrees of free-
dom within one vortex, or it may come from the configura-
tional entropy of the many possible spatial arrangements of
the vortices. The latter does not involve internal excitations
within the vortices. In the quasi-two-dimensional layered su-
perconductors that we are modeling, a vortex line running
normal to the layers consists of “pancake vortices” in each
layer. A weak interlayer coupling has little effect on the in-
ternal properties of a single pancake vortex, but it does pro-
duce an attraction between vortices in adjacent layers that
reduces their relative motion, and thus can substantially re-

FIG. 3. (Left-hand side) Data from the simulation withs
=15.35 Å, Tc=90 K, Hc2=160 T andh=0.475.(Right-hand side)
Experimentally measured(Ref. 2) value of Uf obtained from
Nernst measurements on optimally doped BSSCO(2212) with Tc

=90 K andHc2s0d<160 T.

FIG. 2. Three-dimensional simulation results forT=24 K, with
interlayer couplingJ. Except forTc

MF, the parameters used here are
the same as in Fig. 1.
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duce the configurational entropy of the vortices. The fact that
at low fields a weak interlayer coupling greatly reduces the
transport entropy of the vortices, as indicated by the reduc-
tion of axy seen in Fig. 2, thus suggests that in this regime the
configurational entropy of the vortices is a large part of their
transport entropy, at least within this layered TDGL model.

We have also performed simulations to model the BSCCO
sample studied by Riet al.2 The experimental data and the
results of the simulation are shown in Fig. 3. The quantity
plotted is the measured “transport energy” of the vortices,
defined asUf=Tf0axy. We used a two-dimensional simula-
tion with Tc>90 K, Hc2=160 T,s=15.35 Å, andh=0.475.
Again, there is reasonable quantitative agreement, in abso-
lute units, between the experimental data and the simula-
tions. The clearest deviation here occurs forT,60 K and
H.6 T, where the sign of the temperature derivative ofUf

appears to differ between simulation and experiment.
In conclusion, we have measured the transverse thermo-

electric transport coefficientaxy in simulations of the vortex-

liquid regime of superconductors modeled by the TDGL
equation with thermal fluctuations. We find that our simula-
tions of a two-dimensional superconductor reproduce reason-
ably well much of the qualitative and quantitative features of
available experimental data from some cuprate high-
temperature superconductors. We have also studied the
crossover from two- to three-dimensional behavior in a lay-
ered superconductor. This crossover study indicates that the
configurational entropy of the vortices may constitute a large
part of their transport entropy at low magnetic field just be-
low Tc.
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