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Training of the exchange bias effect in antiferro-/ferromagnetic heterostructures is considered in the theo-
retical framework of spin configurational relaxation, which is activated through consecutively cycled hysteresis
loops. The corresponding exchange bias fields,m0HEBsnd, reveal relaxation from the initial state,n=1, of high
antiferromagnetic interface magnetization to the equilibrium state of reduced magnetization in the limit of large
n. The evolution ofm0HEB vs n is calculated with the help of a discretized Landau-Khalatnikov equation,
where the continuous time parameter is replaced by the loop indexn. The result reveals the origin of the well
established but hitherto unexplained power-law decay ofm0HEBsnd for n.1. Moreover, in contrast with the
breakdown of the power-law behavior atn=1, the relaxation approach describes the training effect fornù1.
The full capability of the theory is explored in comparison with experimental results obtained recently on a
NiOs001d /Fes110d heterostructure.
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Unidirectional magnetic anisotropy in heterostructures of
exchange coupled antiferromagneticsAFd and ferromagnetic
sFMd thin films is induced after field cooling the system to
below the Néel temperature of the AF pinning layer. It gives
rise to a shift of the FM hysteresis loop along the magnetic
field axis by the amountm0HEB. This exchange biassEBd
effect turns out to decrease monotonically when cycling the
heterostructure through consecutive hysteresis loops. The re-
sulting m0HEB vs n-dependence displays the so called train-
ing effect. Heren labels the number of loops, which have
been cycled after preparation of the initial state via the field-
cooling procedure described above. The strength of the train-
ing effect depends significantly on the properties of the AF
pinning layer of the heterostructure. Pronounced training ef-
fects have been found in heterosystems involving polycrys-
talline AF pinning layers1–3 while in single crystalline pin-
ning systems the effect is expected to be small.4

Basically, a nonstationary EB effect indicates that the spin
structure of the AF/FM heterostructure deviates from its
equilibrium configuration. The gradual decrease ofm0HEB
with increasing loop indexn is a macroscopic fingerprint of
configurational rearrangements of the spin structure towards
equilibrium. The intimate connection between the EB effect
and nonequilibrium AF spin structures at the AF/FM inter-
face is certainly one major reason for the complexity of the
EB phenomenon. It is the primary task of microscopic EB
theories to explain the origin of the AF interface magnetiza-
tion and its evolution with temperature, magnetic field, loop
index and other external parameters. Hence, it is not surpris-
ing, that, up to now, there are a number of models, which try
to elucidate the microscopic origin of the exchange bias
effect.5–7 Although, it remains doubtful whether a unique
mechanism exists, which describes all aspects of the variety
of experimental findings,4,8 it became common sense that a
net interface magnetization of the antiferromagnet is neces-
sary in order to observe the exchange bias effect.

The Meiklejohn Bean expressionm0HEB=−JsSAFSFMd /
stFMMFMd describes the dependence of the bias field on a

phenomenological couplingJ between the FM and AF inter-
face magnetizationSFM andSAF, respectively, whiletFM and
MFM are the thickness and the saturation magnetization of
the FM layer.9,10 Although this phenomenological approach
does not tackle the microscopic origin of the AF interface
magnetization, it suggests that the training effect originates
from the training ofSAF. Microscopically, then-dependence
of SAF reflects the reorientation of AF domains at the
AF/FM interface. AF domain states have been extensively
studied, for instance, in the case of NiO.11–17

In fact, it has been recently shown, that the total magnetic
moment of a NiOs001d /Fes110d heterostructure is reduced
with consecutively cycled hysteresis loops.18,19Since the FM
top layer of the AF/FM heterostructure is saturated after
each loop, it is obvious, that the successive reduction of the
magnetic moment takes place in the AF pinning component.
The AF spin reorientation is initiated at the AF/FM inter-
face. Here, the coupling betweenSAF and SFM triggers the
relaxation process during the magnetization reversal of the
FM layer. It is therefore reasonable to expect, thatSAF con-
tributes to the reduction of the magnetic moment of the AF
pinning layer. The same conclusion on the microscopic ori-
gin of the training effect has been drawn recently for
Co/CoO/Co1−xMgxO heterostructures.20 Here, the initial AF
domain state can be controlled by random fields, which act
on the AF order parameter. Their strength depends on the
concentrationx of the diamagnetic dilution and the freezing
field, respectively.21,22 Corresponding Monte Carlo simula-
tions reveal irreversible reorientation processes of the AF
spin structure, which give rise to decreasing AF interface
magnetization upon subsequent magnetization reversal of the
FM layer.23

In the framework of this microscopic picture it is reason-
able to map the training effect of the EB onto a training
effect of SAF by m0HEBsnd=KSAFsnd, where the proportion-
ality constantK is independent of the loop indexn and phe-
nomenologically given byK=−JSFM/ sMFMtFMd in accor-
dance with the Meiklejohn Bean expression.
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It is the aim of the following analysis to deriveSAFsnd in
the framework of a simple analytical approach and map it
directly onto the training effect of the EB field. In particular,
it is intended to deduce the surprisingly simple and experi-
mentally often observed power-law

m0HEBsnd − m0HEB
e =

k

În
, s1d

where k is a system dependent constant andm0HEB
e is the

exchange bias field in the limit of infinite loops.24 The sim-
plicity of this expression on the one hand and its applicabil-
ity in the case of significantly distinct systems is asking for a
simple physical basis underlying Eq.(1), which we are going
to reveal.

As a starting point we define the equilibrium AF interface
magnetizationSAF

e =limn→`SAFsnd, which has to exist in the
case of a strictly monotonic decrease ofuSAFsndu. Each posi-
tive or negative deviationdSn=SAFsnd−SAF

e of the AF inter-
face magnetization from its equilibrium value will increase
the total free energyF of the system byDF. If we assume
DFsdSd=DFs−dSd, a series expansion ofDF up to fourth
order indSn reads

DF = 1
2a dSn

2 + 1
4b dSn

4 + OsdSn
6d, s2d

where powers of the orderOsdSn
6d are negligible ifudSnu is

sufficiently small. Note, that it is not intended to describe a
phase transition by the expansion(2) although there is a
close formal analogy. In particular, it is obsolete to consider
an expansion up toOsdSn

6d from the point of view of ther-
modynamic stability. The latter argument is known from the
Landau theory of first order phase transitions whereb,0
requires higher order stabilization.

The relaxation of the system towards equilibrium is deter-
mined by the Landau-KhalatnikovsLK d equation25

jṠAF = −
] DF

] SAF
, s3d

wherej is a phenomenological damping constant andṠAF is
the derivative ofSAF with respect to time. Equation(3) has a
broad range of applications whenSAF is considered as the
order parameter of a system. The LK-equation has been de-
rived, e.g., from Lagrangian formalism. Here, the potential is
given by F and strong dissipation has to be taken into ac-
count, which gives rise to over-critical damping in the result-
ing equation of motion.25 The latter condition is fulfilled in
the case of the training effect, since the evolution of the AF
interface magnetization is expected to be very slow in com-
parison with the microscopic spin fluctuations. On the time-
scale of the EB experiments the temporal change ofSAF is
even negligible unless the system is triggered by the magne-
tization reversal of the FM top layer. Hence, in order to
tackle the training effect in the framework of the
LK-approach, the left hand side of Eq.(3) has to be dis-
cretized.

Figure 1 shows a sketch of the temporal evolution of the
AF interface magnetization. WhileSAF is apparently constant
in the time intervalDt between two subsequent hysteresis

loops, thenth FM hysteresis stimulates relaxation ofSAF
from SAFsnd to SAFsn+1d. The transition takes place during
the time intervalt, which is required for the measurement of
the loop. The change ofSAF is given by the average value of
the derivativedSAF/dt during thenth hysteresis loop. It reads

SAFsn + 1d − SAFsnd
t

=KdSAF

dt
L

t

, s4d

with

KdSAF

dt
L

t

=
1

t
E

−t/2

t/2

dt
dSAF

dt
s5d

(see right axis of Fig. 1, solid and dashed lines are sketches
of kdSAF/dtlt anddSAF/dt, respectively).

Replacement ofṠAF by kdSAF/dtlt converts the differen-
tial equation (3) into a difference equation. The resulting
implicit sequence reads

j̃sSAFsn + 1d − SAFsndd = − dSnsa + b dSn
2d, s6d

wherej̃=j /t and the right hand side is given by the deriva-
tive of Eq.(2). In the case of a strictly monotonic decrease of
uSAFsndu, a.0 causes necessarily an asymptotic decay of the
type SAFsnd~e−an+SAF

e , when finallydSn
3!dSn. Exponential

relaxation, which is generically faster than any potential de-
cay, is typically observed, when spin correlation becomes
negligible. In the case of exchange bias, however, large AF
spin correlation is essential in order to pin the FM layer
during its magnetization reversal. Exchange bias and the
training effect disappear necessarily above the blocking tem-
perature where AF spin correlation significantly levels off.
Hence, nonexponential relaxation has to be expected below

FIG. 1. Sketch of the temporal evolution ofSAF. Measurement
of a single hysteresis loop requires the typical time intervalt. The
slope of the straight line visualizes the average value of the deriva-
tive kdSAF/dtlt during the 2nd loop. Dashed and solid lines(right
axis) show the derivativedSAF/dt vs t and the corresponding aver-
agekdSAF/dtlt vs t, respectively.n=1, 2, 3, and 4 label the regions
of apparently constantSAF. The crossover from thenth to the sn
+1dth plateau is the temporal regime where relaxation ofSAF is
triggered by thenth hysteresis loop.Dt2,3 labels the time interval
between the 2nd and 3rd hysteresis loop.
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the blocking temperature. It requiresa=0 and simplifies Eq.
(6) according to

SAFsn + 1d − SAFsnd = −
b

j̃
dSn

3. s7d

Note the close analogy of expression(7) with the phenom-
enon of critical slowing down.26 In the theory of phase tran-
sitions a dynamic differential equation of the Bernoulli type
can be derived in the molecular field approximation for in-
teracting Ising spins from the Glauber model.27 Here, at the
critical temperature, the driving force into equilibrium scales
with the third power of the order parameter, while relaxation
is the response of the spin system on a steplike change of the
applied magnetic field. One may speculate, that the formal
close analogy between critical slowing down and the training
effect originates from the physics of large spin fluctuations,
which play an important role in the case of both phenomena.

Multiplication of Eq.(7) with the proportionality constant
K and substitution of dSn=SAFsnd−SAF

e maps the
n-dependence ofSAF onto the EB field. It reads

m0sHEBsn + 1d − HEBsndd = − gsm0sHEBsnd − HEB
e dd3, s8d

with

g = b/sK2j̃d. s9d

To relate the empirical parameterk in Eq. (1) to the physical
parameterg in Eq. (8) in the limit n@1, we substitute Eq.(1)
into (8) and expand thesn+1d-dependent term according to
1/În+1.1/În−1/s2nÎnd. Note, that already atn=3 the
approximation holds within an error of less than 5%. After
some rearrangements one obtains the relation

k = KÎ j̃

2b
, s10d

which allows for physical interpretation. Let us, for instance,
consider a steep potentialF. It is characterized by a large
expansion coefficientb in accordance with Eq.(2). In this
case, deviations from the equilibrium state are energetically
highly unfavorable. Hence,dSn is expected to be small and
consequently the training of the EB effect will be small. This
is empirically expressed in terms of a small value ofk in
accordance with Eq.(10). In addition, the training effect re-
quires coupling between the AF and FM layer which triggers
the rearrangement of the spin configuration in the antiferro-
magnet during the magnetization reversal. The phenomeno-
logical coupling constantJ is proportional toK and, hence,
Eq. (10) expresses the increase ofk with increasing coupling

strength. Finally, the damping constantj̃ can be considered
as a typical inverse relaxation time or, in the framework of
the discretized equation, as a relaxation rate. The latter scales
with the inverse number of cycles, which are required in

order to approach equilibrium. A largej̃ gives rise to signifi-
cant relaxation already after a few cycles. Hence,k increases

with increasingj̃ in accordance with Eq.(10).

Figure 2 shows the experimental data ofm0HEB vs n
(open circles) obtained recently from measurements of the
magnetic hysteresis loops on a NiOs001d /Fes110d
heterostructure.18 The measurements have been carried out
with the help of a superconducting quantum interference de-
vice magnetometer atT=5 K in planar field geometry. For
experimental details see Ref. 18. The solid line in Fig. 2
shows the best fit of the empirical Eq.(1) for data with loop
index n.1. The resulting fitting parameters readm0HEB

e

=4.45 mT andk=2.90 mT. The fit shows perfect agreement
with the data forn.1. It is obvious, that a fit of the data will
also work if an additional free parameter is involved and the
restriction to nonexponential asymptotic relaxation is given
up. In this case, however, one has to conclude, that the ex-
perimental data are satisfactorily described fora=0, which
asymptotically corresponds to Eq.(1) as outlined above. This
means, that the phenomenological approach contains the em-
pirical 1 /În-dependence.

In accordance with previous experience, however, its ex-
trapolation down ton=1 reveals the breakdown of the
power-law behavior. Alternatively,m0HEB vs n is calculated
from the recursive sequence(8) for n.1. The solid triangles
show the result. Here the sequence has been started with the
experimental data pointm0HEBsn=2d. The optimized param-
eter g=0.049smTd−2 is calculated from the experimental
data according to

g =
1

sN − 1don=2

N
m0sHEBsnd − HEBsn + 1dd

sm0sHEBsnd − HEB
e dd3 , s11d

where m0HEB
e =4.45 mT has been used as additional input

from the power-law fit. There is apparent perfect coincidence

FIG. 2. Training effect of the exchange biasm0HEB vs n (open
circles) of a NiOs001d /Fes110d heterostructure(Ref. 18). Solid line
shows the best fit of Eq.(1) to the data forn.1. The result of the
fit is extrapolated down ton=1 in order to indicate the breakdown
of the power-law behavior atn=1. Triangles show the data gener-
ated from the recursive sequence(8) with m0HEB

e =4.45 mT(result
adopted from the power-law fit) andg=0.049smTd−2 [optimized in
accordance with Eq.(11)]. Inset shows again the experimental data
(open circles) as reference, while the squares display the result of
the best fit(for nonlinear fitting procedure see text) of sequence(8)
to the entire data set fornù1. Straight lines connecting the squares
are a guide to the eyes only. The dashed line is a best fit of Eq.(1)
to the entire experimental data.
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with the data forn.1 and, hence, with the power-law. How-
ever, comparison ofg=0.049smTd−2 [optimized according
to Eq. (11)] with g=1/s2k2d=0.059smTd−2 reveals small
differences between both approaches. The latterg-value has
to be expected in the case of nonconstraining validity of the
power-law in accordance with Eqs.(10) and(9). In addition,
it is remarkable, that a backward extrapolation of the se-
quence(8) to m0HEBsn=1d becomes impossible, since there
is no positive real solution for the given parametersg and
m0HEB

e . This indicates the generic difference between the
power-law and the recursive sequence atn=1.

The extraordinary strong decay of the EB field between
the first and the second loop is obviously not described by
the empirical power-law Eq.(1) (see Fig. 2). The outstanding
role of m0HEBsn=1d stimulated recent experimental and the-
oretical work.28–30 Raduet al. found that the down and up
branches of the hysteresis loops of a CoO/Co bilayer follow
different mechanisms of magnetization reversal. While co-
herent rotation has been observed at the coercive fieldHc2,
domain nucleation and wall propagation dominate in the vi-
cinity of Hc1. The large training effect atn=1 originates here
from pure 180° domain wall movement, which takes place at
Hc1 during the first magnetization reversal. Very recent
Monte Carlo simulations show that the asymmetry of the
reversal modes depends on the angle between the AF easy
axis and the applied magnetic field in heterostructures which
fulfill the prerequisites of the domain state model.31

The phenomenological relaxation approach presented
here does not depend on these microscopic details. It de-
scribes, merely, in which way deviations from the equilib-
rium of the AF interface magnetization affect the free energy.
The expansion of the free energy in accordance with Eq.(2)
is based on the assumption of time inversion symmetry. It is
experimentally well known, that the absolute values of the
EB field remain unchanged when the preparation of the ini-
tial states takes place in the presence of inverted internal
freezing fields.32,33 Hence, time inversion symmetry ofF is
expected to be fulfilled. Therefore, it is reasonable to assume
that the sequence(8) holds fornù1. In order to check its full
capability we look for optimized parametersg and m0HEB

e

which are independent of the results of the power-law fit.
Therefore,

f = o
n

sHEBsnd − gm0
2sHEBsnd − HEB

e d3 − HEBsn + 1dd2,

s12d

is minimized with respect tog and m0HEB
e . The conditions

]f /]g=0 and]f /]sm0HEB
e d=0 yield the two equations

g j =

o
n

sHEBsn + 1d − HEBsnddsHEBsnd − HEB
e d1+j

m0
2o

n

sHEBsnd − HEB
e d4+j

, s13d

for j =1 and 2, respectively. There is only one real solution of
g1sm0HEB

e d=g2sm0HEB
e d which yields m0HEB

e =3.66 mT and

g=0.0149smTd−2. The inset of Fig. 2 displays the result of
the fit (squares) and the very satisfactory coincidence with
the entire experimental data set(circles). Note, that the num-
ber of 2 free fitting parameters has not been increased in
comparison with Eq.(1). However, both parameters deviate
significantly from the results obtained by the power-law fit
for n.1. It is remarkable, however, that the power-law fit
for nù1 (see dotted line in the inset of Fig. 2) yields
m0HEB

e =3.23 mT andk=5.69 mT. The latter value corre-
sponds tog=1/s2k2d=0.0154smTd−2. Although the quality
of the power-law fit is poor, the resulting parameters come
surprisingly close to those obtained from the best fit of the
recursive sequence.

In summary, the training effect in EB heterostructures is
considered in the framework of nonequilibrium thermody-
namics. Consecutively cycled hysteresis loops of the FM top
layer trigger the spin configurational relaxation of the AF
interface magnetization towards equilibrium. The waiting
time between subsequent loops is irrelevant for the relax-
ation process. This gives rise to an interesting discrete dy-
namic behavior, which is described here in the framework of
a discretized Landau-Khalatnikov equation. The phenomeno-
logical energy landscape, which controls the relaxation pro-
cess, depends exclusively on the deviation of the AF inter-
face magnetization from its equilibrium value. In particular,
it is independent from microscopic details of the magnetiza-
tion reversal of the FM top layer. The presented approach
provides the phenomenological origin of the hitherto unex-
plained power-law decay of the EB field with increasing loop
index n.1. Moreover, the general recursive sequence de-
scribes the entire dependence of the EB fields of a
NiOs001d /Fes110d heterostructure on the loop indexn.
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