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Magnetic properties of a mixed spin-1
2 and spin-1 Ising model on honeycomb lattice are exactly investigated

within the framework of generalized star-triangle mapping transformation. The particular attention is focused
on the effect of uniaxial and biaxial crystal-field anisotropies that basically influence the magnetic behavior of
the spin-1 atoms. Our results for the basic thermodynamic quantities, as well as the dynamical time-dependent
autocorrelation function indicate the spin tunneling between theu+1l and u−1l states in the magnetically
ordered phase.
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I. INTRODUCTION

Over the last few years, many nontrivial quantum phe-
nomena have been discovered in the low-dimensional mag-
netic materials. One of the most actively studied problems in
the condensed matter physics at present is a quantum tunnel-
ing of magnetization, i.e., the effect, which has been recently
developed in a large number of single-molecule magnets(see
Ref. 1, and references therein). By the term single-molecule
magnets, one denotes the small clusters of magnetic metal
ions that usually possess an extraordinary strong magnetic
anisotropy. Hence, the single-molecule magnets often pro-
vide very good examples of so-called Ising-like spin systems
with a strong uniaxial magnetic anisotropy. Of course, the
Ising anisotropy by itself cannot be a source of the quantum
spin tunneling experimentally observed in these systems. It
turns out, however, that this quantum phenomenon arises in
the most cases due to the higher-order crystal-field terms.
According to a number of experimental and theoretical stud-
ies it is now quite well established, that the observed spin
tunneling originates to a major extent from the second-order
biaxial crystal-field potential, at least in Fe4,

2 Fe8,
3 Fe19,

4 or
Mn4 (Ref. 5) compounds.

The immense interest in the magnetic properties of small
magnetic clusters shed light on the effect of single-ion aniso-
tropy terms D (uniaxial anisotropy) and E (biaxial, also
called rhombic anisotropy). In contrast to the quite well un-
derstood role of the both single-ion anisotropiesD andE in
the small magnetic clusters(zero-dimensional systems), the
situation is much more complicated and also obscure in one-
and two-dimensional spin systems. In fact, the ground-state
properties of a spin-S Ising model with the rhombic crystal-
field potentialE, have been only recently examined by Oit-
maa and von Brasch within an effective mapping to the
transverse Ising model.6 On the basis of this effective map-
ping, theT=0 quantum critical point can be exactly located
for the one-dimensional model, while for the two-
dimensional models they can be obtained with a high nu-
merical accuracy using the linked-cluster expansion
method.6,7 Nevertheless, the finite temperature behavior of
these models has not been investigated in detail beyond the

standard mean-field and effective-field theories,8 random
phase approximation,9 or linked cluster expansion.10 It
should be stressed that the biaxial anisotropy essentially
influences the magnetic properties of a large number
of polymeric molecular-based magnetic materials, too.
From the most obvious examples one could
mention: NiF2,

11 NiNO3·6H2O,12 NisCH3COOd2·4H2O,13

MnsCH3COOd2·3H2O,14 CoF2,
15 CoCl2·6H2O (Ref. 16) and

a series of compounds Fesdcd2X,17 where X stands for halids
and dc for the dithiocarbamate or diselenocarbamate groups,
respectively.

Owing to this fact, in this paper we will focus on the
uniaxial and biaxial crystal-field anisotropies affecting the
magnetic behavior of the mixed spin-1

2 and spin-1 honey-
comb lattice. By assuming an Ising-type exchange interac-
tion between the nearest-neighboring spins, the model under
investigation can be exactly treated through the generalized
star-triangle mapping transformation. The considered model
thus provides a noble example of the statistical system,
which enables one to study an interplay between quantum
effects and temperature in a spontaneously ordered magnetic
system. Moreover, the magnetic structure of a mixed-spin
honeycomb lattice occurs rather frequently also in the mo-
lecular magnetism, what clearly demonstrates a large family
of polymeric two-dimensional compounds of chemical for-
mula: AIMIIMIII sC2O4d3,

18 where AI stands for a nonmag-
netic univalent cation NsCnH2n+1d4 or PsCnH2n+1d4 (n=3–5),
MII and MIII denote two- and three-valent metal atoms
CuIIsS=1/2d, NiIIsS=1d, CoIIsS=3/2d, FeIIsS=2d or MnIIsS
=5/2d and CrIII sS=3/2d or FeIII sS=5/2d, respectively. In-
deed, the crystal structure of these polymeric molecular-
based magnetic materials consists of the well-separated two-
dimensional layers in which regularly alternating MII and
MIII magnetic metal atoms constitute more or less regular
honeycomb lattice(Fig. 1). As a consequence of the aniso-
tropic crystalline structure of these materials, one should also
expect a relatively strong uniaxial(Ising-like) anisotropy, as
it has already been suggested in the theoretical studies based
on the effective-field theory and Monte-Carlo simulations.19

Hence, the magnetic compounds from the family of oxalates
AIMIIMIII sC2O4d3 represent good candidates to be described
by the proposed model.
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The outline of this paper is as follows. In the next section
the detailed description of the model system will be pre-
sented and then, some basic aspects of the transformation
method will be shown. Section III deals with the physical
interpretation of the most interesting results and finally, some
concluding remarks are drawn in Sec. IV.

II. MODEL AND METHOD

Let us consider the magnetic structure of a mixed-spin
honeycomb lattice schematically depicted in Fig. 1. To en-
sure exact solvability of the model under investigation, we
will further suppose that the sites of sublatticeA are occu-
pied by the spin-12 atoms(depicted as full circles), in contrast
to the sites of sublatticeB that are occupied by the spin-1
atoms(open circles). By assuming the Ising-type exchange
interaction J between nearest-neighboring spins, the total
Hamiltonian of the system takes the following form:

Ĥ = Jo
kk,jl

3N

Ŝk
zm̂ j

z + D o
kPB

N

sŜk
zd2 + Eo

kPB

N

fsŜk
xd2 − sŜk

yd2g, s1d

whereN is a total number of sites at each sublattice,m̂ j
z and

Ŝk
asa=x,y,zd denote the standard spatial components of the

spin-12 and spin-1 operators, respectively. The first summa-
tion in Eq. (1) is carried out over the nearest-neighboring
spin pairs, while the other two summations run over the sites
of sublatticeB. Apparently, the last two termsD and E are
the crystal-field potentials that measure a strength of the
uniaxial and biaxial anisotropy acting on the spin-1 atoms. It
is also worth noticing that there is one-to-one correspon-
dence between the Hamiltonian(1) and the effective spin
Hamiltonian with three different single-ion anisotropiesDx,
Dy, andDz:

Ĥ = Jo
kk,jl

3N

Ŝk
zm̂ j

z + Dzo
kPB

N

sŜk
zd2 + Dxo

kPB

N

sŜk
xd2 + Dyo

kPB

N

sŜk
yd2.

s2d

In fact, one can easily prove the equivalence between the two
effective spin Hamiltonians(up to the unimportant additive

constant, for a comparison see Ref. 20), which can be
achieved using this simple mapping between the relevant
parameters included in the Hamiltonians(1) and(2), respec-
tively:

D = Dz − 1
2sDx + Dyd, and E = 1

2sDx − Dyd. s3d

It should also be mentioned here that by neglecting the biax-
ial anisotropy, i.e., settingE=0 in Eq. (1) or equivalently
Dx=Dy in Eq. (2), our model reduces to the exactly soluble
model of Gonçalves.21 Accordingly, in this work we will, in
particular, examine the effect of biaxial anisotropy on the
thermodynamical and dynamical properties of the model un-
der consideration. Nevertheless, theE term emerging in the
Hamiltonian (1) should cause nontrivial quantum effects,
since it introduces thex andy components of spin operators
into the Hamiltonian and thus, it is responsible for the onset
of local quantum fluctuations that are obviously missing in
the Ising model with the uniaxial crystal-field potentialD
only.

It is therefore of interest to discuss the origin of biaxial
anisotropy. The origin of this anisotropy term consists in the
low-symmetry crystal field of ligands from the local neigh-
borhood of spin-1 atoms. A threefold symmetry axis oriented
perpendicular to the honeycomb layer, however, prevents the
appearance of biaxial crystal-field potential in a regular hon-
eycomb lattice with a perfect arrangement of the oxalato
groups, as well as magnetic metal atoms. On the other hand,
the small lattice distortion, which occurs rather frequently in
the low-dimensional polymeric compounds due to the Jahn-
Teller effect, can potentially lower the local symmetry. In
consequence of that, the distortion of lattice parameters can
be regarded as a possible source of the biaxial anisotropy.
The most obvious example, where the lattice distortion re-
moves the threefold symmetry axis represents the single-
molecule magnet Fe4, in which three outer Fe atoms occupy
two non-equivalent positions around one central Fe atom.2

Let us turn our attention to the main points of the trans-
formation method, which enables an exact treatment of the
model under investigation. First, it is very convenient to
write the total Hamiltonian(1) as a sum of the site Hamilto-

niansĤk:

Ĥ = o
kPB

N

Ĥk, s4d

where each site HamiltonianĤk involves all interaction
terms associated with the appropriate spin-1 atom residing
on thekth site of sublatticeB:

Ĥk = Ŝk
zEk + sŜk

zd2D + fsŜk
xd2 − sŜk

yd2gE, s5d

with Ek=Jsm̂k1
z +m̂k2

z +m̂k3
z d. While the Hamiltonians(5) at

different sites commute with each other(fĤi ,Ĥ jg=0, for
eachi Þ j), the partition function of the system can be par-
tially factorized and consequently, rewritten in the form

FIG. 1. The segment of a mixed-spin honeycomb lattice. The
lattice positions of the spin-1

2 (spin-1) atoms are schematically des-
ignated by full(open) circles, the solid lines label the interactions
between nearest-neighboring atoms. The dashed lines represent the
effective interaction between three outer spin-1

2 atoms, which arise
after performing the mapping(9) at kth site.
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Z = Trhmjp
k=1

N

TrSk
exps− bĤkd. s6d

Earlier,b=1/skBTd, kB is Boltzmann’s constant,T is the ab-
solute temperature, Trhmj means a trace over the spin degrees
of freedom of sublatticeA, and TrSk

stands for a trace over
the spin states ofkth spin from sublatticeB. So, a crucial step
in our procedure represents the calculation of the expression

TrSk
exps−bĤkd. With regard to this, let us write the site

Hamiltonian(5) in an usual matrix representation

Ĥk = 1D + Ek 0 E

0 0 0

E 0 D − Ek
2 , s7d

in a standard basis of functionsu±1l , u0l corresponding, re-
spectively, to the three possible spin statesSk

z= ±1,0 of kth
atom from sublatticeB. Obviously, it is easy to find eigen-
values of the site Hamiltonian(7), however, with respect to
further calculation, it is more favorable to obtain directly the

matrix elements of the expression exps−bĤkd. Using the
well-known Cauchy integral formula, one readily obtains the
matrix elements for an arbitrary exponential function of the
site Hamiltonian(7):

expsaĤkd = expsaDd3coshsaQd +
Ek

Q
sinhsaQd 0

E

Q
sinhsaQd

0 exps− aDd 0

E

Q
sinhsaQd 0 coshsaQd −

Ek

Q
sinhsaQd 4 , s8d

whereQ=ÎEk
2+E2 anda marks any multiplicative function.

After substitutinga=−b into the Eq.(8), the calculation of
the relevant trace TrSk

exps−bĤkd can be accomplished,
moreover, its explicit form immediately implies a possibility
of performing a standard star-triangle mapping transforma-
tion

TrSk
exps− bĤkd = 1 + 2 exps− bDd

3coshfbÎJ2smk1
z + mk2

z + mk3
z d2 + E2g

= A expfbRsmk1
z mk2

z + mk2
z mk3

z + mk3
z mk1

z dg,

s9d

which replaces the partition function of astar, i.e., the four-
spin cluster consisting of one central spin-1 atom, and its
three nearest-neighboring spin-1

2 atoms, by the partition
function of atriangle, i.e., the three-spin cluster comprising
of three spin-12 atoms in the corners of equilateral triangle
(see Fig. 1). The physical meaning of the mapping(9) is to
remove all interaction parameters associated with the central
spin-1 atom and to replace them by an effective interactionR
between the outer spin-1

2 atoms. It is noteworthy, that the
both mapping parametersA and R are “self-consistently”
given by the transformation Eq.(9), which must be valid for
any combination of spin states of three spin-1

2 atoms. In con-
sequence of that one obtains

A = sF1F2
3d1/4, bR= lnSF1

F2
D , s10d

where we have introduced the functionsF1 andF2 to write
the transformation parameters(10) in more abbreviated and
elegant form

F1 = 1 + 2 exps− bDdcoshsbÎs3J/2d2 + E2d,

F2 = 1 + 2 exps− bDdcoshsbÎsJ/2d2 + E2d. s11d

When the mapping(9) is performed at each site of the
sublatticeB, the original mixed-spin honeycomb lattice is
mapped onto the spin-1

2 triangular lattice with the effective
interaction R given by the self-consistency condition(10)
and(11). As a matter of fact, the substitution of the mapping
transformation(9) into the partition function(6) establishes
the relationship

Zsb,J,D,Ed = ANZtsb,Rd, s12d

between the partition functionZ of the mixed-spin honey-
comb lattice and the partition functionZt of the correspond-
ing spin-12 triangular lattice. The earlier equation constitutes
the basic result of our calculation, since it enables a rela-
tively simple derivation of all required quantities such as
magnetization, quadrupolar moment, correlation function, in-
ternal energy, specific heat, etc. Moreover, by combining
(12) with (9) one easily proves the validity of following ex-
act spin identities

kf1smi
z,m j

z, . . . ,mk
zdl = kf1smi

z,m j
z, . . . ,mk

zdlt,

kf2sSk
x,Sk

y,Sk
z,mk1

z ,mk2
z ,mk3

z dl

=KTrSk
f2sSk

x,Sk
y,Sk

z,mk1
z ,mk2

z ,mk3
z dexps− bĤkd

TrSk
exps− bĤkd

L ,

s13d

where k. . .l represents the standard canonical average over
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the ensemble defined by the Hamiltonian(1) and k. . .lt ca-
nonical average performed on the spin-1

2 Ising triangular lat-
tice with the effective exchange interactionR (10) and (11).
Furthermore,f1 is an arbitrary function of the spin variables
belonging to sublatticeA, while f2 denotes an arbitrary func-
tion depending on thekth spin from sublatticeB and its three
nearest neighbors from sublatticeA. Applying the first of
spin identities(13), one straightforwardly attains the follow-
ing results:

mA ; km̂k1
z l = km̂k1

z lt ; mt, s14d

cA ; km̂k1
z m̂k2

z l = km̂k1
z m̂k2

z lt ; ct, s15d

tA ; km̂k1
z m̂k2

z m̂k3
z l = km̂k1

z m̂k2
z m̂k3

z lt ; tt, s16d

while the second of spin identities(13) enables a derivation
of quantities depending on the spin variable from sublattice
B, as well

mB ; kŜk
zl = − 3mAsK1 + K2d/2 − 2tAsK1 − 3K2d, s17d

qB
x ; ksŜk

xd2l = sK5 + 3K6d/4 + 3cAsK5 − K6d, s18d

qB
y ; ksŜk

yd2l = sK7 + 3K8d/4 + 3cAsK7 − K8d, s19d

qB
z ; ksŜk

zd2l = sK3 + 3K4d/4 + 3cAsK3 − K4d. s20d

Earlier, mA smBd labels the single-site magnetization at sub-
lattice A sBd, qB

asa=x,y,zd are different spatial components
of quadrupolar moment and finally, andcA and tA are the
static pair and triplet correlation functions between the rel-
evant spins of sublatticeA, respectively. Obviously, an exact
solution for both the sublattice magnetization and quadrupo-
lar moment require the knowledge of the single-site magne-
tizationmt, nearest-neighbor pair correlation functionct, and
triplet correlation functiontt on the corresponding spin-1

2 tri-
angular lattice unambiguously given by(10) and(11). Fortu-
nately, the exact solution for these quantities on the spin-1

2
triangular lattice are known a long time ago, hence, one can
utilize the final results from Ref. 22. Finally, the coefficients
emerging in the previous set of Eqs.(17)–(20) are listed later

K1 = F1s3J/2d, K2 = F1sJ/2d, K3 = F2s3J/2d,

K4 = F2sJ/2d, K5 = F3s3J/2,−Ed, K6 = F3sJ/2,−Ed,

K7 = F3s3J/2,Ed, K8 = F3sJ/2,Ed, s21d

where we have defined the functionsF1sxd, F2sxd, and
F3sx,yd as follows:

F1sxd =
x

Îx2 + E2

2 sinhsbÎx2 + E2d

expsbDd + 2 coshsbÎx2 + E2d
,

F2sxd =
2 coshsbÎx2 + E2d

expsbDd + 2 coshsbÎx2 + E2d
,

F3sx,yd =
expsbDd + coshsbÎx2 + y2d

expsbDd + 2 coshsbÎx2 + y2d

+
y

Îx2 + y2

sinhsbÎx2 + y2d

expsbDd + 2 coshsbÎx2 + y2d
.

s22d

At the end of this section, we will also provide an exact
result for one dynamical quantity-time-dependent autocorre-
lation function. It should be noted here that exactly soluble
models only seldom offer the possibility to investigate their
spin dynamics. On the other hand, the dynamical quantities
such as autocorrelation and correlation functions are impor-
tant also from the experimental point of view, because their
magnitude directly determines the scattering cross section
measured in the inelastic neutron scattering experiments,23 or
the spin-lattice relaxation rate provided by the nuclear mag-
netic resonance techniques.24 In this work, an exact treatment
for the time-dependent autocorrelation function will be
elaborated. As a starting point for the calculation of the au-
tocorrelation functionCauto

zz std can for convenience serve the
second of exact spin identities(13):

Cauto
zz std ;

1

2
kŜk

zs0dŜk
zstd + Ŝk

zstdŜk
zs0dl

=
1

2KTrSk
hfŜk

zs0dŜk
zstd + Ŝk

zstdŜk
zs0dgexps− bĤkdj

TrSk
exps− bĤkd

L ,

s23d

where the symmetrized form in the definition ofCauto
zz is used

to construct a Hermitian operator,Ŝk
zstd=expsitĤk/"dŜk

zexps
−itĤk/"d represents the Heisenberg picture for the time-

dependent operatorŜk
zstd, " stands for Planck’s constant and

i =Î−1. Next, the matrix representation of exps±itĤk/"d can
be readily obtained by puttinga= ± it /" into Eq. (8). Then,
after a straightforward but a little bit tedious calculation, one
arrives to the final result for the dynamical autocorrelation
function

Cauto
zz std = K3S1

4
+ 3ctDS

3

2
JD2

+ E2cosF2t

"
ÎS3

2
JD2

+ E2G
S3

2
JD2

+ E2

+ K4S3

4
− 3ctDS

1

2
JD2

+ E2cosF2t

"
ÎS1

2
JD2

+ E2G
S1

2
JD2

+ E2

.

s24d

III. RESULTS AND DISCUSSION

Before proceeding to the discussion of the most interest-
ing results, it is noteworthy, that the results derived in the
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previous section are rather general, i.e., they are valid for the
ferromagneticsJ,0d, as well as ferrimagneticsJ.0d ver-
sion of the model under consideration. In what follows, we
will restrict ourselves to the analysis of the ferrimagnetic
model only, since the polymeric compounds from the family
of oxalates18 fall mostly into the class of ferrimagnets. Nev-
ertheless, it appears worthwhile to say that magnetic behav-
ior of the ferrimagnetic system completely resembles that
one of the ferromagnetic system. Finally, it should be empha-
sized that the mapping(19) remains invariant under the
transformationE↔−E. As a result, one may consider with-
out loss of generality the parameterEù0 and consequently,
x, y, andz axis then represent the hard, medium, and easy
axis for a given system.

A. Ground-state properties

First, we will take a closer look at the ground-state behav-
ior. Taking into account the zero-temperature limitT→0+,
one finds following condition for a first-order phase transi-
tion line separating the magnetically ordered phase(OP)
from the disordered phase(DP):

D

J
=ÎS3

2
D2

+ SE

J
D2

. s25d

From Eqs.(16)–(22), moreover, one easily attains analytical
results for the single-site sublattice magnetization(mA, mB),
total single-site magnetizationm=smA+mBd /2 and different
spatial components of the quadrupolar momentqB

asa
=x,y,zd in the both phases, as well

OP: mA = −
1

2
, mB =

3

2
ÎS3

2
D2

+ SE

J
D2

,

m= −
1

4
+

3

4

ÎS3

2
D2

+ SE

J
D2

,

qB
x =

1

231 −

E

J

ÎS3

2
D2

+ SE

J
D24 , s26d

qB
y =

1

231 +

E

J

ÎS3

2
D2

+ SE

J
D24, qB

z = 1.0;

DP: mA = 0.0, mB = 0.0, m= 0.0,

qB
x = 1.0, qB

y = 1.0, qB
z = 0.0. s27d

For a better illustration, Fig. 2 depicts the ground-state phase
diagram in theE/J−D /J plane[Fig. 2(a)] together with the

zero-temperature variations of the magnetization and quadru-
polar moment in the OP[Fig. 2(b), the value of uniaxial
anisotropyD /J=0.0 has been chosen not to pass through the
phase boundary]. It is worthy to mention that by neglecting
the biaxial anisotropy, i.e., settingE/J=0.0, one recovers
from the phase boundary condition(25) a boundary uniaxial
anisotropyD /J=1.5, which has been already reported by
Gonçalves several years ago.21 In this limit, the OP corre-
sponds to the simple ferrimagnetic phase in which both sub-
lattice magnetization are fully saturated and also antiparallel
oriented with respect to each other(in fact, mA=−0.5 and
mB=1.0).

The situation becomes much more complicated by turning
on the biaxial anisotropyE. Even though the sublattice mag-
netizationmA remains at its saturation value in the whole OP,
the sublattice magnetizationmB is gradually suppressed by
increasing the biaxial anisotropy strength. In contrast, neither
sublattice magnetization, nor the quadrupolar moment do not
depend within either ground state phase on the uniaxial
crystal-field potentialD. Of course, the relevant change of
sublattice magnetizationmB must reflect a violation of a per-
fect ferrimagnetic spin arrangement in the OP. To achieve the
nonsaturatedmB at T=0, some spins of sublatticeB must flip
from the u+1l to u−1l and/or u0l state(s). It is therefore of
great importance to identify the magnitude of the quadrupo-
lar momentqB

z . Since the quadrupolar moment approaches in
the OP its saturation valueqB

z =1.0 independently ofE/J, a
presence of theu0l states can be thus clearly excluded. These
observations would suggest, that the biaxial anisotropy
causes in the OP a spin tunneling between theu+1l and
u−1l states, whereas the stronger the ratioE/J, the greater the
population of theu−1l state. Anyway, the probabilities to find
the spin-1 atom in theu±1l state are given by these simple
expressions:psu±1ld=s1±mBd /2. Altogether, the spin con-
figuration referring to the OP atT=0 can be characterized as
follows: all spin-12 atoms are wholly ordered in their spin
down positionssmA=−0.5d, while the spin-1 atoms occupy
with the probabilitypsu±1ld either theu+1l, or u−1l state. It
should also be pointed out, that the conditionqB

y .qB
x is al-

ways satisfied whenE.0. This inequality between the spa-
tial components of quadrupolar momentum provides a con-
firmation, thatx and y axis represent under the assumption
E.0 the hard and medium axis in the OP.

Last, let us consider the spin ordering within the DP. In-
terestingly, the DP remains unaltered no matter whether the

FIG. 2. (a) Ground-state phase diagram in theE/J-D /J plane.
(b) Single-site magnetizations(full lines) and quadrupolar moment
(broken ones) vs the biaxial anisotropyE/J at T=0 andD /J=0.0.
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biaxial anisotropy is zero, or not. Indeed, all spin-1 atoms
occupy in the DP exclusively theu0l state, because ofmB
=qB

z =0.0. Contrary to this, the components of quadrupolar
moment perpendicular to thez axis acquire in the DP their
maximum valueqB

x =qB
y =1.0. These results can be thought as

an independent check for the scenario that accompanies the
phase transition from the OP to DP: all spin-1 atoms indeed
tending to align into thex-y plane. Accordingly, the magnetic
order is completely destroyed, in fact, the vanishing magne-
tizationmA implies a state of complete spin randomization at
sublatticeA. Therefore, the DP does not exhibit any long-
range magnetic order even atT=0.

Now another interesting question arises, namely, whether
the spin-1 atoms can fluctuate in the OP between theirallow-
able u±1l states. In order to obtain a reliable answer to this
question, the time-dependent autocorrelation function(24)
will be analyzed. In the zero-temperature limit, the dynami-
cal autocorrelation functionCauto

zz gains after straightforward
calculation

Cauto
zz std =

S3

2
D2

+ SE

J
D2

cosF2Jt

"
ÎS3

2
D2

+ SE

J
D2G

S3

2
D2

+ SE

J
D2 ,

s28d

which in turn proves thatCauto
zz is periodic in time with the

angular frequencyvu=2J/"Îs3/2d2+sE/Jd2 and the recur-
rence time t=p" / fJÎs3/2d2+sE/Jd2g. According to Eq.
(28), the dynamical autocorrelation function does not depend
in the ground state on the uniaxial anisotropyD. Owing to
this fact, we will further neglect this anisotropy parameter
and setD /J=0.0. For illustrative purposes, the time variation
of the autocorrelation functionCauto

zz is displayed in Fig. 3 for
several values of the biaxial anisotropyE/J=0.1, 0.5, 1.0,
and 2.0. It appears worthwhile to make a few remarks on
foregoing results. Since the autocorrelation function varies in
time, it clearly demonstrates the zero-temperature spin dy-

namics between theallowable u±1l states. From the analyti-
cal solution(28) as well as depicted behavior one can more-
over deduce a physical interpretation of the spin dynamics,
namely, the spin system necessarily recovers after the recur-
rence timet always its initial state, whereas the stronger the
ratio E/J, the shorter the recurrence timet. In addition, the
increasing strength of the biaxial anisotropy enhances also
the time variation ofCauto

zz (i.e., the amplitude of oscillation).
This result is taken to mean, that increasing biaxial aniso-
tropy also enlarges a number of the spin-1 atoms, which
tunnel during the recurrence time between theu±1l states.
Since the equilibrium magnetization does not vary in time, a
number of atoms that tunnel from theu+1l to the u−1l state,
must definitely be the same as a number of atoms that tunnel
from the u−1l to the u+1l state. These findings have an obvi-
ous relevance to the understanding of the zero-temperature
spin dynamics, because they enable its explanation from the
microscopic viewpoint.

B. Finite-temperature behavior

In this part, we would like to make some comments on the
finite-temperature behavior of the system under investiga-
tion. Let us begin by considering the effect of uniaxial and
biaxial anisotropies on critical behavior. For this purpose,
two typical finite-temperature phase diagrams are illustrated
in Figs. 4(a) and 4(b). In both figures, the OP can be located
below the phase boundaries depicted as solid lines, while
above the relevant phase boundaries the usual paramagnetic
phase becomes stable. A closer mathematical analysis re-
veals, that the temperature-driven phase transition between
these two phases is of a second order and belongs to the
standard Ising universality class. More specifically, Fig. 4(a)
shows the critical temperature as a function of the uniaxial
anisotropyD /J for several values of the biaxial anisotropy
E/J. The dependence critical temperature versus uniaxial an-
isotropy is quite obvious, when increasingD /J, the critical
temperature tends monotonically to zero as many as the
boundary value(25) is achieved. While the anisotropy term

FIG. 3. Time variation of the dynamical auto-
correlation functionCauto

zz for various values of
biaxial anisotropiesE/J=0.1, 0.5, 1.0, and 2.0.
Time axis is scaled in" /J units.
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D forces the spins to lie withinx-y plane whenD.0, theE
term tries to align them into they-z plane. Accordingly, the
increasing strength of the biaxial anisotropy supports the
magnetic long-range order related to the OP whenD /J.1.5
and, hence, it survives until stronger anisotropiesD /J. As far
as the regionD,0 is concerned, the biaxial anisotropy sub-
stantially lowers the critical temperature of the OP. Appar-
ently, this behavior arises as a consequence of the fact, that
the E term simplifies the transition between theu±1l states
due to the nonzero quantum fluctuations. Thus, one can con-
clude that the quantum fluctuations macroscopically manifest
themselves in the reduction of the critical temperature for the
easy-axis uniaxial anisotropy[i.e., for D,0, where the
model Hamiltonian(1) works extremely well].

To illustrate the influence of the biaxial anisotropy on the
critical behavior, the critical temperature versus biaxial an-
isotropy dependence is shown in Fig. 4(b) for several values
of the uniaxial anisotropy. As one would expect, the critical
temperature gradually decreases with increasing the biaxial
anisotropy strength for anyD,0. In agreement with the
aforementioned arguments, the appropriate depression of the
critical temperature can be again attributed to the quantum
fluctuations, which become the stronger, the greater, the ratio
E/J. Apart from this rather trivial finding, one also observes
here the interesting dependences with the nonmonotonical
behavior of the critical temperature. Namely, forD /J@0.0
the critical temperature first increases and only then gradu-
ally decreases with the biaxial anisotropy strength(see for
instance the curve forD /J=1.3). To explain such a behavior,
it should be realized that the spin-1 atoms are preferably
thermally excited to theu0l state whenD.0, which means,
that they are preferably excited to thex-y plane. Since the
biaxial anisotropy tries to align them into they-z plane, it

favors the long-range order alongz axis in that it prefers the
spin tunneling between theu±1l states before the population
of the u0l one. The most interesting result to emerge here is
that there is a strong evidence, that aforementioned argument
explains an existence of the OP even under assumption of
extraordinary strong anisotropiesD /Jù1.5. In fact, the mag-
netic long-range order related to the OP occurs under this
condition for the strong enough biaxial anisotropies only.
Surprisingly, the magnetic long-range order results in such a
peculiar case from the quantum fluctuations(spin tunneling)
caused by the biaxial anisotropy.

Now let us provide an independent check of the critical
behavior by studying the thermal dependences of magnetiza-
tion. The single-site magnetization against the temperature
are plotted in Fig. 5 for the uniaxial anisotropyD /J=−2.0
and several values of the biaxial anisotropyE/J. Figure 5(a)
shows a typical situation observed by turning on the biaxial
anisotropyE/J: the greater this anisotropy parameter, the
stronger the reduction of sublattice magnetizationmB due to
the u±1l spin tunneling. As it is apparent from this figure, the
total magnetization exhibits in general the standard Q-type
dependences. The most striking thermal variations of the to-
tal magnetization can be evidently found for the biaxial
anisotropies close to the valueEc

0/J=Î27/2, at whichmA
fully compensatesmB in the ground state[Fig. 5(b), see also
Fig. 2(b)]. It turns out, however, that all marvelous thermal
dependences of the total magnetization stemming from the
identical origin—the magnetization of sublatticeA is ther-
mally more easily disturbed than the magnetization of sub-
lattice B. As a result, the P-type dependences of total mag-
netization occur for E,Ec

0, when the prevailing
magnetizationmB exhibits smaller thermal variation than the
lower magnetizationmA [see casesE/J=2.58 and 2.59 in

FIG. 4. (a) Critical temperature dependence
on the uniaxial anisotropyD /J for several values
of biaxial anisotropiesE/J. (b) Critical tempera-
ture dependence on the biaxial anisotropyE/J for
several values of uniaxial anisotropiesD /J.

FIG. 5. (a) Thermal dependences of the total
and sublattice single-site magnetization forD /J
=−2.0 andE/J=0.0, 1.0, and 2.0.(b) Various
temperature dependences of the total magnetiza-
tion normalized per one site when the strength of
uniaxial anisotropy is fixedsD /J=−2.0d and the
biaxial anisotropy varies in the vicinity ofEc

0.
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Fig. 5(b)]. Based on our earlier remark concerning the
ground-state properties,umAu exceedsmB if E.Ec

0 is satis-
fied. Then, when the value of biaxial anisotropy is from the
vicinity Ec

0, a more rapid thermal variation ofmA results in
the N-type dependence with one compensation point. As a
matter of fact, the total magnetization shows one compensa-
tion point in which spontaneous magnetization reverses its
sign, because at lower temperaturesumAu .mB, while at
higher temperaturesumAu ,mB (see the curve forE/J=2.61).
In addition, even for more stronger biaxial anisotropies the
R-type dependences of total magnetization appearsE/J
=2.63d. In such a case, the total magnetization retrieves its
substandard slope from the faster thermal variation of always
dominating magnetizationmA.

Finally, let us proceed to the discussion of the spin dy-
namics at nonzero temperatures. The time variations of the
autocorrelation functionCauto

zz are plotted in Fig. 6 for three
selected values of biaxial anisotropiesE/J=0.1, 0.5, and 2.0.
To enable a comparison between the autocorrelation func-
tions at variousE/J, the relevant temperatures are normal-
ized with respect to their critical temperatures. It can be eas-
ily realized that the autocorrelation function is not in general
a periodic function of time at nonzero temperatures. Indeed,
Cauto

zz arises according to Eq.(28) as a superposition of two
harmonic oscillations—oscillation with higher angular fre-
quency vu=2J/"Îfs3/2d2+sE/Jd2g and another one with
lower angular frequencyvl =2J/"Îfs1/2d2+sE/Jd2g. The in-
terference between these harmonic oscillations with different
frequencies and also various amplitudes gives rise to a rather
complex time variation ofCauto

zz , which is in general aperi-
odic, displaying nodes and other typical interference effects
(see Fig. 6). The dependences drawn in Fig. 6 also nicely
illustrate the temperature effect on the spin dynamics.
Namely, it follows from these dependences, that as the tem-

perature increases, some amplitudes are suppressed, while
another ones become more robust. Obviously, in the high-
temperature region that amplitudes become dominant, which
coincide to the oscillation with lower angular frequencyvl
(see lower panels in Fig. 6). In contrast, the amplitudes aris-
ing from higher frequency oscillationvu dominate at lower
temperatures(see upper panels in Fig. 6). As far as the in-
fluence of biaxial anisotropy is concerned, the stronger the
ratio E/J, the smaller the difference between both angular
frequencies and, hence, the more expressive an interference
effect between them. It is worth mentioning that some par-
ticular biaxial anisotropies keeping the ratiovu/vl to be ra-
tional, what ensures that the autocorrelation functionCauto

zz is
periodic in time even atTÞ0. In any other case, theCauto

zz

behaves aperiodically. As a result, in the latter case one can
impose at best some characteristic time during that the most
of spins engaged in the spin dynamics change their states, as
it apparent from Figs. 6(a1), 6(a2), and 6(a3). Although this
behavior is quasiperiodic, its characteristic time cannot be
confused with the recurrence timet of the former ones, in
fact, the spin system at biaxial anisotropies giving the irra-
tional ratiovu/vl never approaches its initial state again.

It should also be stressed, that the uniaxial anisotropyD
affects the spin dynamics atTÞ0, as well. To illustrate the
case, we have depicted in Fig. 7 the time variations of auto-
correlation function at T/Tc=1.0 for various uniaxial
anisotropiesD /J and the ratioE/J=0.5. Referring to this
plot, the influence ofu0l states on the spin dynamics can be
understood more deeply. It is quite evident, that a number of
the u0l states becomes negligible by taking into account the
easy-axis anisotropy[e.g.,D /J=−2.0, Fig. 7(a)]. Really, the
quadrupolar momentqB

z becomes in this case almost satu-
rated, as it can be seen from the time dependence ofCauto

zz std,
since Cauto

zz s0d=qB
z . Contrary to this, the occupation ofu0l

states becomes crucial when accounting the easy-plane an-

FIG. 6. Time variations of the
dynamical autocorrelation func-
tion Cauto

zz when D /J=0.0 is fixed
and E/J=0.1, 0.5, or 2.0. Upper,
central, and lower panels show the
time variation of Cauto

zz at three
various temperatures, which are
normalized with respect to their
critical temperatures to ensure the
same ratioT/Tc=0.8, 1.0, and 1.1,
respectively.
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isotropy [see for instance Fig. 7(d) displaying theD /J=1.5
case]. From the comparison of Figs. 7(a)–7(d) one can con-
clude, that positive(negative) anisotropy termD reinforces
the higher(lower) frequency oscillationvu (vl) and, hence,
the characteristic time becomes considerably shorter
(longer). Naturally, the observed behavior results from the
fact, that the critical temperature gradually falls down as the
anisotropy termD /J increases. When increasing the ratio
D /J, moreover, the oscillation amplitudes are also sup-
pressed, what means, that a smaller number of spins changes
during the characteristic time their spin states. This striking
feature clarifies, that theu0l states are not engaged in the spin
dynamics so greatly as theu±1l states, or even, they do not
contribute to the spin dynamics at all.

IV. CONCLUDING REMARKS

In this paper, the exact solution of the mixed spin-1
2 and

spin-1 Ising model on honeycomb lattice is presented and
discussed in detail. The particular attention has been focused
on the effect of uniaxial and biaxial crystal-field potentials
acting on the spin-1 atoms. As it has been shown, the pres-
ence of the biaxial anisotropy modifies the magnetic behav-
ior of studied system in a crucial manner. It turns out that
already a small amount of the biaxial anisotropy raises a
nontrivial spin dynamics and basically influences the thermo-
dynamic properties, as well.

The most interesting finding to emerge here constitutes an
exact evidence of the spin tunneling between theu±1l states
in the magnetically OP. Macroscopically, the tunneling effect
decreases the critical temperature for the easy-axis uniaxial
anisotropy(D,0) and also, appreciably depresses the mag-
netization of spin-1 atoms from its saturation value even in
the ground state[see Eq.(26) and Fig. 2(b)]. The reduction
of critical temperature, as well as magnetization appears ap-
parently due to the local quantum fluctuations arising from
the biaxial anisotropy. On the other hand, the same quantum

fluctuations can surprisingly cause an onset of the magnetic
long-range order for the extraordinary strong easy-plane
anisotropiesD /J.1.5. To the best of our knowledge, such a
result has not been published in the literature before.

It should be also stressed that there is an interesting cor-
respondence between the model described by the Hamil-
tonian (1) and a similar Ising model with a local transverse
magnetic fieldV acting on the spin-1 atoms only(for a com-
parison, see Ref. 25):

Ĥ = Jo
kk,jl

3N

Ŝk
zm̂ j

z + V o
kPB

N

Ŝk
x. s29d

However, a similarity between the both Hamiltonians(1) and
(29) is not accidental, in fact, when neglecting the uniaxial
crystal-field potentialD in the Hamiltonian(1), an effective
mapping E↔V ensures the equivalence between(1) and
(29). Since this mapping is not related to the magnetic struc-
ture in any fashion, the appropriate correspondence can be
apparently extended to several lattice models. It is therefore
valuable to mention, that the magnetic properties of lattice
models with the local transverse field become a subject mat-
ter of many other theoretical works during the last few
years.26 Hence, the magnetic behavior of these systems com-
pletely resembles that one of their counterparts with the bi-
axial crystal-field potentialE only.

Finally, let us turn back to the origin of biaxial anisotropy.
Uprise of this anisotropy term in the mixed-spin honeycomb
lattice is closely associated with at least a small lattice dis-
tortion. To simplify the situation, the proposed Hamiltonian
(1) accounts the biaxial crystal-field anisotropy, while a dif-
ference between exchange interactions within various spatial
directions of the honeycomb lattice has been, for simplicity,
omitted. Nevertheless, the developed procedure can be gen-
eralized in a rather straightforward way also to a model ac-
counting the anisotropic interactionssJ1,J2,J3d within the
three nonequivalent directions of honeycomb lattice de-
scribed by the Hamiltonian

FIG. 7. The time variations of
dynamical autocorrelation func-
tion Cauto

zz at critical temperature
sT/Tc=1.0d, E/J=0.5, and several
values D /J=−2.0, 1.0, 1.3, and
1.5.
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Ĥ = o
kk,jl

3N

JkjŜk
zm̂ j

z + D o
kPB

N

sŜk
zd2 + Eo

kPB

N

fsŜk
xd2 − sŜk

yd2g,

s30d

where the nearest-neighbor exchange constantJkj=J1, J2, or
J3 in dependence on which of the three nonequivalent spatial
direction it deals. In addition, the biaxial anisotropy strength
can be even considered as an arbitrary function(linear, qua-
dratic, exponential, logarithmic,…) of the ratio between ap-
propriate interaction parameters:E= fsJ2/J1,J3/J1d. There-
fore, another interesting question arises, namely, whether the
Ising model with biaxial crystal-field anisotropy taken as a
function E= fsJ2/J1,J3/J1d can be instable with respect to
the spin-Peierls phenomenon. It is quite reasonable to as-

sume, however, that under certain conditions the energy gain
from the biaxial crystal-field anisotropy exceeds the elastic
energy related to the lattice deformation and, hence, the bi-
axial anisotropy can lead to a spontaneous lattice distortion.
To confirm this suggestion, our future work will be directed
in this way.

ACKNOWLEDGMENTS

The authors are grateful to Oleg Derzhko and Taras
Verkholyak for stimulating discussion and useful suggestions
during the Small Triangle Meeting 2003 in Medzev. This
work was supported under the VEGA Grant No. 1/9034/02
and the APVT Grant No. 20-009902.

*E-mail address: jozkos@pobox.sk
†E-mail address: jascur@kosice.upjs.sk
1R. Sessoli and D. Gatteschi, Angew. Chem.42, 268 (2003).
2A. L. Barra, A. Caneschi, A. Cornia, F. Fabrizi de Biani, D.

Gatteschi, C. Sangregorio, R. Sessoli, and L. Sorace, J. Am.
Chem. Soc.121, 5302(1999); G. Amoretti, S. Carretta, R. Caci-
uffo, H. Casalta, A. Cornia, M. Affronte, and D. Gatteschi, Phys.
Rev. B 64, 104403(2001).

3K. Wieghardt, K. Pohl, I. Jibril, and G. Huttner, Angew. Chem.
96, 63 (1984); M. Hennion, L. Pardi, I. Mirebeau, E. Suard, R.
Sessoli, and A. Caneschi, Phys. Rev. B56, 8819 (1997); R.
Sessoli, D. Gatteschi, A. Caneschi, and M. A. Novak, Nature
(London) 365, 141 (1993); R. Sessoli, Mol. Cryst. Liq. Cryst.
274, 145 (1995).

4J. C. Goodwin, R. Sessoli, D. Gatteschi, W. Wernsdorfer, A. K.
Powell, and S. L. Health, J. Chem. Soc. Dalton Trans.2000,
1835(2000); M. Affronte, J. C. Lasjaunias, W. Wernsdorfer, R.
Sessoli, D. Gatteschi, S. L. Health, A. Fort, and A. Rettori, Phys.
Rev. B 66, 064408(2002).

5W. Wernsdorfer, S. Bhaduri, C. Boskovic, G. Christou, and D. N.
Hendrickson, Phys. Rev. B65, 180403(2002).

6J. Oitmaa and A. M. A. von Brasch, Phys. Rev. B67, 172402
(2003).

7K. K. Pan and Y.-L. Wang, Phys. Rev. B51, 3610(1995).
8N. Ch. Eddeqaqi, M. Saber, A. El-Atri, and M. Kerouad, Physica

A 272, 144 (1999); W. Jiang, G. Z. Wei, and A. Du, J. Magn.
Magn. Mater.250, 49 (2002); W. Jiang, G. Z. Wei, A. Du, and
L. Q. Guo, Physica A313, 503(2002); W. Jiang, G. Z. Wei, and
Q. Zhang,ibid. 329, 161 (2003).

9G. P. Taggart, R. A. Tahir-Kheli, and E. Shiles, Physica
(Amsterdam) 75, 234 (1974); R. Mienas, Physica A89, 431
(1977).

10K. K. Pan and Y.-L. Wang, Phys. Lett. A178, 325 (1993).
11T. Moriya, Phys. Rev.117, 635 (1960).
12L. Berger and S. A. Friedberg, Phys. Rev.136, A158 (1964).
13L. G. Polgar and S. A. Friedberg, Phys. Rev. B6, 3497(1972).
14H. Kumagai, K. Ôno, I. Hayashi, and K. Kambe, Phys. Rev.2,

374 (1952).
15M. E. Lines, Phys. Rev.137, A982 (1965).

16N. Uryû, J. Skalyo, and S. A. Friedberg, Phys. Rev.144, 689
(1966).

17G. C. DeFotis, F. Palacio, and R. L. Carlin, Phys. Rev. B20,
2945(1979); G. C. DeFotis, B. K. Failon, F. V. Wells, and H. H.
Wickman, ibid. 29, 3795(1984).

18Z. J. Zhong, N. Matsumoto, H.Ōkawa, and S. Kida, Chem. Lett.
1990, 87 (1990); H. Tamaki, M. Mitsumi, K. Nakamura, N.
Matsumoto, S. Kida, H.Ōkawa, and S. Iijima,ibid. 1992, 1975
(1992); H. Tamaki, Z. J. Zhong, N. Matsumoto, S. Kida, M.
Koikawa, Y. Aihiwa, Y. Hashimoto, and H.Ōkawa, J. Am.
Chem. Soc.114, 6974(1992); S. Iijima, T. Katsura, H. Tamaki,
M. Mitsumi, N. Matsumoto, and H.Ōkawa, Mol. Cryst. Liq.
Cryst. Sci. Technol., Sect. A233, 263 (1993); S. Decurtins, S.
W. Schmalle, H. R. Ostwald, A. Linden, J. Ensling, P. Gütlich,
and A. Hauser, Inorg. Chim. Acta216, 65 (1994); C. Ma-
thonière, S. G. Carling, Y. Dou, and P. Day, J. Chem. Soc.,
Chem. Commun.1994, 1554(1994); W. M. Reiff, J. Kreisz, L.
Meda, and R. U. Kirss, Mol. Cryst. Liq. Cryst. Sci. Technol.,
Sect. A 273, 181 (1995); C. Mathonière, C. J. Nuttall, S. G.
Carling, and P. Day, Inorg. Chem.35, 1201(1996).

19T. Kaneyoshi, Y. Nakamura, and S. Shin, J. Phys.: Condens.
Matter 10, 7025(1998); Y. Nakamura,ibid. 12, 4067(2000); Y.
Nakamura, Phys. Rev. B62, 11742(2000); Y. Nakamura, Prog.
Theor. Phys.138, 466 (2000); G. M. Buendia and E. Machado,
J. Magn. Magn. Mater.272–276, 249 (2004).

20J. Strečka and M. Jaščur, Acta Electrotechnica et Informatica2,
102 (2002); (cond-mat/0207519).

21L. L. Gonçalves, Phys. Scr.32, 248(1985); 33, 192(1986); J. W.
Tucker, J. Magn. Magn. Mater.95, 133 (1999).

22R. B. Potts, Phys. Rev.88, 352 (1952); G. F. Newell,ibid. 79,
876 (1950); R. M. F. Houtappel, Physica(Amsterdam) 16, 425
(1950); H. N. V. Temperley, Proc. R. Soc. London, Ser. A203A,
202 (1950); R. J. Baxter and T. Choy,ibid. 423, 279 (1989); J.
H. Barry, T. Tanaka, M. Khatun, and C. H. Múnera, Phys. Rev.
B 44, 2595(1991).

23E. Balcar and S. W. Lovesey,Theory of Magnetic Neutron And
Photon Scattering(Clarendon, Oxford, 1989).

24T. Moriya, Prog. Theor. Phys.16, 23 (1956).
25M. Jaščur and S. Lacková, J. Phys.: Condens. Matter12, L583

JOZEF STREČKA AND MICHAL JAŠ ČUR PHYSICAL REVIEW B 70, 014404(2004)

014404-10



(2000).
26M. Jaščur and J. Strečka, Phys. Lett. A258, 47 (1999); J. Strečka,

H. Čenčariková, and M. Jaščur, Acta Electrotechnica et Infor-
matica 2, 107 (2002) (cond-mat/0207518); H. Suzuki, and M.

Suzuki, Int. J. Mod. Phys. B16, 3871(2002); J. Strečka and M.
Jaščur, J. Magn. Magn. Mater. 260, 415 (2003); Y.
Fukumoto and A. Oguchi, J. Magn. Magn. Mater.272–276, 910
(2004).

EFFECT OF UNIAXIAL AND BIAXIAL CRYSTAL- … PHYSICAL REVIEW B 70, 014404(2004)

014404-11


