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A system of equations of motion for the Green functions in layered antiferromagnets such as La2CuO4 and
YBa2Cu3O6 has been treated by an “equal access” decoupling scheme. The correlation functions are fully
equivalent in this scheme in contrast with the ordinary random-phase approximation(RPA). The method
provides a new insight into the nature of the RPA treatment of the localized spin dynamics in magnets. Explicit
self-consistent expression for the sublattice magnetization in a perpendicular field is given. The dependence of
the sublattice magnetization on a perpendicular magnetic field is studied. High temperature tails of the in-plane
sublattice magnetization have been found to result from a nonlinear coupling of the perpendicular magnetic
field with the antiferromagnetic order parameter.
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I. INTRODUCTION

Magnetic multilayered materials have received increasing
attention in recent years as potential elements of magnetic
devices and as a model system for fundamental theoretical
studies. The high-temperature superconductors fall into this
category of systems, the magnetic moments being practically
confined within the copper-oxygen planes. The insulating
phase of these systems provides much information about
their magnetic dynamics. They are antiferromagnetic in nor-
mal state. It has already been established experimentally that
they have a large difference in the antiferromagnetic cou-
pling constant within CuO2 planes and between the CuO2
planes, i.e., in thec direction.1 This remarkable anisotropy in
the antiferromagnetic correlation is known to be at the origin
of most of the unusual magnetic and electronic properties
(see, e.g., Refs. 2 and 3 and references therein).

The Green function(GF) techniques allow one to relate
observable quantities of a magnetic system with microscopic
interaction parameters in the whole temperature range. The
GF method was introduced into magnetic systems in 1959 by
the pioneering work of Bogolyubov and Tyablikov who stud-
ied the thermodynamic properties of the spin-1/2 ferromag-
netic systems.4 Tahir-Kheli and ter Haar5 extended success-
fully this technique to an arbitrary spin system in 1962. Since
then, many authors have used this approach to study various
kinds of magnetic systems.6,7 The most remarkable advan-
tage of the GF method is its approximate validity within the
entire temperature range, which is not the case in the other
approaches such as spin-wave theory, molecular-field theory,
and high-temperature expansion theory. In this work we use
a generalized form of the usual random-phase-approximation
(RPA) procedure for layered magnets, which allows us to
evaluate the sublattice magnetization and other characteris-
tics.

We consider a three-dimensional(3D) anisotropic Heisen-
berg Hamiltonian on a two-sublattice system and use the

double-time Green function technique to calculate the mag-
netization on each sublattice as well as the Néel temperature.
The present work differs from previous calculations2,3 in that
we have employed the equal accessessEAd decoupling
scheme for linearizing higher-order Green functions.8 The
magnetic field included in the Hamiltonian was applied per-
pendicular to the CuO2 planes and at the same time perpen-
dicular to the direction of the spontaneous magnetization of
the sublattices. Our motivation here is to see the effect of the
thermal average of the transverse component of the spin op-
erator on the sublattice magnetization as well as its effect on
the Néel temperature.

The plan of our paper is as follows. In Sec. II we present
the Hamiltonian and derive a set of coupled equations for the
Green function using the equal accesses decoupling scheme.
A closed expressions for the sublattice magnetization and for
the Néel temperature are also reported. In Sec. III we present
numerical results of our calculations and compare them with
those obtained with the use of RPA.9 Finally, in Sec. IV, we
discuss the validity of the new decoupling scheme and the
physical consequences of the nonlinear coupling of the ex-
ternal magnetic field with the sublattice magnetization.

II. THEORETICAL MODEL

We divide the simple cubic lattice into two sublattices, so
that all the nearest neighbors of every site belonging to one
sublattice belong to the other sublattice. The Hamiltonian of
the present problem then is that of a 3D anisotropic Heisen-
berg model and reads:

H = o
ab

2JiSl ·Sm + o
c

2J'Sl ·Sm − gHo
f

Sl
x − gHo

g

Sm
x ,

s1d

where ab and c denote the nearest-neighbor summation
within and perpendicular to the CuO2 planes, in thec direc-
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tion, respectively. Each plane perpendicular to thec direction
contains an equal number of sites belonging to both lattices.
Thus every separate plain forms a[two-dimensional(2D)]
antiferromagnetic system. The parametersJi andJ' are the
antiferromagnetic coupling constants in theab plane and in
the c direction, respectively. On assuming the two-sublattice
model and nearest-neighbor interaction,f and g denote the
sites of the two sublattices with different spin orientations
[spin upsfd and downsgd]. The nearest neighbor of a lattice
site belonging to sublatticef belongs to theg sublattice and
vice versa. The spontaneous magnetization of each layer lies
within the plane of the layer and thus defines thez direction.
The magnetic fieldH is applied perpendicular to the planes
and its direction points out thex direction. The quantityg
=gmB wheremB is the Bohr magneton andg is the usualg
factor. To investigate the Hamiltonian given in Eq.(1) the
following (retarded) Green’s functions have been introduced
(in standard notation for spin operators):

Glf ,mf
+− st,t8d ; kkSlf

+stduSmf
− st8dll = − iust − t8dkfSlf

+std,Smf
− st8dglT,

s2ad

similarly:

Glg,mf
+− st,t8d ; kkSlg

+ stduSmf
− st8dll, s2bd

Glf ,mf
−− st,t8d ; kkSlf

−stduSmf
− st8dll, s2cd

Glg,mf
−− st,t8d ; kkSlg

− stduSmf
− st8dll, s2dd

Glf ,mf
z− st,t8d ; kkSlf

z stduSmf
− st8dll, s2ed

Glg,mf
z− st,t8d ; kkSlg

z stduSmf
− st8dll, s2fd

whereS±=Sx± iSy are the spin rising and spin lowering op-
erators, respectively, with usual commutation relations:
fSl

+,Sm
− g=2Sl

zdlm and fSl
z,Sm

± g= ±Sl
±dlm, and a suffix(e.g.) l f

means a sitel in the sublatticef. The equations of motion for
the above Green’s functions, Fourier transformed with re-
spect to time, have been derived in the usual way,8

vGlf ,mf
+− = kfSlf

+,Smf
− gl

dlm

2p
+ 2Jio

d

ab

kkSlf
z Sl+d,g

+ uSmf
− ll

− kkSlf
+Sl+d,g

z uSmf
− ll + 2J'o

d8

c

kkSlf
z Sl+d8,g

+ uSmf
− ll

− kkSlf
+Sl+d8,g

z uSmf
− ll − gHGlf ,mf

z− , s3ad

vGlg,mf
+− = 2Jio

d

ab

kkSlg
z Sl+d,f

+ uSmf
− ll − kkSlg

+ Sl+d,f
z uSmf

− ll

+ 2J'o
d8

c

kkSlg
z Sl+d8,f

+ uSmf
− ll

− kkSlg
+ Sl+d8,f

z uSmf
− ll − gHGlg,mf

z− , s3bd

vGlf ,mf
z− = kfSlf

z ,Smf
− gl

dlm

2p
+ 2Jio

d

ab

kkSlf
+Sl+d,g

− uSmf
− ll

− kkSlf
−Sl+d,g

+ uSmf
− ll + J'o

d8

c

kkSlf
+Sl+d8,g

− uSmf
− ll

− kkSlf
−Sl+d8,g

+ uSmf
− ll − sgH/2dsGlf ,mf

+− − Glf ,mf
−− d,

s3cd

vGlg,mf
z− = 2Jio

d

ab

kkSlg
+ Sl+d,f

− uSmf
− ll − kkSlg

− Sl+d,f
+ uSmf

− ll

+ J'o
d8

c

kkSlg
+ Sl+d8,f

− uSmf
− ll − kkSlg

− Sl+d8,f
+ uSmf

− ll

− sgH/2dsGlg,mf
+− − Glg,mf

−− d, s3dd

vGlf ,mf
−− = 2Jio

d

ab

kkSlf
−Sl+d,g

z uSmf
− ll − kkSlf

z Sl+d,g
− uSmf

− ll

+ 2J'o
d8

c

kkSlf
−Sl+d8,g

z uSmf
− ll

− kkSlf
z Sl+d8,g

− uSmf
− ll + sgHdGlf ,mf

z− , s3ed

vGlg,mf
−− = 2Jio

d

ab

kkSlg
− Sl+d,f

z uSmf
− ll − kkSlg

z Sl+d,f
− uSmf

− ll

+ 2J'o
d8

c

kkSlg
− Sl+d8,f

z uSmf
− ll

− kkSlg
z Sl+d8,f

− uSmf
− ll + sgHdGlg,mf

z− . s3fd

Until now the calculations are entirely exact, but the equa-
tions of motion (3) contain a three-point GF’s such as
kkSl

aSm
b ,Sm8

− ll ,a ,b= + ,−,z, which are difficult to determine.
A direct generalization of the original RPA decoupling8 then
allows one to write:

kkSl
aSm

b ,Sm8
− ll = kSl

alTGm,m8
b− + kSm

blTGl,m8
a− , a,b = + ,− ,z,

s4d

where l Þm,kxlT=trfx exps−bHdg / trfexps−bHdg, is the
thermal average of the operatorx, H is the Hamiltonian, and
T is the temperature of the system. The merit in this gener-
alized form of decoupling is that both correlation functions:
kSl

b ,Sm
− l,kSl

a ,Sm
− l enter the equation of motion in a completely

symmetrical way, or in other words, have equal access. That
is why we can call it the “equal access”sEAd decoupling
sEA-RPAd. For the system of spins coupled identically—the
Kittel-Shore-Kac model magnet10,11—the magnetization and
the magnetic susceptibility calculated within the present
EA-RPA approach do agree with the results of exact
calculations.12,13 It provides an interesting insight into the
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nature of the EA-RPA treatment of the localized spin dynam-
ics in magnets. It is also worth mentioning that the magnon
conductivity, which depends upon the decoupling scheme, is
modified appreciably by the different decoupling parameters
and by the anisotropy of the system.14

Employing the above decoupling approach and introduc-
ing the space Fourier transformation of the resulting Green
functions, we arrive at the nonuniform system of linear alge-
braic equations for the Green functions we seek

sv − hS̄dG1k
+− − zS̄G2k

+− − hg
+G1k

z− + zkSlf
+lTG2k

z− + sgHdG1k
z− = S̄/p,

s5ad

sv + hS̄dG2k
+− + zS̄G1k

+− − hf
+G2k

z− + zkSlg
+ lTG1k

z− + sgHdG2k
z− = 0,

s5bd

vG1k
z− − s1/2dzkSlf

+lTG2k
−− − s1/2dhg

−G1k
+− + s1/2dhg

+G1k
−−

+ s1/2dzkSlf
−lTG2k

+− + sgH/2dsG1k
+− − G1k

−−d = − kSlf
−lT/2p,

s5cd

vG2k
z− − s1/2dzkSlg

+ lTG1k
−− − s1/2dhf

−G2k
+− + s1/2dhf

+G2k
−−

+ s1/2dzkSlg
− lTG1k

+− + sgH/2dsG2k
+− − G2k

−−d = 0, s5dd

sv + hS̄dG1k
−− − zkSlf

−lTG2k
z− + zS̄G2k

−− + hg
−G1k

z− − sgHdG1k
z− = 0,

s5ed

sv − hS̄dG2k
−− − zkSlg

− lTG1k
z− − zS̄G1k

−− + hf
−G2k

z− − sgHdG2k
z− = 0,

s5fd

where h=8Ji+4J', z=2Jiod eik·d+2J'od8 eik·d8, and S̄

=kSlf
z lT=−kSlg

z lT (the sublattice magnetization is related toS̄

by M =gS̄),

hfsgd
± = 2Jio

d

kSl+d,fsgd
± lT + 2J'o

d8

kSl+d8,fsgd
± lT = hkSfsgd

± lT,

(hfsgd
+s−d is the local field parameter, see Ref. 13),

Glf ,mf
+− = s2/Ndo

k

G1k
+−eik·sl−md, s6d

Glg,mf
+− = s2/Ndo

k

G2k
+−eik·sl−md, s7d

whereN is the total number of spins in the lattice andk is the
reciprocal lattice vector which runs over the first Brillouin
zone.G1k is the Green’s function whenl and m are on the
same sublattice andG2k when they are on different sublat-
tices.

Solving the system of equations(5) one finds the follow-
ing form for G1k

+−:

G1k
+− =

Av2 + Bv + C

2pvsv2 − D2d
, s8d

where

A = 2S̄,

B = hskSlf
x lT

2 + kSlf
y lT

2 + kSlf
z lT

2d + kSlf
z lT

2 + kSlf
−lTgH,

C = − hS̄kSlf
+lTgH,

and

D2 = sh2 − z2dskSlf
x lT

2 + kSlf
y lT

2 + kSlf
z lT

2d + 2hkSlf
x lTgH. s9d

Using the spectral intensity theorem of the Green function
theory4 we have calculated the correlation functionkSlf

−Slf
+l as

kSlf
−Slf

+l =
2

N
o
k
FhskSlf

x lT
2 + kSlf

y lT
2 + 2kSlf

z lT
2d + kSlf

−lTgH

2D

3cothS D

2kBT
D − S̄G . s10d

For spin-1/2 we haveSl
z=1/2−Sl

−Sl
+, thereforeS̄ can be ex-

pressed in terms of the correlation functionkSlf
−Slf

+l (after
dropping the suffixl f ,T) as

S̄= 32 +
4

N
o
k 1 hF2 +S kSxl

kSzl
D2

+ S kSyl
kSzl

D2G +
kS−lgH

kSzl2

2Îsh2 − z2dF1 +S kSxl
kSzl

D2

+ S kSyl
kSzl

D2G + 2h
kSxlgH

kSzl2

cothS D

2kBT
D − 124

−1

. s11d

This is a self-consistent equation forS̄: it gives us the varia-
tion of the sublattice magnetization with temperature. It can
be reduced to the expression for the magnetization given in
Ref. 9 by puttingH=0 and kSxl=kSyl=0. Other types of

self-consistent solutions can also be extracted from Eq.(11),
e.g., kSxl=kSyl=kSzl=0, which corresponds to the paramag-
netic state. These states may be unstable(metastable) in
some range of temperature. The Néel temperatureTN can be
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extracted from Eq.(11) using the well-known propertyS̄
→0 asT→TN, atH=0, a simple algebra leads to the follow-
ing expression for the Néel temperature:

TN =
1

4kB
F 1

N
o
k

S1 +
S̄2

h2DS h

h2 − z2DG−1

, s12d

where

h = ÎkSxl2 + kSyl2 + kSzl2 s13d

is the local field parameter.13 One might think of this
parameter as a sort of scaling factor depending on tempera-
ture in a complicated way via the thermal averages. The
above formula for the Néel temperature can be reduced(in
our geometry where the componentkSyl vanishes) to the ex-
pression:

TN =
Ji

4kBS1 +
1

1 + skSxl/kSzld2DIsrd
, s14d

wherer =J' /Ji and

Isrd =
2

N
o
k

s2 + rd
s2 + rd2 − fcosskxad + cosskyad + r cosskzcdg2 .

s15d

We apply here the well-known linear relation between
kSxl andH: kSxl=x11H, wherex11 stands for thexx compo-
nent of the magnetic susceptibility tensor. In this geometry
the componentkSyl vanishes. The value ofx11 has been put
x11=g / f8Jis2+rdg as it follows from Ref. 15. One should
remember that contrary to the parallel componentx33, the x
componentx11 does not show a significant temperature de-
pendence. As it can be seen from Eqs.(9) and (11) the per-
pendicular magnetic fieldH enters the self-consistent equa-
tion in the second power only so that its effect on the
magnetizationkSzl is intrinsically nonlinear. A mathematical
manipulation leads to the following form for the Néel tem-
perature(see the Appendix):

TN =
Ji

4kBS1 +
1

1 + „gH/f8JiS̄s2 + rdg…2Df0.5055 − 0.162 lnsrdg
. s16d

Let us mention that a similar logarithmic term has been
previously obtained by Singhet al.2 The above formula for
TN differs from Eq.(12) of Ref. 9 in that a nonlinear field
dependent term appears(due to the EA-RPA decoupling
scheme) in the denominator. The impact of such a term will
be discussed in the next section. It is clear also from Eq.(16)
that when r →0 the Néel temperatureTN→0. This is in
agreement with the Mermin and Wagner theorem that there
cannot be long-range order in two-dimensional systems at
finite temperature.

III. NUMERICAL CALCULATION OF THE SUBLATTICE
MAGNETIZATION FOR YBa 2Cu3O6+x AND La2CuO4.

In what follows we use Eq.(11) to study the effect of the
magnetic field applied perpendicular to the direction of the
sublattice magnetization onto the spontaneous magnetization
within each sublattice. The temperature dependence of the
sublattice magnetizationkSzl at the presence of the perpen-
dicular magnetic fieldH has been obtained numerically with
the summation in Eq.(11) replaced by a triple integral over
the Brillouin zone. The integral was evaluated with a step
adaptive iterative method. Then the value of the magnetiza-
tion was set up and the corresponding temperature was found

by iterations until a convergence better then 0.1% was at-
tained.

Figure 1(a) presents the variation of the sublattice magne-
tization MsTd, normalized to its value at zero temperature
Ms0d, as a function of temperature atH=0. The plot is given
for the undoped YBa2Cu3O6+x (solid curve) and La2CuO4
(dashed curve). The value ofJi is put to 0.006 and 0.009 eV,
respectively, which at the ratior =J' /Ji equal to 10−5 (see
Ref. 9) reproduces experimental Néel temperatures for both
compounds. One should notice a slight difference between
the values ofJi found here and those reported in literature.
Let us mention, however, that some authors consider 2Ji in-
stead ofJi and 2J' instead ofJ'.9 There is also a hesitation
in the literature9 about the value of the perpendicular/parallel
coupling ratior =J' /Ji. To illustrate the extent to which this
quantity influences the sublattice magnetization we show in
Fig. 1(b) the results obtained withJi=0.006 eV for three
different values ofr. The plot is given for the undoped
YBa2Cu3O6+x. One can see an upwards shift of the Néel
temperature with increasingr. Let us mention that the inter-
planer couplingJ', though very small, is essential for a sys-
tem realizing long-range order at nonzero temperature.

The temperature dependence of the sublattice magnetiza-
tion at the presence of the perpendicular magnetic fieldsH
Þ0d is represented in Figs. 2 and 3 for YBa2Cu3O6+x and
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La2CuO4, respectively. The other parameters are the same as
in Fig. 1(a). Generally, the perpendicular magnetic field
smears out the phase transition in analogy to a nonzero field
conjugated to the order parameter. A similar effect is often
reported in many second order phase transitions in the ab-
sence of any symmetry breaking field and is explained by
various phenomena such as the presence of impurities or
logarithmic corrections to the critical behavior.16,17 In the
present case one can expect such smearing out of the phase
transition even in the perfect YBa2Cu3O6+x and La2CuO4
crystals in the magnetic field with a nonzero component per-
pendicular to the CuO2 planes. On the other hand the same
phenomenon may be expected at the field oriented parallel to
the sublattice magnetization, e.g., in the magnetic suscepti-
bility measurements, if the CuO2 planes are not strictly par-
allel to each other due to some structural defects.

IV. DISCUSSION AND CONCLUSION

The random-phase approximation(RPA) of Tyablikov,4 is
explicitly aimed at the description of ferromagnets and leads

directly to the mean field results. It is the simplest and most
current decoupling scheme, but it results in a disagreement
with the low temperature theory,18 where only long-
wavelength spin waves are excited, and in turn, the local
magnetization direction varies slowly through the crystal.19

The equal-access random-phase approximation(EA-RPA)
introduced in this paper is a natural extension of the RPA,
conserving more information on the spin-spin correlation
functions than the original RPA description. It covers a mul-

FIG. 1. (a) Variation of the sublattice magnetizationMsTd [nor-
malized to its value at zero temperatureMs0d] as a function of
temperature for the undoped YBa2Cu3O6+x (solid curve) and
La2CuO4 (dashed curve) at H=0. The value ofJi is put to 0.006 and
0.009 eV, respectively, and the ratior =10−5. (b) Variation of the
sublattice magnetizationMsTd /Ms0d vs temperature for the un-
doped YBa2Cu3O6+x and for r =10−5 (doted curve), r =10−4 (solid
curve), andr =10−3 (dashed curve).

FIG. 2. (a) Three-dimensional plot of the sublattice magnetiza-
tion MsTd /Ms0d as a function of temperature and of perpendicular
field H for the undoped YBa2Cu3O6+x. (b) Sublattice magnetization
MsTd /Ms0d as a function of temperature for different values of the
perpendicular fieldH=0 T (solid curve), H=1 T (dashed curve),
andH=10 T (doted curve). Notice the high temperature tails of the
sublattice magnetization above the Nèel temperature(for a nonzero
value of the magnetic field). (c) Sublattice magnetization
MsTd /Ms0d as a function ofH for two different values of tempera-
ture. The solid curve forT=300 K (which is below the Néel tem-
perature) and the doted curve forT=400 K.TN. The nonzero value
of the magnetization(at H=0) for the former and the zero value for
the latter is noteworthy. The value ofJi=0.006 eV, and the ratior
=10−5 is kept the same for(a)–(c).
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titude of spin systems including antiferromagnets, but its ba-
sic physics and range is of the mean field approximation
type. It can probably be improved to adjust its critical indices
to the indices of the static scaling theory using the method
developed by Czachor and Holas20 for the RPA.

To study the magnetic properties in layered antiferromag-
nets one has to take into account a greater variety of spin-
spin correlations than in the case of ferromagnets. To do so,
we have first introduced a generalized RPA decoupling[Eq.
(4)] of the three-spin correlation functions(Green’s func-
tions) involved. We claim that in doing so we have entered a
reasonable way towards improving the GF method for the
magnetization calculations in layered structures. A way more
systematic than those quoted in the Introduction. On assum-
ing then an equivalent and symmetric role of two different
two-spin correlation functions pertinent to the problem one
has the symmetric “equal-access” form of the RPA decou-
pling (EA-RPA). At this step one obtains the canonical set
[Eq. (5)] of six equation of motion for the six GF’s we seek.

The system of equations[Eq. (5)] is solved analytically and
an explicit expression[Eq. (8)] for the Green function has
been found. On looking at the roots of its denominator one
can find a formula for the dispersion relations of magnetic
excitations of the system. Such a formula depends on the
local field parametershfsgd

+s−d which allow one to predict the

dispersion relations for the antiferromagnetic excitations,
such as they can be seen in neutron scattering. The spectral
intensity theorem of the Green function theory4 and Eq.(8)
has been used to calculate the sublattice magnetization[Eq.
(11)]. The expression is found to involve all the components
of the magnetization so that the external magnetic field in the
x direction couples in the second order to thez component of
the magnetization which is the order parameter in the phase
transition under study. The analytical expression for the Néel
temperature Eq.(12) is then found in terms of the parameters
of the model and, what is more interesting, on the local field
parameterh.13

As an example of an application of the new EA-RPA
scheme we have studied here the effect of the magnetic field
perpendicular to the spontaneous magnetization in the CuO2
layers onto the behavior of the antiferromagnetic order pa-
rameter. The magnetic field enters the equations in the sec-
ond power and therefore this is a second order effect. The
application of such a field results in high temperature tails of
the sublattice magnetization above the Nèel temperature.
Thus the effect is analogous to the linear effect of the field
conjugated with the order parameter. Similar high tempera-
ture tails are often encountered in second order phase transi-
tions of different nature. Their explanation invokes various
phenomena ranging from impurities to so-called logarithmic
corrections to the critical behavior.16,17Here the origin of the
tails is the existence of the nonlinear coupling between the
sublattice magnetization and the perpendicular macroscopic
field.

The results obtained in the present work should be com-
pared with those obtained with the use of renormalization
group (RG) and 1/N expansion for a similar model.21 The
RG approach implies an expansion of the Hamiltonian as a
function of deviation from the ordered state and, therefore, is
well adapted to low temperatures where the deviations are
indeed small. On the other hand the 1/N expansion(N the
dimension of the spin variable,N=3 for the Heisenberg
model) should in principle work in the whole range of tem-
peratures. It turns out, however, that the first order expansion
overestimates the sublattice magnetization at low tempera-
tures if there are non-negligible anisotropic terms in the ini-
tial Hamiltonian(Fig. 2 of Ref. 21). Both approaches give a
double logarithmic expression for the Nèel temperature[Eqs.
(45) and (87) of Ref. 21]. A renormalization of the Nèel
temperature is necessary when treating experimental data in
both cases. A crossover temperature can be discerned be-
tween two regimes, although the magnetization curve rests
continuous and smooth.

Compared with those approaches the present work gives a
unique expression for the whole temperature range. The
starting Hamiltonian does not contain anisotropy terms so
that a direct comparison can be made for La2CuO4 only (Fig.
1 of Ref. 21), where the anisotropy parameters are weak.

FIG. 3. (a) The same as in Fig. 2(a) but for La2CuO4. (b) The
same as in Fig. 2(b) but for H=0 T (solid curve), H=3 T (dashed
curve), andH=10 T (doted curve). (c) The same as in Fig. 2(c) but
for T=400 K (doted curve), T=500 K (solid curve), and T
=600 K (dashed curve). The value ofJi=0.009 eV, and the ratio
r =10−5 is kept the same for(a)–(c).
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The results of Ref. 22 suggest that a simple rescaling of
the temperature may give correct results in analogy to those
obtained in Ref. 21 with a proper renormalization of the Nèel
temperature. Comparison of our Fig. 2(b) with Fig. 1 of Ref.
21 suggests that the general shape of the magnetization curve
at H=0 is correct for weak anisotropy. Moreover, introduc-
tion of anisotropy terms is fairly analogous to the one-
particle energy contribution of Ref. 22. Therefore it is ex-
pected that the EA-RPA for a Hamiltonian with nonzero
anisotropy will produce a magnetization curve similar to Fig.
2 of Ref. 21 with a characteristic crossover from a rather
weak temperature dependence at low temperatures to a steep
increase directly belowTN. We now work on the formulation
of the EA-RPA with anisotropy terms.

APPENDIX

Starting from Eq.(15) for Isrd. After using the method of
partial fractions and changing the summation overk into
integration, Eq.(15) reduces to

Isrd =
V

p3E
0

p/c E
0

p/a E
0

p/a

3
dkxdkydkz

f2 − cosskxad − cosskyadg + rf1 − cosskzcdg
,

sA1d

whereV stands for the volume of the unit cell. Changing to

the new variablesa ,b ,g via the transformkxa=a ,kya
=b ,kzc=g, integrating first overg and then overb makes
the above equation changing to the form:

Isrd =E
0

p

Asa,rdBsa,rddu, sA2d

where

Asa,rd = 2fs3 − cosads2r + 1 − cosadg−1/2 sA3d

and

Bsa,rd =E
0

p/2

s1 − G sin2ud−1/2du, sA4d

where

G = 4rfs3 − cosadsr + 1 − cosadg−1. sA5d

The value of the integral in Eq.(A2) becomesp /2 at very
small r and the leading contribution to the integral comes
from small values ofa. The integral in Eq.(A2) has been
calculated numerically as a function of the ratior. The re-
sults shows that its value can be approximately written as
Isrd=f0.5055−0.162 lnsrdg. The Néel temperature Eq.(16)
results directly from inserting the value ofIsrd into Eq. (14).
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