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Critical behavior of the fully frustrated g-state Potts piled-up-domino model
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A g-state fully frustrated Potts model, the piled-up-domino model, is studied for different integer and
noninteger values of. Phase diagrams and some critical exponents are calculated using numerical transfer
matrix methods. Foster, Gérard, and PyhaPhys. A34, 5193(2001)] have shown that there is a reentrant
paramagnetic phase whems 3. It is shown here that the direction of reentrance changegpasses through
g=2 and disappears for a certain valuegfg*. The phase diagram of the model is radically different for
g<g* and g> g*. Tentative numerical results suggest ~4.
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[. INTRODUCTION the mixed ferroantiferromagnetic Potts model, where the
transition is thought to be of Kosterlitz-Thouless typé?

The effects of frustration in spin models have been ofand beyond which there is no transitihln this paper we
considerable interest for a couple of decades, partly becausell investigate these points in detail using the numerical
of the rich critical behavior which arises and partly becausearansfer matrix and finite-size-scaling methods, described in
frustration is considered an important feature of the behaviothe next section.
of spin glasses. Frustration arises when competing interac- It turns out that at least two special valuescpfmay be
tions prevent the system from simultaneously minimizing allidentified. The first igj=2; for g< 2 the paramagnetic phase
its local interactiond.In general frustration gives rise to in- enters under the ordered phase from the right while for
finitely degenerate ground statesThe type of critical be- 2<q<g* the paramagnetic phase enters from the (séie
havior seen is related, not to the symmetry group of theFigs. 2 and & Beyond some value afj=g* the reentrance
spins, but to the symmetry of the model as a whole, madelisappears, and the two transition lines are now replaced by
larger by frustration and indicated by the infinite degeneracy single first-order transition line. In the next section the
of the ground state. model and the numerical methods used are presented. In Sec.

About twenty years ago, Andrt al# introduced two pe- Il we present our results and the paper closes with conclud-
riodically frustrated Ising models on a square lattice, theing remarks in Sec. IV.
piled-up-domino model, and the zigzag mod#ie names
refer to thg patterns_ formed by the ferromagnetic and aptifer— Il. MODEL AND CALCULATION METHODS
romagnetic interactionsThere are two obvious generaliza-
tions to these models; the first consists of replacing the Ising The g-state Potts model is defined as a set of variables
spins by spins of symmeti®(n). This path was followed for {o;} associated with the sitdg} of a lattice!® Eacho; takes
the case ofXY spins[O(n=2)],° leading to a controversy one of q distinct values. The Hamiltonian of the model is
over the critical behavior expectéf Foster, Gérard, and given by
Puhd followed the alternative path of replacing the Ising
spins with three-state Potts spins. Of particular interest was ' - | '
the Potts piled-up-domino model, which was found to have
very different critical behavior when compared to the equiva-
lent Ising model. Notably the three-state Potts model has ¢ 2[ Paramagnetic
reentrant paramagnetic phase absent from the Ising mode
equivalent. The exact phase diagram is shown, as a functiol
of a=J,/J,, for the Ising piled-up-domino model in Fig. 1 r
while a schematic phase diagram for the three-state Pott
piled-up-domino model, summarizing the results of Ref. 9, is
shown in Fig. 2. In this article we extend the piled-up- 11~

domino model to general values of Partially .
Since the behavior changes wheis changed from 2 to 3 Ordered Ferromagnetic
it is natural to ask how the phase diagram changeg s - AF Phase ]

varied continuously. If there are other changes of behavior,
what are the values a@f for which these changes occur? It is
known, for example, that=4 is special for the standard 03 ' 1 ' (') ' 1
ferromagnetic Potts modél; =J,>0), corresponding to the o

value of q for which the transition changes from critical to  FIG. 1. The exact phase diagram as a functionyefl,/J; for
first ordert®11t is also known that|=3 is a special value for the Ising piled-up-domino model as found by Andr&al*
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FIG. 2. Schematic phase diagram as a functiom®s,/J; for the q=3 Potts piled-up-domino model as proposed by Fosteil. (Ref.
9). We will argue here that the phase POIIl does not exist as a thermodynamic phase.

1 interaction strengths between a given pair of spins. For the
H= _EIE ‘]i,j‘sui,(rj’ 1 piled-up-domino model, of interest in this article, the inter-
where the sum runs over all pairs of sites angare the action strengths are given by
|
0 for non - nearest - neighbor spins,
Jij=1J1 for nearest - neighbdiNN)spins along the solid lines, (2
J, for NN spins along the dashed lines,

as shown in Fig. 3. For convenience we definel,/J,. J;  terms of its graphical expansion. This mapping proceeds ex-

will be taken as positivgferromagnetig throughout. actly as in the ferromagnetic case, well explained in Ref. 11,
The model as given here is only defined for integer valuegnd gives the partition function in terms of the graphs of

of g. It is, however, possible to extend the model to nonin-bond linked clusters as follows:

teger values ofg by expressing the partition function in

N N
up\ "1 up\ 2
z= 2 (—) (—) a®, 3
F-r-r-r-r-r-r-r-r-r-r-fFr-r- clusters\ d q
-=-F=-F=-F-F-F-F-F-F-F-F-F-F- whereN; andN, are the numbers of occupied bonds corre-

sponding to the interaction bondg and J,, respectively,
u;=exp(BJ;) —1 andu,=exp8J,) — 1, whereB=1/kT, andC
--r-r-r-r-r-r-r-r-r-r-r-r- is the number of nonconnected clusters. In this formulation
the value ofg enters as a parameter with the same standing
as the other model parameters suclugandu,, and so it is
CCror-ro-ro-roro-rorocrororor- natural to extend the model to real valuesgof
The main results presented in this paper were obtained
FIG. 3. Arrangement of the nearest-neighbor interactions definusing transfer matrix methods. The locality of the interac-
ing the Potts piled-up-domino model: the interaction energy,is tions in the model enables a rewriting of the partition func-
along the solid lines and, along the dashed lines. tion for a lattice of lengtiN and widthL as follows:
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FIG. 4. Finite-size estimates for the critical temperattyeal-

culated using DMRG and transfer matrices, takimg—-1 andq 1.6

—
=3 calculated using 8 with'=L+2. 1
1.4 -
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where £ is the energy contribution due to the interactions i e 7
between the spins in columa-1 and columrx and half the To'x__ ]
energy contribution from the spins within columrs1 and 06 il |
X. The factor one-half for the energy due to the spin-spin LudL'=s | -
interactions within a column is chosen to avoid double o4 T -
counting when the product in E@) is performed. Equation e 1
(4) is most neatly expressed in matrix form 02 - L=10 ]
Z n=TrN, (5) L - T ¥ Sy Sy S—

(b) o

where the transfer matri¥=exp(—B¢), has been introduced FIG. 6. The phase diagram fg=1.5 found using transfer ma-
and periodic boundary conditions are taken inxtrection.  trices and the phenomenological renormalization group veitipe-
Equation(5) may be written in terms of the eigenvaluesZof riodic and(b) free boundary conditions. The points correspond to
It is easy to show, by taking the limi— o, that the dimen- finite-size estimates fo‘fc, while the lines correspond to the esti-
sionless free energy per spinand the correlation lengtyy ~ Mates for the disorder linex=1J,/Jy).

for an infinitely long strip of widthL are given by

. b=, ™
fL=rIn ko, (6) m(ﬁ)
N4
1 T T T T
095k . where)y and \; are, respectively, the eigenvalues with the
ook . largest and second largest absolute value®. of
wssh ' e e . ] The phase diagrgm may be found .uging_the p.h_enomeno-
: . logical renormalization group, where finite size critical tem-
v 03 * ] perature estimates are associated with solutions of the
0751 1 equatiod®
07-_ -
0.65- B
06- I 1 1 1 i = é (8)
0 0.02 0.04 0.06 0.08 L Lr )

1/m

FIG. 5. Estimates for the critical exponemusing DMRG with ) ] ) ) .
a=-1, =3 with L=50, L' =52. m is a measure of the number of This approach relies on the expected scale invariance at criti-

states kept at each DMRG iteraticfor full definition see text The ~ cality in the thermodynamic limit. In this limit, the correla-
horizontal line shows the value of for the standard three-state tion length is expected to have a power law behavior, de-
ferromagnetic Potts modéb=5/6)). scribed by
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S0 I B L BN LI BN L BN L B TABLE I. Finite-size estimates off, and v for (a) periodic
07'_ _;. boundary conditions an¢b) free boundary conditions with=1.5
L a? 8] for three values ofv=J,/J4, calculated using transfer matrices and
06 o 2® - finite-size scaling.
a‘a i
05 a8 -
T ﬁﬁﬂiaa - "
0.4
doocoo0000088 0 L=4andL'=6
gEEaEE® =6 .and L' -
paEe o Ismiloio L/L’ a=-2 a=-1 a=1
A L=10andL’=12 (a)
*r ] 416 1.586114 0.728082 1.261419
o1 - 6/8 1.563152 0.663427 1.253856
| | | | | T 8/10 1.560069 0.627152 1.251955
= -5 -1 0.5 0 05 ! 10/12 1.559307 0.60741 1.251281
(a) o (b)
B S B B B B
071 4/6 1.532177 0.599232 1.206717
r 6/8 1.542430 0.587361 1.227032
0.6
L 8/10 1.547948 0.581704 1.235888
05 10/12 1.551212 0.579152 1.240528
Tosr 0 L=4andL'=6
s s & B8P O L=6andL'=8 . e 1.559+0.001 0.575+0.005 1.250+0.003
0.3BeBoBoBcBoBoBetS ¢ L=8andL'=10 -
L A L=10andL'=12 ]
0.2 - v
r ] L/L’ a=-2 a=-1 a=1
0l =
L | (@
ol L L 416 0.945744 0.525958 1.087435
(b) a 6/8 0.981070 0.613453 1.108565
0.5 8/10 0.975370 0.688523 1.116414
L 10/12 0.970590 0.745299 1.120403
045
' b 009% 5 g )
041 0o ° °© g B EA: s & 4/6 0.989166 0.881934 1.143539
b o0o00o000° g R ug e 6/8 0.983198 0.957554 1.147167
Toxg g o oagg g 2 2 ¢ & th . 8/10 0.974492 1.003521 1.148211
[
Sessgstt H f e ® 0 Lt ind L= periodic) 10/12 0.969478 1.016751 1.141964
1 Y —6G . ERTIR
03- 0 © ¢ © & @ . O L=6und L'=8 (pem?dut)
¢ L=8 and L'=10 (periodic)
A L=10and L'=12 (periodic) e
. o 0.957+0.002 1.126+0.002
0.25— u  L=6and L’=8 (open) . - —
I & L=8 and L'=10 (open) 8xact critical temperature forg=1.5 is T.=1/log(1+V1.5
P N T S 4 Lel0andL=12 (openm) =1.250559- - (Ref. 11).
To 05 L5 2 bEstimate found using only the results for periodic boundary con-

1
(©) -l/o ditions, exact result gives~1.128(Ref. 19.

FIG. 7. Estimates of the thermal expongnt1/v for =10 and
=64 for =0 anda=1 as a function of 1/ with L'=L+2. . RESULTS

E=T-TJ" 9) As discussed in the Introduction, the Ising version of the
o piled-up-domino model was studied by Andeé al.* who
wherev is the correlation length critical exponent afgis ~ 9avé the exact phase diagram, shown in Fig. 1. The three-
the critical temperature. Using standard finite-size scaling arStaté Potts piled-up-domino model was investigated using

guments, finite-size estimates ofare given by transfer _matrix methods by Foster, Gérard, and Puhiae
phase diagram proposed in Ref. 9 for the three-state Potts
1 (g f7§u) piled-up-domino model is shown schematically in Fig. 2.
= I 7 4 q. (100  Later we will argue that the phase denoted POIl in Fig. 2 is
v In(L/L) likely to be a numerical artifact.
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FIG. 8. The phase diagram fogr=10 found using transfer ma-
trices and the phenomenological renormalization group eitipe-
riodic, (b) free boundary conditions for 2« <1, and(c) the
phase diagrams extended 46— —> (open symbols represent peri-
odic boundary conditions and closed symbols represent ope
boundary conditions The points give the finite-size estimates for
TC (a=J2/Jl).

The model is of particular interest when=-1. For this
value of « the frustration effects are strongest, giving rise to
a maximum in the ground-state entropy. The pdist0, «

up-domino model, but, as a result of the observed reentranc

there is another transition at nonzero temperature. In Ref. 9

the estimated value of, for «=-1 is given as 0.37+0.01.

The values ofv reported were consistent with the transition ©)
being of the Potts ferromagnetic type, but the finite-size es-

timates were still far from their limiting values.
The three-state Potts model lends itself to the use of th
density matrix renormalization group meth@MRG). For

1 remains an important point in the three-state Potts piled-
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FIG. 10. The magnetization plotted as a function of temperature
for g=10 anda=-2 along(a) the lines of ferromagnetic interac-
flons and(b) the lines of antiferromagnetic interactions. The mag-
netization seems to be developing a jump discontinuity, consistent

classical spin models, DMRG amounts to an iterative apwjith a first-order transition. The estimated transition temperaktire

proximation method for calculating the dominant eigenval-

estimated from transfer matrices is indicated.

ues of the transfer matrix. DMRG thus allows the construc- _ )
tion of approximate transfer matrices for much larger systen$izes than are accessible to standard transfer matrix calcula-
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FIG. 9. Phase diagram fay=10 calculated using the Monte
Carlo histogram method for a system of sizexdd0 with periodic
boundary conditions.

tions. The method works by judicious pruning of phase space
by repeated projection onto a prototype system composed of
a strip of width four spins; the inner two spins are the origi-
nal model spins while the outer spins anestate spins intro-
duced to represent, approximately, the rest of the original
system. Clearly the value ofi chosen determines the amount
of information which may be kept from one iteration to the
next, and hence the quality of the approximation. For a de-
tailed description of the method, the reader is referred to
Refs. 17 and 18.

We applied the DMRG method to tlie=3 Potts piled-up-
domino model with free boundary conditions for lattice
widths up toL=52 for «=-1 in order to obtain improved
estimates ofl.. For a given lattice widthm was varied and
extrapolated toe to obtain finite-size estimates fdg. These
estimates are shown in Fig. 4. This gives a new estimate for
T.=0.365+0.001. The calculations were performed taking
the J, interactions parallel to the transfes) direction. Com-
mensurability problems arise as a result of the frustration,
which results in certain values ofi better representing the
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tonic to oscillatory, to reflect the underlying ferromagnetic or

0.9 ' antiferromagnetic behaviéf. It correponds necessarily to a
sk ] minimum of the correlation length measured along some di-
ol rection. The disorder line may not cut a critical lic@here
1l the correlation length is infinije The form of the disorder
06r line estimates are consistent with the proposed critical lines,
T 0.5 terminating at the special poiit=0, a=-1.
o4l For the ferromagnetic Potts model the nature of the phase
{ transition is different foq<4 andg> 4.!! In the former case
03r the transition is critical while in the latter case the transition
02r is first order. This first-order nature is in general difficult to
0.1 see numerically for values af close to 4, but more clearly
ol v v ] seen forg=~10. Since the nature of the phase transition for
2 = -1 05 0 0.5 ' the ferromagnetic line to the right af=-1 changes, it is
@) o relevant to ask if there may be an equivalent change in the
1_',»'/' [ LA B BN B phase transition to the left @i=-1. In order to answer this
0.9 / i1 guestion we investigate the phase diagramgferO.
osks . | ! o Despite the first-order nature of the transition tpr4,

i g1 f o estimates for the transition lines may still be found using Eq.
07F i ! B, ] (8), at least for the pure Potts cage=1), since it is expected
061 § 3 ioe : ] that the transition is described by a discontinuity fixed point,

T 05 gi.e * - with an effective exponent=1/d=1/22! Bléte and Night-
N 3 f o* o Loradlcs ingale showed that the discontinuity fixed-point exponent is
5 LotandL-6 ] more dif.fic.ul_t to e>_<tract than the standard critical e_xpor’?ént.
A LeandLelo ] For thg infinite strip geomgtry convergencertol/d is only
— = . found if the temperature is fixed to the known critical tem-
IS i perature and finite size scaling d€/dT is examined using
N T e Eq. (10).?> Convergence improves for higher valuesqofre
-2 -1.5 -1 0.5 0 0.5 1 used. For our model, the critical temperature is known for
{b) o two values ofa, namely,«=1 (the pure Potts modgelnd

a=02 Estimates for the thermal expongst=1/v are shown
FIG. 11. The phase diagram fg=4 found using transfer ma- i, Fig. 7 for =0 anda=1 for =10 andq=64. The con-

trices and the phenomenological renormalization group eitipe- vergence to the expected discontinuity fixed point vaiyge,
riodic and(b) free boundary conditions. The points correspond to_ q jg very good forg=64 in both cases, whilst fag=10 the
finite-size estimates fof, while the lines correspond to the esti- convergence is slower, but nevertheleiss reasonably convinc-
mates for the disorder linfr=J,/Jy). ing. Since there is no sign of a change of behavior as a

system than other, possibly larger, valuestofWhile these function of , it is reasonable to suppose that the entire tran-
effects are not particularly strong for the calculationTof sition line is described by the same discontinuity fixed point,
they are more noticeable for the calculationzofWhile the — and that it is reasonable to use a finite-size scaling approach
estimates of’ decrease witlt, strong fluctuations as a func- to find it. The phase diagram fa=10 is shown in Fig. 8.
tion of m prevent a guantitative extrapolation with lattice  There are two features of the phase diagramderl0
size. In Fig. 5 the results fdr=50 andL’'=52 (the largest which are of particular interest. The first is that the reen-
sizes reachedhre shown. All that can confidently be stated istrance has disappeared. This picture is confirmed by the form
that the results are compatible with the pure Potts result, of the disorder lines, which fog=10 do not cross the tran-
=5/6. As aresult of these strong fluctuation effects, in whatsition line, but rather are split into two branches, one above
follows we shall limit ourselves to using standard transferand one below the transition line. The disorder lines are not
matrices, which, while limited by system size, have the adshown in Fig. 8 since the upper branch is outside the scale of
vantage of being numerically exact for the given valug.of the diagram. The low temperature phase is now ferromag-
It is natural to ask how the phase diagram changes as theetic for all values ofx. The two transition lines present for
value ofq is changed frong<2 to g>2. In Fig. 6 we show Q=3 are now replaced, fay=10, by only one transition line,
the phase diagram fay=1.5. There is still a reentrant para- which is first-order, since the transition far=1 is first
magnetic phase, and so a non-z&dor a=-1. The transi- order!
tion is no longer in the ferromagnetic Potts universality class. To verify the picture of only one first order phase transi-
For a=1 we find a value of/=1.126+0.002Ref. 19 while  tion, results of Monte Carlo simulations are shown in Figs. 9
for a=-2 we find»=0.957+0.002. Finite size estimates for and 10. In Fig. 9 we show the phase diagram calculated
T. andv for q=1.5 are given in Table I. Also shown in Fig. using the histogram method for a lattice size ob440 with
6 is the disorder line. The disorder line is defined as the lingeriodic boundary conditions, which confirms the general
at which the correlation function changes from being mono-shape of the phase diagram found using transfer matrices. In
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FIG. 13. Estimates of the transition temperatligaising tranfer
FIG. 12. The phase diagram fa=1.5 found using transfer matrices, as a function af with (a) periodic and(b) free boundary
matrices and the phenomenological renormalization group &jth  conditions fora=-2.
periodic and(b) free boundary conditiongy=J,/J;.

1
. . m= (q<nma><> - 1)1 (11)
order to confirm the suspected first order nature of the tran- q-1

sition line far from the usual ferromagnetic model=1), _ . L
R L wherena,=Nmax/ N Nmax iS the number of spins in the most
we show in Fig. 10 plots of the Potts magnetization, de- : ; .
fined through represented_spm state in a grqupl\bfsplns. T_he group of
spins taken is usually all the spins on the lattice, whereas for
our purposes it is more convenient to calculate magnetiza-
tions separately along the lines of ferromagnetic and antifer-
romagnetic interactions. The magnetization is plotted in Fig.
10 for sites for ferromagneti¢l; interacting and antiferro-
magnetic(J, interacting rows for «=-2. The ferromagnetic
rows have the standard ferromagnetic behavior seenxfor
L/L’ (@ (b) =1. The antiferromagnetic rows, however, do not saturate to
T, T. 1 as the temperature goes to zero. This is an indication that
some of the spins remain partially disordered. Closer inves-
tigation reveals that the low temperature phase is one in

TABLE II. Finite-size estimates fof . for (a) periodic boundary
conditions andb) free boundary conditions calculated using trans-
fer matrices withgq=10 anda=-2

4/6 0.373448 0.298713 which alternate spins along the evih) lines order, and the
6/8 0350440 0312203 others do not. Due to translational invariance, Fig(b10
8/10 0.341196 0.318899 shows an average of these two types of spin. The order pa-
10712 0.337639 0.322777 rameter seems to be developing a jump discontinuity at the
transition temperature, again consistent with the proposed
% 0.330+0.005 first-order behavior. The temperature at which the magneti-

zation jumps is consistent with the transition temperature
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T*=0.330+0.005 as estimated using transfer matrigsese 6
Table II). -

The results shown clearly indicate that there must exist a s . e
value ofg=g* where the frustration-induced phase transition | _
for a<-1 disappears, to be replaced by the standfirst- 4
orden phase transition for all values of Figures 11 and 12
show the phase diagrams fg=4 and =5, respectively.
While the results are less clear than fpr10 andg=3, there
are indications that fog=>5 there is no reentrant phase. The
periodic boundary conditions show a remnant of the reen- 2r-
trant phase, but which seems to vanish as the system size .
increased. This is confirmed by the disorder ling®t S -
shown) which split into two distinct lines as for thg=10 L %
case. Fogq=4, however, while the periodic boundary condi- |, , , . "/ X
tions show a vanishing jump where the reentrant phase i 2 4 6 8 10
expected, there seems to be a limiting “kink.” The free
boundary conditions confirm this picture, where the reentrant F|G. 14. Estimates of the transition temperatligausing trans-
phase does not seem to vanish, but rather becomes narrowef matrices, as a function af with periodic boundary conditions
with increasing size. The finite-size evolution of the disorderand a=-.
lines show clearly that in the limit of infinite system size,
there will be a limiting line which would have to cross the IV. CONCLUSION
transition line if there were only one, again indicating the
presence of two transition lines with possibly a vanishingly In this article we present a variety of results showing that
narrow reentrant paramagnetic phase. the critical behavior of the frustrated Potts piled-up-domino

In Fig. 13 we show estimates for the transition temperaimodel is rich and far from trivial. We confirm the existence
ture as a function o for periodic and free boundary condi- of a transition at finite temperature fo=3 anda=-1 and
tions fora=-2. It may be seen that there is no solution to theimprove the accuracy of the determination of the critical
phenomenological renormalisation grolfgq. (8)] for a  temperature using DMRG. However, the main results of this
range of values ofj, at least for the lattice sizes considered article relate to the rich variety of behaviours observed as
here. The size and position of this zone without solutionis varied.
evolves with lattice size, and since the solution lines may not (1) Forq<2, T,— > asa— —», and there is a reentrant
end in the middle of nowhere, there are nonphysical extenparamagnetic phase which enters under the partially ordered
sions of the solution lines, giving rise to apparent doublephase.
transitions for some values a@f For a=-2 it is seen that (2) Forq=2, T,—® asa— —«, but there is no reentrant
there is no solution fog=3, but for appropriate values of  paramagnetic phase afig=0 for a=-1.
there exist two solutions, one physical and the other almost (3) For g* >q>2, T, remains finite asx— —, and the
certainly not. This is clearly the explanation for the observedeentrant phase enters under the ferromagnetic phase.
extra phas€POIl) shown in Fig. 2, reported in Ref. 9. (4) There exists some valug* >3 such that forg=qg*

Figure 14 shows the critical temperature estimates in théhe reentrant phase disappears, to be replaced by a single line
limit «— —oc, which corresponds to setting=-1 in Eq.(3).  of first-order transitions for all values af.

The critical temperature fag<2 is infinite in this limit. For There are many questions left unanswered, for example
g>2 the transition temperatureritical or not depending on the nature of the criticality aroungl=3 and the value of*.
the value ofg) is finite, explaining the very flat transition line We have shown that there is some indication thatis

® L=4undL’=6

L] 0000 0 &
[]
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for a«<-1 for these values dd. around 4.
1G. Toulouse, Commun. Phyd.ondon 2, 115(1977. 3602(1999, and references within.
2J. Villain, J. Phys(Francg 46, 1840(1985. °D. P. Foster, C. Gérard, and |. Puha, J. Phys34A 5193(2001).
3Magnetic Systems with Competing Interactioadited by H. T.  1°R. J. Baxter, J. Phys. @, L445(1973.
Diep (World Scientific, Singapore, 1994 11F. Y. Wu, Rev. Mod. Phys54, 235(1982.
4G. André, R. Bidaux, J.-P. Carton, and R. Conte, J. P{Fsnce 125, Ostlund, Phys. Rev. B4, 398(1981).
40, 479 (1979. 13M. Quartin and S. L. A. de Queiroz, J. Phys.36, 951 (2003.
5S. Teitel and C. Jayaprakash, Phys. Rev2B 598 (1983. 14D, P. Foster and C. Gérard, J. Phys.34, L75 (2002.
6p. Olsson, Phys. Rev. Letf5, 2758(1995). 15R. B. Potts, Proc. Cambridge Philos. Set8, 106(1952.

"E. H. Boubcheur and H. T. Diep, Phys. Rev.3B, 5163(1999.  16M. P. Nightingale, Physica 283, 561 (1976).
8E. Granato, J. M. Kosterlitz, and M. V. Simkin, Phys. Rev5B, 17S. R. White, Phys. Rev. Let69, 2863(1992; S. R. White, Phys.

014411-8



CRITICAL BEHAVIOR OF THE FULLY FRUSTRATED.. PHYSICAL REVIEW B 70, 014411(2004

Rev. B 48, 10 345(1993. 312(1984.
18], Peschel, X. Wang, M. Kaulke, and K. Hallbei@gnsity-Matrix ~ 29J. Stephenson, Can. J. Phyt7, 2621(1969; 48, 1724(1970);
Renomalization Lecture Notes in PhysicgSpringer, Berlin, 48, 2118(1970; J. Math. Phys.11, 420(1970.
1999. 2IM. E. Fisher and A. N. Berker, Phys. Rev. 35, 2507 (1982.

P¥Analytic continuation of conformal invariance results gives 224 Blste and M. P. Nightingale, Physica A12, 405(1982).
~1.128, see VI. Dotsenko and V. A. Fateev, Nucl. Phy24%),

014411-9



