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A q-state fully frustrated Potts model, the piled-up-domino model, is studied for different integer and
noninteger values ofq. Phase diagrams and some critical exponents are calculated using numerical transfer
matrix methods. Foster, Gérard, and Puha[J. Phys. A34, 5193(2001)] have shown that there is a reentrant
paramagnetic phase whenq=3. It is shown here that the direction of reentrance changes asq passes through
q=2 and disappears for a certain value ofq=q*. The phase diagram of the model is radically different for
q,q* and q.q*. Tentative numerical results suggestq* <4.
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I. INTRODUCTION

The effects of frustration in spin models have been of
considerable interest for a couple of decades, partly because
of the rich critical behavior which arises and partly because
frustration is considered an important feature of the behavior
of spin glasses. Frustration arises when competing interac-
tions prevent the system from simultaneously minimizing all
its local interactions.1 In general frustration gives rise to in-
finitely degenerate ground states.2,3 The type of critical be-
havior seen is related, not to the symmetry group of the
spins, but to the symmetry of the model as a whole, made
larger by frustration and indicated by the infinite degeneracy
of the ground state.

About twenty years ago, Andréet al.4 introduced two pe-
riodically frustrated Ising models on a square lattice, the
piled-up-domino model, and the zigzag model(the names
refer to the patterns formed by the ferromagnetic and antifer-
romagnetic interactions). There are two obvious generaliza-
tions to these models; the first consists of replacing the Ising
spins by spins of symmetryOsnd. This path was followed for
the case ofXY spins fOsn=2dg,5 leading to a controversy
over the critical behavior expected.6–8 Foster, Gérard, and
Puha9 followed the alternative path of replacing the Ising
spins with three-state Potts spins. Of particular interest was
the Potts piled-up-domino model, which was found to have
very different critical behavior when compared to the equiva-
lent Ising model. Notably the three-state Potts model has a
reentrant paramagnetic phase absent from the Ising model
equivalent. The exact phase diagram is shown, as a function
of a=J2/J1, for the Ising piled-up-domino model in Fig. 1
while a schematic phase diagram for the three-state Potts
piled-up-domino model, summarizing the results of Ref. 9, is
shown in Fig. 2. In this article we extend the piled-up-
domino model to general values ofq.

Since the behavior changes whenq is changed from 2 to 3
it is natural to ask how the phase diagram changes asq is
varied continuously. If there are other changes of behavior,
what are the values ofq for which these changes occur? It is
known, for example, thatq=4 is special for the standard
ferromagnetic Potts modelsJ1=J2.0d, corresponding to the
value of q for which the transition changes from critical to
first order.10,11It is also known thatq=3 is a special value for

the mixed ferroantiferromagnetic Potts model, where the
transition is thought to be of Kosterlitz-Thouless type,12,13

and beyond which there is no transition.14 In this paper we
will investigate these points in detail using the numerical
transfer matrix and finite-size-scaling methods, described in
the next section.

It turns out that at least two special values ofq may be
identified. The first isq=2; for q,2 the paramagnetic phase
enters under the ordered phase from the right while for
2,q,q* the paramagnetic phase enters from the left(see
Figs. 2 and 6). Beyond some value ofq=q* the reentrance
disappears, and the two transition lines are now replaced by
a single first-order transition line. In the next section the
model and the numerical methods used are presented. In Sec.
III we present our results and the paper closes with conclud-
ing remarks in Sec. IV.

II. MODEL AND CALCULATION METHODS

The q-state Potts model is defined as a set of variables
hsij associated with the siteshij of a lattice.15 Eachsi takes
one of q distinct values. The Hamiltonian of the model is
given by

FIG. 1. The exact phase diagram as a function ofa=J2/J1 for
the Ising piled-up-domino model as found by Andréet al.4
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H = −
1

2o
i,j

Ji,jdsi,s j
, s1d

where the sum runs over all pairs of sites andJi,j are the

interaction strengths between a given pair of spins. For the
piled-up-domino model, of interest in this article, the inter-
action strengths are given by

Ji,j = 5 0 for non - nearest - neighbor spins,

J1 for nearest - neighborsNNdspins along the solid lines,

J2 for NN spins along the dashed lines,

s2d

as shown in Fig. 3. For convenience we definea=J2/J1. J1
will be taken as positive(ferromagnetic) throughout.

The model as given here is only defined for integer values
of q. It is, however, possible to extend the model to nonin-
teger values ofq by expressing the partition function in

terms of its graphical expansion. This mapping proceeds ex-
actly as in the ferromagnetic case, well explained in Ref. 11,
and gives the partition function in terms of the graphs of
bond linked clusters as follows:

Z = o
clusters

Su1

q
DN1Su2

q
DN2

qC, s3d

whereN1 andN2 are the numbers of occupied bonds corre-
sponding to the interaction bondsJ1 and J2, respectively,
u1=expsbJ1d−1 andu2=expsbJ2d−1, whereb=1/kT, andC
is the number of nonconnected clusters. In this formulation
the value ofq enters as a parameter with the same standing
as the other model parameters such asu1 andu2, and so it is
natural to extend the model to real values ofq.

The main results presented in this paper were obtained
using transfer matrix methods. The locality of the interac-
tions in the model enables a rewriting of the partition func-
tion for a lattice of lengthN and widthL as follows:

FIG. 3. Arrangement of the nearest-neighbor interactions defin-
ing the Potts piled-up-domino model: the interaction energy isJ1

along the solid lines andJ2 along the dashed lines.

FIG. 2. Schematic phase diagram as a function ofa=J2/J1 for theq=3 Potts piled-up-domino model as proposed by Fosteret al. (Ref.
9). We will argue here that the phase POII does not exist as a thermodynamic phase.
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ZL,N = o
hsx,yj

p
x=1,N

expf− bEshssx−1,yd,ssx,ydjdg, s4d

where E is the energy contribution due to the interactions
between the spins in columnx−1 and columnx and half the
energy contribution from the spins within columnsx−1 and
x. The factor one-half for the energy due to the spin-spin
interactions within a column is chosen to avoid double
counting when the product in Eq.(4) is performed. Equation
(4) is most neatly expressed in matrix form

ZL,N = TrTN, s5d

where the transfer matrixT=exps−bEd, has been introduced
and periodic boundary conditions are taken in thex direction.
Equation(5) may be written in terms of the eigenvalues ofT.
It is easy to show, by taking the limitN→`, that the dimen-
sionless free energy per spinf and the correlation lengthj
for an infinitely long strip of widthL are given by

fL =
1

L
ln l0, s6d

jL =
1

lnS l0

ul1uD
, s7d

wherel0 and l1 are, respectively, the eigenvalues with the
largest and second largest absolute values ofT.

The phase diagram may be found using the phenomeno-
logical renormalization group, where finite size critical tem-
perature estimates are associated with solutions of the
equation16

jL

L
=

jL8

L8
. s8d

This approach relies on the expected scale invariance at criti-
cality in the thermodynamic limit. In this limit, the correla-
tion length is expected to have a power law behavior, de-
scribed by

FIG. 4. Finite-size estimates for the critical temperatureTc cal-
culated using DMRG and transfer matrices, takinga=−1 andq
=3 calculated using 8 withL8=L+2.

FIG. 5. Estimates for the critical exponentn using DMRG with
a=−1, q=3 with L=50, L8=52. m is a measure of the number of
states kept at each DMRG iteration(for full definition see text). The
horizontal line shows the value ofn for the standard three-state
ferromagnetic Potts modelsn=5/6.d.

FIG. 6. The phase diagram forq=1.5 found using transfer ma-
trices and the phenomenological renormalization group with(a) pe-
riodic and (b) free boundary conditions. The points correspond to
finite-size estimates forTc, while the lines correspond to the esti-
mates for the disorder linesa=J2/J1d.
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j = uT − Tcu−n, s9d

wheren is the correlation length critical exponent andTc is
the critical temperature. Using standard finite-size scaling ar-
guments, finite-size estimates ofn are given by

1

nL,L8
=

lns ]jL

]T /
]jL8
]T d

lnsL/L8d
+ 1. s10d

III. RESULTS

As discussed in the Introduction, the Ising version of the
piled-up-domino model was studied by Andréet al.,4 who
gave the exact phase diagram, shown in Fig. 1. The three-
state Potts piled-up-domino model was investigated using
transfer matrix methods by Foster, Gérard, and Puha.9 The
phase diagram proposed in Ref. 9 for the three-state Potts
piled-up-domino model is shown schematically in Fig. 2.
Later we will argue that the phase denoted POII in Fig. 2 is
likely to be a numerical artifact.

TABLE I. Finite-size estimates ofTc and n for (a) periodic
boundary conditions and(b) free boundary conditions withq=1.5
for three values ofa=J2/J1, calculated using transfer matrices and
finite-size scaling.

Tc

L /L8 a=−2 a=−1 a=1

(a)

4/6 1.586114 0.728082 1.261419

6/8 1.563152 0.663427 1.253856

8/10 1.560069 0.627152 1.251955

10/12 1.559307 0.60741 1.251281

(b)

4/6 1.532177 0.599232 1.206717

6/8 1.542430 0.587361 1.227032

8/10 1.547948 0.581704 1.235888

10/12 1.551212 0.579152 1.240528

` 1.559±0.001 0.575±0.005 1.250±0.003a

n

L /L8 a=−2 a=−1 a=1

(a)

4/6 0.945744 0.525958 1.087435

6/8 0.981070 0.613453 1.108565

8/10 0.975370 0.688523 1.116414

10/12 0.970590 0.745299 1.120403

(b)

4/6 0.989166 0.881934 1.143539

6/8 0.983198 0.957554 1.147167

8/10 0.974492 1.003521 1.148211

10/12 0.969478 1.016751 1.141964

` 0.957±0.002 ¯ 1.126±0.002b

aExact critical temperature forq=1.5 is Tc=1/ logs1+Î1.5d
=1.250559̄ (Ref. 11).
bEstimate found using only the results for periodic boundary con-
ditions, exact result givesn<1.128(Ref. 19).

FIG. 7. Estimates of the thermal exponentyT=1/n for q=10 and
q=64 for a=0 anda=1 as a function of 1/L with L8=L+2.
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The model is of particular interest whena=−1. For this
value ofa the frustration effects are strongest, giving rise to
a maximum in the ground-state entropy. The pointT=0, a
=−1 remains an important point in the three-state Potts piled-
up-domino model, but, as a result of the observed reentrance,
there is another transition at nonzero temperature. In Ref. 9,
the estimated value ofTc for a=−1 is given as 0.37±0.01.
The values ofn reported were consistent with the transition
being of the Potts ferromagnetic type, but the finite-size es-
timates were still far from their limiting values.

The three-state Potts model lends itself to the use of the
density matrix renormalization group method(DMRG). For
classical spin models, DMRG amounts to an iterative ap-
proximation method for calculating the dominant eigenval-
ues of the transfer matrix. DMRG thus allows the construc-
tion of approximate transfer matrices for much larger systemsizes than are accessible to standard transfer matrix calcula-

tions. The method works by judicious pruning of phase space
by repeated projection onto a prototype system composed of
a strip of width four spins; the inner two spins are the origi-
nal model spins while the outer spins arem-state spins intro-
duced to represent, approximately, the rest of the original
system. Clearly the value ofm chosen determines the amount
of information which may be kept from one iteration to the
next, and hence the quality of the approximation. For a de-
tailed description of the method, the reader is referred to
Refs. 17 and 18.

We applied the DMRG method to theq=3 Potts piled-up-
domino model with free boundary conditions for lattice
widths up toL=52 for a=−1 in order to obtain improved
estimates ofTc. For a given lattice width,m was varied and
extrapolated tò to obtain finite-size estimates forTc. These
estimates are shown in Fig. 4. This gives a new estimate for
Tc=0.365±0.001. The calculations were performed taking
theJ2 interactions parallel to the transfersxd direction. Com-
mensurability problems arise as a result of the frustration,
which results in certain values ofm better representing the

FIG. 8. The phase diagram forq=10 found using transfer ma-
trices and the phenomenological renormalization group with(a) pe-
riodic, (b) free boundary conditions for −2,a,1, and (c) the
phase diagrams extended toa→−` (open symbols represent peri-
odic boundary conditions and closed symbols represent open
boundary conditions). The points give the finite-size estimates for
Tc sa=J2/J1d.

FIG. 9. Phase diagram forq=10 calculated using the Monte
Carlo histogram method for a system of size 40340 with periodic
boundary conditions.

FIG. 10. The magnetization plotted as a function of temperature
for q=10 anda=−2 along(a) the lines of ferromagnetic interac-
tions and(b) the lines of antiferromagnetic interactions. The mag-
netization seems to be developing a jump discontinuity, consistent
with a first-order transition. The estimated transition temperatureT*
estimated from transfer matrices is indicated.
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system than other, possibly larger, values ofm. While these
effects are not particularly strong for the calculation ofTc,
they are more noticeable for the calculation ofn. While the
estimates ofn decrease withL, strong fluctuations as a func-
tion of m prevent a quantitative extrapolation with lattice
size. In Fig. 5 the results forL=50 andL8=52 (the largest
sizes reached) are shown. All that can confidently be stated is
that the results are compatible with the pure Potts result,n
=5/6. As aresult of these strong fluctuation effects, in what
follows we shall limit ourselves to using standard transfer
matrices, which, while limited by system size, have the ad-
vantage of being numerically exact for the given value ofL.

It is natural to ask how the phase diagram changes as the
value ofq is changed fromq,2 to q.2. In Fig. 6 we show
the phase diagram forq=1.5. There is still a reentrant para-
magnetic phase, and so a non-zeroTc for a=−1. The transi-
tion is no longer in the ferromagnetic Potts universality class.
For a=1 we find a value ofn=1.126±0.002(Ref. 19) while
for a=−2 we findn=0.957±0.002. Finite size estimates for
Tc andn for q=1.5 are given in Table I. Also shown in Fig.
6 is the disorder line. The disorder line is defined as the line
at which the correlation function changes from being mono-

tonic to oscillatory, to reflect the underlying ferromagnetic or
antiferromagnetic behavior.20 It correponds necessarily to a
minimum of the correlation length measured along some di-
rection. The disorder line may not cut a critical line(where
the correlation length is infinite). The form of the disorder
line estimates are consistent with the proposed critical lines,
terminating at the special pointT=0, a=−1.

For the ferromagnetic Potts model the nature of the phase
transition is different forqø4 andq.4.11 In the former case
the transition is critical while in the latter case the transition
is first order. This first-order nature is in general difficult to
see numerically for values ofq close to 4, but more clearly
seen forq<10. Since the nature of the phase transition for
the ferromagnetic line to the right ofa=−1 changes, it is
relevant to ask if there may be an equivalent change in the
phase transition to the left ofa=−1. In order to answer this
question we investigate the phase diagram forq=10.

Despite the first-order nature of the transition forq.4,
estimates for the transition lines may still be found using Eq.
(8), at least for the pure Potts casesa=1d, since it is expected
that the transition is described by a discontinuity fixed point,
with an effective exponentn=1/d=1/2.21 Blöte and Night-
ingale showed that the discontinuity fixed-point exponent is
more difficult to extract than the standard critical exponent.22

For the infinite strip geometry convergence ton=1/d is only
found if the temperature is fixed to the known critical tem-
perature and finite size scaling ofdj /dT is examined using
Eq. (10).22 Convergence improves for higher values ofq are
used. For our model, the critical temperature is known for
two values ofa, namely,a=1 (the pure Potts model) and
a=0.9 Estimates for the thermal exponentyT=1/n are shown
in Fig. 7 for a=0 anda=1 for q=10 andq=64. The con-
vergence to the expected discontinuity fixed point value,yT
=d is very good forq=64 in both cases, whilst forq=10 the
convergence is slower, but nevertheless reasonably convinc-
ing. Since there is no sign of a change of behavior as a
function ofa, it is reasonable to suppose that the entire tran-
sition line is described by the same discontinuity fixed point,
and that it is reasonable to use a finite-size scaling approach
to find it. The phase diagram forq=10 is shown in Fig. 8.

There are two features of the phase diagram forq=10
which are of particular interest. The first is that the reen-
trance has disappeared. This picture is confirmed by the form
of the disorder lines, which forq=10 do not cross the tran-
sition line, but rather are split into two branches, one above
and one below the transition line. The disorder lines are not
shown in Fig. 8 since the upper branch is outside the scale of
the diagram. The low temperature phase is now ferromag-
netic for all values ofa. The two transition lines present for
q=3 are now replaced, forq=10, by only one transition line,
which is first-order, since the transition fora=1 is first
order.11

To verify the picture of only one first order phase transi-
tion, results of Monte Carlo simulations are shown in Figs. 9
and 10. In Fig. 9 we show the phase diagram calculated
using the histogram method for a lattice size of 40340 with
periodic boundary conditions, which confirms the general
shape of the phase diagram found using transfer matrices. In

FIG. 11. The phase diagram forq=4 found using transfer ma-
trices and the phenomenological renormalization group with(a) pe-
riodic and (b) free boundary conditions. The points correspond to
finite-size estimates forTc, while the lines correspond to the esti-
mates for the disorder linesa=J2/J1d.
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order to confirm the suspected first order nature of the tran-
sition line far from the usual ferromagnetic modelsa=1d,
we show in Fig. 10 plots of the Potts magnetization, de-
fined through

m=
1

q − 1
sqknmaxl − 1d, s11d

wherenmax=Nmax/N. Nmax is the number of spins in the most
represented spin state in a group ofN spins. The group of
spins taken is usually all the spins on the lattice, whereas for
our purposes it is more convenient to calculate magnetiza-
tions separately along the lines of ferromagnetic and antifer-
romagnetic interactions. The magnetization is plotted in Fig.
10 for sites for ferromagnetic(J1 interacting) and antiferro-
magnetic(J2 interacting) rows for a=−2. The ferromagnetic
rows have the standard ferromagnetic behavior seen fora
=1. The antiferromagnetic rows, however, do not saturate to
1 as the temperature goes to zero. This is an indication that
some of the spins remain partially disordered. Closer inves-
tigation reveals that the low temperature phase is one in
which alternate spins along the evensJ2d lines order, and the
others do not. Due to translational invariance, Fig. 10(b)
shows an average of these two types of spin. The order pa-
rameter seems to be developing a jump discontinuity at the
transition temperature, again consistent with the proposed
first-order behavior. The temperature at which the magneti-
zation jumps is consistent with the transition temperature

TABLE II. Finite-size estimates forTc for (a) periodic boundary
conditions and(b) free boundary conditions calculated using trans-
fer matrices withq=10 anda=−2

L /L8 (a) (b)

Tc Tc

4/6 0.373448 0.298713

6/8 0.350440 0.312203

8/10 0.341196 0.318899

10/12 0.337639 0.322777

` 0.330±0.005

FIG. 12. The phase diagram forq=1.5 found using transfer
matrices and the phenomenological renormalization group with(a)
periodic and(b) free boundary conditions.a=J2/J1.

FIG. 13. Estimates of the transition temperatureTc using tranfer
matrices, as a function ofq with (a) periodic and(b) free boundary
conditions fora=−2.
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T*=0.330±0.005 as estimated using transfer matrices(see
Table II).

The results shown clearly indicate that there must exist a
value ofq=q* where the frustration-induced phase transition
for a,−1 disappears, to be replaced by the standard(first-
order) phase transition for all values ofa. Figures 11 and 12
show the phase diagrams forq=4 and q=5, respectively.
While the results are less clear than forq=10 andq=3, there
are indications that forq=5 there is no reentrant phase. The
periodic boundary conditions show a remnant of the reen-
trant phase, but which seems to vanish as the system size is
increased. This is confirmed by the disorder lines(not
shown) which split into two distinct lines as for theq=10
case. Forq=4, however, while the periodic boundary condi-
tions show a vanishing jump where the reentrant phase is
expected, there seems to be a limiting “kink.” The free
boundary conditions confirm this picture, where the reentrant
phase does not seem to vanish, but rather becomes narrower
with increasing size. The finite-size evolution of the disorder
lines show clearly that in the limit of infinite system size,
there will be a limiting line which would have to cross the
transition line if there were only one, again indicating the
presence of two transition lines with possibly a vanishingly
narrow reentrant paramagnetic phase.

In Fig. 13 we show estimates for the transition tempera-
ture as a function ofq for periodic and free boundary condi-
tions fora=−2. It may be seen that there is no solution to the
phenomenological renormalisation group[Eq. (8)] for a
range of values ofq, at least for the lattice sizes considered
here. The size and position of this zone without solution
evolves with lattice size, and since the solution lines may not
end in the middle of nowhere, there are nonphysical exten-
sions of the solution lines, giving rise to apparent double
transitions for some values ofq. For a=−2 it is seen that
there is no solution forq=3, but for appropriate values ofa
there exist two solutions, one physical and the other almost
certainly not. This is clearly the explanation for the observed
extra phase(POII) shown in Fig. 2, reported in Ref. 9.

Figure 14 shows the critical temperature estimates in the
limit a→−`, which corresponds to settingu2=−1 in Eq.(3).
The critical temperature forqø2 is infinite in this limit. For
q.2 the transition temperature(critical or not depending on
the value ofq) is finite, explaining the very flat transition line
for a,−1 for these values ofq.

IV. CONCLUSION

In this article we present a variety of results showing that
the critical behavior of the frustrated Potts piled-up-domino
model is rich and far from trivial. We confirm the existence
of a transition at finite temperature forq=3 anda=−1 and
improve the accuracy of the determination of the critical
temperature using DMRG. However, the main results of this
article relate to the rich variety of behaviours observed asq
is varied.

(1) For q,2, Tc→` asa→−`, and there is a reentrant
paramagnetic phase which enters under the partially ordered
phase.

(2) For q=2, Tc→` asa→−`, but there is no reentrant
paramagnetic phase andTc=0 for a=−1.

(3) For q* .q.2, Tc remains finite asa→−`, and the
reentrant phase enters under the ferromagnetic phase.

(4) There exists some valueq* .3 such that forqùq*
the reentrant phase disappears, to be replaced by a single line
of first-order transitions for all values ofa.

There are many questions left unanswered, for example
the nature of the criticality aroundq=3 and the value ofq*.
We have shown that there is some indication thatq* is
around 4.

1G. Toulouse, Commun. Phys.(London) 2, 115 (1977).
2J. Villain, J. Phys.(France) 46, 1840(1985).
3Magnetic Systems with Competing Interactions, edited by H. T.

Diep (World Scientific, Singapore, 1994).
4G. André, R. Bidaux, J.-P. Carton, and R. Conte, J. Phys.(France)

40, 479 (1979).
5S. Teitel and C. Jayaprakash, Phys. Rev. B27, 598 (1983).
6P. Olsson, Phys. Rev. Lett.75, 2758(1995).
7E. H. Boubcheur and H. T. Diep, Phys. Rev. B58, 5163(1998).
8E. Granato, J. M. Kosterlitz, and M. V. Simkin, Phys. Rev. B57,

3602 (1998), and references within.
9D. P. Foster, C. Gérard, and I. Puha, J. Phys. A34, 5193(2001).

10R. J. Baxter, J. Phys. C6, L445 (1973).
11F. Y. Wu, Rev. Mod. Phys.54, 235 (1982).
12S. Ostlund, Phys. Rev. B24, 398 (1981).
13M. Quartin and S. L. A. de Queiroz, J. Phys. A36, 951 (2003).
14D. P. Foster and C. Gérard, J. Phys. A35, L75 (2002).
15R. B. Potts, Proc. Cambridge Philos. Soc.48, 106 (1952).
16M. P. Nightingale, Physica A83, 561 (1976).
17S. R. White, Phys. Rev. Lett.69, 2863(1992); S. R. White, Phys.

FIG. 14. Estimates of the transition temperatureTc using trans-
fer matrices, as a function ofq with periodic boundary conditions
anda=−`.

D. P. FOSTER AND C. GÉRARD PHYSICAL REVIEW B70, 014411(2004)

014411-8



Rev. B 48, 10 345(1993).
18I. Peschel, X. Wang, M. Kaulke, and K. Hallberg,Density-Matrix

Renomalization, Lecture Notes in Physics(Springer, Berlin,
1999).

19Analytic continuation of conformal invariance results givesn

<1.128, see Vl. Dotsenko and V. A. Fateev, Nucl. Phys. B240,

312 (1984).
20J. Stephenson, Can. J. Phys.47, 2621 (1969); 48, 1724 (1970);

48, 2118(1970); J. Math. Phys.11, 420 (1970).
21M. E. Fisher and A. N. Berker, Phys. Rev. B26, 2507(1982).
22H. Blöte and M. P. Nightingale, Physica A112, 405 (1982).

CRITICAL BEHAVIOR OF THE FULLY FRUSTRATED… PHYSICAL REVIEW B 70, 014411(2004)

014411-9


