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Effect of uniaxial and biaxial crystal-field potential on magnetic properties of a mixed spin%
and spin-1 Ising model on the honeycomb lattice
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Magnetic properties of a mixed sp@and spin-1 Ising model on honeycomb lattice are exactly investigated
within the framework of generalized star-triangle mapping transformation. The particular attention is focused
on the effect of uniaxial and biaxial crystal-field anisotropies that basically influence the magnetic behavior of
the spin-1 atoms. Our results for the basic thermodynamic quantities, as well as the dynamical time-dependent
autocorrelation function indicate the spin tunneling between|#i¢ and |-1) states in the magnetically
ordered phase.
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[. INTRODUCTION standard mean-field and effective-field theofiesandom

o phase approximatioh,or linked cluster expansiol. It
Over the last few years, many nontrivial quantum phe-should be stressed that the biaxial anisotropy essentially
nomena have been discovered in the low-dimensional magnfluences the magnetic properties of a large number

netic materials. One of the most actively studied problems irbf polymeric molecular-based magnetic materials, too.
the condensed matter physics at present is a quantum tunngrom the most obvious examples one could
ing of magnetization, i.e., the effect, which has been recentlynention: NiR,'* NiNO5-6H,0,'2 Ni(CH;C0O),-4H,0 3
developed in a large number of single-molecule magsts ~ Mn(CH;COO),- 3H,0,1* CoF,,'®> CoCl,- 6H,0 (Ref. 16 and

Ref. 1, and references thergiBy the term single-molecule a series of compounds fk),X,” where X stands for halids
magnets, one denotes the small clusters of magnetic metahd dc for the dithiocarbamate or diselenocarbamate groups,
ions that usually possess an extraordinary strong magnetiespectively.

anisotropy. Hence, the single-molecule magnets often pro- Owing to this fact, in this paper we will focus on the
vide very good examples of so-called Ising-like spin systemsiniaxial and biaxial crystal-field anisotropies affecting the
with a strong uniaxial magnetic anisotropy. Of course, themagnetic behavior of the mixed sp@wand spin-1 honey-
Ising anisotropy by itself cannot be a source of the quantungomb lattice. By assuming an Ising-type exchange interac-
spin tunneling experimentally observed in these systems. fion between the nearest-neighboring spins, the model under
turns out, however, that this quantum phenomenon arises ifivestigation can be exactly treated through the generalized
the most cases due to the higher-order crystal-field term$tar-triangle mapping transformation. The considered model
According to a number of experimental and theoretical studihus provides a noble example of the statistical system,
ies it is now quite well established, that the observed spifVhich enables one to study an interplay between quantum
tunneling originates to a major extent from the second-ordefffects and temperature in a spontaneously ordered magnetic
biaxial crystal-field potential, at least in F&Fe,3 Fe, or  SyStem. Moreover, the magnetic structure of a mixed-spin
Mn, (Ref. 5 compounds. honeycomb lattice occurs rather frequently also in the mo-

The immense interest in the magnetic properties of SrnalIlecular magnetism, what clearly demonstrates a large family

magnetic clusters shed light on the effect of single-ion anisoOf polymeric two-dimensional compounds of chemical for-

> : e mula: AM"M"(C,0,);,'® where A stands for a nonmag-
tropy termsD (uniaxial anisotropy and E (biaxial, also . . . y —a
called rhombic anisotropyIn contrast to the quite well un- netic univalent cation RCyHans1)q OF P(CoHani1)q (1=3-9),

. . ; . M" and M" denote two- and three-valent metal atoms
derstood role of the both single-ion anisotropi2sind E in Cu'(S=1/2), Ni"(S=1), Cd'(S=3/2), Fd'(S=2) or Mn'(S

the sr_naII_ magnetic clustexgero-dimensional systemshe =5/2) and Ct'(S=3/2) or Fé"(S=5/2), respectively. In-
Seed, the crystal structure of these polymeric molecular-

and twg-d|men3|o_r1al Spin systems. In fact, the _ground-statBased magnetic materials consists of the well-separated two-
properties of a spir® Ising model with the rhombic crystal- §imensional layers in which regularly alternating' Mnd

field potentialE, have been only recently examined by Oit- \ill agnetic metal atoms constitute more or less regular
maa and von Brasch within an effective mapping to thenoneycomb latticéFig. 1). As a consequence of the aniso-
transverse Ising mod€lOn the basis of this effective map- tropic crystalline structure of these materials, one should also
ping, theT=0 quantum critical point can be exactly located expect a relatively strong uniaxiéising-like) anisotropy, as

for the one-dimensional model, while for the two- it has already been suggested in the theoretical studies based
dimensional models they can be obtained with a high nuon the effective-field theory and Monte-Carlo simulatidhs.
merical accuracy using the linked-cluster expansiorHence, the magnetic compounds from the family of oxalates
method®’” Nevertheless, the finite temperature behavior ofA'M'""M" (C,0,); represent good candidates to be described
these models has not been investigated in detail beyond th®/ the proposed model.
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constant, for a comparison see Ref.),2@0vhich can be
achieved using this simple mapping between the relevant
parameters included in the Hamiltoniafis and(2), respec-
tively:

— 1 _1
D=D?-4D*+DY), and E=i(D*-DY. (3

It should also be mentioned here that by neglecting the biax-
ial anisotropy, i.e., settinde=0 in Eq. (1) or equivalently
D*=DY in Eq. (2), our model reduces to the exactly soluble

. . . model of Gongalvesd! Accordingly, in this work we will, in
FIG. 1. _The segment of a .m'xed's'om honeycomb.latt'ce' Theparticular, examine the effect of biaxial anisotropy on the
lattice positions of the splé-(spln-l) atoms are schematically des-

ignated by full(oper) circles, the solid lines label the interactions thermodynamu_:al and dynamical properties of the ”?Ode' un-
. . , r consideration. Nevertheless, théerm emerging in the
between nearest-neighboring atoms. The dashed lines represent &

effective interaction between three outer séiatoms, which arise .am"t.of"a” (1) should cause nontrivial quan.tum effects,
after performing the mapping) at kth site. since it introduces thg andy components of spin operators

into the Hamiltonian and thus, it is responsible for the onset

of local quantum fluctuations that are obviously missing in
The outline of this paper is as follows. In the next sectionthe Ising model with the uniaxial crystal-field potential

the detailed description of the model system will be pre-only.

sented and then, some basic aspects of the transformation It is therefore of interest to discuss the origin of biaxial

method will be shown. Section Il deals with the physical anisotropy. The origin of this anisotropy term consists in the

interpretation of the most interesting results and finally, soméow-symmetry crystal field of ligands from the local neigh-

concluding remarks are drawn in Sec. IV. borhood of spin-1 atoms. A threefold symmetry axis oriented

perpendicular to the honeycomb layer, however, prevents the

appearance of biaxial crystal-field potential in a regular hon-

Let us consider the magnetic structure of a mixed-spireycomb lattice with a perfect arrangement of the oxalato
honeycomb lattice schematically depicted in Fig. 1. To engroups, as well as magnetic metal atoms. On the other hand,
sure exact solvability of the model under investigation, wethe small lattice distortion, which occurs rather frequently in
will further suppose that the sites of sublattideare occu- the low-dimensional polymeric compounds due to the Jahn-
pied by the spins atoms(depicted as full circles in contrast Teller effect, can potentially lower the local symmetry. In
to the sites of sublattic8 that are occupied by the spin-1 consequence of that, the distortion of lattice parameters can
atoms(open circley By assuming the Ising-type exchange be regarded as a possible source of the biaxial anisotropy.

interaction J between nearest-neighboring spins, the totallN® most obvious example, where the lattice distortion re-
Hamiltonian of the system takes the following form: moves the threefold_ symmetry axis represents the single-
molecule magnet Rein which three outer Fe atoms occupy

.o N N . two non-equivalent positions around one central Fe &om.
H=32 S+D2 (SP+EX [(S*- (R, (D) Let us turn our attention to the main points of the trans-
(ki) keB ke formation method, which enables an exact treatment of the
whereN is a total number of sites at each sublattizgéand ~ model under investigation. First, it is very convenient to
Asg(a:x,y,z) denote the standard spatial components of thé{\/_rlte the total Hamiltoniar(1) as a sum of the site Hamilto-
spin-+ and spin-1 operators, respectively. The first summaniansHi
tion in Eq. (1) is carried out over the nearest-neighboring
spin pairs, while the other two summations run over the sites N
of sublatticeB. Apparently, the last two term® andE are H= 2 Hy, (4)
the crystal-field potentials that measure a strength of the keB
uniaxial and biaxial anisotropy acting on the spin-1 atoms. It R
is also worth noticing that there is one-to-one corresponwhere each site Hamiltoniaft{, involves all interaction
dence between the Hamiltonigl) and the effective spin terms associated with the appropriate spin-1 atom residing
Hamiltonian with three different single-ion anisotropies, on thekth site of sublatticeB:
DY, andD*

Il. MODEL AND METHOD

N N N N Hie= §Ei+ (S)7D + [(S)2 - (E, (5)
H=32 Sif+D* 2 (§)?+D* X (S +DV 2 ()

el keB keB keB , with E=J(ify + fiip+ ftfa). While the Hamiltonians(s) at
(2) different sites commute with each othdr;,;]=0, for

In fact, one can easily prove the equivalence between the tweachi # j), the partition function of the system can be par-
effective spin Hamiltoniangup to the unimportant additive tially factorized and consequently, rewritten in the form
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N . D+ Ek 0 E
Z=Tryl I Trsexp- gH. (6) He=| 0 0 0 (7
kel ’
E 0 D-Ey

in a standard basis of functionsl),|0) corresponding, re-

: - ; , : _ spectively, to the three possible spin sta®s +1,0 of kth
Earlier, 5=1/(kgT), kg is Boltzmann's constantis the ab- e 0 o o trices, Obviously, it is easy to find eigen-

solute temperature, {j means a trace over the spin degreesvalues of the site Hamiltonia(¥), however, with respect to

of freedom of sublatticé, and Tg_stands for a trace Over fyther calculation, it is more favorable to obtain directly the
the spin states déth spin from sublattic®. So, a crucial step v elements of the expression éxgH,). Using the

in our procgdure represents the calculation of the eXpreSSi(WeII-known Cauchy integral formula, one readily obtains the
Trsexp(-pHy). With regard to this, let us write the site matrix elements for an arbitrary exponential function of the

Hamiltonian(5) in an usual matrix representation site Hamiltonian(7):
|
E E
cost{a®) + 6"sinh(a®) 0 5 Sinha®)
exp(a?tlk) =expaD) 0 exp(— aD) 0 , (8)

E E

—sinh(a®) 0 cosha®) - —ksink(a)

(0] (C)

I

where® = \EZ+E? and @ marks any multiplicative function. ®, =1+ 2 exg— BD)coshBV(33/2)% + E?),
After substitutinga=-p into the Eq.(8), the calculation of
the relevant trace Erexp(-SH,) can be accomplished, ®, =1+ 2 exg— BD)cosh BV (J/2)%+ E?). (11)

moreover, its explicit form immediately implies a possibility . ) .
of performing a standard star-triangle mapping transforma- When the mapping9) is performed at each site of the

tion sublattice B, the original mixed-spin honeycomb lattice is
- mapped onto the spiél-triangular lattice with the effective
Trsexp(— BHy) =1 + 2 exyt- D) interactionR given by the self-consistency conditiqi0)
22 z TRV and(11). As a matter of fact, the substitution of the mapping
X CosH BVIN iy + Mo + mica) ™ + E7] transformation(9) into the partition function(6) establishes
= A exd BR(ui i + Miotia + Miaktia) ], the relationship
(9) Z(IB!‘]!DIE) :ANZt(B! R): (12)

which replaces the partition function ofséar, i.e., the four-  between the partition functio® of the mixed-spin honey-

spin cluster consisting of one central spin-1 atom, and itgomb lattice and the partition functiaf, of the correspond-

three nearest-neighboring spin-atoms, by the partition jng spin4 triangular lattice. The earlier equation constitutes
function of atriangle, i.e., the three-spin cluster comprising the basic result of our calculation, since it enables a rela-
of three spin3 atoms in the corners of equilateral triangle tively simple derivation of all required quantities such as
(see Fig. 1 The physical meaning of the mappi(@) is to  magnetization, quadrupolar moment, correlation function, in-
remove all interaction parameters associated with the centrgdrna| energy, specific heat, etc. Moreover, by combining

spin-1 atom and to replace them by an effective interad®on (12) with (9) one easily proves the validity of following ex-
between the outer spiil-atoms. It is noteworthy, that the act spin identities
both mapping parameter& and R are “self-consistently”

- : i : (Folulopils o D) = (Faf i, . )
given by the transformation E¢9), which must be valid for LM M e WM M=ol Tt
any combination of spin states of three séia{oms. In con-
sequence of that one obtains (f2(Sk S S Mk Micar 4i2))

® Tre fo(S S, S piln, 1, i) EXP(— BH

A= (091 gR= In((;l), (10) _ 5. F2(S6 56 S i 2 /;Lk3) p(= BHY |
2 Trg exp(= BHy)

where we have introduced the functiois and ®, to write (13)
the transformation parametef®0) in more abbreviated and
elegant form where(...) represents the standard canonical average over
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the ensemble defined by the Hamiltonigl) and(...); ca- exp(AD) + cosiB\x% + y?)

nonical average performed on the séimsing triangular lat- Fa(xy) = 222

tice with the effective exchange interacti®(10) and(11). eXpAD) + 2 coshifvx+y")

Furthermoref, is an arbitrary function of the spin variables LY sinh(BVx? + y?)

belonging to sublatticd, while f, denotes an arbitrary func- [Ny 222

tion depending on thkth spin from sublattic® and its three WE+Yexp(BD) + 2 cosiBC+y)

nearest neighbors from sublattiée Applying the first of (22)
;pin identities(13), one straightforwardly attains the follow- At the end of this section, we will also provide an exact
ing results: result for one dynamical quantity-time-dependent autocorre-

lation function. It should be noted here that exactly soluble
(14) el : : :

models only seldom offer the possibility to investigate their

spin dynamics. On the other hand, the dynamical quantities

Ma = (i) = (g = M,

Ca = (fialie) = {Bipa M)t = C¢ (15) : : . :

A= \Miakier = \Matio/t ' such as autocorrelation and correlation functions are impor-
tant also from the experimental point of view, because their

ta = (Ui Lioiis) = (i il = ti, (16)  magnitude directly determines the scattering cross section

measured in the inelastic neutron scattering experintéiats,
the spin-lattice relaxation rate provided by the nuclear mag-
fhetic resonance techniqu&dn this work, an exact treatment
for the time-dependent autocorrelation function will be
elaborated. As a starting point for the calculation of the au-
tocorrelation functiorC%,{t) can for convenience serve the
second of exact spin identiti€3):

while the second of spin identiti€d3) enables a derivation
of quantities depending on the spin variable from sublattic
B, as well

Mg = () = - 3Ma(Ky + Kp)/2 = 25(K; - 3K,),  (17)

05 = (899 = (Ks+ 3K/ + Xp(Ks—Kg),  (18) L

. Ciidt) = S(SOS0 + SOS(0)
G = (S0 = (K7 + 3Kg)/4 + Ica(K; = Kg),  (19) o o .
Trs {[SHO)SHD) + SOS0)lexp— BH,)}
06 = ((S)2) = (Ks+ 3K/4 + 3ca(Kz—Ky).  (20) Treexpl— B4

Earlier, m, (mg) labels the single-site magnetization at sub- (23)
lattice A (B), gg(a=x,Y,2) are different spatial components . . o .

of quadrupolar moment and finally, argl andt, are the where the symmetrized form in trle deflnltlonfbﬁto@ used
static pair and triplet correlation functions between the relto construct a Hermitian operatds(t) =exp(itH, /%) Siexp(

evant spins of sublattica, respectively. Obviously, an exact _jty, /%) represents the Heisenberg picture for the time-
solution for both the sublattice magnetization and quadrupoa dent &0 7 stands for Planck’ tant and
lar moment require the knowledge of the single-site magne- epﬂ ent operat@(t), 4 stands for Planck's constant an
tizationm,, nearest-neighbor pair correlation functignand ~ 1=V-1. Next, the matrix representation of &xftH,/%) can
triplet correlation functiort, on the corresponding spiitri-  be readily obtained by putting= it/ into Eq. (8). Then,
angular lattice unambiguously given b30) and(11). Fortu-  after a straightforward but a little bit tedious calculation, one

nately, the exact solution for these quantities on the %pin_arrives to the final result for the dynamical autocorrelation
triangular lattice are known a long time ago, hence, one cafnction

_1
2

utilize the final results from Ref. 22. Finally, the coefficients 3 \2 ot 3 \2
emerging in the previous set of Eq4.7)—(20) are listed later 1 (53) + Ezcos{z A\ /<§J) + Ez}
Ki=Fi(30/2), K,=F;(J/2), Ka=F,(3)/2), Caudt) = Ks(; * 3Ct>

2
<§J> +E?
K4: F2(J/2), K5: F3(3J/2,_E), K6: F3(J/2,_E),

2
(3 ~ed 2[5 e
—-J| +E“coq — -J| +E
K,=F5(3J/2,E), Kg=F3(J/2,E), (21) +K(3 )2 i V\2
4

— -3¢ 5 .
where we have defined the functioris(x), F,(x), and 4 <1J) +E2
F3(x,y) as follows: 2
e (24)
FL00 = X 2 sinBVX% + E?)
! VX2 + E?exp(BD) + 2 costiyx? + E?)’
lll. RESULTS AND DISCUSSION
F(X) = 2 costipx + E?) Before proceeding to the discussion of the most interest-
2 exp(8D) + 2 coslﬁ,B\s"x2+ E2)’ ing results, it is noteworthy, that the results derived in the
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previous section are rather general, i.e., they are valid for the 4 ' ' o T IR

ferromagnetic(J<0), as well as ferrimagneti€J>0) ver- 35 Dism‘(%eDf;()i Phase \”“ J G o

sion of the model under consideration. In what follows, we _ § S éco.s D/J=00 1

will restrict ourselves to the analysis of the ferrimagnetic =30 @ 1 o6l a4 |

model only, since the polymeric compounds from the family 2.5 \2 N A

&8 i i - P =04 my

of oxalates® fall mostly into the class of ferrimagnets. Nev 2.0 Ordered Phase 1 = 43

ertheless, it appears worthwhile to say that magnetic behav | . : e(rgp) ase 02 2771 i

ior of the ferrimagnetic system completely resembles that -

one of the ferromagnetic system. Finally, it should be empha- 19 1 2 3 2 YT
(a) ENT (b) EIT

sized that the mappingl9) remains invariant under the
transformatiorE — —E. As a result, one may consider with- -~ (@) Ground-state phase diagram in tB&J-D/J plane.

out loss of ge_nerallty the parameter 0 and co_nsequently, (b) Single-site magnetizatior(§ull lines) and quadrupolar moment

x, y, andz axis then represent the hard, medium, and easyyoken onepvs the biaxial anisotropf/J at T=0 andD/J=0.0.

axis for a given system.

zero-temperature variations of the magnetization and quadru-

polar moment in the ORFig. 2(b), the value of uniaxial

anisotropyD/J=0.0 has been chosen not to pass through the
First, we will take a closer look at the ground-state behav{phase boundatylt is worthy to mention that by neglecting

ior. Taking into account the zero-temperature liffiit-0*,  the biaxial anisotropy, i.e., setting/J=0.0, one recovers

one finds following condition for a first-order phase transi-from the phase boundary conditi¢®5) a boundary uniaxial

tion line separating the magnetically ordered ph&®®)  anisotropyD/J=1.5, which has been already reported by

A. Ground-state properties

from the disordered phag®P): Gongalves several years affoln this limit, the OP corre-
sponds to the simple ferrimagnetic phase in which both sub-
D _ 3\2 [E\? lattice magnetization are fully saturated and also antiparallel
3 2 * 1) (25 oriented with respect to each oth@n fact, my=—0.5 and
mB=l.0).

From Egs.(16)22), moreover, one easily attains analytical  The situation becomes much more complicated by turning
results for the single-site sublattice magnetizaiion, mg),  on the biaxial anisotropf. Even though the sublattice mag-
total single-site magnetizatiom=(my+mg)/2 and different  netizationm, remains at its saturation value in the whole OP,
spatial components of the quadrupolar momegfia  the sublattice magnetizatiomg is gradually suppressed by
=X,Y,2) in the both phases, as well increasing the biaxial anisotropy strength. In contrast, neither
5 5 sublattice magnetization, nor the quadrupolar moment do not
3) +(E) depend within either ground state phase on the uniaxial
’ crystal-field potentiaD. Of course, the relevant change of
sublattice magnetizatiomg must reflect a violation of a per-
3 fect ferrimagnetic spin arrangement in the OP. To achieve the
2 nonsaturatedng at T=0, some spins of sublattid® must flip
—— from the |[+1) to |-1) and/or|0) statés). It is therefore of
(§>2+ (E)Z great importance to identify the magnitude of the quadrupo-
lar momentog. Since the quadrupolar moment approaches in
the OP its saturation valug;=1.0 independently oE/J, a
E presence of théd) states can be thus clearly excluded. These
3 observations would suggest, that the biaxial anisotropy
, (26) causes in the OP a spin tunneling between th® and
3 2 E 2 |-1) states, whereas the stronger the r&tid, the greater the
2 * J population of thg—1) state. Anyway, the probabilities to find
the spin-1 atom in thét1) state are given by these simple
E expressionsp(|+1))=(1+mg)/2. Altogether, the spin con-
3 figuration referring to the OP &t=0 can be characterized as
| a5=1.0; follows: all spin—% atoms are wholly ordered in their spin
(§) + (E) down positions(m,=-0.5), while the spin-1 atoms occupy
with the probabilityp(|+1)) either the|+1), or |-1) state. It
should also be pointed out, that the conditif> gy is al-
DP: ma=0.0, mg=0.0, m=0.0, ways satisfied whei& > 0. This inequality between the spa-
tial components of quadrupolar momentum provides a con-
X — y — z_ firmation, thatx andy axis represent under the assumption
95=10. gg=10. 0s=00. @7 E>0 the hard and medium axis in the OP.
For a better illustration, Fig. 2 depicts the ground-state phase Last, let us consider the spin ordering within the DP. In-
diagram in theE/J-D/J plane[Fig. 2(a)] together with the terestingly, the DP remains unaltered no matter whether the
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biaxial anisotropy is zero, or not. Indeed, all spin-1 atomsnamics between thallowable [+1) states. From the analyti-
occupy in the DP exclusively th®) state, because ofg cal solution(28) as well as depicted behavior one can more-
=(gz=0.0. Contrary to this, the components of quadrupolarover deduce a physical interpretation of the spin dynamics,
moment perpendicular to theaxis acquire in the DP their namely, the spin system necessarily recovers after the recur-
maximum valuegg=q%=1.0. These results can be thought asrence timer always its initial state, whereas the stronger the
an independent check for the scenario that accompanies thatio E/J, the shorter the recurrence timeln addition, the
phase transition from the OP to DP: all spin-1 atoms indeedhcreasing strength of the biaxial anisotropy enhances also
tending to align into the-y plane. Accordingly, the magnetic the time variation ofCZ,, (i.e., the amplitude of oscillation
order is completely destroyed, in fact, the vanishing magneThis result is taken to mean, that increasing biaxial aniso-
tizationm, implies a state of complete spin randomization attropy also enlarges a number of the spin-1 atoms, which
sublatticeA. Therefore, the DP does not exhibit any long- tunnel during the recurrence time between th#) states.
range magnetic order even Bt0. Since the equilibrium magnetization does not vary in time, a
Now another interesting question arises, namely, whethenumber of atoms that tunnel from thel) to the|-1) state,
the spin-1 atoms can fluctuate in the OP between #ileiw-  must definitely be the same as a number of atoms that tunnel
able |+1) states. In order to obtain a reliable answer to thisfrom the|-1) to the|+1) state. These findings have an obvi-
question, the time-dependent autocorrelation funct@4)  ous relevance to the understanding of the zero-temperature
will be analyzed. In the zero-temperature limit, the dynami-spin dynamics, because they enable its explanation from the

cal autocorrelation functio%, gains after straightforward microscopic viewpoint.
calculation

(3)2 ( E)2 S{ 2Jt /( 3)2 ( E)Z] B. Finite-temperature behavior
—| +|{—) coq — -] =
2 J h 2 J In this part, we would like to make some comments on the

3\2 [E\2 ' finite-temperature behavior of the system under investiga-
(§> <3> tion. Let us begin by considering the effect of uniaxial and
biaxial anisotropies on critical behavior. For this purpose,
(28) two typical finite-temperature phase diagrams are illustrated
L . o . in Figs. 4a) and 4b). In both figures, the OP can be located
which in turn proves thacawn time with the  pejow the phase boundaries depicted as solid lines, while
angular frequencys,=2J/%(3/2)°+(E/J)? and the recur- apove the relevant phase boundaries the usual paramagnetic
rence time r:nﬁ/[JV"(3/2)2+(E/J)2]. According to Eq. phase becomes stable. A closer mathematical analysis re-
(28), the dynamical autocorrelation function does not dependeals, that the temperature-driven phase transition between
in the ground state on the uniaxial anisotrdpy Owing to  these two phases is of a second order and belongs to the
this fact, we will further neglect this anisotropy parameterstandard Ising universality class. More specifically, Fi@) 4
and seD/J=0.0. For illustrative purposes, the time variation shows the critical temperature as a function of the uniaxial
of the autocorrelation functioBZ,,is displayed in Fig. 3 for anisotropyD/J for several values of the biaxial anisotropy
several values of the biaxial anisotro/J=0.1, 0.5, 1.0, E/J. The dependence critical temperature versus uniaxial an-
and 2.0. It appears worthwhile to make a few remarks orisotropy is quite obvious, when increasibgJ, the critical
foregoing results. Since the autocorrelation function varies inemperature tends monotonically to zero as many as the
time, it clearly demonstrates the zero-temperature spin dyboundary valug?25) is achieved. While the anisotropy term

Caidt) =
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0.8

0.6
: FIG. 4. (a) Critical temperature dependence
&~"0.4f on the uniaxial anisotropi/J for several values
8

of biaxial anisotropiesk/J. (b) Critical tempera-
ture dependence on the biaxial anisotr@pyl for
several values of uniaxial anisotropiBgJ.

D forces the spins to lie withir-y plane wherD >0, theE  favors the long-range order aloagxis in that it prefers the
term tries to align them into thg-z plane. Accordingly, the spin tunneling between the:1) states before the population
increasing strength of the biaxial anisotropy supports thef the |0) one. The most interesting result to emerge here is
magnetic long-range order related to the OP wbéd>1.5 that there is a strong evidence, that aforementioned argument
and, hence, it survives until stronger anisotrofidés. As far  explains an existence of the OP even under assumption of
as the regioD <0 is concerned, the biaxial anisotropy sub- extraordinary strong anisotropi&J=1.5. In fact, the mag-
stantially lowers the critical temperature of the OP. Appar-netic long-range order related to the OP occurs under this
ently, this behavior arises as a consequence of the fact, thaondition for the strong enough biaxial anisotropies only.
the E term simplifies the transition between thel) states  Surprisingly, the magnetic long-range order results in such a
due to the nonzero quantum fluctuations. Thus, one can comeculiar case from the quantum fluctuatigapin tunneling
clude that the quantum fluctuations macroscopically manifestaused by the biaxial anisotropy.
themselves in the reduction of the critical temperature for the Now let us provide an independent check of the critical
easy-axis uniaxial anisotropji.e., for D<<0, where the behavior by studying the thermal dependences of magnetiza-
model Hamiltonian(1) works extremely well tion. The single-site magnetization against the temperature
To illustrate the influence of the biaxial anisotropy on theare plotted in Fig. 5 for the uniaxial anisotrof/J=-2.0
critical behavior, the critical temperature versus biaxial an-and several values of the biaxial anisotrdpid. Figure %a)
isotropy dependence is shown in Figbyfor several values shows a typical situation observed by turning on the biaxial
of the uniaxial anisotropy. As one would expect, the criticalanisotropyE/J: the greater this anisotropy parameter, the
temperature gradually decreases with increasing the biaxistronger the reduction of sublattice magnetizatigndue to
anisotropy strength for an{p<0. In agreement with the the|+1) spin tunneling. As it is apparent from this figure, the
aforementioned arguments, the appropriate depression of thetal magnetization exhibits in general the standard Q-type
critical temperature can be again attributed to the quanturdependences. The most striking thermal variations of the to-
fluctuations, which become the stronger, the greater, the rati@l magnetization can be evidently found for the biaxial
E/J. Apart from this rather trivial finding, one also observesanisotropies close to the vaILEQIJ:\s‘“Z?/Z, at whichm,
here the interesting dependences with the nonmonotonicélilly compensatesn in the ground statéFig. 5b), see also
behavior of the critical temperature. Namely, ©/J>0.0  Fig. 2b)]. It turns out, however, that all marvelous thermal
the critical temperature first increases and only then gradudependences of the total magnetization stemming from the
ally decreases with the biaxial anisotropy stren¢gbe for identical origin—the magnetization of sublattiéeis ther-
instance the curve fdd/J=1.3). To explain such a behavior, mally more easily disturbed than the magnetization of sub-
it should be realized that the spin-1 atoms are preferabljattice B. As a result, the P-type dependences of total mag-
thermally excited to th¢0) state wherD >0, which means, netization occur for E< E‘C’, when the prevailing
that they are preferably excited to they plane. Since the magnetizationmg exhibits smaller thermal variation than the
biaxial anisotropy tries to align them into thez plane, it lower magnetizatiorm, [see case&€/J=2.58 and 2.59 in

1.00 E/J=263

0.002
£ 075t FIG. 5. (a) Thermal dependences of the total
P and sublattice single-site magnetization @rJ
S, 0.50 =-2.0 andE/J=0.0, 1.0, and 2.0(b) Various
gt 0.001 temperature dependences of the total magnetiza-
* tion normalized per one site when the strength of
0.25 uniaxial anisotropy is fixedD/J=-2.0) and the
0.00 0.000 biaxial anisotropy varies in the vicinity d';fg.
0.0 0.0 0.1 02 03
(@) (b) k,T1J

014404-7



JOZEF STREKA AND MICHAL JAS CUR

00aT/T.=08 " E/IZ0.1
"Q)%
0.93
al
0 5 10 15 20 25
t[h/ 27 7]
TIT=10 E//=01
< 086
b%
0.85
0.84 2
% 5 10 15 20 25
(1hi 2771
TIT =11 EJJ=01
082
7% 081
3
0.80
0.79 a3
0 5 10 15 20 25
t1hi25d]

YT =08 T E/7=05] | [TTT =08 E7=20
= 09 -
= =05
o o
0.8 00
bl cl
50 15 20 25 "0 % 10 15 20 25
¢RI 2720) (Th! 2771
ool T/T.=10 " E/I=05 1‘OT/TC:l.() EJJ=20
O 07 S
0.0
0.6
b2 05 c2|
0 5 10 15 20 2 205 10 1520 25
tlh/2rJ] tlh/2=J]
0.
T =11 E/i=05 TIT=11 E/I=20
¢ Lot
0.8
73 07 7205
“ 06 ©
0.0
05
b3 3
O 570 15 20 25 ™0 5 10 15 20 25
tlh! 2% ] t1h!277)

PHYSICAL REVIEW B 70, 014404(2004

Fig. 6 Strecka et al.

FIG. 6. Time variations of the
dynamical autocorrelation func-
tion C%,, whenD/J=0.0 is fixed
and E/J=0.1, 0.5, or 2.0. Upper,
central, and lower panels show the
time variation of CZ,, at three
various temperatures, which are
normalized with respect to their
critical temperatures to ensure the
same ratiol /T.=0.8, 1.0, and 1.1,
respectively.

Fig. 5b)]. Based on our earlier remark concerning theperature increases, some amplitudes are suppressed, while

ground-state propertie$m,| exceedsmg if E>E is satis-

vicinity ES, a more rapid thermal variation ofi, results in cilat _ i
the N-type dependence with one compensation point. As &ee lower panels in Fig.)6In contrast, the amplitudes aris-
matter of fact, the total magnetization shows one compensd?d from higher frequency oscillatiom, dominate at lower

tion point in which spontaneous magnetization reverses itiemperaturegsee upper panels in Fig).6As far as the in-

sign, because at lower temperatures,| >mg, while at
higher temperaturdsn,| < mg (see the curve foE/J=2.61).
In addition, even for more stronger biaxial anisotropies th
R-type dependences of total magnetization app@ard

=2.63. In such a case, the total magnetization retrieves it
substandard slope from the faster thermal variation of alway:

dominating magnetizatiom,.

autocorrelation functiorCz,,

ily realized that the autocorrelation function is not in general

are plotted in Fig. 6 for three

another ones become more robust. Obviously, in the high-
fied. Then, when the value of biaxial anisotropy is from thetemperature region that amplitudes become dominant, which

coincide to the oscillation with lower angular frequeney

luence of biaxial anisotropy is concerned, the stronger the
ratio E/J, the smaller the difference between both angular
efrequencies and, hence, the more expressive an interference
effect between them. It is worth mentioning that some par-

ticular biaxial anisotropies keeping the ratig/ w, to be ra-
fional, what ensures that the autocorrelation func@dfy, is
Periodic in time even al #0. In any other case, theZ

auto

. . . . behaves aperiodically. As a result, in the latter case one can

Finally, let us proceed to the discussion of the spin dy-mpose at best some characteristic time during that the most
namics at nonzero temperatures. The time variations of th@f spins engaged in the Spin dynamics Change their states, as
it apparent from Figs. @1), 6(a2), and §a3). Although this
selected values of biaxial anisotropiesJ=0.1, 0.5, and 2.0.  behavior is quasiperiodic, its characteristic time cannot be
To enable a comparison between the autocorrelation funeonfused with the recurrence timeof the former ones, in
tions at variousE/J, the relevant temperatures are normal-fact, the spin system at biaxial anisotropies giving the irra-
ized with respect to their critical temperatures. It can be eastional ratio w,/ w; never approaches its initial state again.

It should also be stressed, that the uniaxial anisotidpy

a periodic function of time at nonzero temperatures. Indeedaffects the spin dynamics at+ 0, as well. To illustrate the

CZZ

auto Arises according to Eq28) as a superposition of two case, we have depicted in Fig. 7 the time variations of auto-

harmonic oscillations—oscillation with higher angular fre- correlation function atT/T,=1.0 for various uniaxial
quency w,=2J/%+[(3/2)?+(E/J)?] and another one with anisotropiesD/J and the ratioE/J=0.5. Referring to this

plot, the influence of0) states on the spin dynamics can be

lower angular frequency,=23/%+[(1/2)%+(E/J)?]. The in-

terference between these harmonic oscillations with differengnderstood more deeply. It is quite evident, that a number of
frequencies and also various amplitudes gives rise to a rath&he |0) states becomes negligible by taking into account the
easy-axis anisotropje.g.,D/J=-2.0, Fig. {a)]. Really, the
odic, displaying nodes and other typical interference effectguadrupolar momengz becomes in this case almost satu-
(see Fig. 6. The dependences drawn in Fig. 6 also nicelyrated, as it can be seen from the time dependen&p{t),
illustrate the temperature effect on the spin dynamicssince C%,{0)=qgg. Contrary to this, the occupation ¢®)
Namely, it follows from these dependences, that as the tenstates becomes crucial when accounting the easy-plane an-

complex time variation o

.CZZ

auto

which is in general aperi-
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© L
04t
0.4r 1
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isotropy [see for instance Fig.(d) displaying theD/J=1.5 fluctuations can surprisingly cause an onset of the magnetic
casé. From the comparison of Figs(aj—7(d) one can con- long-range order for the extraordinary strong easy-plane
clude, that positivgnegativg anisotropy ternD reinforces  anisotropiedD/J>1.5. To the best of our knowledge, such a
the higher(lower) frequency oscillationw, () and, hence, result has not been published in the literature before.

the characteristic time becomes considerably shorter It should be also stressed that there is an interesting cor-
(longen. Naturally, the observed behavior results from therespondence between the model described by the Hamil-
fact, that the critical temperature gradually falls down as theonian (1) and a similar Ising model with a local transverse
anisotropy termD/J increases. When increasing the ratio magnetic field(} acting on the spin-1 atoms on(for a com-

D/J, moreover, the oscillation amplitudes are also sup-arison, see Ref. 25

pressed, what means, that a smaller number of spins changes

3N N
during the characteristic time their spin states. This striking ~ cznz :
feature clarifies, that thi@) states are not engaged in the spin = ‘JG(ED SZW“J * QEB S (29)
dynamics so greatly as tHel) states, or even, they do not '
contribute to the spin dynamics at all. However, a similarity between the both Hamiltonigfgand

(29) is not accidental, in fact, when neglecting the uniaxial
crystal-field potentiaD in the Hamiltonian(1), an effective
IV. CONCLUDING REMARKS mapping E<~ Q ensures the equivalence betweg@n and
(29). Since this mapping is not related to the magnetic struc-
In this paper, the exact solution of the mixed séiramd ture in any fashion, the appropriate correspondence can be
spin-1 Ising model on honeycomb lattice is presented andpparently extended to several lattice models. It is therefore
discussed in detail. The particular attention has been focusadiluable to mention, that the magnetic properties of lattice
on the effect of uniaxial and biaxial crystal-field potentials models with the local transverse field become a subject mat-
acting on the spin-1 atoms. As it has been shown, the preser of many other theoretical works during the last few
ence of the biaxial anisotropy modifies the magnetic behavyears?® Hence, the magnetic behavior of these systems com-
ior of studied system in a crucial manner. It turns out thatpletely resembles that one of their counterparts with the bi-
already a small amount of the biaxial anisotropy raises axial crystal-field potentiak only.
nontrivial spin dynamics and basically influences the thermo- Finally, let us turn back to the origin of biaxial anisotropy.
dynamic properties, as well. Uprise of this anisotropy term in the mixed-spin honeycomb
The most interesting finding to emerge here constitutes alattice is closely associated with at least a small lattice dis-
exact evidence of the spin tunneling between|tte states tortion. To simplify the situation, the proposed Hamiltonian
in the magnetically OP. Macroscopically, the tunneling effect(1) accounts the biaxial crystal-field anisotropy, while a dif-
decreases the critical temperature for the easy-axis uniaxiférence between exchange interactions within various spatial
anisotropy(D < 0) and also, appreciably depresses the magéirections of the honeycomb lattice has been, for simplicity,
netization of spin-1 atoms from its saturation value even inomitted. Nevertheless, the developed procedure can be gen-
the ground stat§see Eq.(26) and Fig. 2b)]. The reduction eralized in a rather straightforward way also to a model ac-
of critical temperature, as well as magnetization appears agounting the anisotropic interactiond;,J,,Js) within the
parently due to the local quantum fluctuations arising fromthree nonequivalent directions of honeycomb lattice de-
the biaxial anisotropy. On the other hand, the same quantumscribed by the Hamiltonian
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sume, however, that under certain conditions the energy gain
from the biaxial crystal-field anisotropy exceeds the elastic
energy related to the lattice deformation and, hence, the bi-
axial anisotropy can lead to a spontaneous lattice distortion.

(30)
_ To confirm this suggestion, our future work will be directed
where the nearest-neighbor exchange consligrtl;, Jp, or  in this way.

J; in dependence on which of the three nonequivalent spatial
direction it deals. In addition, the biaxial anisotropy strength
can be even considered as an arbitrary functimear, qua-
dratic, exponential, logarithmic,.) of the ratio between ap-
propriate interaction parameter&=f(J,/J;,J3/J;). There- The authors are grateful to Oleg Derzhko and Taras
fore, another interesting question arises, namely, whether th¢erkholyak for stimulating discussion and useful suggestions
Ising model with biaxial crystal-field anisotropy taken as aduring the Small Triangle Meeting 2003 in Medzev. This
function E=f(J,/J;,J3/J;) can be instable with respect to work was supported under the VEGA Grant No. 1/9034/02
the spin-Peierls phenomenon. It is quite reasonable to asnd the APVT Grant No. 20-009902.
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