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Motivated by the absence of cooperative Jahn-Teller effect and of magnetic ordering in LiNiO2, a layered
oxide with triangular planes, we study a general spin-orbital model on the triangular lattice. A mean-field
approach reveals the presence of several singlet phases between the SUs4d symmetric point and a ferromag-
netic phase, a conclusion supported by exact diagonalizations of finite clusters. We argue that one of the
phases, characterized by a large number of low-lying singlets associated to dimer coverings of the triangular
lattice, could explain the properties of LiNiO2, while a ferro-orbital phase that lies nearby in parameter space
leads to a new prediction for the magnetic properties of NaNiO2.
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I. INTRODUCTION

The Mott insulators LiNiO2 and NaNiO2 are isostructural
and isoelectronic, but they have completely different phase
diagrams. The complicated nature of these systems arises
from an interplay of the dynamical frustration of spin–orbital
models with the geometrical frustration of the triangular lat-
tice, which is the essential structural unit. We will show that
by a modest change of parameters, a great variety of phases
can be derived.

The crystal structure can be envisaged as a sequence of
slabs of edge-sharing octahedra of oxygen O2− ions. Metal
ions sit at the centers of octahedra. There are two kinds of
slabs: in A slabs, at every center of octahedra there is a Ni3+,
whereas in the B slabs, one finds either Li+ or Na+ ions. A
and B slabs alternate(see Fig. 1). The Ni ions form well-
separated triangular planes.

It is useful to start with the idealized geometry of a cubic
system. Neglecting the inequivalence of Ni and Li sites, and
assuming perfect oxygen octahedra, the octahedral centers
would form a simple cubic lattice. The slabs of the original
structure would be perpendicular to the 111 direction. Within
a slab the Ni-O-Ni bond angles would be 90°, resulting in
important consequences for the effective exchange.1

There are two sources of deviation from cubic symmetry:
(a) Ni and Li/Na sites are inequivalent, which leaves us with
one (instead of four) C3 axis. Even if the octahedra were
undistorted, Ni ions would see a wider environment with
trigonal symmetry only.(b) actually, oxygen octahedra are
distorted,2,3 and the Ni−O−Nibond angle is<96.4° in the
case of Na, and<94° in case of the Li compound.

If there is a Jahn–Teller phase transition(as in NaNiO2), it
lowers the crystal symmetry further and makes the orbital
ground state unique. An alternative would be to ascribe or-
bital polarization to an electronic phase transition due to or-
bital exchange and to regard the lattice distortion as an in-
duced secondary effect. In what follows, we assume trigonal
point group symmetry, which is valid for NaNiO2 at high
temperatures and for LiNiO2 at all temperatures. Breaking
the local trigonal symmetry, whenever it happens, is ascribed
to orbital ordering. We consider electronic degrees of free-
dom only, but we assume that the lattice would follow the
changing orbital occupation.

The Ni3+ ions are in theS=1/2 low-spin state. In terms of
the dominant cubic component of the crystal field 3d7

= t2g
6 eg

1. Since the actual point group symmetry is trigonal,t2g
gets split into two levels(t2g→A2+E, where standard nota-
tions for the irreducible representations(irreps) of the point
groupD3d were introduced), but this does not affect the fact
that six electrons are taken up by closed subshells, and only
the seventh electron is in an open subshell. The trigonal crys-
tal field component changes the detailed nature of the
d-states, but still allows for twofold orbital degeneracy:
eg

cubic→E. In what follows, E is understood to denote the
two-dimensional(2D) irrep of the trigonal point group.4

The ground state of an isolated Ni3+ ion is fourfold de-
generate: it has twofold orbital and twofold spin degeneracy.
A standard scenario would be that the non-Kramers degen-
eracy is resolved by a(cooperative) Jahn–Teller effect, while
the Kramers degeneracy is lifted by magnetic ordering. Let
us note that, as far as theE-electrons are concerned, the
cooperative Jahn–Teller effect is synonymous with orbital
ordering, thus it can be explained with a purely electronic
model, without the consideration of electron–lattice cou-
pling.

FIG. 1. ANiO2 structure. Ni ions are located in the middle of the
O octahedra.
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The standard scenario seems to be(at least nearly) real-
ized for NaNiO2, which has a first-order cooperative Jahn-
Teller transition lowering the local symmetry from trigonal
to monoclinic atTJT

Na,480 K.2 The remaining Kramers de-
generacy is lifted by a magnetic transition atTN

Na<20 K,
which was characterized as the antiferromagnetic ordering of
ferromagnetic planes.5 In contrast, LiNiO2 does not undergo
a Jahn–Teller distortion,6 and though the measured suscepti-
bility shows a number of anomalies, it does not seem to
develop magnetic long-range order.3,7,8 It is puzzling that the
two isostructural and isoelectronic compounds show such
different behavior. Naturally, it is always possible that some
of the observed behavior is not intrinsic. Impurities and
structural defects are likely to prevent orbital ordering. In-
deed, it was suggested that only NaNiO2 allows the growth
of sufficiently good-quality samples, and the observation of
ordering transitions, while the overall behavior of LiNiO2 is
like that of the high-temperature phase of NaNiO2.

2

II. SPIN–ORBITAL MODEL BASED ON THE TRIGONAL
DOUBLET

The aim of the present paper is to show that the contrast-
ing features of NaNiO2 and LiNiO2 appear naturally as
nearly equivalent possibilities for the intrinsic behavior of
spin-orbital models of the trigonalE doublet.

A similar four-state model, namely theS=1/2 cubic eg
doublet on the cubic lattice, has been studied in great detail
in the context of manganite physics.9 The magnetic behavior
is complicated because orbital and spin–orbital interactions
tend to frustrate the usual spin–spin interactions. Though, in
contrast to spin-only models, spin–orbital models do not
need the fine-tuning of the lattice structure to get frustration
effects, we find that the geometrical frustration of the trian-
gular planes of the LiNiO2 structure brings essential new
features. For this reason, we consider only an isolated trian-
gular plane and discussT=0 behavior only. We assume that
our essential conclusions would carry over to theT.0 be-
havior of coupled planes.

The idea that the geometrical frustration of the triangular
lattice tends to oppose ordering has been discussed for
spin10,11 and orbital12 degrees of freedom separately. In a
pioneering work, Hirakawa, Kadowaki, and Ubukoshi13

started a systematic investigation of triangular lattice antifer-
romagnets with the explicit aim of finding non-Néel-type
behavior. This work initiated the intensive reinvestigation of
LiNiO2. On the theoretical side, Arimori and Miyashita14

studied a classical model and found that novel-order param-
eters combining spin and orbital character are important. In a
quantum-mechanical calculation, chosing a special set of pa-
rameters to make the four-state spin-orbital model SUs4d
symmetrical, it was found that the ground state of the
nearest-neighbor model on the triangular lattice is an
SUs4d-resonating quantum liquid.15

Here we consider the full range ofE models, restricting
the parameters only by the requirements dictated by symme-
try. The pair interaction is generically of SUs2d ^ C2h sym-
metry; higher symmetries[SUs2d ^ SUs2d or SUs4d] follow
from specific choices of the parameters. We explore many

lower-symmetry states in addition to the fully symmetrical
SUs4d phase. Accepting that the observed behavior of both
LiNiO2 and NaNiO2 is intrinsic, any theory for why LiNiO2
does not order should also allow for the alternative scenario
of orbital and spin ordering, as observed in NaNiO2. In terms
of our trigonalE model, we show that the combination of
geometrical frustration with the dynamical frustration inher-
ent in spin-orbital models gives rise to a rich variety of com-
peting states stretching from the SUs4d resonating singlet-
state to spin-ferromagnetic phases with various orbital order.
We will find it natural that contrasting behavior resembling
that of either LiNiO2 or NaNiO2 can arise in nearby regions
of parameter space.

A. Basis functions

Our model is meant to describe the Mott-localizedE elec-
trons of Ni ions. The local degrees of freedom are those of an
E1 shell. Intersite interactions arise from the virtual charge
fluctuationsE1E1→E2E0. The study of such spin-orbital ex-
change models was initiated by Kugel and Khomskii,16 and
by Castellani, Natoli, and Ranninger.17

The point group of a Ni site isD3d=D3 ^ hE ,Ij, whereE
is the identity element, andI is the inversion.(see Fig. 2)
The subgroup of proper rotationsD3 contains the trigonal
axis C3 and three orthogonalC2 axes. It is convenient to
denote axes in terms of the original octahedral system
hX,Y,Zj, so theC3 axis is(111). For later reference, we recall
that D3d has three irreps: the identity repA1, the one-dim
irrep A2, and the two-dim irrepE.

First, we representD3 on the basis of theE subspace
spanned by ca

†u0l= ual~ s3Z2−R2d, and =cb
†u0l= ubl~ sX2

−Y2d (as yet, we omit the spin index). Alternatively, we may
represent on the 2D operator subspaceshca

†,cb
†j (or hca,cbj).

The effect of ap-rotation about the 110̄ axis (one of theC2
axes) is

ca8
† = ca

†, cb8
† = − cb

†. s1d

Skipping the effect of the other twoC2 rotations, we show
how a 2p /3 rotation about the trigonal axis is represented in
the E subspace

ca8
† = −

1

2
ca

† +
Î3

2
cb

†

cb8
† = −

Î3

2
ca

† −
1

2
cb

†. s2d

B. Microscopic model

On-sited-electron orbital states are classified according to
the point groupD3d,

18 while two-site states according to the
smaller point groupC2h of a pair. The nearest neighbors of a
Ni site are at the centers of octahedra, which share an edge
with the first site. TheC2 axis perpendicular to this edge is a
symmetry element of the pair; so is the mirror planesh per-
pendicular to theC2 axis in question.19 C2 and sh are the
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generators of the four-element symmetry groupC2h of the
pair.20

The standard components of the electronic Hamiltonian
are those of a two-band extended Hubbard model: intersite
hopping Hhop and on-site Coulomb matrix elementsHCoul.
First, we discussHhop. The localE basis can always be cho-
sen so that under theC2 rotation of the pair, one of the basis
states is even, and the other is odd. In fact, we have seen this
in (1). This immediately implies that the hopping elements
between two sites are only between the functions with equal
parity, and we have two hopping parameters only:t for thea
orbitals, andt8 for the b orbitals

Hhop= − to
s

ci,a,s
† cj ,a,s − t8o

s

ci,b,s
† cj ,b,s + H.c. s3d

wheres is the spin index. In the other directions the hopping
amplitudes can be obtained by a suitable rotation of the basis
functions and the hopping matrix. Let us note that for pairs
with a different orientation, inter-orbital hopping terms will
be generated.

a andb need not mean strictly Nid-states, but rather more
extended one-electron states of the same symmetry. Since
one of the main pathways of electron propagation would be

through the oxygen network, we should think of the orbitals
as hybridized Ni-centered Wannier orbitals, but with hopping
amplitudes that follow not only from Ni–O–Ni hybridiza-
tion, but by considering all finite-amplitude processes that
are symmetry-allowed, and which in the end-effect, may be
indexed in the same way as the simple nearest-neighbor
Ni–Ni hopping.

It was noted by Mostovoy and Khomskii1 that the as-
sumption of an exactly 90° Ni–O–Ni bond angle results in a
peculiar form of the spin-orbital effective Hamiltonian. In
particular, spin-spin coupling is exclusively ferromagnetic,
and orbital exchange predominates. One of the ways to look
at the situation is that, with an ideal octahedron of oxygen
atoms, one-electron terms would not allow the propagation
of an electron from a Ni site to another Ni site via an inter-
vening oxygen atom. However, other off-diagonal elements,
like the spin flip part of thep-shell Hund coupling, still allow
electron propagation, and a corresponding term in spin-
orbital exchange.1 This model may be used to describe
NaNiO2, but it is certainly not applicable to LiNiO2. Since
we aim at deriving both kinds of behavior from formally the
same Hamiltonian, we have to pay particular attention to the
sources of deviation from the Mostovoy-Khomskii scheme.

Daré, Hayn, and Richard21 pointed out that the trigonal
splitting of the oxygenp orbitals, and the deviation of the
Ni–O–Ni bond angle from 90°, facilitate the appearance of
antiferromagnetic Ni–Ni interactions. However, they did not
systematically explore the phase diagram, and neglected sev-
eral effects that we think are important: the direct overlap of
the Ni wave functions at neighboring sites, and the intra-
atomic exchange and double hopping terms of thed-d inter-
action at Ni sites.22 Our aim is a systematic investigation of
the phase diagram in the entire parameter range.

The form of the on-site pair interaction termHCoul is re-
stricted by the symmetry classification of the two-electron
states:D3d for the orbital component of the wave function,
and SUs2d for the spin part, which readily gives three sin-
glets and a triplet. Orbital quantum numbers follow fromE
^ E=A1+A2+E. The antisymmetricalA2 can be taken with
symmetrical spin states, yielding the triplet.

uF1l = ca,↑
† cb,↑

† u0l

uF2l =
1
Î2

sca,↑
† cb,↓

† + ca,↓
† cb,↑

† du0l

uF3l = ca,↓
† cb,↓

† u0l. s4d

A1 and E are symmetrical, thus there must be two singlet
levels: the nondegenerateA1, and the twofold degenerateE.
The E-basis functions are

uF4l =
1
Î2

sca,↑
† cb,↓

† − ca,↓
† cb,↑

† du0l

uF5l =
1
Î2

sca,↑
† ca,↓

† − cb,↑
† cb,↓

† du0l s5d

and theA1-basis function is

FIG. 2. (a) TheC3 axis and one of theC2 axes of the point group
of the Ni site in the ANiO2 structure(the other twoC2 axes are
obtained by applyingC3). (b) Orbital states of the seventh
d-electron of Ni3+ on the backgound of the network of oxygen
octahedra.
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uF6l =
1
Î2

sca,↑
† ca,↓

† + cb,↑
† cb,↓

† du0l. s6d

Their transformation scheme underC3

uF48l = −
1

2
uF4l +

Î3

2
uF5l

uF58l = −
Î3

2
uF4l −

1

2
uF5l

follows from (2). The most general on-site two-body Hami-
tonian describing theE^ E set of levels is

HCoul =
Ũ

2
n2 − JHSSaSb +

3

4
nanbD + Jpsca,↑

† ca,↓
† + cb,↑

† cb,↓
† d

3sca,↓ca,↑ + cb,↓cb,↑d s7d

where theŨ is the familiar on-site repulsion of the Hubbard
model,JH is the Hund’s coupling andJp is the pair hopping
amplitude. The spectrum ofHCoul consists of a triplet level at

Ũ−JH (uF1l, uF2l, and uF3l), a twofold degenerate singlet at

Ũ (uF4l and uF5l), and a nondegenerate singlet atŨ+2Jp
suF6ld.

Since each of the single-site terms is invariant under ro-
tations in the orbital space,HCoul written in (7) is quite gen-

eral, and its two independent parametersJH / Ũ and Jp/ Ũ
could be chosen arbitrarily. We may think of these as effec-
tive interaction parameters, which encompass all allowed
processes affecting theE level under consideration. Accord-
ing to the usual evaluation of the simple Coulomb interaction
we getJp=JH /2. This physically motivated assumption was
used by Castellani, Natoli, and Ranninger in their pioneering
work 17 on V2O3. See Ref. 9 for further discussions of this
point.

C. The effective Hamiltonian from symmetry considerations

The 4D Hilbert space ofE1 states supports 15 local-order
parameters.23 Their standard choice isSx, Sy, Sz for the spins,
Tx, Ty, Tz for the orbitals, and further nine operatorsSxTx,
SxTy, . . . of mixed spin-orbital character.24 Here we intro-
duced theT=1/2 pseudospin operators

Ti
x =

1

2o
s

sci,a,s
† ci,b,s + ci,b,s

† ci,a,sd,

Ti
y =

1

2i
o
s

sci,a,s
† ci,b,s − ci,b,s

† ci,a,sd,

Ti
z =

1

2o
s

sci,a,s
† ci,a,s − ci,b,s

† ci,b,sd. s8d

For the present, we exploit the separation of spin and
orbital Hilbert spaces and do not discuss the mixed-order
parameters, though they are certain to be as relevant asS and
T in high-symmetry situations. The symmetry classification

of the orbital-order parameters is obtained by representing
the point groupD3d on the basis of the order parameters. In
fact, sinceTx, Ty, andTz are composed asca

†cb, the represen-
tation we seek is the product of the representation(1) and(2)
with its adjoint, and the decompositionE^ E=A1+A2+E
can be used again. It turns out thatTx andTz form the basis
of the irrepE (a quadrupolar doublet), while Ty transforms
according toA2. We quote the transformation of the quadru-
pole operators under theC3 rotation

T8x = −
1

2
Tx +

Î3

2
Tz

T8z = −
Î3

2
Tx −

1

2
Tz. s9d

From (1) it is clear that

C2T
x = − Tx, C2T

y = − Ty, and C2T
z = Tz. s10d

Finally, let us mention thatTx and Tz are time-reversal
invariant. The fact that under the time-reversal transforma-
tion T, TTx=Tx and TTz=Tz, shows that these are
quadrupolar-order parameters. On the other hand, for the
pure imaginary operatorTy, TTy=−Ty. In the usual treatment
of a cubiceg doublet,Ty would be an octupolar-order param-
eter. However, under trigonal symmetry,A2 is also assigned
to the dipolar-order parameterL111 (orbital angular momen-
tum along the 111 direction). Thus ourTy must be a mixed
dipolar-octupolar-order parameter, but we will not analyze its
nature in detail.

The form of the effective pair interaction is restricted by
the geometrical symmetries of the pair, and the nature of the
order parameters(8). We consider a pair of sites 1 and 2
connected by theC2 axis, which figured in our previous con-
siderations. The other symmetry element is the perpendicular
mirror planesh bisectings1,2d.

The orbital component of the lowest order effective
Hamiltonian consists of termsT1

aT2
b sa ,b=x,y,zd, and also

of single-site terms likeT1
a+T2

a (reflecting that the choice of
the basis is tied to this particularC2 axis). The pair energy
expression must be invariant underC2, T, and alsosh. sh acts
like

shT1
x = − T2

x, shT1
y = − T2

y, and shT1
z = T2

z. s11d

Time-reversal invariance excludes terms likeT1
xT2

y, and
alsoT1

y+T2
y, and either(10) or (11) excludeT1

x+T2
x. In addi-

tion, (10) excludes alsoT1
xT2

z. Thus we are left with

H128 = AxT1
xT2

x + ÃyT1
yT2

y + ÃzT1
zT2

z + Az8sT1
z + T2

zd, s12d

whereAx, Ãy, Ãz, andAz8 are some real coefficients. Let us
emphasize that, in general, the coupling termT1

yT2
y may ap-

pear in the Hamiltonian. Once we introduce spins in the
problem, the same arguments hold as above, with or without
spin exchange, so the Hamiltonian becomes

H12 = AT1
xT2

x + ÃyT1
yT2

y + ÃzT1
zT2

z + Az8sT1
z + T2

zd + fB8 + BT1
xT2

x

+ B̃yT1
yT2

y + B̃zT1
zT2

z + + Bz8sT1
z + T2

zdgS1S2. s13d
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Now we consider bonds with different orientation. Lattice
site 1 has six nearest neighbors 2, 3, 4, 5, 6, and 7, which
form a regular hexagon(Fig. 3). The interaction energy must
be the same for the pairs(1,2), (1,3), etc., but just for this
reason, the form of the pair Hamiltonians cannot be. They
have to be derived fromHi j =12 by suitable transformations.

Consider first the(1,5) pair, which is the mirror image
(either through ash plane containing 1, or by inversion
through site 1) of the (1,2) pair. We can use(11) to deduce
T2

x→−T5
x, T2

y→−T5
y, andT2

z→T5
z, thusHi j =15 is of the same

form asHi j =12. The (1,4) pair interaction can be deduced by
the C3 rotation [Eq. (9)] from Eq. (13). In fact,

T1
x → −

1

2
T1

x +
Î3

2
T1

z, T2
x → −

1

2
T4

x +
Î3

2
T4

z

T1
z → −

Î3

2
T1

x −
1

2
T1

z, T2
z → −

Î3

2
T4

x −
1

2
T4

z, s14d

which is more conveniently written as

T1 → n14 ·T1 T2 → n14 ·T4 s15d

with

n14 =1 −
1

2
0

Î3

2

0 1 0

−
Î3

2
0 −

1

2
2

and the column vectorT =sTx,Ty,Tzd. Similarly,

n15 = 1− 1 0 0

0 − 1 0

0 0 1
2.

For pairs of different orientation[e.g., (1,3)], analogous
expressions can be given. For the pairi j , the effective Hamil-
tonian Hi j could be deduced from(13) by replacing Ta

→ sni jTda=ni j
aT everywhere, where theni j

a with a=x,y,z de-
notes the first, second, or third row of matrixni j , respec-
tively. However, it is worth noting the following simplifica-
tion. Under these transformationsT1

yT2
y→Ti

yTj
y and T1

xT2
x

+T1
zT2

z→Ti
xTj

x+Ti
zTj

z. In other words, the orbital base-
changing transformations have the character of a rotation

about the pseudospacey axis. Pseudospin-space symmetry is
easier to identify if in the first line of Eq.(13) we make the
following rearrangement:

ATi
xTj

x + ÃyTi
yTj

y + ÃzTi
zTj

z

= AT iT j + sÃy − AdTi
yTj

y + sÃz − AdTi
zTj

z

= AT iT j + AyTi
yTj

y + AzTi
zTj

z. s16d

T iT j andTi
yTj

y are invariant, so from the intersite interaction
terms, only the coefficient of theTi

zTj
z term depends on the

orientation of the pair. The effective pair Hamiltonian is
then:

Hi j = fAT iT j + AyTi
yTj

y + Azsni j
zT idsni j

zT jd + Az8sni j
zT i + ni j

zT jdg

+ fB8 + BT iT j + ByTi
yTj

y + Bzsni j
zT idsni j

zT jd

+ Bz8sni j
zT i + ni j

zT jdgSiSj . s17d

For completeness, we list hereni j
z in all the six possible

directions:

n12
z = n15

z = s0,0,1d s18d

n13
z = n16

z = SÎ3

2
,0,−

1

2
D s19d

n14
z = n17

z = S−
Î3

2
,0,−

1

2
D . s20d

The lattice Hamiltonian

H = o
ki,jl

Hi j s21d

is the sum of(17) over all nearest-neighbor pairs. In the
summation theAz8 coefficient drops out asn12

z T1+n14
z T1

+n16
z T1=0. The Hamiltonian above contains pure orbital

couplings, pure Heisenberg spin exchange, and also terms of
coupled spin-orbital character. The only symmetries of the
lattice Hamiltonian are global SUs2d for the spins and the
space group symmetry.

We note here that our theory can be applied to any trian-
gular d1 system whose local Hilbert space is the trigonal
doubletE. The structure of BaVS3 can be envisaged as the
sequence of triangular planes of V4+=3d1 ions. It has been
argued that even the minimal model of BaVS3 should include
the orbital degrees of freedom.25 If one assumes that the
lowest-lying crystal field level is theE doublet derived from
the trigonal splitting oft2g, our present considerations be-
come relevant for BaVS3 as well.

D. Effective Hamiltonian from microscopic model

Symmetry considerations do not allow us to obtain rela-
tionships between theA and B coefficients; they may be
derived from the model(3) and(7) by second-order large-U
perturbation theory, as usual for Kugel–Khomskii
Hamiltonians.16 As a result, we get

FIG. 3. The six neighbors of site 1.
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Hi j = −
2

Ũ + 2Jp

F2tt8T iT j − 4tt8Ti
yTj

y + st − t8d2sni j
zT idsni j

zT jd

+
1

2
st2 − t82dsni j

zT i + ni j
zT jd +

1

4
st2 + t82dGPi j

S=0

−
2

Ũ
F4tt8Ti

yTj
y +

1

2
st2 + t82d +

1

2
st2 − t82d

3sni j
zT i + ni j

zT jdGPi j
S=0 −

2

Ũ − JH

F− 2tt8T iT j

− st − t8d2sni j
zT idsni j

zT jd +
1

4
st2 + t82dGPi j

S=1. s22d

We found it convenient to express the Hamiltonian using the
Pi j

S=0 andPi j
S=1 projection operators onto the singlet and trip-

let spin combination on the bond

Pi j
S=0 =

1

4
− SiSj and Pi j

S=1 = SiSj +
3

4
. s23d

First, some general remarks about the parameter range.
Equation (7) shows a two-parameter manifold of on-site
Coulomb Hamiltonians. However, we do not changeJp/JH
continuously, but investigate two special cases only:(a) ne-
glecting pair hoppingJp=0 (a frequent, though not clearly
motivated, simplification), and (b) the physically motivated
choiceJp=JH /2. Most of our results will be about the latter
case, using the notationJ=2Jp=JH.

Redefining the basis statesfa↔fb interchanges the defi-
nitions of t andt8, thus it is sufficient to consider theutu. ut8u
case. It is, however, worth noting that the orbital part of(22)
becomes SUs2d invariant for t= t8 andJp=0:

Hi j =
4t2

Ũ
ST iT j +

3

4
DSSiSj −

1

4
D +

4t2

Ũ − JH

ST iT j −
1

4
D

3SSiSj +
3

4
D . s24d

The lattice Hamiltonian has now global SUs2d symmetry for
the spins and global SUs2d symmetry for the pseudospins
[global SUs2d ^ SUs2d, with the six conserved quantities
o j Sj

a, o j Tj
b, for a ,b=x,y,z].

A still higher symmetry is obtained forJH=Jp=0 when
the pair Hamiltonian simplifies to the SUs4d symmetrical23

Hi j =
8t2

Ũ
ST iT j +

1

4
DSSiSj +

1

4
D . s25d

The corresponding lattice Hamiltonian possesses global
SUs4d symmetry(there are 15 conserved quantities:o j Sj

a,
o j Tj

b, ando j Sj
aTj

b for a ,b=x,y,z).

III. GROUND STATES OF THE PAIR AND TETRAHEDRON
PROBLEMS

In what follows, we seek to find the possible different
types of ground state of(21) on the triangular lattice. For a

first orientation, we describe the results for small systems,
then go over to larger ones. Whenever possible, we use
preconception-free numerical methods and then try to rein-
terpret the results with approximate theories that can, in prin-
ciple, be generalized to infinite-system size. It is a general
trend that with increasing system size, complicated states are
found whose existence could not have been guessed by
simple-minded extrapolation from small systems. Therefore
we will have to be cautious in drawing conclusions about the
thermodynamic limit.

Before we turn to the physically motivatedJp=JH /2 case,
we examine the case when the pair hopping amplitude is
absent.

A. Two-site problem

For simple spin models, the correlations found for a pair
of sites allow us to infer the character of the ordered phase in
the thermodynamic limit.26 Our first aim is to map the pair
solutions and try to deduce how spin and orbital order may
complement each other.

The most notable consequence of settingJp=0 is that the
4tt8Ti

yTj
y term cancels from the first and second row of the

effective Hamiltonian(22). Naturally, there is still aTi
yTj

y

interaction included in the isotropic termT iT j. On this basis,
one may not expect a preference forTy-polarized(complex)
orbital ground states. However, one should not overlook the
possibility that the system may chooseTy-polarization as a
compromise when interaction terms preferring real orbital
order mutually frustrate each other.27

Let us note that the Hamiltonian of thei j =12 bond

H12 = −
2

Ũ
F2tt8sT1

xT2
x + T1

yT2
yd + st2 + t82dT1

zT2
z + st2 − t82d

3sT1
z + T2

zd +
3

4
st2 + t82dGP12

S=0 −
2

Ũ − JH

F− st2 + t82d

3T1
zT2

z − 2tt8sT1
xT2

x + T1
yT2

yd +
1

4
st2 + t82dGP12

S=1 s26d

has two additional symmetries characteristic of the two-site
problem. One of them is axial symmetry aboutTz in pseu-
dospin space,28 which allows us to classify the eigenstates as
T1

z+T2
z eigenstates. The other is thet8↔−t8 symmetry: a

p-rotation aboutTz in pseudospin space for site 2 is a ca-
nonical transformation that leaves the energy unchanged, but
it amounts tot8→−t8. This symmetry can be restated for
larger clusters with bipartite structure, but it cannot be ex-
tended toN.2 clusters of the triangular lattice.

For t= t8 SUs2d ^ SUs2d symmetry follows as in(24).
Taken in conjunction with the previous remarks, thet=−t8
model must have the same symmetry. Similarly, the degen-
eracies must be the same for the SUs4d point t= t8, JH=0, and
its mirror imaget=−t8, JH=0.

The Hilbert space of two electrons on two sites is 16
dimensional, and the energies and orbital eigenstates for the
i j =12 bond are:
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ES=0 = −
4t2

Ũ
, ES=1 = 0, uaal

ES=0 = −
4t82

Ũ
, ES=1 = 0, ubbl

ES=0 = −
st + t8d2

Ũ
, ES=1 = −

st − t8d2

Ũ − JH

, uabl + ubal

ES=0 = −
st − t8d2

Ũ
, ES=1 = −

st + t8d2

Ũ − JH

, uabl − ubal.

s27d

The results are shown in Fig. 4. Inside any of the ground-
state phases, either the spins are parallel and the orbitals
antiparallel, or vice versa. At the boundaries, the ground-
state level has higher degeneracy, which can be interpreted as
the manifestation of one of the higher symmetries discussed
above.

For the spin singlets,tÞ t8 acts like an external orbital
field, and therefore, orbital polarization is either in thea or
the b direction. At the linet= t8 (sectionJH,0) not only aa
and bb (states from the neighboring domains) becomes de-
generate but alsouabl+ ubal, thus the ground state is the
threefold degenerate spin-singlet–orbital-triplet(S=0, T=1),
allowed by the symmetry SUs2d ^ SUs2d. Continuing thet
= t8 line29 to JH.0, the ground state is again threefold de-
generate, but its nature changed to spin-triplet–orbital-singlet
suabl− ubald. The border pointt= t8, JH=0 is the SUs4d point

where the(S=0, T=1), and (S=1, T=0) levels become de-
generate[forming the basis of the 6D antisymmetrical irrep
of SUs4d].

Analogous results hold for the other SUs2d ^ SUs2d line
t=−t8, only for JH.0, the uabl− ubal orbital state(T=0, Tz

=0) is changed touabl+ ubal (T=1, Tz=0). Note that the
energy difference between these two states comes from the
term of (26) proportional tot8sT1

+T2
−+T1

−T2
+d, so changing the

sign of t8 changes the parity of the ground state. The sixfold
degeneracy of the ground state at the “anti-SUs4d” point t
=−t8, JH=0 follows from thet8↔−t8 symmetry of the pair
problem. A very similar phase diagram would be obtained
for JpÞ0. We do not show it here, but we include the con-
tribution of pair hopping in all our subsequent calculations.

If any far-reaching conclusions from Fig. 4 could be
drawn, it would be that the ground state has either ferro-
orbital order and spin antiferromagnetism(or a singlet spin
liquid); or it is a spin ferromagnet with staggered orbital
order(or orbital liquid). Less obviously, at the SUs4d points,
a spin-orbital quantum liquid may be inferred.15

To either confirm or disprove these guesses, two routes
can be followed:(a) determine the exact phase diagram of
larger clusters and see if there is a clear trend emerging;(b)
construct variational wave functions that possess the envis-
aged correlations. Figure 4 suggests that antiferromagnetic
effective spin models can be derived easily because uniform
orbital order factorizes site by site. However, for high-spin
states, the orbital states are more complicated. SUs4d-like
states, for which spins and orbitals are entangled, pose fur-
ther challenge.

B. Four-site problem

In what follows, we setJ=2Jp=JH. The four-site cluster
with periodic boundary conditions is equivalent to a tetrahe-
dron, where the three directions on the triangular lattice cor-
respond to the three pairs of opposite bonds on the tetrahe-
dron. This cluster proves to be sufficiently large to provide us
with some insight into the problem.

As a first step, we do exact(numerical) diagonalization
for the Hamiltonian

Htetr = H12 + H13 + H14 + H23 + H24 + H34 s28d

in the 44=256-dimensional Hilbert space. The total spinS
and itsz-componentSz are good quantum numbers, but this
is only of limited use in identifying eigenstates. The Hamil-
tonian couples spin correlations with orbital correlations,
therefore, most of the eigenstates have mixed spin-orbital
character. More precisely, theS=2 eigenstates can be sought
in the factorized form

u↑ ↑ ↑ ↑l ^ FsT1,T2,T3,T4d,

but this is no longer true of lower-spin states. In particular,
we know that there are only two independent spin singlet
states,[12][34] and[23][41], but combined with the orbitals,
we have 32 independentS=0 spin-orbital states. Most of the
S=0 eigenstates of Eq.(28) are not represented as a linear
combination of the above singlets multiplied by a pure or-
bital state. In fact, an overall singlet which plays a prominent

FIG. 4. Zero temperature phase diagram of the model on two

sites as a function oft8 / t andJH / Ũ. We have indicated the spin and
orbital parts. Along the thick line att8 / t=1 andJH,0 the ground
state is triply degenerate: the orbital part becomes SUs2d symmet-
ric, and the orbital tripletuaal, uabl+ ubal and ubbl with the spin
singlet forms the ground-state wave function. Along thet8 / t=−1
and JH,0 line, the orbital triplet consists ofuaal, uabl− ubal, and
ubbl. At the SUs4d points the ground state is 6-fold degenerate.
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role in our considerations is the SUs4d plaquette singlet

CSUs4d = f12gh23jf34gh41j − f23gh34jf41gh12j s29d

whereh23j represents the pseudospin singlet connecting sites
2 and 3, etc. It is clear thatCSUs4d is a spin singlet, just as it
is a pseudospin singlet, and it does not factorize in spin and
orbital variables.CSUs4d is the ground state ofHtetr in the
SUs4d-symmetrical point(t= t8, J=0) of the parameter space
of (28). It is the only SUs4d singlet [the only basis function
for the 1-dim irrep of SUs4d] in the present Hilbert space.

We diagonalized(28), and followed the low-lying states
(a representative example is shown in Fig. 5). While the
detailed nature of the ground state always has some continu-
ous dependence on the Hamiltonian parameterst8 / t andJ/U,
there are also sharp changes at level crossings. A level cross-
ing is possible between states with different symmetry labels.
The symmetry ofHtetr is SUs2d ^ Td, whereTd is the tetra-
hedral group.Td has 1D and 3D irreps; furthermore, granting
time-reversal invariance, two complex conjugate 1D irreps
belong to degenerate energy levels. We distinguish between
ground states according to their spin degeneracys2S+1d, and
orbital degeneracy, which can be 1, 2, or 3.

The resulting phase diagram is shown in Fig. 6. Phase
boundaries were drawn where we found a clear change in the
character of the ground state; this holds also for the boundary
between the two nondegenerate(S=0, 1x) phases. Let us
immediately point out that the tetrahedral phase diagram is
very different, and therefore would have been difficult to
guess, from the pair phase diagram shown in Fig. 4. Taken in
itself, the lack of mirror symmetry about thet8=0 axis was
to be expected, since the tetrahedral cluster is not bipartite. In
particular, thet8=−t, JH=0 point does not have any special

significance. However, less obvious features are the variety
of singlet phases, the shrinking of the domain of spin-
polarized solutions, and the predominance of the singlet
phase into which the SUs4d point is embedded.

IV. VARIATIONAL APPROACH FOR THE FOUR-SITE
CLUSTER

A. The method

The previous section showed us that we could expect a
rich phase diagram for our model even on a small-size clus-
ter. We will continue our investigation by studying larger
clusters by a kind of variational method: since there is a
strong asymmetry between the spin and the orbital parts in
the Hamiltonian, we try to decouple spin and orbital degrees
of freedom30 by factorizing the wave function into auCSl
spin anduCTl orbital part:

uCSTl = uCSl ^ uCTl. s30d

While this factorization applies to the pair problem, it cannot
describe the entanglement of spin and orbital fluctuations for
Nù4 sites. In particular, it does not allow us to capture the
SUs4d character displayed by(29). However, it should work
well for states with weakly fluctuating orbital order.

We proceed as follows: in the effective Hamiltonian we
can separate a spin-orbital mixing term from purely orbital
terms:

H = o
i,j

h2sSi ·Sjdhij
T + kij

Tj. s31d

Next, we need to minimize the Hamiltonian by using the
factorized wave function:kCSTuHuCSTl. It implies thatuCSl
is an eigenstate of the Hamiltonian

o
i,j

2sSi ·SjdkCTuhij
TuCTl s32d

while uCTl is an eigenstate of the Hamiltonian

FIG. 5. Energy spectrum of the spin singlet sector in the tetra-
hedron as a function oft8 / t for theJH=Jp=0 case. Fort8 / t between
0.2 and 1 the ground state is well separated from the rest of the
states, and it is the adiabatic continuation of the SUs4d singlet state
at the t8 / t=1 point (full line). The SUs4d singlet nature of the
ground state is lost at aroundt8 / t=0.2(denoted by an arrow), and in
the region −0.7, t8 / t,0.2 three levels[a non-degenerate level
(solid line) and a two-fold degenerate level(dashed line)] go to-
gether. Finally, att8 / t=−0.7 the symmetry of the ground state
changes, indicating the appearance of the third phase(dashed-
dotted line).

FIG. 6. Phase diagram of the spin-orbital model withJ=JH

=2Jp andU=Ũ−J on a tetrahedron, based on exact diagonalization
(see also Fig. 5). Phase boundaries in bold lines belong to level
crossings in the ground state energy. A further singlet-to-singlet
transition is identified in the vicinity of an antilevel crossing
(dashed line). The degeneracy(apart from the trivial spin degen-
eracy) of each state is also indicated.
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o
i,j

s2kCSuSiSjuCSlhij
T + kij

Td. s33d

This coupled set of equations is solved by iteration, keeping
at each step the solutions with lowest eigenvalue. We have
applied this technique to obtain the phase diagram of the
regular four-site(tetrahedron) and 16-site cluster.

B. Phase diagram on a tetrahedron

As we can see in Fig. 7, the “mean-field” phase diagram
shows a remarkable resemblance to the exact one(Fig. 6).
We should, however, note that the ferromagnetic region ex-
tended too much at the expense of the SUs4d phase, basically
because the Ansatz (30) cannot describe SUs4d
correlations,31 while the spin-aligned states are treated cor-
rectly. The S=1 region has shrunk, too. Our variational
recipe forS=1 states is to compose them of two bonds: a
spin triplet and orbitaluabl+ ubal bond, and a spin singlet and
orbital uaal type bond. These can be permuted and rotated to
give six solutions that are degenerate at the mean-field level.
Allowing for the resonance between these six states, we can
reproduce the 3-fold degenerateS=1 state seen in the exact-
digonalization study by taking the appropriate linear combi-
nations of them.

In the singlet sector we can distinguish between several
phases: the lowest one is composed of spin triplet and orbital
uabl+ ubal-like bonds, which are composed into a singlet, and
is threefold degenerate at the mean-field level due to possible
rotations(here again, the off diagonal matrix elements be-
tween the states will favor the twofold degenerate linear
combination, in agreement with Fig. 6). In the remaining
part, the spin wave functions is the same(singlet valence
bonds), only the orbital character changes fromuaal type
bonds to a more complicated one close to thet= t8, J=0
SUs4d-symmetric point (where the approach we use is
clearly not applicable). The number of solutions of the itera-
tion becomes very large in the vicinity of the SUs4d point,
with essentially the same energy.

V. VARIATIONAL APPROACH FOR THE 16-SITE
CLUSTER

The tetrahedron solutions show that there must be quite a
few phases with markedly different spin-orbital correlations.

However, theN=4 cluster is too small to draw inferences
about the character of any emerging long-range order(except
for spin ferromagnetism). Therefore, we investigated anN
=16 cluster that is large enough to differentiate between
quasi-1D (chains) and genuinely 2D orbital ordering pat-
terns. We use the same variational method as forN=4.

As shown in Fig. 8, the model leads to a rich phase dia-
gram. For reasonably large values ofJ/U we find the fully
polarized ferromagneticsS=8d region with three phases that
differ by their orbital structure. In the spin singlet region we
can again distinguish at least six phases, which are labeled
by capital letters. A detailed discussion of these phases fol-
lows.

A. Singlet phases

The S=0 part of the diagram is composed of six phases.
We have investigated in more detail each phase starting from
t8 / t,−1 and going through the four boundaries untilt8 / t
,1 for several ratiosJ/U. The aim of this section is to
understand the different types of orbital and spin orders. The
nature of the spin phases turned out to be easily determined
from the variational method itself: In all cases except phase
A, some clear pattern with large and positive or negative
values ofkSi ·Sjl could be identified, leading to magnetic or
singlet dimer order. The orbital part was more tricky to iden-
tify since the most relevant operator is notT i ·T j but hij

T, and
a given mean-value of this parameter does not obviously lead
to an orbital state since this operator is quite involved. So to
get a simple physical picture of the orbital structure we have
tried in each case to reproduce the pattern given by the
mean-field solution forkhij

Tl assuming at each site an orbital
wave function of the form

uCi
Tl = scosuiuail + sin uiubild s34d

and we have checked that this orbital structure also repro-
duces satisfactorily the mean value ofT i ·T j measured in the
mean-field ground state. This turned out to give a clear pic-

FIG. 7. The phase diagram of the effective model on a tetrahe-
dron based on the spin-orbital decoupling scheme(30).

FIG. 8. Mean-field phase diagram on a 16-site cluster as a func-
tion of hopping integral versus Hund’s coupling. The grey phase is
the ferromagnetic phase, with the classical phase boundaries shown
(see Sec. V B).
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ture in all phases except A and E. The information obtained
in this way is summarized in Fig. 9. In the following, we
describe in more detail all these phases.

1. Phase A

This phase contains the SUs4d point (t8= t, J=0) for
which the mean-field decoupling used here is known to be
inadequate given the very symmetric roles played by the spin
and orbital degrees of freedom.32 In fact, it is believed that at
the SUs4d point the system is in a spin-and-orbital liquid

state involving resonances between SUs4d singlet plaquettes.
A discussion of the physical properties at the SUs4d point
can be found in Ref. 15. Although the mean-field solution is
not directly relevant for that phase, the mean-field approach
is still useful to determine the boundary of the SUs4d region
since it allows us to detect the domain of stability of the
neighboring phases, for which the mean-field solution is in-
deed relevant, as will be discussed later. As anticipated, the
SUs4d physics extends to a finite and relatively large portion
of the phase diagram, and it can in principle be relevant for
real systems. Since our mean-field approach does not lead to
any physical insight beyond the determination of the bound-
ary of this phase, however, we will not discuss it further
here.

2. Phase B

From the magnetic point of view, this phase consists es-
sentially of weakly coupled, antiferromagnetic chains(see
Fig. 9), while the orbital structure turns out to be rather
subtle with an antiferro-orbital arrangement of ferro-orbital
chains with orbitals that are neither pureual= ud3z2−r2l nor
ubl= udx2−y2l but alternate between 1/Î2sual+ ubld and
1/Î2s−ual+ ubld. The detailed magnetic structure dependsa
priori on the residual couplings between the chains. If the
couplings are equal in both residual directions, some canting
will presumably develop inside the chains to accomodate the
frustration, like in the limiting case of the 120° classical
ground state of the Heisenberg model on the triangular lat-
tice. This effective magnetic Hamiltonian would be similar to
that realized in Cs2CuCl4, with possibly spinon excitations as
reported by Coldeaet al.33 If, however, the symmetry is bro-
ken between the residual directions, the system is expected
to develop rather collinear order, with lines of parallel spins
along the direction of the most ferromagnetic or least anti-
ferromagnetic residual coupling. For all parameters, the re-
sidual couplings predicted by the mean-field solution are
very small, but their sign and symmetry depends on the pa-
rameters. They tend to be AF for smallJ and ferromagnetic
for large J, and the symmetry between the two directions
may or may not be broken depending on the parameters.
While this interesting point would deserve further investiga-
tion, we do not think that a reliable answer to such a subtle
issue can be obtained just on the basis of this mean-field
decoupling, and we do not discuss the point further.

3. Phases C and C’

Both phases are characterized by strong dimer singlets
forming different regular dimer coverings of the triangular
lattice. On each dimer the orbitals are parallel, and they cor-
respond tod3z2−r2, d3x2−r2, or d3y2−r2 depending on the orien-
tation of the bond. Note that all these orbitals are Jahn-Teller
active, leading in all cases to two long bonds and four short
bonds. One might be tempted to conclude that these phases
correspond to two types of valence bond solids with the pat-
terns depicted in Fig. 9. The mean-field approach has a very
remarkable property, however. In addition to the mean-field
solutions with lowest energy shown in Fig. 9, there are sev-
eral other mean-field solutions of the self-consistent equa-

FIG. 9. Spin and orbital structure in the singlet phases of the
mean-field phase diagram. Solid line indicates AF, dashed line FM
spin correlations.
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tions with energies very close to the lowest energy corre-
sponding to other dimer coverings of the triangular lattice. In
such circumstances, going beyond mean-field is likely to
couple these solutions, and the relevant model would then be
a quantum dimer model describing resonances between these
states. As we shall see later, this point of view is favored by
exact diagonalizations of finite clusters. So at that stage we
think it is safer to think of these phases as a region of pa-
rameters where all dimer coverings are relevant states for
low-energy physics.

4. Phase D

This phase consists essentially of weakly coupled antifer-
romagnetic chains, but in contrast to Phase B, the orbital
structure is now ferro-orbital with only orbitald3z2−r2, d3x2−r2,
or d3y2−r2 depending on the overall direction of the AF
chains. Since these orbitals are Jahn-Teller active, one ex-
pects in this case that the system would undergo a coopera-
tive Jahn-Teller distortion with two long bonds per octahedra
all pointing in the same direction. Like in Phase B, the actual
magnetic structure will be controlled by the residual cou-
plings, and all the discussion of Phase B applies here, includ-
ing the sign of the residual couplings and the symmetry of
the couplings in the directions of weak coupling. In that case
too, a reliable determination of the possible magnetic phases
requires further investigation that goes beyond the present
mean-field calculation.

5. Phase E

This phase is dominated by strong antiferromagnetic cor-
relations in two directions and weak ferromagnetic correla-
tions in the third direction, leading to an effective Néel struc-
ture. The orbital structure cannot be reproduced satisfactorily
with the variational ansatz of one orbital wave function per
site. The pattern ofkhij

Tl would be consistent with a ferro-
orbital ordering with orbitals 1/Î2sual+ ubld at all sites, but
theT i ·T j correlations are not ferromagnetic. So to decide on
a possible orbital order would require to go beyond the
present mean-field approach.

B. Ferromagnetic phase

In the ferromagnetic region thePi j
S=0 spin singlet projec-

tion is 0, so that the effective Hamiltonian(22) is reduced to
the following form (neglecting the constant term):

Heff
FM =

2

Ũ − JH

o
i,j

fst − t8d2sni j
zT idsni j

zT jd + 2tt8T iT jg

s35d

and the orbital structure only depends on the ratiot8 / t. As
shown in the phase diagram 8 we can distinguish three
phases going fromt8 / t=−1 to t8 / t=1. All the identified
phases identified are orbitally ordered phases. They can be
understood starting from the classical limit, which in our
case is equivalent to minimizing the energy of the

uCl = p
j

scosu jual + eif jsin u jubld s36d

site-factorized wave function. The phase boundaries shown
in Fig. 8 are obtained by equating classical energies obtained
from the wave function of Eq.(36).

1. Phase F1

For t8= t the Hamiltonian of the orbitals becomes the stan-
dard SUs2d symmetric Heisenberg Hamiltonian with antifer-
romagnetic exchange. In this case a three-sublattice long-
range order(LRO) for the T pseudospins develops. Away
from the SUs2d symmetric point, the three-sublattice LRO is
stable up tot8= t /3, with the 120° configuration restricted in
thesTx,Tzd plane[in Eq. (36) we chooseu for u j’s in the first,
u+2p /3 for u j’s in the second, andu−2p /3 for u j’s in the
third sublattice, withf j =0 everywhere] with energy

EAFO

N
= −

3

8

st + t8d2

Ũ − JH

. s37d

We have shown a possible 120° orbital pattern withu=0 in
the top of Fig. 10. While the classical approach does not
allow us to fix the value ofu, this degeneracy is probably
lifted by quantum fluctuations.

For finite systems, the signature of the developing LRO
can be found in the energy spectrum in the form of the

FIG. 10. Schematic representation of the orbital orderings in the
spin ferromagnetic case.
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Anderson’s tower, as has been confirmed by Bernu, Lhuiller,
and Pierre for the isotropic triangular lattice.34 These low-
lying states(G1, K1, andG4) can also be seen in Fig. 11, and
they can be continuously followed up to the isotropic point
t8= t, where they become the lowest lying pseudospin triplet
excitations. Further evidence comes from the nearest- and
next-nearest-neighborkT iT jl correlations. There is a strong
ferro-orbital correlation between a site and its second
nearest-neighbors, e.g.,kT iT jl,0.19 for t8 / t=0.8.

2. Phase F2

To understand this phase, we start from thet8=0 case,
where the Hamiltonian(35) is proportional to 2obondssni j

zT id
3sni j

zT jd, which can conveniently be transformed to

o
bonds

sfni j
z sT i + T jdg2 − sni j

zT id2 − sni j
zT jd2d

= o
bonds

fni j
z sT i + T jdg2 − 3o

i

fsTi
xd2 + sTi

zd2g

= o
bonds

fni j
z sT i + T jdg2 + 3o

i

sTi
yd2 − 3NTsT + 1d.

At the classical level, the two squares can be minimized by
choosing theT vector in thesTx,Tzd plane so that on a given
bond eitherT i =−T j, or T i +T j is perpendicular toni j

z . These
conditions are satisfied with the collinear orbital order shown
in Fig. 10, we chooseual+ ubl along every second chain with
the bond variableni j

z =s0,0,1d, and ual− ubl along the re-
maining chains(the orbital configuration is the same as in
phase B in Fig. 9). There are six such configurations, which
can be obtained by translations and rotations, with varia-
tional energy

ECL

N
= −

1

4

3t2 − 2tt8 + 3t82

Ũ − JH

. s38d

The classical phase boundaries for this state aret8 / t=−1/3
and t8 / t=1/3.

In a finite system with periodic boundary conditions re-
specting the point groupD3d of the triangular lattice, the
linear combination of the six states will produce a threefold
degenerate state at theM point in the Brillouin zone(state
M1 in Fig. 11), and three states at theG point, one nonde-
generate and one twofold degenerate(G1 andG3 in Fig. 11,
respectively). These states can clearly be recognized in the
exact diagonalization spectrum of the 12-site cluster as the
lowest-lying state for −0.2t, t8,0.35t, well separated from
the states with higher energy. The observation of the phase in
the correlation function is nontrivial, as the ground state
around t8=0 is twofold degenerate, and the applied exact
diagonalization on a finite size cluster will result in a state
with an arbitrary linear combination of them, which leads to
a pattern difficult to interpret. It is, however, clear that there
is no ferro-orbital order.

3. Phase F3

In this phase theTy ferro-orbital order is established: for
negativet8 theT iT j term in Eq.(35) becomes ferromagnetic,
and the frustration in theTx andTz due to thesni j

zT idsni j
zT jd

term will single out theTy order. The particularity of theTy

ordering is that it breaks the time-reversal symmetry: either
the ual+ i ubl or theual− i ubl combination orders. The ordering
of complex orbitals has been searched for in the context of
manganites, where it has been thought that they are favored
by the isotropic-kinetic exchange. Indeed, the charge density
of the ual± i ubl shows the trigonal symmetry, and the combi-
nation is Jahn-Teller inactive. The phase can be easily iden-
tified in the finite-size diagolization from the correlation
function: spatially isotropicTi

yTj
y.0 correlations are domi-

nant. The mean-field variational energy of the ferro-orbital
complex state is

EFO

N
=

3tt8

Ũ − JH

s39d

and the phase is stable fort8 / t,−1/3.
The determination of the phase boundaries is, however,

not straightforward. As can be seen from the energy levels,
the G1 state is present in the “ground-state manifold” of all
the ordered phases. Therefore we identified the phase bound-
aries by level crossings of the ground-state manifolds asso-
ciated with each type of ordering, which agree reasonably
well with the classical phase boundariesst8 / t= ±1/3d. At
these phase boundaries continuous degeneracies appear in
the classical wave function, suggesting a gapless excitation
spectrum at those points.

VI. EXACT DIAGONALIZATIONS

Due to the small number of conveniently exploitable sym-
metries in the problem[we have only the spin SUs2d sym-
metry], the size of the Hilbert space grows very rapidly with

FIG. 11. Energy level scheme of a 12 site diamond-like cluster
with periodic boundary conditions and compatible with the
3-sublattice LRO. Shown are the levels which can be associated
with the ferro-orbitalTy order (denoted byG1 andG2), collinear
phase(G1, M1, and G3) and the lowest states constituting the
Anderson tower of the 120° antiferro-orbital phase(G1, K1, and
G4). The first letter refers to the momentum of the state. We have
encircled the level crossings that we used to determine the phase
boundary(t8 / t=−0.20 andt8 / t=0.35).
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the size. In theSz=0 sector it increases likes N
N/2

d2N whereN
is the number of sites. This limits us to small cluster sizes,
especially if we want to explore the phase diagram. The ob-
vious choice was the 12-site cluster with periodic boundary
conditions(Fig. 12), which has the fullD3d symmetry of the
lattice as well. The considered cluster has the advantage to
allow the formation of SUs4d plaquettes and is also compat-
ible with three- and four-sublattice order.

The phase diagram obtained from the level crossings in
the ground state is shown in Fig. 13. It is globally consistent
with the mean-field one. The fully polarized ferromagnetic
region sS=6d is found for very similar values ofJ/U. For
small J/U, we identify five different regimes fromt8 / t=−1
to t8 / t= +1. They seem to correspond to four phases only,
since two regions join for intermediate values ofJ/U, but
given the difficulty to determine phase boundaries from ex-
act diagonalizations, this should not be taken too seriously.
The various regions are labeled according to the point in the
Brillouin zone where the ground state is found.

In the vicinity of the SUs4d-point (t8 / t,1, J,0), the
low-lying spectrum is similar to the one obtained in the
SUs4d case.15 This suggests that the description of the
ground state in terms of SUs4d singlets is applicable in this
region.

At the M point the ground state is threefold degenerate.
This could correspond to the formation of AF chains in

phase B since these chains can form in three directions, re-
sulting in a threefold degenerate mean-field solution. To con-
firm this interpretation, we have diagonalized the full Hamil-
tonian in the variational sub-space spanned by the mean-field
ground state wave functions of Phase B. It turns out that
these states are not coupled because, due to the orbital con-
figuration, they have different symmetries with respect to the
inversion around the middle points of nearest-neighbor
bonds. So the ground-state degeneracy in this variational
subspace is still equal to 3, supporting the interpretation in
terms of chains.

When the ground state is at theK point, the interpretation
is not so straightforward. The ground state is strictly speak-
ing twofold degenerate. But looking at the spectra the first
excited state is at theG point and very close to the ground
state. A possible explanation could be that all these states are
degenerate in the thermodynamic limit. Then this region
could also be explained by the formation of chains. To check
this point, we have diagonalized the Hamiltonian in the
variational sub-space spanned by the three mean-field ground
state wave functions of Phase D. The orbital configuration is
different from Phase B, and the degeneracy is partially lifted,
with a twofold degenerate ground-state an a nondegenerate
excited state. Again the agreement supports the interpretation
of this phase in terms of AF chains.

The most interesting region for our case is the central one.
We will focus our attention on the linet8 / t=0. Along this
line we will see that a description in terms of resonating
valence bond(RVB) states is reasonable. For instance, the
low-lying spectrum(Fig. 14) for J/U=0.008 andt8 / t=0,
shows a very large number of singlet states(125) before the
first triplet (at the top of the figure). All these singlets are
very close in energy, the energy difference between the
ground state and the first triplet being of the order of
, t2/U . Note that the number of singlets below the first
triplet (125) is a significant fraction of the total number of
dimer coverings for this 12-site cluster(348). This is remi-
niscent of the spectrum found by Lecheminantet al. for the
S=1/2Heisenberg model on thekagomelattice.35

This is in qualitative agreement with the mean-field re-
sults. Indeed, in Phases C and C’, several solutions corre-
sponding to various dimer coverings were found with com-
parable energies(see Figs. 15 and 16). A similar observation
was made in a preliminary study of a similar spin-orbital
model in the context of BaVS3.

25

FIG. 12. The 12-site cluster with periodic boundary conditions,
and the associated Brillouin zone.

FIG. 13. Exact diagonalizations: phase diagram for the 12-site
cluster.

FIG. 14. Low-lying singlets fort8 / t=0 andJ/U=0.008.
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A possible ground state for this region could be a spin-
orbital version of the RVB state.10 The magnetic structure
could be envisaged as a fluctuating pattern of bonds among
different dimer coverings or a mixture between dimer cover-
ings and chains. All these states being singlets, they may be
degenerate in the thermodynamic limit.

Let us also mention that there is also a partially polarized
regionS=3. We suspect that it may be a finite-size effect, as
it is greatly reduced with respect to the correspondingS=1
phase present in the phase diagram of the tetrahedron.

VII. EXPERIMENTAL IMPLICATIONS

In transition metal oxides, the on-site Coulomb repulsion
U is typically in the range 4–10 eV, and the Hund’s rule
coupling in the range 0.5–1 eV, leading to a physical range
defined by 0.05,J/U,0.25. Interestingly enough, all
phases appear in this range and should be possible to observe
in actual compounds provided the ratiot8 / t has the appropri-
ate value(see Fig. 16). In that respect, one should emphasize
that the phase diagram depends only on the hopping integrals
between orbitals, not on the actual orbitals. In particular,
even if the two orbitals were not orthogonal by symmetry on
one of the bonds, diagonalizing the hopping matrix on a
given bond would bring us back to the situation treated in
this paper. So the discussion would carry over beyond the
specific case ofd3z2−r2 and dx2−y2 up to the remarks dealing
with Jahn-Teller distortions.

Now, coming back to LiNiO2 and NaNiO2, hence to
d3z2−r2 anddx2−y2 orbitals, simple arguments suggest thatt8 / t
is negative and small. That it is negative comes from the
different symmetries of the orbitals: thed3z2−r2 orbitals on

edge-sharing octahedra(see Fig. 2) are symmetric with re-
spect to the mirror plane that brings one octahedron into the
other, while thedx2−y2 are antisymmetric. Now any direct
overlap betweend wave functions in transition metal oxides
is known to be very small. However, one should not forget
that the orbitals are in fact Wannier functions centered on the
transition metal ions, which extend in general to infinity to
insure orthogonality, and which have a significant weight on
neighboring O 2p orbitals. In the case of the Wannier orbit-
als with symmetrydx2−y2, this does not lead to any significant
transfer because the O 2p orbitals coupled to one of them are
orthogonal to thedx2−y2 of the neighboring octahedron. This
is not strictly true here since the Ni-O-Ni angle is not exactly
90°, and also because the crystal field is not symmetric at the
oxygen site, but still one expects the effective hopping to be
very small. By contrast, thed3z2−r2 Wannier orbitals have
weight on the O 2p orbitals above and below, and these
O 2p orbitals have a standardp overlap regardless of the
actual local distortions of the octahedra. So this should give
rise to a significant overlap between the Wannier functions
with d3z2−r2 symmetry.

Beyond the actual value of the parameters, it is important
to emphasize that we have not adopted the same point of
view as Mostovoy and Khomskii,1 who have neglected any
overlap between Ni orbitals, although it is allowed by sym-
metry. Further, they have assumed that Ni–O–Ni bonds
make and angle of 90°, although the actual angle is around
94° in LiNiO2 and 96.4° in NaNiO2, and they have neglected
the role of the crystal field at the oxygen site, known to
produce antiferromagnetic couplings as shown by Daré,
Hayn, and Richard.21 While the ferromagnetic coupling that
comes out of these approximations is certainly relevant, the
simplified Hamiltonian studied by Mostovoy and Khomskii
leads to a purely ferromagnetic coupling, while the more
general Hamiltonian studied in the present work exhibits a
rich variety of phases, which, we believe, might actually lead
to the ultimate explanation of LiNiO2 and NaNiO2.

A. LiNiO 2

In the case of LiNiO2, which undergoes neither a Jahn-
Teller distortion nor a magnetic phase transition upon lower-
ing the temperature, we have to choose between two differ-
ent realizations of RVB: the SUs4d phase A(for t< t8) and
the fluctuating dimer phases C and C’. Since we have argued
that ut8 / tu!1, we opt for the dimer phases. Actually, one
should give preference to Phase C’ sincet8 / t is negative, but
as we discussed these phases should better be considered as
defining a domain in which the physics of the quantum dimer
model(QDM) on the triangular lattice might be relevant. The
actual form of the effective QDM is not known yet, but it
presumably will not be too far from the minimal model stud-
ied by Moessner and Sondhi36 since Phase C is a staggered
state and belongs to the ground-state manifold of their model
for large enough repulsion between face-to-face dimers,
while Phase C’ is a maximally flippable state and belongs to
the ground state manifold in the limit of infinite attraction
between face-to-face dimers. Note, however, that Phase C’ is
not the columnar state realized for finite attraction in the

FIG. 15. Two stable states for a 12-site cluster: the dashed line
represents the cluster.t8 / t=0 andJ/U=0.008.

FIG. 16. Two stable states for another 12-site cluster: the dashed
line represents the cluster.t8 / t=0 andJ/U=0.008.

VERNAY et al. PHYSICAL REVIEW B 70, 014428(2004)

014428-14



minimal model, differences are to be expected. Still, close to
the boundaries between the phases, one may speculate that
an RVB phase will be present. Such a phase does not break
any symmetry and could explain the absence of any kind of
ordering in LiNiO2. Let us also note that the extended x-ray-
absorption fine-structure results by Rougier, Delmas, and
Chadwick6 are also consistent with this proposal since the
orbitals entering all these states are Jahn-Teller orbitals with
two long bonds and four short bonds. If the system under-
goes resonances between different states, this would produce
a dynamic Jahn-Teller effect between these states, a situation
still leading to two long bonds and four short bonds on av-
erage. Due to some disorder, and/or to coupling to the lattice,
the system might actually prefer to freeze in a nonperiodic
dimer covering of the triangular lattice, as suggested by Rey-
naudet al.12 Such a frozen, nonperiodic state would also be
consistent with the results of Ref. 6.

B. NaNiO2

As far as NaNiO2 is concerned, the only potential candi-
date is Phase D since this is the only ferro-orbital phase with
Jahn-Teller orbitals consistent with the distortion that occurs
at 480 K in that system. This phase has the largest boundary
with Phase C’, a good point in view of the very similar
structures of LiNiO2 and NaNiO2. As stated earlier, the ef-
fective model consists of weakly coupled AF chains, and the
resulting magnetic structure will depend on the residual cou-
plings. A thorough analysis of this point will require going
beyond the present calculation and is left for future investi-
gation. But in any case, with some interlayer coupling, this is
expected to lead to some kind of AF ordering at finite tem-
perature, in agreement with experiments. Let us emphasize
that, while simultaneous ferromagnetismandJahn-Teller ac-
tive ferro-orbital order have been argued to be possible by
Mostovoy and Khomskii1 in the context of their simplified
model, this seems to be impossible in the context of our
microscopic model. Now, as far as experiments are con-
cerned, the actual order is not yet known. It has been often
assumed so far that this AF state consists of ferromagnetic
planes coupled antiferromagnetically, but preliminary results
seem to indicate that this cannot be the case,37 which opens
the way for another type of antiferromagnet.

C. Curie-Weiss constant

In the absence of finite-temperature calculations, we iden-
tify the Curie-Weiss constantuCW as a measure of the aver-
age spin couplingss~khij

Tld. At this stage, the essential prob-
lem when comparing our predictions to the experimental
data for LiNiO2 and NaNiO2

5 is the sign of the Curie-Weiss
constant. Namely, in both cases it is ferromagnetic if deter-
mined at not too high a temperature,12 while in our calcula-
tion, based on Eq.(22), it is antiferromagnetic. This is not a
very serious problem, however. In deriving our model, we
have only kept second-order terms in the hoppingt and t8
between Wannier orbitals centered at Ni sites. This deriva-
tion neglects intersite Coulomb processes. For symmetry rea-
sons, the interaction is still of the form of Eq.(17); one of the
terms would be the ferromagnetic direct exchange. We do

not handle this systematically, but include anad hoc ferro-
magnetic term

H = − JFo
i,j

Si ·Sj s40d

into the HamiltoniansJF.0d, which corresponds to modify-
ing the initially antiferromagneticB8 term in Eq.(17) toward
ferromagnetic couplings. We have checked that the phases
discussed in Sec. V remain stable in a region where the
Curie-Weiss constant is ferromagnetic. More precisely, we
have solved the self-consistent equations including such a
term, which leads to the effective spin Hamiltonian

H = o
i,j

hsSi ·Sjdhij8 + kij
Tj s41d

where hij8 =khij
Tl−JF, and the Curie-Weiss constant is given

by

uCW=
SsS+ 1d

3 o
jsid

hij8 =
1

2o
ki j l

8hij8 s42d

whereo jsid means summation over all first neighbors of a
given sitei, while o8ki j l means summing over three pairs of
nearest-neighbors in three inequivalent directions. The re-
sults are summarized in Fig. 17. As announced, the Curie-
Weiss temperature changes sign inside Phases C and D be-
fore one enters the ferromagnetic phase, and this occurs for
values ofJF that are small enough to be physically relevant.

D. Comparison with previous approaches

We have emphasized on a number of occasions the differ-
ence between our model and the models studied in former
investigations of these systems, in particular by Mostovoy
and Khomskii1 and by Daré, Hayn, and Richard.21 For the
sake of clarity, let us summarize these differences.

First of all, let us emphasize that the model of Eq.(17) is
completely general, and that all models[those of Refs. 1 and
21 as well our Eq.(22)] are particular cases of this model.

FIG. 17. uCW as a function ofJF for C and D phases(see Fig. 8):
J/U=0.064 andt8 / t=−0.1 for the solid line(D phase), t8 / t=0.1 for
the dashed line(C phase).
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The difference lies in the choice of the parameters, which are
derived from different microscopic assumptions.

One formal difference between our approach and both
that of Mostovoy-Khomskii and of Daré, Hayn, and Richard
is that we consider Ni-like orbitals only. This does not mean
that we neglect the presence of oxygen atoms, rather one
should envisaged-p hybridization giving rise to an effective
d-electron model.

The main difference between our approach and former
approaches is the inclusion in our model of a significant
direct hoppingt between Ni Wannier functions ford3z2−r2

orbitals on neighboring octahedra that share an edge perpen-
dicular to the z axis, an effective hopping taking place
through apical oxygens. This process is the main source of
antiferromagnetic coupling in our approach. This should be
contrasted with the model of Mostovoy and Khomskii in
which all in-plane couplings are ferromagnetic, and with the
model of Daré, Hayn, and Richard in which antiferromag-
netic couplings arise from crystal field splittings and devia-
tions of thesNi–O–Nid bond from 90°. This antiferromag-
netic coupling competes with the other sources of exchange,
which are ferromagnetic, as emphasized in previous work.1,21

This competition is at the root of the very rich phase diagram
we have obtained. In the derivation of their model, Mostovoy
and Khomskii include an intersite Coulomb term, which we
did not consider; on the other hand, we include hoppings,
which they set to zero. Our phase diagram is therefore dif-
ferent in essential aspects from that of Mostovoy-Khomskii.
It is a matter of further investigation, which of the parameter
choices is more realistic, or whether suitably general models
could give new phases.

The choice to emphasize this process has other technical
implications, however, which translate into completely dif-
ferent expressions for the parameters of the Hamiltonian of
Eq. (17). The reason is that, in terms of atomic orbitals, this
process would be a rather high-order process, although
simple estimates suggest that this overlap is significant. So
the only practical way to include it into a microscopic model
is to describe the system in terms of Wannier functions cen-
tered at the Ni sites rather than using atomic orbitals at Ni
and O sites. So our effective Ni–Ni hopping parameters are
not simply related to the atomic parameters of Refs. 1 and
21, and a direct comparison is not possible.

Still the basic assumptions of Mostovoy and Khomskii1

and of Daré, Hayn, and Richard21 regarding the other ex-

change processe are present in our model, but in a somewhat
different disguise:(a) The fact that the Ni–O–Ni bond is
nearly 90° is encoded in the fact thatt8, the effective hopping
betweendx2−y2 orbitals, is very small.(b) Deviations from
this geometry, as well as the effect of crystal field splittings
at the oxygen site, which were shown to lead to some AF
exchange, translate into a non zero value oft8. (c) The fer-
romagnetic coupling that takes place at the non-apical oxy-
gen sites was introduced phenomenologically as an extra fer-
romagnetic contribution in the previous section. A more
direct comparison of the models should be possible starting
from atomic orbitals and including a direct hopping between
apical oxygen atoms. This is left, however, for future inves-
tigation.

VIII. CONCLUSION

We have shown that a spin-orbital model on the triangular
lattice with realistic parameters leads to a very rich physics.
The presence of various important phases[SUs4d, dimers
and ferromagnetic] is confirmed for every cluster(4, 12, and
16 sites). Moreover it seems that this model is able to pro-
vide a good description of the behavior of LiNiO2 and
NaNiO2, and to explain the puzzling difference between
these two compounds. We have given specific meaning to the
claim that an RVB state seems to be at the origin of the
magnetic properties of LiNiO2. The underlying orbital struc-
ture corresponding to this RVB state is in agreement with the
experimental observations. For the case of NaNiO2, a pos-
sible magnetic state has been investigated with an underlying
orbital structure that still leads to a cooperative Jahn-Teller
distortion. A precise description of the low-energy physics of
the present model for the phases relevant for LiNiO2 and
NaNiO2 requires other methods than those used in the
present paper, but we are confident that the present analysis
will set the stage for further investigations.
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