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Correlation length of the two-dimensional Ising spin glass with Gaussian interactions
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We study the correlation length of the two-dimensional Ising spin glass with a Gaussian distribution of
interactions, using an efficient Monte Carlo algorithm, proposed by Houdayer, that allows larger sizes and
lower temperatures to be studied than was possible before. We find that the “effective” value of the bulk
correlation length exponent increases as the temperature is lowered, and, at low temperatures, apparently
approaches —14, where#=-0.29 is the stiffness exponent obtained at zero temperature. This means scaling
is satisfied and earlier results at higher temperatures that find a smaller valuarioaffected by corrections
to scaling.
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[. INTRODUCTION Although the discrepancy between the estimates dor
from the zero-temperature calculations seems now to be
There are two main theories to describe the spin-glasgesolved’® there is still an apparent conflict betweérand
state: the droplet theoty? and the replica symmetry break- the value of the correlation length exponernt2.0+0.2 ob-
ing theory 8 (RSB) of Parisi. According to the droplet pic- tained from finite temperature Monte Carlo simulatiéhs.
ture the lowest energy excitation, or “droplet,” of linear size Since the spin—glass transition occursTat0 in two dimen-
| containing a given site has a characteristic energy of orde}ions, the correlation length diverges asT —0 as¢~T".
1 where >0 is a “stiffness” exponent. Droplets are ex- According to scalind;*® v is related tog by
pected to be compact but with a surface that has a nontrivial
fractal dimensiord, less than the space dimensidnlt is p=—=, (1)
further assumed that the same exponé@ndescribes both
grgglitc;n;iodggae'gev:;y ofec;(ri;:)ellgfsn;nltgir:?neg Zlf‘(ier:‘il:[]:tfly;cwhwh gives v=3.5, _S|gn|f|cantly dlff_erent.from the rgsult
. ' : o . vr=2.0£0.2 reported in Ref. 29. We investigate this discrep-
tion of the system does not increase with increasing syste

) ) rany here by performing Monte Carlo simulations on the
size. Furthermore, in RSB the surface of the large-scale, IOWI'sing spin glass with Gaussian interactions in two dimen-

energy excitations are expected to fill space and so have thgqng at |arger sizes and lower temperatures than in Ref. 29.
fractal dimensiords=d.

There have been many numerical studies in fhiéand
four'*15dimensions that attempt to determine which of these
scenarios, or possibly something eléé! is correct. These The Hamiltonian is
calculations are quite limited in the range of sizes that can be
studied, although recent§%a larger range has been studied H=-3 J;SS, )
for a one-dimensional model with power law interactions. Gi.j)

Another case where a large range of sizes can be studied is ) ] . .

the two-dimensional spin glass with short-range interactiongVhere the sum is over nearest neighbor pairs of sites on a
for which there is no spin-glass order at finite temperatureSduare lattice, th& are Ising spins taking values 1, and the
corresponding t@< 0. It is desirable to understand fully the Jij are Gaussian variables with zero mean and standard de-
two-dimensional spin glass, including the nature of correciation unity. The square lattice contaiNs=L XL sites with
tions to scaling, since this may help in the interpretation ofP€riodic boundary conditions. We use the Monte Carlo algo-
numerical data in higher dimensions. _r|thm of Houdaye?oyvh|ch combines single spin-flip dy_nam—

However, even ind = 2, the situation is not completely 'CS: parallel temperlné_l, and a type of cluster move, which is
clearcut. Zero-temperature calculations of the energy of gignificantly more efficient than parallel tempering in two
domain wal?2%-?4consistently gived=—0.29, with Ref. 24, d|m§n5|ons for large ;ystem sizés>24). Tests for equm.-
for example, quoting’=—0.287+0.004. However, some cal- b_ratlon_are done as m_Ref. 32; the parameters used in the
culations of droplet energies fifRf® §=-0.47, while Simulations are shown in Table I. _
other€ find results consistent with the domain-wall value. ~ The main focus of our study is the correlation length
These discrepancies presumably arise because some of ¢ finite systeffi>° ¢, defined by

Il. MODEL AND OBSERVABLES

results are affected by corrections to scaling, and, as dis- 12
cussed by Hartmann and Modtethe domain-wall value, g = 1 { Xsc0) 1} 3
6=-0.29, seems to be the correct asymptotic result. 2sin([Kminl/2) | xsc(Kmin) '
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TABLE I. Parameters of the simulationSs,myis the number of [ ' [ T T 7T

samplesNgyeepiS the total number of Monte Carlo sweeps for each 100 — X —
of the 2N+ replicas for a single sampl&,,;, is the lowest tempera- 80 - X slope —3.45 L 1
ture simulated, and\; is the number of temperatures used in the __ * » 8 7
parallel tempering method. Note that for<16 standard parallel = © 16
tempering Monte Carlo was used, whereas lfor 32 the cluster = 32 |
method by Houdayer was applied. * 64 |

L Nsamp Nsweep Tiin Nt - ]
RVl
8 10000 2.0 10° 0.05 20
16 10000 1.x 108 0.05 20 —]
32 10000 1.x 10° 0.05 20 ]
64 1000 1.0 10° 0.05 40 ]
128 250 1.0x 10° 0.20 63

whereki,=(27/L,0,0 is the smallest nonzero wave vec-
tor, and | .
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T

FIG. 1. Alog—log plot of the finite size correlation lenggh for
different system sizes and temperatures. The data labeled-64
and 128-o come from an extrapolation to the thermodynamic
is the wave vector-dependent spin-glass susceptibility. In Edimit. The slope of the extrapolated data gives~-3.45, which is
(4) the angular brackets- ) denote a thermal average while consistent with 6=-1/r=-0.287 found in zero-temperature
the rectangular brackefs--],, denote an average over the domain-wall calculationgRef. 24.
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Xxsclk) = %E [(S5)?]afR7R) (4)
1)

disorder.
Since the rati(EL/L is dimenSionleSS, it satisfies the finite the method used by K”%? The finite-size Sca”ng expres-
size scaling forrff—3¢ sion, Eq.(5), can be written as
&IL=X[LYT], (5 % = f(%) : ()

assuming a zero-temperature transition, whéie a scaling
function and 1#=-6. For LY"T>1, &_is equal to the bulk
(i.e., infinite system sizecorrelation lengthé.., and so

which can be inverted to give

gL =&~ T (L > g:n)v (6)
5 whereg(x) =fY(x). Clearly g(x)=x for x— 0. We determine
implying that X(x) ~x7” for x> 1. In the opposite limitx  g(x) by fitting to data in the range 0.45T < 1.05 where we
<1, we expec(x) ~x™ where we will estimate. below. have data for the correlation length both the bulk and
finite-size regimes. We consider sizes<16=<128 for this
determination, from which we obtaig(x) in the range
IIl. RESULTS 0<x<0.45. Usingg(x) in this rangewe then determin€,,
from Eq. (8) using data forL=64 in the range 0.288T
Figure 1 shows data faf,. We see that the data are inde- <0.482 and forL=128 in the range 0.24 T<0.38. Note
pendent of system size at high showing that the bulk be- that we do not perform any direct extrapolation in this analy-
havior has been obtained, and the data “peels off” from thisis; the functiorg(x) is determined by fitting and is then used
“bulk curve” at temperatures that become successively loweto get &, at somewhat lower temperature using only the
for larger sizes. The bulk results are curved on this log—logange ofx where it was fitted.
plot showing that the asymptotic power law behavior in Eq. The resulting values of, from theL=64 and 128 data
(6) has not yet been reached. Rather, the slope of the curve &e consistent with each other where they overlap, and are
an “effective exponent,ie, Which varies withT. shown in Fig. 1. The extrapolated data fit a slope of -
In order to determine the asymptotic valueiofve obtain  =-3.45 that corresponds #=-1/v=-0.29, in good agree-
values for the bulk correlation length at low&rfollowing ment with domain-wall result® At higher temperature, the
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FIG. 2. Scaling plot of the data for the correlation length FIG. 3. Scaling plot of the data for the correlation length
according to Eq(5), with 6=-1/v=-0.29. The dashed line, which according to Eq(5), with §=-1/»=-0.45.
fits the data at lowl, has slope -1/2.

Figure 3 shows a scaling plot fa=-0.45, which gives
slope of the bulk data in Fig. 1 is smaller in magnitude, sothe best data collapse in the highregion. This value is
we believe that Liang’s resulty=2.0+0.2, obtained in the compatible withv=2.0+0.2 found in Ref. 29. Note that the
region aroundr=1.0, is only an effective exponent. Neither data do not collapse at all in the IoWregion, and the col-
our results nor the domain-wall results appear to be consid@PSe becomes worse for larger sizes. Figure 3 shows, again,
tent with an exponential divergence of the correlation lengtHhat aneffectivevalue of »~2 will fit the data over a range
asT—0. of intermediate temperatures, while in the I@wasymptotic

Assuming that the asymptotic value ofs indeed~ 3.45, ~ region one ha#=-1/»=0.29. We have found that the spin
we estimate from Fig. 1 that one needs to be at or below §lass susceptibility shows similar behavior. Independent re-
temperature of around 0.35, whege=40, to see the bulk Cent results for the spin glass susceptibility and other
asymptotic behavior. quantities” also find evidence that=-0.29 for large sizes.

Further insight is obtained by scaling the data according
to Eq. (5). Figure 2 shows a scaling plot with=-0.29, the
value expected from zero-temperature domain-wall calcula- IV. CONCLUSIONS
tic_)ns and our extrapolated data in Fig. 1._We see the data in 1, conclude, we have shown that the resu2.0+0.2 in
Fig. 2 scale well at lowT but not well at highT. However,  pet o9 js only an effective exponent, and the true value for
the latter point is not surprising in view of Fig. 1, where we ,, js |arger. The data are consistent with scaling holding
see that asymptotic bulk power-law behavior has not yetqymnotically fors=—1/6=3.45. We have strengthened our
been reached. Note, though, that the data for the two largegfqment for this conclusion by the extrapolationLtg
Sizes in Fig. 2] =64 and. 128, dq almost collap.se, suggest-shown in Fig. 1. Of course it would also be desirable to
ing that #=-1/v=-0.29will work in the bulk regionL.> ¢, qytenq the data to larger sizes, which may be possible in the

for large enough sizes and low enough temperatures, as Wguo future by fine tuning the algorithm
also inferred from Fig. 1. '

The dashed line in Fig. 2 has slope —1/2, implying from
Eq.(5) thatX(x) ~ x™ for x< 1 with A =1/2. Hence we have ACKNOWLEDGMENTS
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