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We study the correlation length of the two-dimensional Ising spin glass with a Gaussian distribution of
interactions, using an efficient Monte Carlo algorithm, proposed by Houdayer, that allows larger sizes and
lower temperatures to be studied than was possible before. We find that the “effective” value of the bulk
correlation length exponentn increases as the temperature is lowered, and, at low temperatures, apparently
approaches −1/u, whereu.−0.29 is the stiffness exponent obtained at zero temperature. This means scaling
is satisfied and earlier results at higher temperatures that find a smaller value forn are affected by corrections
to scaling.
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I. INTRODUCTION

There are two main theories to describe the spin-glass
state: the droplet theory1–4 and the replica symmetry break-
ing theory5–8 (RSB) of Parisi. According to the droplet pic-
ture the lowest energy excitation, or “droplet,” of linear size
l containing a given site has a characteristic energy of order
lu where u.0 is a “stiffness” exponent. Droplets are ex-
pected to be compact but with a surface that has a nontrivial
fractal dimensionds, less than the space dimensiond. It is
further assumed that the same exponentu describes both
droplet and “domain-wall” excitations. In the alternative
RSB scenario, the energy of droplets containing a finite frac-
tion of the system does not increase with increasing system
size. Furthermore, in RSB the surface of the large-scale, low-
energy excitations are expected to fill space and so have the
fractal dimensionds=d.

There have been many numerical studies in three9–13 and
four14,15dimensions that attempt to determine which of these
scenarios, or possibly something else,16,17 is correct. These
calculations are quite limited in the range of sizes that can be
studied, although recently18,19a larger range has been studied
for a one-dimensional model with power law interactions.
Another case where a large range of sizes can be studied is
the two-dimensional spin glass with short-range interactions,
for which there is no spin-glass order at finite temperature,
corresponding tou,0. It is desirable to understand fully the
two-dimensional spin glass, including the nature of correc-
tions to scaling, since this may help in the interpretation of
numerical data in higher dimensions.

However, even ind = 2, the situation is not completely
clearcut. Zero-temperature calculations of the energy of a
domain wall9,20–24consistently giveu.−0.29, with Ref. 24,
for example, quotingu=−0.287±0.004. However, some cal-
culations of droplet energies find25,26 u.−0.47, while
others27 find results consistent with the domain-wall value.
These discrepancies presumably arise because some of the
results are affected by corrections to scaling, and, as dis-
cussed by Hartmann and Moore,28 the domain-wall value,
u.−0.29, seems to be the correct asymptotic result.

Although the discrepancy between the estimates foru
from the zero-temperature calculations seems now to be
resolved,28 there is still an apparent conflict betweenu and
the value of the correlation length exponentn=2.0±0.2 ob-
tained from finite temperature Monte Carlo simulations.29

Since the spin–glass transition occurs atT=0 in two dimen-
sions, the correlation lengthj diverges asT→0 asj,T−n.
According to scaling,9,10 n is related tou by

n = −
1

u
, s1d

which givesn.3.5, significantly different from the result
n=2.0±0.2 reported in Ref. 29. We investigate this discrep-
ancy here by performing Monte Carlo simulations on the
Ising spin glass with Gaussian interactions in two dimen-
sions at larger sizes and lower temperatures than in Ref. 29.

II. MODEL AND OBSERVABLES

The Hamiltonian is

H = − o
ki,jl

JijSiSj , s2d

where the sum is over nearest neighbor pairs of sites on a
square lattice, theSi are Ising spins taking values ±1, and the
Jij are Gaussian variables with zero mean and standard de-
viation unity. The square lattice containsN=L3L sites with
periodic boundary conditions. We use the Monte Carlo algo-
rithm of Houdayer30 which combines single spin-flip dynam-
ics, parallel tempering,31 and a type of cluster move, which is
significantly more efficient than parallel tempering in two
dimensions for large system sizessL.24d. Tests for equili-
bration are done as in Ref. 32; the parameters used in the
simulations are shown in Table I.

The main focus of our study is the correlation lengthof
the finite system33–36 jL, defined by

jL =
1

2sinsukminu/2dF xSGs0d
xSGskmind

− 1G1/2

, s3d
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wherekmin=s2p /L ,0 ,0d is the smallest nonzero wave vec-
tor, and

xSGskd =
1

N
o
i,j

fkSiSjl2gave
ik·sRi−R jd s4d

is the wave vector-dependent spin-glass susceptibility. In Eq.
(4) the angular bracketsk¯l denote a thermal average while
the rectangular bracketsf¯gav denote an average over the
disorder.

Since the ratiojL /L is dimensionless, it satisfies the finite
size scaling form34–36

jL/L = X̃fL1/nTg, s5d

assuming a zero-temperature transition, whereX̃ is a scaling
function and 1/n=−u. For L1/nT@1, jL is equal to the bulk
(i.e., infinite system size) correlation lengthj`, and so

jL = j` , T−n sL @ j`d, s6d

implying that X̃sxd,x−n for x@1. In the opposite limit,x

!1, we expectX̃sxd,x−l where we will estimatel below.

III. RESULTS

Figure 1 shows data forjL. We see that the data are inde-
pendent of system size at highT, showing that the bulk be-
havior has been obtained, and the data “peels off” from this
“bulk curve” at temperatures that become successively lower
for larger sizes. The bulk results are curved on this log–log
plot showing that the asymptotic power law behavior in Eq.
(6) has not yet been reached. Rather, the slope of the curve is
an “effective exponent,”neff, which varies withT.

In order to determine the asymptotic value ofn we obtain
values for the bulk correlation length at lowerT following

the method used by Kim.33 The finite-size scaling expres-
sion, Eq.(5), can be written as

jL

L
= fS j`

L
D , s7d

which can be inverted to give

j`

L
= gS jL

L
D , s8d

wheregsxd= f−1sxd. Clearly gsxd=x for x→0. We determine
gsxd by fitting to data in the range 0.45,T,1.05 where we
have data for the correlation length inboth the bulk and
finite-size regimes. We consider sizes 16øLø128 for this
determination, from which we obtaingsxd in the range
0,x,0.45. Usinggsxd in this rangewe then determinej`

from Eq. (8) using data forL=64 in the range 0.285øT
ø0.482 and forL=128 in the range 0.24øTø0.38. Note
that we do not perform any direct extrapolation in this analy-
sis; the functiongsxd is determined by fitting and is then used
to get j` at somewhat lower temperature using only the
range ofx where it was fitted.

The resulting values ofj` from theL=64 and 128 data
are consistent with each other where they overlap, and are
shown in Fig. 1. The extrapolated data fit a slope of −n
=−3.45 that corresponds tou;−1/n=−0.29, in good agree-
ment with domain-wall results.24 At higher temperature, the

TABLE I. Parameters of the simulations.Nsampis the number of
samples,Nsweepis the total number of Monte Carlo sweeps for each
of the 2NT replicas for a single sample,Tmin is the lowest tempera-
ture simulated, andNT is the number of temperatures used in the
parallel tempering method. Note that forLø16 standard parallel
tempering Monte Carlo was used, whereas forLù32 the cluster
method by Houdayer was applied.

L Nsamp Nsweep Tmin NT

8 10000 2.03105 0.05 20

16 10000 1.03106 0.05 20

32 10000 1.03105 0.05 20

64 1000 1.03106 0.05 40

128 250 1.03106 0.20 63

FIG. 1. A log–log plot of the finite size correlation lengthjL for
different system sizes and temperatures. The data labeled 64→`
and 128→` come from an extrapolation to the thermodynamic
limit. The slope of the extrapolated data gives −n.−3.45, which is
consistent with u;−1/n.−0.287 found in zero-temperature
domain-wall calculations(Ref. 24).
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slope of the bulk data in Fig. 1 is smaller in magnitude, so
we believe that Liang’s result,n=2.0±0.2, obtained in the
region aroundT=1.0, is only an effective exponent. Neither
our results nor the domain-wall results appear to be consis-
tent with an exponential divergence of the correlation length
asT→0.

Assuming that the asymptotic value ofn is indeed< 3.45,
we estimate from Fig. 1 that one needs to be at or below a
temperature of around 0.35, wherej`.40, to see the bulk
asymptotic behavior.

Further insight is obtained by scaling the data according
to Eq. (5). Figure 2 shows a scaling plot withu=−0.29, the
value expected from zero-temperature domain-wall calcula-
tions and our extrapolated data in Fig. 1. We see the data in
Fig. 2 scale well at lowT but not well at highT. However,
the latter point is not surprising in view of Fig. 1, where we
see that asymptotic bulk power-law behavior has not yet
been reached. Note, though, that the data for the two largest
sizes in Fig. 2,L=64 and 128, do almost collapse, suggest-
ing thatu=−1/n=−0.29will work in the bulk region,L@j,
for large enough sizes and low enough temperatures, as we
also inferred from Fig. 1.

The dashed line in Fig. 2 has slope −1/2, implying from

Eq. (5) thatX̃sxd,x−l for x!1 with l.1/2. Hence we have

jL , T−1/2L1−1/s2nd sL ! jd. s9d

The T−1/2 dependence can be understood from Eq.(3) since
xSGs0d=L2 at T=0 (because the ground state is unique),
while the fluctuations at nonzerok are frozen out atT=0. It
is plausiblexSGskmind~T at low T from equipartition, and
this leads to aT−1/2 dependence forjL.

Figure 3 shows a scaling plot foru=−0.45, which gives
the best data collapse in the high-T region. This value is
compatible withn=2.0±0.2 found in Ref. 29. Note that the
data do not collapse at all in the low-T region, and the col-
lapse becomes worse for larger sizes. Figure 3 shows, again,
that aneffectivevalue ofn<2 will fit the data over a range
of intermediate temperatures, while in the low-T asymptotic
region one hasu=−1/n.0.29. We have found that the spin
glass susceptibility shows similar behavior. Independent re-
cent results for the spin glass susceptibility and other
quantities37 also find evidence thatu.−0.29 for large sizes.

IV. CONCLUSIONS

To conclude, we have shown that the resultn=2.0±0.2 in
Ref. 29 is only an effective exponent, and the true value for
n is larger. The data are consistent with scaling holding
asymptotically forn=−1/u.3.45. We have strengthened our
argument for this conclusion by the extrapolation toL=`
shown in Fig. 1. Of course it would also be desirable to
extend the data to larger sizes, which may be possible in the
near future by fine tuning the algorithm.
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FIG. 2. Scaling plot of the data for the correlation lengthjL

according to Eq.(5), with u=−1/n=−0.29. The dashed line, which
fits the data at lowT, has slope −1/2.

FIG. 3. Scaling plot of the data for the correlation lengthjL

according to Eq.(5), with u=−1/n=−0.45.
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