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Nonlinear effect of perpendicular magnetic field on the antiferromagnetic phase transition
in weakly coupled layered systems: Equal access decoupling scheme
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A system of equations of motion for the Green functions in layered antiferromagnets sucyCafOhand
YBa,CuzOg has been treated by an “equal access” decoupling scheme. The correlation functions are fully
equivalent in this scheme in contrast with the ordinary random-phase approxiniRi#). The method
provides a new insight into the nature of the RPA treatment of the localized spin dynamics in magnets. Explicit
self-consistent expression for the sublattice magnetization in a perpendicular field is given. The dependence of
the sublattice magnetization on a perpendicular magnetic field is studied. High temperature tails of the in-plane
sublattice magnetization have been found to result from a nonlinear coupling of the perpendicular magnetic
field with the antiferromagnetic order parameter.
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I. INTRODUCTION double-time Green function technique to calculate the mag-

Magnetic multilayered materials have received increasind!€tization on each sublattice as well as the Neéel temperature.
attention in recent years as potential elements of magneti€he present work differs from previous calculatiéai that
devices and as a model system for fundamental theoreticf¢ have employed the equal access&#\) decoupling
studies. The high-temperature superconductors fall into thischeme for linearizing higher-order Green functiérihe
category of systems, the magnetic moments being practicallgnagnetic field included in the Hamiltonian was applied per-
confined within the copper-oxygen planes. The insulatingoendicular to the Cuplanes and at the same time perpen-
phase of these systems provides much information abouwticular to the direction of the spontaneous magnetization of
their magnetic dynamics. They are antiferromagnetic in northe sublattices. Our motivation here is to see the effect of the
mal state. It has already been established experimentally thgiermal average of the transverse component of the spin op-
they have a large difference in the antiferromagnetic couerator on the sublattice magnetization as well as its effect on
pling constant within Cu@ planes and between the CyO the Néel temperature.
planes, i.e., inthe direction?® This remarkable anisotropy in The p|an of our paper is as follows. In Sec. Il we present
the antiferromagnetic correlation is known to be at the originthe Hamiltonian and derive a set of coupled equations for the
of most of the unusual magnetic and electronic propertieg&reen function using the equal accesses decoupling scheme.
(see, e.g., Refs. 2 and 3 and references therein A closed expressions for the sublattice magnetization and for

The Green functiorfGF) techniques allow one to relate the Néel temperature are also reported. In Sec. Ill we present
observable quantities of a magnetic system with microscopigumerical results of our calculations and compare them with
interaction parameters in the whole temperature range. Those obtained with the use of RPAinally, in Sec. IV, we
GF method was introduced into magnetic systems in 1959 bjiscuss the validity of the new decoupling scheme and the
the pioneering work of Bogolyubov and Tyablikov who stud- physical consequences of the nonlinear coupling of the ex-

ied the thermodynamic properties of the spin-1/2 ferromagternal magnetic field with the sublattice magnetization.
netic systemé.Tahir-Kheli and ter Ha&rextended success-

fully this technique to an arbitrary spin system in 1962. Since ll. THEORETICAL MODEL
then, many authors have used this approach to study various
kinds of magnetic systenfs. The most remarkable advan-

tage of the GF method is its approximate validity within the

We divide the simple cubic lattice into two sublattices, so
that all the nearest neighbors of every site belonging to one
sublattice belong to the other sublattice. The Hamiltonian of

entire temperaiure range, which is not the case ir_} the oth e present problem then is that of a 3D anisotropic Heisen-
approaches such as spin-wave theory, molecular-field theorgerg model and reads:

and high-temperature expansion theory. In this work we use
a generalized form of the usual random-phase-approximation 4, - > 23S - S+ 323, -S,-HD S - YHY s,
(RPA) procedure for layered magnets, which allows us to ab c f g
evaluate the sublattice magnetization and other characteris- 1)
tics.

We consider a three-dimension8D) anisotropic Heisen- where ab and ¢ denote the nearest-neighbor summation
berg Hamiltonian on a two-sublattice system and use thevithin and perpendicular to the CyQ@lanes, in thes direc-
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tion, respectively. Each plane perpendicular tocdhrection
contains an equal number of sites belonging to both lattices.
Thus every separate plain forms[@vo-dimensional(2D)]
antiferromagnetic system. The parametg&randJ, are the
antiferromagnetic coupling constants in talk plane and in
the c direction, respectively. On assuming the two-sublattice
model and nearest-neighbor interactiérend g denote the
sites of the two sublattices with different spin orientations
[spin up(f) and down(g)]. The nearest neighbor of a lattice
site belonging to sublattick belongs to they sublattice and
vice versa. The spontaneous magnetization of each layer lies
within the plane of the layer and thus defines ztdirection.

The magnetic fieldH is applied perpendicular to the planes
and its direction points out the direction. The quantityy
=gug Where ug is the Bohr magneton angl is the usualg
factor. To investigate the Hamiltonian given in EG,) the
following (retardegl Green’s functions have been introduced

(in standard notation for spin operatprs
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ab
Oim . -
@G = ([Szf’s%szl_ﬂ_ + Z‘JIIE& (S§S+56/Sme?

~(StSsglSne) + 3. 2 (SiSs ol Sud)
5

~((StS.5 g/Sn0) = (HHI2)(Gif 0= Git o),
(30

ab
wGIZg_,mf = 2~]||2(s <<3+g$_+§,f|5—mf>> - <<S_gs++6,f|sr_'nf>>

Git mi(t,t") = (S;OIS(t))) = =6t - )0, So(t) D,

similarly:

Glgmi(t,t) = (SHDISH(t))),
Gif mi(t,t') = (S5 OIS (t))),
Gigmi(t,t') = (S0 SN,
Gl mi(t,t") = (OIS,

gmi(tit) = (SgISHdt))),

where S*=S'+iS are the spin rising and spin lowering op-
erators, respectively, with usual commutation relations:

(2a)

(2b)
(20)
(2d)
(2¢)

(2f)

(S, S=250m and [, S, 1=+ 0, and a suffix(e.g) If

means a sitéin the sublattice. The equations of motion for
the above Green’s functions, Fourier transformed with re

spect to time, have been derived in the usual $vay,

ab
+- - 5m o
oGyt = <[S+f,smf]>i + 2J"2§ <<Szf3+6,g|$1f>>

~ (S SesglSn) + 29, 2 (S Sy oS
o

~ (SiS,y oS = THG

ab

"’Glsz = 23\\25 <<Szgs++5,f|5r_nf>> - <<S+gs12+5,f|$qf>>

+ ZJLE <<Szg$++6’,f|$1f>>
5

- <<S+(::1$Z+5’,f|$1f>> - Izg_,mf!

(3a)

(3b)

+3, 2 (S5 1500 ~ (S 1Su)
=

= (YH12)(Gig i = Gig m). (3d)

ab

@Gyt me = 2‘]\\2(;4 (S 59/Sn = (S Srs0lSne?

+23, 2SS s o Su?
"
— (SiSis gl S + (PH)Glf s (3¢)

ab

@Gy mi = ZJIIEg <<S_gsz+6,f|sr_nf>> - <<32g3_+5,f|3;1f>>

+23, 2 (SgSh s IS
®

~ (SySe 1S + (FH)Gg s (3f)

Until now the calculations are entirely exact, but the equa-
tions of motion (3) contain a three-point GF’s such as
«S'sE, S, a,B=+,—,z which are difficult to determine.

A direct generalization of the original RPA decoupfirigen
allows one to write:

(S Sy ) = (SICE Ly +H(FIC Ty @B=+.- .,
4

where |#m,{(x)r=tr[x exp(-BH)]/trlexp(-BH)], is the
thermal average of the operatgrH is the Hamiltonian, and

T is the temperature of the system. The merit in this gener-
alized form of decoupling is that both correlation functions:
(§£,S)4S", S,y enter the equation of motion in a completely
symmetrical way, or in other words, have equal access. That
is why we can call it the “equal acces$EA) decoupling
(EA-RPA). For the system of spins coupled identically—the
Kittel-Shore-Kac model magnét*'—the magnetization and
the magnetic susceptibility calculated within the present
EA-RPA approach do agree with the results of exact
calculations:>13 It provides an interesting insight into the
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nature of the EA-RPA treatment of th(_e Io_calized spin dynam- G = NS GIIZeik-(I—m)' (6)
ics in magnets. It is also worth mentioning that the magnon K
conductivity, which depends upon the decoupling scheme, is
modified appreciably by the different decoupling parameters
and by the anisotropy of the systéfh.

Employing the above decoupling approach and introduc-
ing the space Fourier transformation of the resulting GreenvhereN is the total number of spins in the lattice aks the
functions, we arrive at the nonuniform system of linear alge+eciprocal lattice vector which runs over the first Brillouin

Glg mf— (Z/N)E G""elk (1 m) @

braic equations for the Green functions we seek zone.Gyy is the Green’s function whehand m are on the
— e e b . same sublattice an@,, when they are on different sublat-
(0= 19Gyy — {SGy — hyGly + {Si)+CGo + (YH)le = tices.
(53) Solving the system of equatioriS) one finds the follow-
ing form for G, :
(0 + 79 Gy + {SGi; = h{Gh + {SrG+ (#H)G5= 0 oo A’ +Bo+C ®
(5b) ¥ 2rw(w?-D?)’
G~ (LD USGa - (UGl + (12 where
+ (L2 USHGa + (YHI2)(Gyy — G) = —(Sp)r/2m, A=2S,
(5¢)

B=n((SHT+(SH% +(SHD +(SHF+(SprH,
@G~ (L2 USrGly — (1/2)h; Gy + (1/2)h{ Gy

+(1/12){(SghGix + (YH/2)(G5x - Gx) =0, (50) C=- 7SS,
(w+ 79Giy — {S)Gh + {SG; + hyGi — (YH)GH =0 e
o+ 799Gy — L9106k ok T NyGy = (yR) Gy =0,
(50 D?= (77 = )(SHT+ (ST +(SHD + 2K SpHroH. (9)
- Using the spectral intensity theorem of the Green function
(0= 179Gy — §<$_g>TG CSle +h{ G5 — (YH)G5 = theory* we have calculated the correlation functi®}S;) as
<5f> _ 2| (SR (E0F+ ASHD + (SprH
ik-8 k-8 - <S_fs;> - _E
where 7=8J+4J,, (=2)3;€*+2],3; €7, and S N7 2D
=(Shr=—(Sy)r (the sublattice magnetization is relatedSo D _
by M=99), xcot)—< 2kBT> -S|. (10
Nig) = 2‘]\\25 (Ssat@)t* ZJLZ (S5 1197 = KSrg)T: For spin-1/2 we hav&=1/2-SS, thereforeS can be ex-
2 pressed in terms of the correlation functi¢g;S;) (after
(hf( ) is the local field parameter, see Ref.)13 dropping the suffidf,T) as
|
(892 (& 2| (SHH -
_ 12" @) | D
S= > cotl-< ) -1 . (11
2) (89)? (& (SHyH 2kgT
(772 g =N + 27] 7\ 2
<SZ> ) )

This is a self-consistent equation f8rit gives us the varia- Self-consistent solutions can also be extracted from(Ep,
tion of the sublattice magnetization with temperature. It car€-9-,(S)=(S)=(S)=0, which corresponds to the paramag-
be reduced to the expression for the magnetization given inetic state. These states may be unstgbletastable in
Ref. 9 by puttingH=0 and (S)=(9)=0. Other types of some range of temperature. The Néel temperafyrean be
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extracted from Eq(11) using the well-known propert)g T. = J (14)
—0asT—Ty, atH=0, a simple algebra leads to the follow- N 1 '
ing expression for the Néel temperature: 4kg( 1+ 1+ (SWSH)? 1(r)

wherer=J,/J, and

1)1 2\ 7\ =23 (2+1)
Tn= kg NE 1+ h2 ( - §2> : (12) - N (2+1)?-[codk.a) + cogka) + 1 cogk,e)]?
(15

We apply here the well-known linear relation between
(S andH: (S)=x14H, where x;; stands for thexx compo-
nent of the magnetic susceptibility tensor. In this geometry
the componen{S’) vanishes. The value of;; has been put
x11=v/[8J,(2+r)] as it follows from Ref. 15. One should
remember that contrary to the parallel componept the x
, i . ) ) componenty;; does not show a significant temperature de-
is the local field parametéf’. One might think of this pendence. As it can be seen from E€.and (11) the per-
parameter as a sort of scaling factor depending on tempergendicular magnetic fielth enters the self-consistent equa-
ture in a complicated way via the thermal averages. Theion in the second power only so that its effect on the
above formula for the Néel temperature can be redyted magnetizationfS) is intrinsically nonlinear. A mathematical
our geometry where the componé®Y) vanishegto the ex-  manipulation leads to the following form for the Néel tem-
pression: perature(see the Appendix

where

h= V()2 +(9)2 +(S)? (13)

Ji

1 (16)

1+(yHI[83S(2 +1)])?

4k5<1 + )[0.5055 ~0.162 Ifr)] |

Let us mention that a similar logarithmic term has beenby iterations until a convergence better then 0.1% was at-
previously obtained by Singat al? The above formula for tained.
Ty differs from Eq.(12) of Ref. 9 in that a nonlinear field Figure Xa) presents the variation of the sublattice magne-
dependent term appeatgdue to the EA-RPA decoupling tization M(T), normalized to its value at zero temperature
schemeg in the denominator. The impact of such a term will M(0), as a function of temperature ldt=0. The plot is given
be discussed in the next section. Itis clear also from(E6).  for the undoped YB#u;Og.y (solid curvg and LaCuQ,
that whenr —0 the Néel temperatur@y—0. This is in  (dashed curve The value ofJ, is put to 0.006 and 0.009 eV,
agreement with the Mermin and Wagner theorem that thereespectively, which at the ratio=J, /J, equal to 10° (see
cannot be long-range order in two-dimensional systems &Ref. 9 reproduces experimental Néel temperatures for both
finite temperature. compounds. One should notice a slight difference between
the values of], found here and those reported in literature.
Let us mention, however, that some authors considgim2
lIl. NUMERICAL CALCULATION OF THE SUBLATTICE stead ofJ, and 2, instead of], .° There is also a hesitation
MAGNETIZATION FOR YBa ,Cu30g.x AND La,CuO,. in the literaturé about the value of the perpendicular/parallel
coupling ratior=J, /J,. To illustrate the extent to which this
In what follows we use Eq.11) to study the effect of the quantity influences the sublattice magnetization we show in
magnetic field applied perpendicular to the direction of therig. 1(b) the results obtained witld,=0.006 eV for three
sublattice magnetization onto the spontaneous magnetizatiafifferent values ofr. The plot is given for the undoped
within each sublattice. The temperature dependence of theBa,Cu;04,,. One can see an upwards shift of the Néel
sublattice magnetizatio(§’) at the presence of the perpen- temperature with increasing Let us mention that the inter-
dicular magnetic field has been obtained numerically with planer couplingl , though very small, is essential for a sys-
the summation in Eq(11) replaced by a triple integral over tem realizing long-range order at nonzero temperature.
the Brillouin zone. The integral was evaluated with a step The temperature dependence of the sublattice magnetiza-
adaptive iterative method. Then the value of the magnetization at the presence of the perpendicular magnetic field
tion was set up and the corresponding temperature was foungd0) is represented in Figs. 2 and 3 for Y@a,Og., and
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FIG. 1. (a) Variation of the sublattice magnetizatidm(T) [nor-
malized to its value at zero temperatu0)] as a function of
temperature for the undoped YR2,Og., (solid curvg and
La,CuQ, (dashed curveatH=0. The value of; is put to 0.006 and
0.009 eV, respectively, and the ratic107°. (b) Variation of the
sublattice magnetizatioM(T)/M(0) vs temperature for the un-
doped YBaCu;Og,y and forr=10"° (doted curvg r=10" (solid
curve), andr=1072 (dashed curve

FIG. 2. (a) Three-dimensional plot of the sublattice magnetiza-
tion M(T)/M(0) as a function of temperature and of perpendicular
field H for the undoped YB#Cu304.y. (b) Sublattice magnetization
La,CuQ,, respectively. The other parameters are the same ag(T)/M(0) as a function of temperature for different values of the
in Fig. 1(a). Generally, the perpendicular magnetic field perpendicular fieldH=0 T (solid curve, H=1 T (dashed curve
smears out the phase transition in analogy to a nonzero fielahdH=10 T (doted curvg Notice the high temperature tails of the
conjugated to the order parameter. A similar effect is oftersublattice magnetization above the Neel temperatiorea nonzero
reported in many second order phase transitions in the alyalue of the magnetic fieJd (c) Sublattice magnetization
sence of any symmetry breaking field and is explained byM(T)/M(0) as a function oH for two different values of tempera-
various phenomena such as the presence of impurities d¢4re. The solid curve folf =300 K (which is below the Néel tem-
logarithmic corrections to the critical behavi§rt” In the  peraturgand the doted curve faf=400 K> Ty. The nonzero value
present case one can expect Such Smeanng out Of the phﬁéhe magnetlzatlo(latHZO) for the former and the zero Valu-e for
transition even in the perfect YBauOg,, and LaCuO, the Iat?er is noteworthy. The value 3f=0.006 eV, and the ratio
crystals in the magnetic field with a nonzero component per= 107 is kept the same fofa)(c).

pendicular to the CuPplanes. On the other hand the same ) _ )
phenomenon may be expected at the field oriented parallel @rectly to the mean field results. It is the simplest and most

bility measurements, if the Cuplanes are not strictly par- With the low temperature theolj, where only long-
allel to each other due to some structural defects. wavelength spin waves are excited, and in turn, the local

magnetization direction varies slowly through the cry$tal.
The equal-access random-phase approximateA-RPA)
introduced in this paper is a natural extension of the RPA,
The random-phase approximati@RPA) of Tyablikovis  conserving more information on the spin-spin correlation
explicitly aimed at the description of ferromagnets and lead$unctions than the original RPA description. It covers a mul-

IV. DISCUSSION AND CONCLUSION
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The system of equatiori&q. (5)] is solved analytically and
an explicit expressiofiEq. (8)] for the Green function has
been found. On looking at the roots of its denominator one
can find a formula for the dispersion relations of magnetic
excitations of the system. Such a formula depends on the
local field parametem:(;) which allow one to predict the

dispersion relations for the antiferromagnetic excitations,
such as they can be seen in neutron scattering. The spectral
intensity theorem of the Green function theband Eq.(8)
has been used to calculate the sublattice magnetizgEgn
(12)]. The expression is found to involve all the components
of the magnetization so that the external magnetic field in the
x direction couples in the second order to theomponent of
the magnetization which is the order parameter in the phase
transition under study. The analytical expression for the Néel
temperature Eq12) is then found in terms of the parameters
of the model and, what is more interesting, on the local field
parameteih.!®

As an example of an application of the new EA-RPA
scheme we have studied here the effect of the magnetic field
perpendicular to the spontaneous magnetization in the,CuO
layers onto the behavior of the antiferromagnetic order pa-
rameter. The magnetic field enters the equations in the sec-

ond power and therefore this is a second order effect. The
application of such a field results in high temperature tails of
the sublattice magnetization above the Néel temperature.
Thus the effect is analogous to the linear effect of the field
conjugated with the order parameter. Similar high tempera-
ture tails are often encountered in second order phase transi-
tions of different nature. Their explanation invokes various
phenomena ranging from impurities to so-called logarithmic
corrections to the critical behavidt:'” Here the origin of the
tails is the existence of the nonlinear coupling between the
sublattice magnetization and the perpendicular macroscopic
field.

The results obtained in the present work should be com-
pared with those obtained with the use of renormalization
group (RG) and 1N expansion for a similar modét. The
RG approach implies an expansion of the Hamiltonian as a
function of deviation from the ordered state and, therefore, is
titude of spin systems including antiferromagnets, but its baWe!l adapted to low temperatures where the deviations are
sic physics and range is of the mean field approximatiodndeed small. On the other hand theNLéxpansion(N the
type. It can probably be improved to adjust its critical indicesdimension of the spin variabléN=3 for the Heisenberg
to the indices of the static scaling theory using the methodnode) should in principle work in the whole range of tem-
developed by Czachor and Hof&sor the RPA. peratures. It turns out, however, that the first order expansion

To study the magnetic properties in layered antiferromagoverestimates the sublattice magnetization at low tempera-
nets one has to take into account a greater variety of spirtures if there are non-negligible anisotropic terms in the ini-
spin correlations than in the case of ferromagnets. To do sdial Hamiltonian(Fig. 2 of Ref. 23. Both approaches give a
we have first introduced a generalized RPA decoupleg. ~ double logarithmic expression for the Neel temperaf&igs.

(4)] of the three-spin correlation function&reen’s func- (45) and (87) of Ref. 21. A renormalization of the Neel
tions) involved. We claim that in doing so we have entered atemperature is necessary when treating experimental data in
reasonable way towards improving the GF method for théoth cases. A crossover temperature can be discerned be-
magnetization calculations in layered structures. A way moréween two regimes, although the magnetization curve rests
systematic than those quoted in the Introduction. On assuncontinuous and smooth.

ing then an equivalent and symmetric role of two different Compared with those approaches the present work gives a
two-spin correlation functions pertinent to the problem oneunique expression for the whole temperature range. The
has the symmetric “equal-access” form of the RPA decoustarting Hamiltonian does not contain anisotropy terms so
pling (EA-RPA). At this step one obtains the canonical setthat a direct comparison can be made fosCa0, only (Fig.

[Eq. (5)] of six equation of motion for the six GF's we seek. 1 of Ref. 2], where the anisotropy parameters are weak.

0.8 4
T=400°K

...................

0.6 4

M(TYM(0)

.......
........
.......
.................
.......
-------------

0.4 4

0.2 4

0.0 =

H(Tesla)

FIG. 3. (8 The same as in Fig.(8 but for LaCuC;,. (b) The
same as in Fig.®) but for H=0 T (solid curvg, H=3 T (dashed
curve), andH=10 T (doted curvé (c) The same as in Fig.(2) but
for T=400 K (doted curvg, T=500 K (solid curvg, and T
=600 K (dashed curve The value 0fJ;=0.009 eV, and the ratio
r=10" is kept the same fofa)~(c).
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The results of Ref. 22 suggest that a simple rescaling ofhe new variablesa,,y via the transformka=a, kja
the temperature may give correct results in analogy to those 3,k,c=+v, integrating first overy and then over3 makes
obtained in Ref. 21 with a proper renormalization of the Neelthe above equation changing to the form:
temperature. Comparison of our Fighpwith Fig. 1 of Ref.

21 suggests that the general shape of the magnetization curve g

at H=0 is correct for weak anisotropy. Moreover, introduc- I(r):f Ala,r)B(a,r)du, (A2)
tion of anisotropy terms is fairly analogous to the one- 0
particle energy contribution of Ref. 22. Therefore it is ex-
pected that the EA-RPA for a Hamiltonian with nonzero
anisotropy will produce a magnetization curve similar to Fig. _ _ _ -1/2

2 of Ref. 21 with a characteristic crossover from a rather Ala,r) =2[(3 = cosa)(2r + 1 - cosa)] (A3)
weak temperature dependence at low temperatures to a ste

increase directly belowy. We now work on the formulation

where

of the EA-RPA with anisotropy terms. 2
APPENDIX B(a,r) = f (1-T sirfg) Yo, (A4)
0
Starting from Eq(15) for I(r). After using the method of
partial fractions and changing the summation okemnto where
'”tegra“‘J”;/Eq 7‘7/15) r:‘:“cfato I'=4r[(3 - cosa)(r + 1 - cosa)] ™, (AS5)
I(r) = ?f J f The value of the integral in EqA2) becomesr/2 at very
o 0 70 small r and the leading contribution to the integral comes
dkdk dk, from small values ofa. The integral in Eq(A2) has been
X [2 - cogk,a) - cogk,a)] + r[1 - cogk,c)]’ calculated numerically as a function of the ratioThe re-

Al sults shows that its value can be approximately written as
(A1) I(r)=[0.5055-0.162 Ifr)]. The Néel temperature Eg16)
whereV stands for the volume of the unit cell. Changing to results directly from inserting the value bf) into Eq.(14).

*Corresponding author. Email address: Abdellatif.Akjouj@univ- 8F. Keffer, in Handbook of PhysigsVol. 18 (Springer, Berlin,
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