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Motivated by the absence of cooperative Jahn-Teller effect and of magnetic ordering in,LaNi&yered
oxide with triangular planes, we study a general spin-orbital model on the triangular lattice. A mean-field
approach reveals the presence of several singlet phases between(&hesBhimetric point and a ferromag-
netic phase, a conclusion supported by exact diagonalizations of finite clusters. We argue that one of the
phases, characterized by a large number of low-lying singlets associated to dimer coverings of the triangular
lattice, could explain the properties of LiNjOwhile a ferro-orbital phase that lies nearby in parameter space
leads to a new prediction for the magnetic properties of NgNiO
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I. INTRODUCTION The NP* ions are in theS=1/2 low-spin state. In terms of

The Mott insulators LiNiQ and NaNiG are isostructural (€ dominant cubic component of the crystal field” 3
and isoelectronic, but they have completely different phasé& 2g€g Since the actual point group symmetry is trigorig,
diagrams. The complicated nature of these systems aris@§tS SPlit into two levelgt,, — A,+E, where standard nota-
from an interplay of the dynamical frustration of spin—orbital l0ns for the irreducible representatiofigeps of the point
models with the geometrical frustration of the triangular lat-9"0UP Dsq Were introducey but this does not affect the fact
tice, which is the essential structural unit. We will show thatthat Six electrons are taken up by closed subshells, and only

by a modest change of parameters, a great variety of phas seventh electron is in an open subshell. The trigonal crys-
can be derived. tal field component changes the detailed nature of the

The crystal structure can be envisaged as a sequence ggst')[ates, but still allows for twofold orbital degeneracy:
slabs of edge-sharing octahedra of oxygedt @ns. Metal & “Y°— E. In what follows, E is understood to denote the
ions sit at the centers of octahedra. There are two kinds diVo-dimensional2D) irrep of the trigonal point group.

slabs: in A slabs, at every center of octahedra there i3 Ni 1€ ground state of an isolated *Niion is fourfold de-
whereas in the B slabs, one finds eithef bi Na ions, A  9enerate: it has twofold orbital and twofold spin degeneracy.

and B slabs alternatésee Fig. 1 The Ni ions form well- A stan_dard scenario would be_ that the non-Kramers d_egen—
separated triangular planes. eracy is resolved by @oop_ergtw@Jahn—TeIIer_effect, whlle

It is useful to start with the idealized geometry of a cubicthe Kramers degeneracy is lifted by magnetic ordering. Let
system. Neglecting the inequivalence of Ni and Li sites, and'S Note that, as far as the-electrons are concerned, the
assuming perfect oxygen octahedra, the octahedral centef@OPerative Jahn-Teller effect is synonymous with orbital
would form a simple cubic lattice. The slabs of the original ©"dering, thus it can be explained with a purely electronic
structure would be perpendicular to the 111 direction. Within™del, without the consideration of electron-lattice cou-
a slab the Ni-O-Ni bond angles would be 90°, resulting inP!ing.
important consequences for the effective exchdnge. P PS

There are two sources of deviation from cubic symmetry: ‘. L ® L
(a) Ni and Li/Na sites are inequivalent, which leaves us with
one (instead of fouy C; axis. Even if the octahedra were

undistorted, Ni ions would see a wider environment with Li,Na ®
trigonal symmetry only(b) actually, oxygen octahedra are

distorted?® and the Ni—O-Nibond angle is=~96.4 in the P o ©® O o
case of Na, ané=94’ in case of the Li compound. [ ®

If there is a Jahn—Teller phase transiti@s in NaNiQ), it
lowers the crystal symmetry further and makes the orbital
ground state unique. An alternative would be to ascribe or-
bital polarization to an electronic phase transition due to or-
bital exchange and to regard the lattice distortion as an in- o ° L o
duced secondary effect. In what follows, we assume trigonal
point group symmetry, which is valid for NaNjat high
temperatures and for LiNiQat all temperatures. Breaking
the local trigonal symmetry, whenever it happens, is ascribed
to orbital ordering. We consider electronic degrees of free-
dom only, but we assume that the lattice would follow the FIG. 1. ANiO, structure. Ni ions are located in the middle of the
changing orbital occupation. O octahedra.
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The standard scenario seems to(beleast nearlyreal- lower-symmetry states in addition to the fully symmetrical
ized for NaNiGQ, which has a first-order cooperative Jahn-SU(4) phase. Accepting that the observed behavior of both
Teller transition lowering the local symmetry from trigonal LiNiO, and NaNiQ is intrinsic, any theory for why LiNi@
to monoclinic atT)2~480 K2 The remaining Kramers de- does not order should also allow for the alternative scenario
generacy is lifted by a magnetic transition 'Eﬁaz 20 K, of orbital and spin ordering, as observed in NaiiD terms
which was characterized as the antiferromagnetic ordering a¥f our trigonal E model, we show that the combination of
ferromagnetic planesin contrast, LiNiQ does not undergo geometrical frustration with the dynamical frustration inher-
a Jahn-Teller distortiohand though the measured suscepti-ent in spin-orbital models gives rise to a rich variety of com-
bility shows a number of anomalies, it does not seem tgeting states stretching from the W resonating singlet-
develop magnetic long-range ordef®It is puzzling that the  state to spin-ferromagnetic phases with various orbital order.
two isostructural and isoelectronic compounds show suchve will find it natural that contrasting behavior resembling
different behavior. Naturally, it is always possible that somethat of either LiNiQ, or NaNiO, can arise in nearby regions
of the observed behavior is not intrinsic. Impurities andof parameter space.
structural defects are likely to prevent orbital ordering. In-
deed, it was suggested that only Nabli@lows the growth

of sufficiently good-quality samples, and the observation of A. Basis functions

ordering transitions, while the overall behavior of LiNi3 Our model is meant to describe the Mott-localizedlec-
like that of the high-temperature phase of NapfO trons of Ni ions. The local degrees of freedom are those of an
E! shell. Intersite interactions arise from the virtual charge
H 11 20 H i
Il. SPIN—ORBITAL MODEL BASED ON THE TRIGONAL fluctuationsE"E*— E E . _The study of such spm-orblt_gl ex-
DOUBLET change models was initiated by Kugel and Khom&kiand

by Castellani, Natoli, and Ranningét.

The aim of the present paper is to show that the contrast- The point group of a Ni site i934=D;®{£,Z}, where&
ing features of NaNi@ and LiNiO, appear naturally as is the identity element, and is the inversion(see Fig. 2
nearly equivalent possibilities for the intrinsic behavior of The subgroup of proper rotatiorf8; contains the trigonal
spin-orbital models of the trigond doublet. axis C3 and three orthogonal, axes. It is convenient to

A similar four-state model, namely th8=1/2 cubice;  denote axes in terms of the original octahedral system
doublet on the cubic lattice, has been studied in great detajlX, Y, z}, so theC; axis is(111). For later reference, we recall
in the context of manganite physiedhe magnetic behavior that D4y has three irreps: the identity refy, the one-dim
is complicated because orbital and spin—orbital interactionﬁrep A,, and the two-dim irre|E.
tend to frustrate the usual spin—spin interactions. Though, in First, we rePresenD3 on the basis of thé&E subspace
contrast to spin-only models, spin—orbital models do notspanned by cl|0y=|a)=(322-R?), and :cg|0>:|b>oc(xz
need the fing—tuning of the Iatticg structure to get frustra_ltion_yz) (as yet, we omit the spin indgxAlternatively, we may
effects, we find that the geometrical frustration of the trian-represent on the 2D operator subspalgdsc/} (or {c,, o))

gular planes of the LiNi@ structure brings essential new 5 . .
features. For this reason, we consider only an isolated trian-l-—he effect of an-rotation about the 11 axis(one of theC;

gular plane and discuss=0 behavior only. We assume that axes is
our essential conclusions would carry over to e 0 be- ol =cf cZ, =-df. (1)
havior of coupled planes.

The idea that the geometrical frustration of the triangularSkipping the effect of the other tw6, rotations, we show
lattice tends to oppose ordering has been discussed félow a 27/3 rotation about the trigonal axis is represented in
spint® and orbitat? degrees of freedom separately. In athe E subspace
pioneering work, Hirakawa, Kadowaki, and Ubukdshi

started a systematic investigation of triangular lattice antifer- of=— }CT + L30Jr

romagnets with the explicit aim of finding non-Néel-type al 22 2®

behavior. This work initiated the intensive reinvestigation of

LiNiO,. On the theoretical side, Arimori and Miyashit& B, o1

studied a classical model and found that novel-order param- c;;, =- ?c;— Ecg (2

eters combining spin and orbital character are important. In a
quantum-mechanical calculation, chosing a special set of pa-
rameters to make the four-state spin-orbital model(8U

symmetrical, it was found that the ground state of the B. Microscopic model
nearest-neighbor model on the triangular lattice is an On-sited-electron orbital states are classified according to
SU(4)-resonating quantum liquit. the point groupD,4,'8 while two-site states according to the

Here we consider the full range & models, restricting  smaller point groug,, of a pair. The nearest neighbors of a
the parameters only by the requirements dictated by symmeyi site are at the centers of octahedra, which share an edge
try. The pair interaction is generically of $2) ® Cy, sym-  with the first site. The?, axis perpendicular to this edge is a
metry; higher symmetriepSU(2) ® SU(2) or SU4)] follow  symmetry element of the pair; so is the mirror plangper-
from specific choices of the parameters. We explore manpendicular to theC, axis in questiort? C, and o}, are the
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through the oxygen network, we should think of the orbitals
as hybridized Ni-centered Wannier orbitals, but with hopping
amplitudes that follow not only from NiO—Ni hybridiza-

Cs tion, but by considering all finite-amplitude processes that
] are symmetry-allowed, and which in the end-effect, may be
A indexed in the same way as the simple nearest-neighbor
C, --- _—— Ni—Ni hopping.

It was noted by Mostovoy and Khomskithat the as-
sumption of an exactly 90° NiO—Nibond angle results in a
peculiar form of the spin-orbital effective Hamiltonian. In
particular, spin-spin coupling is exclusively ferromagnetic,
and orbital exchange predominates. One of the ways to look
at the situation is that, with an ideal octahedron of oxygen
(@) atoms, one-electron terms would not allow the propagation
of an electron from a Ni site to another Ni site via an inter-
vening oxygen atom. However, other off-diagonal elements,
like the spin flip part of the-shell Hund coupling, still allow
electron propagation, and a corresponding term in spin-
orbital exchangé. This model may be used to describe
NaNiO,, but it is certainly not applicable to LiNi© Since
we aim at deriving both kinds of behavior from formally the
same Hamiltonian, we have to pay particular attention to the
sources of deviation from the Mostovoy-Khomskii scheme.

Daré, Hayn, and Richaftl pointed out that the trigonal
splitting of the oxygenp orbitals, and the deviation of the
Ni—O—Ni bond angle from 90°, facilitate the appearance of
antiferromagnetic Ni—Ni interactions. However, they did not
systematically explore the phase diagram, and neglected sev-
eral effects that we think are important: the direct overlap of
the Ni wave functions at neighboring sites, and the intra-

FIG. 2. (a) TheC; axis and one of the, axes of the point group  atomic exchange and double hopping terms ofdikinter-
of the Ni site in the ANIQ structure(the other twoC, axes are  action at Ni site$? Our aim is a systematic investigation of
obtained by applyingCsz). (b) Orbital states of the seventh ipe phase diagram in the entire parameter range.
d-electron of N#* on the backgound of the network of oxygen The form of the on-site pair interaction terfic,y is re-

octahedra. stricted by the symmetry classification of the two-electron
states:Dsq4 for the orbital component of the wave function,
generators of the four-element symmetry grafyy of the  and SU2) for the spin part, which readily gives three sin-
pair? glets and a triplet. Orbital quantum numbers follow fr@&m
The standard components of the electronic Hamiltoniang E= A, +A,+E. The antisymmetrical, can be taken with
are those of a two-band extended Hubbard model: intersitsymmetrical spin states, yielding the triplet.
hopping Hy,p, and on-site Coulomb matrix elemeritécq,. -
First, we discus${po, The localE basis can always be cho- |F1) = C3,Cp,1[0)
sen so that under th® rotation of the pair, one of the basis
states is even, and the other is odd. In fact, we have seen this 1o +ot
in (1). This immediately implies that the hopping elements [F2)= TE(Ca,TCb,l +Ca,,Cp,1)|0)
between two sites are only between the functions with equal '
parity, and we have two hopping parameters ohfgr thea o
orbitals, andt’ for the b orbitals |Fa)=Cq1Cp1[0). (4)
_ + , t A; and E are symmetrical, thus there must be two singlet
Hiop=~t2 €auCiac—t' 2 ClpoCinstHe. (3 leyels: the nondegeneratg, and the twofold degenerate
7 7 The E-basis functions are
whereao is the spin index. In the other directions the hopping 1
amplitudes can be obtained by a suitable rotation of the basis |Fy) = ?(C;TCEL - C;LCE T)|O>
functions and the hopping matrix. Let us note that for pairs N2 T .
with a different orientation, inter-orbital hopping terms will
be generated. 1y bt
a andb need not mean strictly Ni-states, but rather more [Fs) = TE(Ca,TCa,L = Cp,1Cp,)|0) (5)
extended one-electron states of the same symmetry. Since \
one of the main pathways of electron propagation would bend theA;-basis function is
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1 of the orbital-order parameters is obtained by representing
— t ot +ot . )
[Fe) = TE(Ca,TCa,l +Cp,Cp,)[0). (6)  the point groupDasy on the basis of the order parameters. In
v fact, sinceT*, T, andT# are composed aslcﬁ, the represen-
Their transformation scheme undéy tation we seek is the product of the representatigrand(2)
= with its adjoint, and the decompositioB® E=A;+A,+E
w1 V3 can be used again. It turns out thétand T2 form the basis
IF)=-ZIF9+—|Fs)

of the irrepE (a quadrupolar doublgtwhile TY transforms
according toA,. We quote the transformation of the quadru-
\5 1 pole operators under th& rotation
[Fs)=——Fa) - |Fs) [
2 2 1 V3
T/x: _ _Tx+ _Tz
follows from (2). The most general on-site two-body Hami- 2 2
tonian describing th& ® E set of levels is

_
N B, 1
Tz ST IT7, )

U 3
HCoulzgnz_JH( aSb+ 4nanb> +J ( aTCal+CbTCbl) 2 2
( ) @) From (1) it is clear that
X(Cq(Cat*+CpC
e CT*=-T, CT=-T, and GT?=T%. (10
where theU is the familiar on-site repulsion of the Hubbard

model, Jy, is the Hund’s coupling and, is the pair hopping Finally, let us mention thaff, and T, are time-reversal

amplitude. The spectrum 6{,,, consists of a triplet level at invariant. The fact that under the time-reversal transforma-
~ . 7, T1,=T, and 7T,=T, shows that these are
U-Ju ([Fy, [F2), and|F3)), a twofold degenerate smglet at quadrupolar-order parameters. On the other hand, for the
U (|F4> and |Fs)), and a nondegenerate singlet@#2J,  pure imaginary operatop, 7T,=-T,. In the usual treatment
(IFe)). of a cubice, doublet, T would be an octupolar-order param-
Since each of the single-site terms is invariant under roeter. However, under trigonal symmet#y, is also assigned
tations in the orbital spacé{ ¢, written in (7) is quite gen-  to the dipolar-order parametéy;, , (orbital angular momen-
eral, and its two independent parametépsu and J /U tum along the 111 directionThus ourTY must be a mixed
could be chosen arbitrarily. We may think of these as effecdipolar-octupolar-order parameter, but we will not analyze its
tive interaction parameters, which encompass all allowednature in detail.
processes affecting tHe level under consideration. Accord-  The form of the effective pair interaction is restricted by
ing to the usual evaluation of the simple Coulomb interactiorthe geometrical symmetries of the pair, and the nature of the
we getJ,=Ju/2. This physically motivated assumption was order parametergg). We consider a pair of sites 1 and 2
used by Castellanl Natoli, and Ranninger in their pioneeringgonnected by th€, axis, which figured in our previous con-
work 17 on V,0;. See Ref. 9 for further discussions of this siderations. The other symmetry element is the perpendicular
point. mirror planeo, bisecting(1, 2).
The orbital component of the lowest order effective
Hamiltonian consists of term&{T (a,8=X,y,2), and also
of single-site terms likd$+T5 (reflecting that the choice of
The 4D Hilbert space oE! states supports 15 local-order the basis is tied to this particul@h axis). The pair energy
parameters® Their standard choice &, &, & for the spins, expression must be invariant undgy 7, and alsay,. o, acts
T, TY, T* for the orbitals, and further nine operatd®sr*, like
STY,... of mixed spin-orbital charactéf. Here we intro-

C. The effective Hamiltonian from symmetry considerations

duced theT=1/2 pseudospin operators opT1==Ty onl{=-T} and opT{=T; (11)
1 Time-reversal invariance excludes terms liKgT3, and
T= EE (CiT,a,(rCi,b,an CiT,b,g-Ci,a,a-)a alsoTy+T¥, and either(10) or (11) excludeT;+T5. In addi-

o tion, (10) excludes alsd@’T;. Thus we are left with

B EE e —c o) Hip, =AM+ AT +ATIT +A)(TI+T), (12
= A i,a,0vi,b,o i,b,ovi,a,0/ ~ o~
2 whereA,, A, A,, andA; are some real coefficients. Let us
emphasize that, in general, the coupling tel{it¥ may ap-
) pear in the Hamiltonian. Once we introduce spins in the
problem, the same arguments hold as above, with or without

spin exchange, so the Hamiltonian becomes
For the present, we exploit the separation of spin and

orbital Hilbert spaces and do not discuss the mixed-ordefH,=AT;T5+ A TITY+AT2TE + ATZ + T%) +[B' + BTTS
parameters, though they are certain to be as relevadinas e Y
T in high-symmetry situations. The symmetry classification +B,T{TS+B,T{T; + +B}(T; + TH]S;S,. (13)

1
— T T
- EE (Ci,a,UCi,a,U - Ci,b,aci,b,o) .
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FIG. 3. The six neighbors of site 1.
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about the pseudospagexis. Pseudospin-space symmetry is
easier to identify if in the first line of Eq13) we make the
following rearrangement:

ATT +ATTY + AT,
=ATT;+ (A - ATITY + (A, - ATT?
= AT{T; + AT/TY + ATITS (16)

TiT; andTin]y are invariant, so from the intersite interaction
terms, only the coefficient of th&T; term depends on the
orientation of the pair. The effective pair Hamiltonian is
then:

Now we consider bonds with different orientation. Lattice Mij = [ATiTj + AT + A(niT)(n{T)) + A (N T + nfiT))]

site 1 has six nearest neighbors 2, 3, 4, 5, 6, and 7, which
form a regular hexagofFig. 3). The interaction energy must

be the same for the pai(4,2), (1,3), etc., but just for this

reason, the form of the pair Hamiltonians cannot be. They

have to be derived frortt(;;-;, by suitable transformations.
Consider first thg1,5) pair, which is the mirror image

(either through aoy, plane containing 1, or by inversion

through site 1 of the (1,2) pair. We can us€ll) to deduce
T;— T, Ty— -T2, andT;— T, thus’Hj_;5 is of the same

form as’Hjj-1o. The(1,4) pair interaction can be deduced by

the C5 rotation[Eq. (9)] from Eq.(13). In fact,

\3 V3
1= 5N+, o -oh+ 2T
B, 1 B 1
T - \?Ti— ST T \?Tﬁ— ST (19
which is more conveniently written as
Ti—=Ny Ty To—ny Ty (15)
with
1 i3
Ly 8
2 2
Nip= 0 1 0
3 1
Syt
2 2
and the column vectof =(T*,TY,T%). Similarly,
-1 0 O
I’l15: O - 1 0 .
0 0 1

For pairs of different orientatiofie.g., (1,3)], analogous
expressions can be given. For the paithe effective Hamil-
tonian H;; could be deduced frong13) by replacing T*
— (N T)*=nT everywhere, where the; with =x,y,z de-
notes the first, second, or third row of matmy, respec-
tively. However, it is worth noting the following simplifica-
tion. Under these transformationBT— T/T! and TiT,

+TiT,— T{T{+T/T,. In other words, the orbital base- perturbation

+[B' +BT;T; + B, /T + B,(n{ T)(nZT))

+B,(nfT;+njT)ISS;.

i 17

For completeness, we list henz,?j in all the six possible
directions:

ni,=nis=(0,0,1) (18)
3 1
niz=nis <?0—§) (19
\E 1
n§4: n§7: (—?,0, E) (20)
The lattice Hamiltonian
H=2 H; (21)

(BN
is the sum of(17) over all nearest-neighbor pairs. In the
summation theA, coefficient drops out a®,T;+n7,T,
+n3sT1=0. The Hamiltonian above contains pure orbital
couplings, pure Heisenberg spin exchange, and also terms of
coupled spin-orbital character. The only symmetries of the
lattice Hamiltonian are global S@) for the spins and the
space group symmetry.

We note here that our theory can be applied to any trian-
gular d* system whose local Hilbert space is the trigonal
doubletE. The structure of BaVscan be envisaged as the
sequence of triangular planes of\#3d* ions. It has been
argued that even the minimal model of Bayshould include
the orbital degrees of freedoth.If one assumes that the
lowest-lying crystal field level is th& doublet derived from
the trigonal splitting oft,g, our present considerations be-
come relevant for BaVgas well.

D. Effective Hamiltonian from microscopic model

Symmetry considerations do not allow us to obtain rela-
tionships between thé and B coefficients; they may be
derived from the mode(3) and(7) by second-order large-
theory, as wusual for Kugel-Khomskii

changing transformations have the character of a rotatiomamiltonians'® As a result, we get
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H;; [Ztt’TiTJ— — AT + (t=t)AnETH(ET))

U+2J,

1
+ E(t2 ~tH(NfT+n5T,

1 .
i J)+Z(t2+t’2>]7>ﬁ*°

1
- t2_t/2
S(E-t?)

2 1
[4tt’Tin}’+ “(tP+tY)+
U 2

_ 2
X(NET; + nﬁTJ)]Pﬁo— N—[— 2 T|T;
U _‘]H

_(t_t/)Z(niZjTi)(nﬁTj)+%(t2+t'2):|7)ﬁ:1. (22

We found it convenient to express the Hamiltonian using the

P andP; " projection operators onto the singlet and trip-
let spin combination on the bond

o1 _ 3
Pﬁ’ozz—ssj and Pﬁ'l:SiSj+Z. (23)

PHYSICAL REVIEW B 70, 014428(2004)

first orientation, we describe the results for small systems,
then go over to larger ones. Whenever possible, we use
preconception-free numerical methods and then try to rein-
terpret the results with approximate theories that can, in prin-
ciple, be generalized to infinite-system size. It is a general
trend that with increasing system size, complicated states are
found whose existence could not have been guessed by
simple-minded extrapolation from small systems. Therefore
we will have to be cautious in drawing conclusions about the
thermodynamic limit.

Before we turn to the physically motivatdg=J,/2 case,
we examine the case when the pair hopping amplitude is
absent.

A. Two-site problem

For simple spin models, the correlations found for a pair
of sites allow us to infer the character of the ordered phase in
the thermodynamic limit® Our first aim is to map the pair
solutions and try to deduce how spin and orbital order may
complement each other.

First, some general remarks about the parameter range. The most notable consequence of settipgO is that the
Equation (7) shows a two-parameter manifold of on-site 4tt’Tinjy term cancels from the first and second row of the

Coulomb Hamiltonians. However, we do not chankély
continuously, but investigate two special cases ody:ne-
glecting pair hoppingl,=0 (a frequent, though not clearly
motivated, simplification and(b) the physically motivated
choiceJ,=Jy/2. Most of our results will be about the latter
case, using the notatialx2J,=Jy.

Redefining the basis statég < ¢, interchanges the defi-
nitions oft andt’, thus it is sufficient to consider tHg > |t'|
case. It is, however, worth noting that the orbital par{2i)
becomes S2) invariant fort=t’ andJ,=0:

0 4 4) G-y, 4
x(SiSj + §> (24)
4

The lattice Hamiltonian has now global &) symmetry for
the spins and global S@) symmetry for the pseudospins
[global SU2)® SU(2), with the six conserved quantities
3 S, 3 Tf, for ., B=X,Y,7].

A still higher symmetry is obtained fad,=J,=0 when
the pair Hamiltonian simplifies to the $4) symmetricad®

1).

4

8t2

Hij=—

1

effective Hamiltonian(22). Naturally, there is still ayTY
interaction included in the isotropic terinT;. On this basis,
one may not expect a preference fFpolarized(compley
orbital ground states. However, one should not overlook the
possibility that the system may choo$&polarization as a
compromise when interaction terms preferring real orbital
order mutually frustrate each othr.

Let us note that the Hamiltonian of theg=12 bond

2
Hip=— a[ztt'(TiTg +TITY) + (P +UA)TiTE+ (P - t'?)

[—(t2+t’2)
U_JH

3 _
X(T2+ T + Z(tz + t’z)}Pfgo -
1 _
XTETS = 2t (TXTS + TYTY) + Z(tz + t’z)}Pfgl (26)

has two additional symmetries characteristic of the two-site
problem. One of them is axial symmetry abditin pseu-
dospin spacé® which allows us to classify the eigenstates as
T;+T5 eigenstates. The other is the—-t’ symmetry: a
ar-rotation aboufT? in pseudospin space for site 2 is a ca-
nonical transformation that leaves the energy unchanged, but
it amounts tot’ ——t’. This symmetry can be restated for
larger clusters with bipartite structure, but it cannot be ex-

The corresponding lattice Hamiltonian possesses globgh,qed toN> 2 clusters of the triangular lattice.

SU(4) symmetry(there are 15 conserved quantitie: S,
3; T, ands; S'TF for a, B=X,y,2).

IIl. GROUND STATES OF THE PAIR AND TETRAHEDRON
PROBLEMS

In what follows, we seek to find the possible different
types of ground state aR1) on the triangular lattice. For a

For t=t’ SU(2)® SU(2) symmetry follows as in(24).
Taken in conjunction with the previous remarks, tve-t’
model must have the same symmetry. Similarly, the degen-
eracies must be the same for the(8)pointt=t’, J4,=0, and
its mirror imaget=-t’, J4=0.

The Hilbert space of two electrons on two sites is 16
dimensional, and the energies and orbital eigenstates for the
ij=12 bond are:
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2 I T T T where the(S=0, T=1), and(S=1, T=0) levels become de-
15k S=0 e generatgforming the basis of the 6D antisymmetrical irrep
' bb -7 S=1 of SU(4)].
1 11 ab-ba Analogous results hold for the other &)@ SU(2) line
o5k SU@ =~ t=-t’, only for J;>0, the|ab)—|ba) orbital state(T=0, T?
: =~ =0) is changed tgab)+|ba) (T=1, T?=0). Note that the
< ofF S=0 energy difference between these two states comes from the
= aa - term of (26) proportional tot’(T;T,+T;T4), so changing the
-05 su@ _--"" - sign oft’ changes the parity of the ground state. The sixfold
T — S=1 degeneracy of the ground state at the “anti§U point t
T~ ab+ba =-t’, J4=0 follows from thet’ - -t’ symmetry of the pair
-5 sb=bO RN problem. A very similar phase diagram would be obtained
5 | . . N for J,# 0. We do not show it here, but we include the con-
-04 -02 0 0.2 0.4 0.6 tribution of pair hopping in all our subsequent calculations.
Jy/U If any far-reaching conclusions from Fig. 4 could be

drawn, it would be that the ground state has either ferro-
FIG. 4. Zero temperature phase diagram of the model on twdrbital order and spin antiferromagnetigor a singlet spin
sites as a function df /t andJ,,/U. We have indicated the spin and 1quid); or it is a spin ferromagnet with staggered orbital
orbital parts. Along the thick line at/t=1 andJ,, <0 the ground  Order(or orbital liquid). Less obviously, at the S4) points,
state is triply degenerate: the orbital part become§2Ssymmet- @ spin-orbital quantum liquid may be inferr&d.
ric, and the orbital tripletaa), |aby+|ba) and |bb) with the spin To either confirm or disprove these guesses, two routes
singlet forms the ground-state wave function. Along th&=-1  can be followed:(a) determine the exact phase diagram of
and J, <0 line, the orbital triplet consists d@a), |ab)—|ba), and  larger clusters and see if there is a clear trend emergng;
|bb). At the SU4) points the ground state is 6-fold degenerate.  construct variational wave functions that possess the envis-
aged correlations. Figure 4 suggests that antiferromagnetic
42 effective spin models can be derived easily because uniform
Eso=-—=, Es:1=0, |aa) orbital order factorizes site by site. However, for high-spin
states, the orbital states are more complicated(4plike
states, for which spins and orbitals are entangled, pose fur-
442 ther challenge.
Eso=-—=", Es1=0, |bb) _
U B. Four-site problem
In what follows, we setl=2J,=Jy. The four-site cluster
N2 "o with periodic boundary conditions is equivalent to a tetrahe-
(t+t") (t—-t") Co X .
Eso=————, Egi=-— . |ab) + |ba) dron, where the three directions on the triangular lattice cor-
U U-Jy respond to the three pairs of opposite bonds on the tetrahe-
dron. This cluster proves to be sufficiently large to provide us
with some insight into the problem.

a (t—1")? B (t+1t)? As a first step, we do exac¢humerical diagonalization
Eso=- o Be1=- = L [ab) - [ba). for the Hamiltonian
H
(27) Hiewr= Mo+ Hiz+ Hig+ Hoz+ Hos+ Haa  (28)

The results are shown in Fig. 4. Inside any of the groundin the 4=256-dimensional Hilbert space. The total siBn
state phases, either the spins are parallel and the orbitafd itsz-componentS’ are good quantum numbers, but this
antiparallel, or vice versa. At the boundaries, the groundis only of limited use in identifying eigenstates. The Hamil-
state level has higher degeneracy, which can be interpreted &nian couples spin correlations with orbital correlations,
the manifestation of one of the higher symmetries discussetherefore, most of the eigenstates have mixed spin-orbital
above. character. More precisely, tt&=2 eigenstates can be sought

For the spin singletst#t’ acts like an external orbital in the factorized form
field, and therefore, orbital polarization is either in ther
the b direction. At the linet=t’ (sectionJy < 0) not only aa TTTDeeMT2Ta ),
andbb (states from the neighboring domajrisecomes de-  but this is no longer true of lower-spin states. In particular,
generate but alsgab)+|ba), thus the ground state is the we know that there are only two independent spin singlet
threefold degenerate spin-singlet—orbital-trigl8+0, T=1),  states[12][34] and[23][41], but combined with the orbitals,
allowed by the symmetry S&) ® SU(2). Continuing thet  we have 32 independeBt=0 spin-orbital states. Most of the
=t’ line?® to J;>0, the ground state is again threefold de-S=0 eigenstates of Eq28) are not represented as a linear
generate, but its nature changed to spin-triplet—orbital-singlesombination of the above singlets multiplied by a pure or-
(|lab)=|ba)). The border point=t’, J;=0 is the SW4) point  bital state. In fact, an overall singlet which plays a prominent
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t/t

FIG. 5. Energy spectrum of the spin singlet sector in the tetra- FIG. 6. PNhase diagram of the spin-orbital mod§I Mm‘].H )
hedron as a function af/t for the J;=J,=0 case. Fot'/t between =2J, andU:_U—J ona tetrahedro_n, bgsed on exact diagonalization
0.2 and 1 the ground state is well separated from the rest of th€S€€ also Fig. b Phase boundaries in bold lines belong to level
states, and it is the adiabatic continuation of thg8\singlet state ~ €rossings in the ground state energy. A further singlet-to-singlet
at thet’/t=1 point (full line). The SU4) singlet nature of the transition is identified in the vicinity of an antilevel crossing
ground state is lost at arount't=0.2(denoted by an arropvand in ~ (dashed ling The degeneracyapart from the trivial spin degen-
the region -0.%t'/t<0.2 three levelsfa non-degenerate level €racy of each state is also indicated.

(solid line) and a two-fold degenerate lev@dashed ling go to-

gether. Finally, att’/t=-0.7 the symmetry of the ground state significance. However, less obvious features are the variety

changes, indicating the appearance of the third ptidsshed- of singlet phases, the shrinking of the domain of spin-

dotted ling. polarized solutions, and the predominance of the singlet
phase into which the SU) point is embedded.

role in our considerations is the $4) plaquette singlet
IV. VARIATIONAL APPROACH FOR THE FOUR-SITE

Vs = [12H231[34]{41} - [23{34[41{12  (29) CLUSTER

where{23} represents the pseudospin singlet connecting sites A. The method

2 and 3, etc. It is clear thak sy, is a spin singlet, justas it The previous section showed us that we could expect a

is a pseudospin singlet, and it does not factorize in spin andch phase diagram for our model even on a small-size clus-

orbital variables.Wgy, is the ground state oM, in the  ter. We will continue our investigation by studying larger

SU(4)-symmetrical pointt=t’, J=0) of the parameter space clusters by a kind of variational method: since there is a

of (28). It is the only SU4) singlet[the only basis function Strong asymmetry between the spin and the orbital parts in

for the 1-dim irrep of SW4)] in the present Hilbert space. the Hamiltonian, we try to decouple spin and orbital degrees
We diagonalized28), and followed the low-lying states ©f _freedorﬁf? by factorizing the wave function into p¥S)

(a representative example is shown in Fig. While the  SPin and¥") orbital part:

detailed nature of the ground state always has some continu- Wep = WS o |¥T). (30)

ous dependence on the Hamiltonian parametétandJ/U,

there are also sharp changes at level crossings. A level croséthile this factorization applies to the pair problem, it cannot

ing is possible between states with different symmetry labelsdescribe the entanglement of spin and orbital fluctuations for

The symmetry ofH,y is SU2) ® Ty, whereT, is the tetra- N=4 sites. In particular, it does not allow us to capture the

hedral groupT4 has 1D and 3D irreps; furthermore, granting SU(4) character displayed b§29). However, it should work

time-reversal invariance, two complex conjugate 1D irrepgvell for states with weakly fluctuating orbital order.

belong to degenerate energy levels. We distinguish between We proceed as follows: in the effective Hamiltonian we

ground states according to their spin degenefa8¢ 1), and ~ can separate a spin-orbital mixing term from purely orbital

orbital degeneracy, which can be 1, 2, or 3. terms:
The resulting phase diagram is shown in Fig. 6. Phase

boundaries were drawn where we found a clear change in the

character of the ground state; this holds also for the boundary

between the two nondegenera®=0, 1x) phases. Let us Next, we need to minimize the Hamiltonian by using the

immediately point out that the tetrahedral phase diagram i§actorized wave function{W s7|H|Wgy). It implies that|¥g)

very different, and therefore would have been difficult tois an eigenstate of the Hamiltonian

guess, from the pair phase diagram shown in Fig. 4. Taken in

itself, the lack of mirror symmetry about thé=0 axis was E 25 'SJ)<\I’T|h£|\PT> (32)

to be expected, since the tetrahedral cluster is not bipartite. In Y

particular, thet’=-t, J;=0 point does not have any special while |¥+) is an eigenstate of the Hamiltonian

H=2> {2(S - Sphj +k{}. (32)
i
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FIG. 7. The phase diagram of the effective model on a tetrahe- JIU

dron based on the spin-orbital decoupling schéa.

FIG. 8. Mean-field phase diagram on a 16-site cluster as a func-
E (2<‘PS|SiSj|\If5)hE + kg . (33 tion of hopping integral versus Hund’s coupling. The grey phase is
i the ferromagnetic phase, with the classical phase boundaries shown

This coupled set of equations is solved by iteration, keeplnéSee Sec. VB

at each step the solutions with lowest eigenvalue. We have B ) )
applied this technique to obtain the phase diagram of th&lowever, theN=4 cluster is too small to draw inferences

regular four-siteg(tetrahedropand 16-site cluster. about the character of any emerging long-range ofeterept
for spin ferromagnetisin Therefore, we investigated &x
B. Phase diagram on a tetrahedron =16 cluster that is large enough to differentiate between

As we can see in Fig. 7, the “mean-field” phase diagranfluasi-1D (chaing and genuinely 2D orbital ordering pat-
shows a remarkable resemblance to the exact(Bige 6).  t€"ns. We use the same variational method as\fos. .
We should, however, note that the ferromagnetic region ex- AS shown in Fig. 8, the model leads to a rich phase dia-
tended too much at the expense of the(®phase, basically 9ram. For reasonably large values BU we find the fully
because the Ansatz(30) cannot describe SW) polarized ferromagnetitS=8) region with three phases that
correlations'! while the spin-aligned states are treated cor-differ by their orbital structure. In the spin singlet region we
rectly. The S=1 region has shrunk, too. Our variational c&n again distinguish at least six phases, which are labeled
recipe forS=1 states is to compose, them of two bonds: aPY capital letters. A detailed discussion of these phases fol-

spin triplet and orbitalab)+|ba) bond, and a spin singlet and 1OWS-
orbital |aa) type bond. These can be permuted and rotated to
give six solutions that are degenerate at the mean-field level. A. Singlet phases

Allowing for the resonance between these six states, we can B ) ) .
reproduce the 3-fold degenerae 1 state seen in the exact-  1he S=0 part of the diagram is composed of six phases.

digonalization study by taking the appropriate linear combi-WWe have mvesugated in more detail each phas_e starting from
nations of them. t"/t~-1 and going through the four boundaries untilt

In the singlet sector we can distinguish between several” 1 for several ratios]/U. The aim of this section is to
phases: the lowest one is composed of spin triplet and orbit&inderstand the different types of orbital and spin orders. The
|ab) + |ba)-like bonds, which are composed into a singlet, anghature of the_ spin phases turned out to be easily determined
is threefold degenerate at the mean-field level due to possibfs0m the variational method itself: In all cases except phase
rotations(here again, the off diagonal matrix elements be-A SOme clear pattern with large and positive or negative
tween the states will favor the twofold degenerate linea@lueés of(S;-Sy could be identified, leading to magnetic or
combination, in agreement with Fig).6ln the remaining Singlet dimer order. The orbital part was more tricky to iden-
part, the spin wave functions is the sarginglet valence tify since the most relevant operator is gt T; buthj, and
bonds, only the orbital character changes frdag) type  adgiven mean-value of this parameter does not obviously lead
bonds to a more complicated one close to the¢’, J=0 toan orbital state since this operator is quite involved. So to
SU(4)-symmetric point (where the approach we use is 9€ta simple physical picture of the orbital structure we have

clearly not applicable The number of solutions of the itera- triéd in each case to rTeproduce_: the pattern given by the
tion becomes very large in the vicinity of the 81 point, ~ mean-field solution fogh;) assuming at each site an orbital

with essentially the same energy. wave function of the form
V. VARIATIONAL APPROACH FOR THE 16-SITE [W) = (cos éa) + sin 6,|b;)) (39
CLUSTER

and we have checked that this orbital structure also repro-
The tetrahedron solutions show that there must be quite duces satisfactorily the mean valueTqf T; measured in the
few phases with markedly different spin-orbital correlations.mean-field ground state. This turned out to give a clear pic-
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state involving resonances between(8)singlet plaguettes.

A discussion of the physical properties at the (8Upoint

can be found in Ref. 15. Although the mean-field solution is
not directly relevant for that phase, the mean-field approach
is still useful to determine the boundary of the @Wregion
since it allows us to detect the domain of stability of the
neighboring phases, for which the mean-field solution is in-
deed relevant, as will be discussed later. As anticipated, the
SU(4) physics extends to a finite and relatively large portion
of the phase diagram, and it can in principle be relevant for
real systems. Since our mean-field approach does not lead to
any physical insight beyond the determination of the bound-
ary of this phase, however, we will not discuss it further
here.

2. Phase B

From the magnetic point of view, this phase consists es-
sentially of weakly coupled, antiferromagnetic chaiisee
Fig. 9), while the orbital structure turns out to be rather
subtle with an antiferro-orbital arrangement of ferro-orbital
chains with orbitals that are neither puj@=|ds_2) nor
Ib)=|dy2_y2) but alternate between 12(ja)+[b)) and
1/\2(-|a)+|b)). The detailed magnetic structure depemds
priori on the residual couplings between the chains. If the
couplings are equal in both residual directions, some canting
will presumably develop inside the chains to accomodate the
frustration, like in the limiting case of the 120° classical
ground state of the Heisenberg model on the triangular lat-
tice. This effective magnetic Hamiltonian would be similar to
that realized in C£uCl,, with possibly spinon excitations as
reported by Coldeat al 2 If, however, the symmetry is bro-
ken between the residual directions, the system is expected
to develop rather collinear order, with lines of parallel spins
along the direction of the most ferromagnetic or least anti-
ferromagnetic residual coupling. For all parameters, the re-
sidual couplings predicted by the mean-field solution are
very small, but their sign and symmetry depends on the pa-
rameters. They tend to be AF for smaland ferromagnetic
for large J, and the symmetry between the two directions
E may or may not be broken depending on the parameters.

While this interesting point would deserve further investiga-

tion, we do not think that a reliable answer to such a subtle
issue can be obtained just on the basis of this mean-field
decoupling, and we do not discuss the point further.

FIG. 9. Spin and orbital structure in the singlet phases of the
mean-field phase diagram. Solid line indicates AF, dashed line FM 3. Phases C and C’
spin correlations.

Both phases are characterized by strong dimer singlets

. ) ) ) 4orming different regular dimer coverings of the triangular
ture in all phases except A and E. The information obtaineqyyice “on each dimer the orbitals are parallel, and they cor-
in this way is summarized in Fig. 9. In the following, we

> . respond tads,e_;2, dge 2, OF dsy2 2 depending on the orien-

describe in more detall all these phases. tation of the bond. Note that all these orbitals are Jahn-Teller
active, leading in all cases to two long bonds and four short
bonds. One might be tempted to conclude that these phases

This phase contains the $4) point (t'=t, J=0) for  correspond to two types of valence bond solids with the pat-
which the mean-field decoupling used here is known to beerns depicted in Fig. 9. The mean-field approach has a very
inadequate given the very symmetric roles played by the spiremarkable property, however. In addition to the mean-field
and orbital degrees of freedoffin fact, it is believed that at  solutions with lowest energy shown in Fig. 9, there are sev-
the SU4) point the system is in a spin-and-orbital liquid eral other mean-field solutions of the self-consistent equa-

1. Phase A
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tions with energies very close to the lowest energy corre-
sponding to other dimer coverings of the triangular lattice. In
such circumstances, going beyond mean-field is likely to
couple these solutions, and the relevant model would then be
a quantum dimer model describing resonances between these
states. As we shall see later, this point of view is favored by
exact diagonalizations of finite clusters. So at that stage we
think it is safer to think of these phases as a region of pa-
rameters where all dimer coverings are relevant states for
low-energy physics.

| F1

\',\

4. Phase D

This phase consists essentially of weakly coupled antifer-
romagnetic chains, but in contrast to Phase B, the orbital
structure is now ferro-orbital with only orbitak,2_2, ds,2_,2,
or di2 2 depending on the overall direction of the AF
chains. Since these orbitals are Jahn-Teller active, one ex-
pects in this case that the system would undergo a coopera-
tive Jahn-Teller distortion with two long bonds per octahedra
all pointing in the same direction. Like in Phase B, the actual
magnetic structure will be controlled by the residual cou-
plings, and all the discussion of Phase B applies here, includ-
ing the sign of the residual couplings and the symmetry of

Rk
0%
AR TA"

#N

the couplings in the directions of weak coupling. In that case \.’ “, ‘., F3
too, a reliable determination of the possible magnetic phases I'\WI.\WI'\W )
requires further investigation that goes beyond the present ““A.“
. . 2R\ "7\ V7B,
mean-field calculation. / ’.\ ,.\ l'\

5. Phase E FIG. 10. Schematic representation of the orbital orderings in the

This phase is dominated by strong antiferromagnetic corSPin ferromagnetic case.
relations in two directions and weak ferromagnetic correla-
tions in the third direction, leading to an effective Néel struc-
ture. The orbital structure cannot be reproduced satisfactorily
with the variational ansatz of one orbital wave function per

() =1 (cos 6]a) + €“isin 6,|b)) (36)
j
site-factorized wave function. The phase boundaries shown

site. The pattern o(hﬁ) would be consistent with a ferro- >*>" X . ; i .
orbital ordering with orbitals 1\/§(|a>+|b>) at all sites. but M Fig. 8 are obtained by equating classical energies obtained
' from the wave function of Eq(36).

theT;-T; correlations are not ferromagnetic. So to decide on
a possible orbital order would require to go beyond the
present mean-field approach.

1. Phase F1

Fort’ =t the Hamiltonian of the orbitals becomes the stan-
dard SU2) symmetric Heisenberg Hamiltonian with antifer-
romagnetic exchange. In this case a three-sublattice long-
range orderLRO) for the T pseudospins develops. Away
from the SU2) symmetric point, the three-sublattice LRO is
stable up ta’=t/3, with the 120° configuration restricted in
the (T*, T plane[in Eq.(36) we choosé for ;'s in the first,

B. Ferromagnetic phase

In the ferromagnetic region the:™ spin singlet projec-

tion is 0, so that the effective HamiitoniQEZ) is reduced to
the following form(neglecting the constant tejm

2
Heif = =

2 [E=t)2(FTH(ET)) + 2" TiT)]
U-Jyii
(35)

and the orbital structure only depends on the ratid. As

0+2m/3 for ¢'s in the second, and—27/3 for 6’s in the
third sublattice, withe¢; =0 everywhergwith energy

Earo __ 3(t+t)?
N BD_JH

(37)

We have shown a possible 120° orbital pattern withO in

shown in the phase diagram 8 we can distinguish thre¢he top of Fig. 10. While the classical approach does not

phases going from’/t=-1 to t'/t=1. All the identified

allow us to fix the value o, this degeneracy is probably

phases identified are orbitally ordered phases. They can Hited by quantum fluctuations.

understood starting from the classical limit, which in our

case is equivalent to minimizing the energy of the

For finite systems, the signature of the developing LRO
can be found in the energy spectrum in the form of the
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2 ’ 12
8 Ec __13t ~2tt +3t _ 39)
9 N4 Uy
10 The classical phase boundaries for this statetdite=—1/3
andt’/t=1/3.
=11 In a finite system with periodic boundary conditions re-
w —12 specting the point groufs, of the triangular lattice, the
linear combination of the six states will produce a threefold
—13 degenerate state at tiié point in the Brillouin zone(state
—14 M1 in Fig. 11), and three states at tHé point, one nonde-
generate and one twofold degenerdté andI'3 in Fig. 11,
-15 respectively. These states can clearly be recognized in the
—16 exact diagonalization spectrum of the 12-site cluster as the

lowest-lying state for —01&<t’ < 0.3, well separated from

the states with higher energy. The observation of the phase in

the correlation function is nontrivial, as the ground state
FIG. 11. Energy level scheme of a 12 site diamond-like cluster2roundt’=0 is twofold degenerate, and the applied exact

with periodic boundary conditions and compatible with the diagonalization on a finite size cluster will result in a state

3-sublattice LRO. Shown are the levels which can be associate®ith an arbitrary linear combination of them, which leads to

with the ferro-orbitalTY order (denoted byl'l andT'2), collinear @ pattern difficult to interpret. It is, however, clear that there

phase(I'l, M1, andI'3) and the lowest states constituting the is no ferro-orbital order.

Anderson tower of the 120antiferro-orbital phas&l'l, K1, and

I'4). The first letter refers to the momentum of the state. We have 3. Phase F3

encircled the level crossings that we used to determine the phase In this phase th@” ferro-orbital order is established: for

boundary(t'/t=-0.20 andt'/t=0.35. negativet’ the T;T; term in Eq.(35) becomes ferromagnetic,
_ _and the frustration in th& and T* due to the(niZjTi)(niZjTj)

Anderson’s tower, as has been confirmed by Bernu, Lhuillerierm will single out theT¥ order. The particularity of th@Y
and Pierre for the isotropic triangular latti#eThese low-  ordering is that it breaks the time-reversal symmetry: either
lying stateqI'1, K1, andI'4) can also be seen in Fig. 11, and the|a)+i|b) or the|a)—i|b) combination orders. The ordering
they can be continuously followed up to the isotropic pointof complex orbitals has been searched for in the context of
t’=t, where they become the lowest lying pseudospin triplefnanganites, where it has been thought that they are favored
excitations. Further evidence comes from the nearest- arlgly the isotropic-kinetic exchange. Indeed, the charge density
next-nearest-neighbdi;T;) correlations. There is a strong of the|a)+i|b) shows the trigonal symmetry, and the combi-
ferro-orbital correlation between a site and its secondhation is Jahn-Teller inactive. The phase can be easily iden-
nearest-neighbors, e.gT;T;)~0.19 fort'/t=0.8. tified in the finite-size diagolization from the correlation
function: spatially isotropicTyTY>0 correlations are domi-
nant. The mean-field variational energy of the ferro-orbital

To understand this phase, we start from the0 case, Ccomplex state is
where the Hamiltoniari35) is proportional to Zbonds(niiji)

-03 -02 -01 O 01 02 03 04 05
th

2. Phase F2

Ero 3t/

X(n{;Tj), which can conveniently be transformed to N CF (39
U - ‘JH
nZ(T+T)1P = (NET)% = (n%T))2
b%ds([ (Tt TP = ()= (7)) and the phase is stable forft<-1/3.
The determination of the phase boundaries is, however,
= 2 [nf(Ti+ TP =32 [(TH2+(TH?] not straightforward. As can be seen from the energy levels,
bonds i the 'l state is present in the “ground-state manifold” of all
= Z(T. + TP VW2 _ the ordered phases. Therefore we identified the phase bound-
Eds[””“' T 3Ei (T7)7=SNT(T +2). aries by level crossings of the ground-state manifolds asso-

) o ciated with each type of ordering, which agree reasonably
At the classical level, the two squares can be minimized byye|| with the classical phase boundarié$/t=+1/3). At
choosing theT vector in the(T*, T%) plane so that on a given these phase boundaries continuous degeneracies appear in

bond eitherT;=-T;, or T;+T; is perpendicular toi. These  the classical wave function, suggesting a gapless excitation
conditions are satisfied with the collinear orbital order shownspectrum at those points.

in Fig. 10, we chooséa)+|b) along every second chain with
the bond variablenf=(0,0,3), and |a)-|b) along the re-
maining chaingthe orbital configuration is the same as in
phase B in Fig. 9 There are six such configurations, which ~ Due to the small number of conveniently exploitable sym-
can be obtained by translations and rotations, with variametries in the problenjwe have only the spin S@) sym-
tional energy metry], the size of the Hilbert space grows very rapidly with

VI. EXACT DIAGONALIZATIONS
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and the associated Brillouin zone.

FIG. 14. Low-lying singlets fot’/t=0 andJ/U=0.008.
the size. In thes*=0 sector it increases Iikﬁﬁz)ZN whereN ) ) ) ) )
is the number of sites. This limits us to small cluster sizesPhase B since these chains can form in three directions, re-
especially if we want to explore the phase diagram. The obSulting in @ threefold degenerate mean-field solution. To con-
vious choice was the 12-site cluster with periodic boundarJ'rm th'.s interpretation, we have diagonalized the full Haml_l-
conditions(Fig. 12), which has the fullDs; symmetry of the tonian in the variational sqb-space spanned by the mean-field
lattice as well. The considered cluster has the advantage round state wave functions of Phase B. It turns out that

allow the formation of S() plaquettes and is also compat- ese states are not coupled because, due to the orbital con-
) . plaq P figuration, they have different symmetries with respect to the
ible with three- and four-sublattice order.

‘ g , _inversion around the middle points of nearest-neighbor
The phase diagram obtained from the level crossings ifyonds, So the ground-state degeneracy in this variational

th.e ground statg is shown in Fig. 13. It |s'globally con3|ste.ngubspace is still equal to 3, supporting the interpretation in
with the mean-field one. The fully polarized ferromagneticterms of chains.
region (S=6) is found for very similar values of/U. For When the ground state is at thepoint, the interpretation
small J/U, we identify five different regimes frorti/t=-1  is not so straightforward. The ground state is strictly speak-
to t'/t=+1. They seem to correspond to four phases onlying twofold degenerate. But looking at the spectra the first
since two regions join for intermediate values BiU, but  excited state is at thE point and very close to the ground
given the difficulty to determine phase boundaries from ex-state. A possible explanation could be that all these states are
act diagonalizations, this should not be taken too serioushgdegenerate in the thermodynamic limit. Then this region
The various regions are labeled according to the point in théould also be explained by the formation of chains. To check
Brillouin zone where the ground state is found. this point, we have diagonalized the Hamiltonian in the
In the vicinity of the SW4)-point (t'/t~1, J~0), the variational sub-s_pace spanned by the threg mean—.field groqnd
low-lying spectrum is similar to the one obtained in the state wave functions of Phase D. The orb|tal' conf|gurat|.on is
SU(4) case’® This suggests that the description of the different from Phase B, and the degeneracy is partially lifted,

: . ; . ... with a twofold degenerate ground-state an a nondegenerate
?erg;:;]d state in terms of 3Y) singlets is applicable in this excited state. Again the agreement supports the interpretation

At the M point th d is threefold d of this phase in terms of AF chains.
t the M point the ground state Is threefold degenerate. g ot interesting region for our case is the central one.

This could correspond to the formation of AF chains inWe will focus our attention on the lin&/t=0. Along this

line we will see that a description in terms of resonating

1§U(4) valence bondRVB) states is reasonable. For instance, the
o8l low-lying spectrum(Fig. 14 for J/U=0.008 andt’/t=0,

06l r shows a very large number of singlet stat&85) before the
N first triplet (at the top of the figure All these singlets are
0417 T e very close in energy, the energy difference between the
U ground state and the first triplet being of the order of

s 0L ~t?/U. Note that the number of singlets below the first
02l triplet (125 is a significant fraction of the total number of

04! dimer coverings for this 12-site clust€348). This is remi-
06 S niscent of the spectrum found by Lecheminahgl. for the
B Sl R S=1/2Heisenberg model on theagomelattice3®
08p T This is in qualitative agreement with the mean-field re-
15 005 07 015 05 055 03 sults. Indeed, in Phases C and C’, several solutions corre-
JU sponding to various dimer coverings were found with com-

parable energiesee Figs. 15 and 16A similar observation

FIG. 13. Exact diagonalizations: phase diagram for the 12-sitavas made in a preliminary study of a similar spin-orbital
cluster.

model in the context of BaV&®
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FIG. 15. Two stable states for a 12-site cluster: the dashed lin
represents the cluster./t=0 andJ/U=0.008.

edge-sharing octahed(aee Fig. 2 are symmetric with re-
spect to the mirror plane that brings one octahedron into the
/\/ W other, while thed,._,» are antisymmetric. Now any direct
overlap betweenl wave functions in transition metal oxides
/ \/\ / /\/\ is known to be very small. However, one should not forget
/\/ \ \/ that the orbitals are in fact Wannier functions centered on the
transition metal ions, which extend in general to infinity to
insure orthogonality, and which have a significant weight on
neighboring O P orbitals. In the case of the Wannier orbit-
Energy per site = -0.188077 Energy per site = —0.186959 als with symmetryd,z_y2, this does not lead to any significant
transfer because the o @rbitals coupled to one of them are
%rthogonal to thed,> 2 of the neighboring octahedron. This
is not strictly true here since the Ni-O-Ni angle is not exactly
) ) ) - 90°, and also because the crystal field is not symmetric at the
A possible ground state for this region could be a spin-xygen site, but still one expects the effective hopping to be
orbital version of the RVB staﬂé’.‘The magnetic structure yery small. By contrast, thels,2_.2 Wannier orbitals have
could be envisaged as a fluctuating pattern of bonds amongeight on the O p orbitals above and below, and these
different dimer coverings or a mixture between dimer cover-g 2, orhitals have a standard overlap regardless of the
ings and chains. All these states being singlets, they may bgtyaj local distortions of the octahedra. So this should give
degenerate in the thermodynamic limit. _ _ rise to a significant overlap between the Wannier functions
ITet us also mention that there is also a partlglly polarizedyith Oa2_,2 Symmetry.
regionS=3. We suspect that it may be a finite-size effect, as  geyond the actual value of the parameters, it is important
it is greatly reduced with respect to the correspond®®d. {5 emphasize that we have not adopted the same point of
phase present in the phase diagram of the tetrahedron. e\ as Mostovoy and Khomskiiwho have neglected any
overlap between Ni orbitals, although it is allowed by sym-
metry. Further, they have assumed that-Ni—Ni bonds
VII. EXPERIMENTAL IMPLICATIONS mgke and angle of 90°, although the actual angle is around
In transition metal oxides, the on-site Coulomb repulsion94 in LiNiO, and 96.4in NaNiO, and they have neglected
U is typically in the range 4—10 eV, and the Hund’s rule the role of the crystal field at the oxygen site, known to
coupling in the range 0.5-1 eV, leading to a physical rang@roduce antiferromagnetic couplings as shown by Dare,
defined by 0.05J/U<0.25. Interestingly enough, all Hayn, and Richard! While the ferromagnetic coupling that
phases appear in this range and should be possible to obsefg@mes out of these approximations is certainly relevant, the
in actual compounds provided the ratidt has the appropri- Simplified Hamiltonian studied by Mostovoy and Khomskii
ate valugsee Fig. 1§ In that respect, one should emphasizel€ads to a purely ferromagnetic coupling, while the more
that the phase diagram depends only on the hopping integra@€neral Hamiltonian studied in the present work exhibits a
between orbitals, not on the actual orbitals. In particular/ich variety of phases, which, we believe, might actually lead
even if the two orbitals were not orthogonal by symmetry ont® the ultimate explanation of LiNi9and NaNiQ.
one of the bonds, diagonalizing the hopping matrix on a
given bond would bring us back to the situation treated in A LiNiO
; : . . 2
this paper. So the discussion would carry over beyond the o _ _
specific case ofl,2_2 and dyz_y2 up to the remarks dealing _ In the case of LiNiQ, which undergoes neither a Jahn-
with Jahn-Teller distortions. Teller distortion nor a magnetic phase transition upon lower-
Now, coming back to LiNiQ and NaNiQ, hence to ing the temperature, we have to choose between two differ-
ds,2-2 andd,z_2 orbitals, simple arguments suggest thiat ~ ent realizations of RVB: the S4) phase A(for t=t’) and
is negative and smallThat it is negative comes from the the fluctuating dimer phases C and C'. Since we have argued
different symmetries of the orbitals: thiy,._> orbitals on  that [t'/t{<1, we opt for the dimer phases. Actually, one
should give preference to Phase C’ sinté is negative, but
/ as we discussed these phases should better be considered as
defining a domain in which the physics of the quantum dimer
V\/\/ model(QDM) on the triangular lattice might be relevant. The
actual form of the effective QDM is not known yet, but it
v / presumably will not be too far from the minimal model stud-
/\ \\/ ied by Moessner and Sondhisince Phase C is a staggered
state and belongs to the ground-state manifold of their model
\ ‘ V\ for large enough repulsion between face-to-face dimers,
Energy per site = —0.187823  Eneray per site = —0.188396 while Phase C’ is a maximally flippable state and belongs to
the ground state manifold in the limit of infinite attraction
FIG. 16. Two stable states for another 12-site cluster: the dashddetween face-to-face dimers. Note, however, that Phase C’is
line represents the clustat/t=0 andJ/U=0.008. not the columnar state realized for finite attraction in the
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minimal model, differences are to be expected. Still, close to 0225 . .
the boundaries between the phases, one may speculate the
an RVB phase will be present. Such a phase does not break 45l
any symmetry and could explain the absence of any kind of
ordering in LiNiO,. Let us also note that the extended x-ray-
absorption fine-structure results by Rougier, Delmas, and _
Chadwick are also consistent with this proposal since the
orbitals entering all these states are Jahn-Teller orbitals with <’ ol
two long bonds and four short bonds. If the system under-
goes resonances between different states, this would produce
a dynamic Jahn-Teller effect between these states, a situatior
still leading to two long bonds and four short bonds on av-
erage. Due to some disorder, and/or to coupling to the lattice,  -0.15

0.075¢t

-0.075

the system might actually prefer to freeze in a nonperiodic 0.02 0.04 0.06 0.08 0.1
dimer covering of the triangular lattice, as suggested by Rey- Jelt

naudet al? Such a frozen, nonperiodic state would also be

consistent with the results of Ref. 6. FIG. 17. 6cwas a function ofl for C and D phasessee Fig. &

J/U=0.064 and’/t=-0.1 for the solid lingD phaseg, t'/t=0.1 for

B. NaNiO, the dashed lin¢C phasg

As far as NaNiQ is concerned, the only potential candi- not handle this systematically, but include ad hocferro-
date is Phase D since this is the only ferro-orbital phase Witrr'nagnetic term ’
Jahn-Teller orbitals consistent with the distortion that occurs
at 480 K in that system. This phase has the largest boundary H= _JFE S-S (40)
with Phase C’, a good point in view of the very similar i !
structures of LiNiQ and NaNiQ. As stated earlier, the ef- o ] )
fective model consists of weakly coupled AF chains, and thdnto the Hamiltoniar(Jg>0), which corresponds to modify-
resulting magnetic structure will depend on the residual coulnd the initially antiferromagneti&’ term in Eq.(17) toward
plings. A thorough analysis of this point will require going férromagnetic couplings. We have checked that the phases
beyond the present calculation and is left for future investi-discussed in Sec. V remain stable in a region where the
gation. But in any case, with some interlayer coupling, this isCurie-Weiss constant is ferromagnetic. More precisely, we
expected to lead to some kind of AF ordering at finite tem-nave solved the self-consistent equations including such a
perature, in agreement with experiments. Let us emphasiZ&'m, which leads to the effective spin Hamiltonian
that, while simultaneous ferromagnetismd Jahn-Teller ac- ,
tive ferro-orbital order have beeg argued to be possible by H :Z (S - Shj + kg}
Mostovoy and Khomskliin the context of their simplified Y
model, this seems to be impossible in the context of ouwhere hi’j:(hD—JF, and the Curie-Weiss constant is given
microscopic model. Now, as far as experiments are conpy
cerned, the actual order is not yet known. It has been often

(41)

assumed so far that this AF state consists of ferromagnetic - S+ 1)2 h. = 12 'h. (42)
planes coupled antiferromagnetically, but preliminary results cw 3 0 ! 2% g
seem to indicate that this cannot be the cdsehich opens i i .
the way for another type of antiferromagnet. whereX;; means summation over all first neighbors of a
given sitei, while >’ ;;, means summing over three pairs of
C. Curie-Weiss constant nearest-neighbors in three inequivalent directions. The re-

sults are summarized in Fig. 17. As announced, the Curie-

In the absence of finite-temperature calculations, we ideng ics temperature changes sign inside Phases C and D be-

tify the Curie-Weiss constarflcy as a measure of the aver- fore one enters the ferromagnetic phase, and this occurs for

. . T . .
age spin couplingé=(h;j)). At this stage, the essential prob- 5,65 ofJ. that are small enough to be physically relevant.

lem when comparing our predictions to the experimental
data for LiNiO, and NaNiQ?® is the sign of the Curie-Weiss
constant. Namely, in both cases it is ferromagnetic if deter-
mined at not too high a temperatdfewnhile in our calcula- We have emphasized on a number of occasions the differ-
tion, based on Eq22), it is antiferromagnetic. This is not a ence between our model and the models studied in former
very serious problem, however. In deriving our model, weinvestigations of these systems, in particular by Mostovoy
have only kept second-order terms in the hoppirendt’ and Khomskit and by Daré, Hayn, and RichattiFor the
between Wannier orbitals centered at Ni sites. This derivasake of clarity, let us summarize these differences.

tion neglects intersite Coulomb processes. For symmetry rea- First of all, let us emphasize that the model of ELy?) is
sons, the interaction is still of the form of E@.7); one of the  completely general, and that all modétlsose of Refs. 1 and
terms would be the ferromagnetic direct exchange. We d@1 as well our Eq(22)] are particular cases of this model.

D. Comparison with previous approaches
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The difference lies in the choice of the parameters, which arehange processe are present in our model, but in a somewhat
derived from different microscopic assumptions. different disguise(a) The fact that the NiO—Ni bond is
One formal difference between our approach and botmearly 90° is encoded in the fact thatthe effective hopping
that of Mostovoy-Khomskii and of Daré, Hayn, and Richard betweend,,_,, orbitals, is very small(b) Deviations from
is that we consider Ni-like orbitals only. This does not meanthjs geometry, as well as the effect of Crysta| field Sp”ttings
that we neglect the presence of oxygen atoms, rather ong the oxygen site, which were shown to lead to some AF
should envisage-p hybridization giving rise to an effective gychange, translate into a non zero value'ofc) The fer-
d-electron model. romagnetic coupling that takes place at the non-apical oxy-
The main difference between our approach and formegen sjtes was introduced phenomenologically as an extra fer-
approaches s the inclusion in our model of a significan omagnetic contribution in the previous section. A more

dire_ct hoppingt betyveen Ni Wannier functions fatly2 2 direct comparison of the models should be possible starting
orbitals on neighboring octahedra that share an edge perpef o mic orbitals and including a direct hopping between
dicular to thez axis, an effective hopping taking place

through apical oxygens. This process is the main source ﬁg;ﬁlnﬁygen atoms. This is left, however, for future inves-

antiferromagnetic coupling in our approach. This should b
contrasted with the model of Mostovoy and Khomskii in
which all in-plane couplings are ferromagnetic, and with the
model of Daré, Hayn, and Richard in which antiferromag-
netic couplings arise from crystal field splittings and devia-
tions of the(Ni—O—Ni) bond from 90°. This antiferromag-

netic coupling competes with the other sources of exchang

which are ferromagnetic, as emphasized in previous wtk. 16 siteg. Moreover it seems that this model is able to pro-
This competition is at the root of the very rich phase diagrarq/ide a éood description of the behavior of LiNiGand
we have obta}jr}ed. In the d_eriva;ion of their model, qutovoyNaNioz, and to explain the puzzling difference between
apd Khomsk|.| |nc.;lude an intersite Coulomb term, Wh'Ch. "€ ihese two compounds. We have given specific meaning to the
d'd. not consider; on the other handz we mqlude hoPpmg_Sclaim that an RVB state seems to be at the origin of the
g?écnrl it:?a):s:::n?gl ZaesroéC(t)su;rgrr:]afheat(jzgh;aon;téiéhii?\fore E.'.fiﬂagnetic properties of LiNi® The underlying orbital struc-

. PE s . y-Rhomskil., .o corresponding to this RVB state is in agreement with the
It is a matter of furthgr.mvesugauon, wh.|ch of the paramEterexperimental observations. For the case of NaNi®pos-
ch0|ces' is more realistic, or whether suitably general rnOdeIgible magnetic state has been investigated with an underlying
could give new phases. . . ._orbital structure that still leads to a cooperative Jahn-Teller
. The <_:h0|ce to emphasge this process has ather teChn'Ca[stortion. A precise description of the low-energy physics of
implications, however, which translate into completely dif- e present model for the phases relevant for LiNidd
ferent expressions fo_r the parameters of the.Ham!ltonian.oﬁal\liOZ requires other methods than those used in the
Eq.(17). The reason is that, in tgrms of atomic orbitals, this resent paper, but we are confident that the present analysis
process would be a rather high-order process, althoug ill set the stage for further investigations
simple estimates suggest that this overlap is significant. So ‘
the only practical way to include it into a microscopic model
is to describe the system in terms of Wannier functions cen-
tered at the Ni sites rather than using atomic orbitals at Ni F.M. acknowledges useful discussions with F. C. Zhang
and O sites. So our effective Ni—Ni hopping parameters areand M. Ma. F.V. wishes to acknowledge M. Mambrini and F.
not simply related to the atomic parameters of Refs. 1 an@ecca for their useful help. K.P. and P.F. were supported by
21, and a direct comparison is not possible. the Hungarian national Grants No. OTKA T 038162, No. T

Still the basic assumptions of Mostovoy and Khomskii 037451, and No. D32689. F.M. and F.V. acknowledge sup-
and of Daré, Hayn, and Rich&fdregarding the other ex- port from the Swiss National Fund.

VIIl. CONCLUSION

We have shown that a spin-orbital model on the triangular
lattice with realistic parameters leads to a very rich physics.
The presence of various important pha$&sJ(4), dimers
%nd ferromagneticis confirmed for every clustgd, 12, and
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