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An efficient numerical method is developed to calculate the transmission coefficient of the phononic crystals.
By this method, the transmission properties of a two-dimensional phononic crystals constructed by the rect-
angle elastic isotropic lead rods embedded in uniform epoxy is investigated as an example. The transmission
spectrum of the system is in excellent agreement with the band structure for the incident waves including both
longitudinal and transverse polarized waves, The transmission spectra of the in-plane oblique incident waves
are also calculated and discussed.
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I. INTRODUCTION

The propagation of elastic or acoustic waves in periodic
heterogeneous materials which is called phononic crystal has
received much attentions in the last decade.1–19The existence
of a full frequency gap in which the propagation of elastic
waves is forbidden should have a potential application. Vari-
ous systems with different materials(liquid and solid with
different physical parameters) and inclusions(circular or
rectangle rods for two-dimensional systems and sphere or
cube for three-dimensional, etc.) have been investigated to
enlarge the width of the full gap. To study the elastic wave
behavior in this kind of system, several numerical analytical
methods such as the plane-wave-expansion method
(PWE),1–6 the multi-scattering theory(MST),7–12 and the
finite-different time-domain method(FDTD)13–17 have been
developed and extensively used. Another method called the
variational method(VM ), which is based on the cubic B
splines expansion, has been also developed recently.18,19

Among them, the PWE method, by which the wave equa-
tions are solved in the Fourier space, is mostly used to cal-
culate the band structure.

For the transmission properties of a finite system, the
FDTD method and MST have been used by many research-
ers. The MST method, which is based on the Bessel function
and(or) the Hankel function expansions, is very efficient and
has good convergence. The waves in the system with spheral
or elliptical boundary can be expressed by the Bessel and
(or) Hankel function, which means the MST method can
only be applied in the composite systems with spheral or
elliptical shaped inclusions. The FDTD method is based on
the real time simulation of the wave behavior; it can be used
in the systems with any shaped inclusions. To obtain the
transmission spectrum by this method, a fast Fourier transfer
procedure on the simulation result has to be adopted, and no
reflection coefficient could be defined.13,15 Furthermore,
when the system consists of materials with large contrast in
their elastic properties, the FDTD method requires a very
large number of discrete grids, which means a huge CPU
time has to be consumed in the calculation.

In this paper, we present a calculating method of trans-
mission spectrum, which is based on the eigenmode match-
ing theory (EMMT). The basic idea is stemmed from the
vector wave analysis of the surface grating.20,21 By this
method, the system is first cut into layers, waves in each
layer are expressed as a superposition of basic function set,
then the boundary condition is used to connect the nearest
layers. Our results show that this method is very efficient to
investigate the composite systems with rectangle shaped in-
clusions, which can not be treated by the MST method. This
method can also be extended to study other composite sys-
tems with any shaped inclusions by selecting a suitable basic
function set.

As an example of calculation, a two-dimensional
phononic crystal which consists of square arranged parallel
rectangular lead rods embedded in the epoxy matrix is inves-
tigated. The numerical result shows that the transmission
spectra are in excellent agreement with the band structure for
the incident wave including both longitudinal and transverse
polarized waves. The transmission spectra of the in-plane
oblique incident waves are also calculated and discussed.

This paper is organized as follows. In the next section we
present the main idea and the formula of the EMMT method.
In Sec. III, numerical results and discussions are given. We
summarize the paper in Sec. IV.

II. THEORY

To show the EMMT method, we consider a two-
dimensional phononic crystal with lattice constanta and fill-
ing fraction f =s2l /ad2 shown in Fig. 1, which is infinite in z-
and x-directions, and haveK total layers in they-direction.
As shown in the figure, we denote the considered system by
layer labels1,2,3, . . . ,K in the y-direction, where the uni-
form and composite layers are interlaced. The elastic plane
wave is inputted from the left-most layer 1 and outgoing
from the right-most layerK ;u is the in-plane incident angle.

The elastic wave propagating in elastic media can be de-
scribed by
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Tij = cijklUk,l , s2d

wherei , j ,k, l =1,2,3,respectively.
In a two-dimensional system, thexy-mode andz-mode

can be decoupled, only thexy-mode in the phononic crystal
can be excited when the incident waves have in-plane polar-
ization. For this reason only thexy-mode will be considered
in the following. Considering the elastic isotropy of the stud-
ied materials, Eqs.(1) and (2) can be simplified as22

rv2U1 = sc11U1,1+ c12U2,2d,1 + T21,2, s3d

rv2U2 = sc44U1,2+ c44U2,1d,1 + T22,2, s4d

T21 = c44U1,2+ c44U2,1, s5d

T22 = c12U1,1+ c11U2,2, s6d

wherec11=c12+2c44.
In the uniform layers, the solution of Eqs.(3)–(6) can be

written formally as a superposition of a set of perpendicular
modesejanx
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with

an = a0 + nK sn = 0, ± 1, ± 2, . . . ,Md,

a0 = k0 sin u, K =
2p

a
, s8d

brR =HÎkl
2 − an

2 srR = 1, . . . ,Nd,

Îkt
2 − an

2 srR = N + 1, . . . ,2Nd,
s9d

brL =H− Îkl
2 − an

2 srL = 1, . . . ,Nd,

− Îkt
2 − an

2 srL = N + 1, . . . ,2Nd,
s10d

whereN=2M +1 is the total term number of truncation.kl

=v /cl with cl =Îc11/r, kt=v /ct with ct=Îc44/r are the lon-
gitudinal and transverse wave vectors, respectively.a0 is de-
termined by the incident wave.U=sU1,U2dt, jT2

=s jT21, jT22dt, and sun
r ,t2n

r dt are the eigenvectors associated
with br.

Equation(7) is also called the Rayleigh expansion of the
wave,21 in which the first term in the right-hand side denotes
the left-forward wave, and the second corresponds the right-
forward wave.

A matrix form of Eq.(7) is

S Ui

jT2
i D =1

eiax 0 0 0

0 eiax 0 0

0 0 eiax 0

0 0 0 eiax
2SuR

i uL
i

t2R
i t2L

i D

3SeibR
i y 0

0 eibL
i y
DSAR

i

AL
i D , s11d

wherei is the layer label,eiax is aN3N diagonal matrix,eiby

is a 2N32N diagonal matrix,u and t2 are the eigenvector
matrix, AR and AL are the 2N31 amplitude vectors corre-
sponding to the right- and left-forward waves. In the input-
ting layer, which is labeled “1” in Fig. 1, we haveAR

1smd
=dm,1 for the longitudinal incident wave andAR

1smd=dm,N+1

for the transverse incident wave, wherem means themth
component ofAR

1.
There are several ways to obtain the solution of Eqs.

(3)–(6) in the composite layer. As a feasible way we first
express the waves in each layer by the elementary functions,
then use the boundary condition and Bloch theory to get the
wave vectorsa and the related parametersb. This approach
is more general but the calculation is more complicated. An-
other way is to expand the equation set into a Fourier series
in the x-direction, and then obtain the mode of the
y-direction by solving a scalar equation. In this paper, we
work in the latter way for its simplicity.

A plane wave expansion of Eqs.(3)–(6) along the
x-direction is

o
G8

f− c11G−G8sk + Gdsk + G8d + v2rG−G8gU1k+G8

= bFo
G8

c12G−G8sk + GdU2k+G8 − jT21k+GG ,

o
G8

f− c44G−G8sk + Gdsk + G8d + v2rG−G8gU2k+G8

= bFo
G8

c44G−G8sk + GdU1k+G8 − jT22k+GG ,

FIG. 1. Two-dimensional cross sections of the square array of
parallel rectangular lead rods(shaped area) with edge length 2l
embedded in epoxy matrix. The system is infinite inx andz direc-
tions, the unit cell is shown by a dotted line, the solid line separates
the system in they direction into uniform and composite layers
labeled 1, . . . ,7,u is the incident angle.a is the lattice constant.
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− o
G8

c44G−G8sk + G8dU2k+G8 − jT21k+G

= bFo
G8

c44G−G8sk + GdU1k+G8G ,

− o
G8

c12G−G8sk + G8dU1k+G8 − jT22k+G

= bFo
G8

c11G−G8sk + GdU2k+G8G , s12d

whereG and G8 take the values 2p /as−M , . . . ,Md, which
totally includeN=2M +1 terms;b is the wave vector along
the y-direction.

Equation(12) gives a scalar equation aboutb with given
frequencyv. Solving the scalar equation, 4N values ofb and
the corresponding 4N eigenvectors can be obtained. To write
out the wave solution in the composite layers as the form of
Eq. (11), we have to separate the set of 4N eigenvaluesssbd
into two subsets: ThessbRd is for the right-forward wave
and thessbLd for the left-forward wave. Generally,ssbd
consists of two distinct parts:s=s1+s2, wheres1 contains
all of the real positiveb and the complex ones with positive
imaginary parts,s2 contains all of the real negativeb and the
complex ones with negative imaginary parts, which corre-
spond to the right-forward subsetssbRd and the left-forward
subsetssbLd, respectively.

The boundary condition

S U̇+i

jT2
+i D = S U̇−i+1

jT2
−i+1D , s13d

where the superscript +s−di denotes the right(left) boundary
of the ith layer, establishes the relationship between theith
and thei +1th layers.

Substituting the solutions, which have the form of Eq.
(11), of the ith andi +1th layers into Eq.(13), by comparing
the coefficients of each modeejanx we get

uR
i AR

+i + uL
+iAL

+i = uR
i+1AR

−i+1 + uL
i+1AL

−i+1, s14d

t2R
i AR

+i + t2L
i AL

+i = t2R
i+1AR

−i+1 + t2L
i+1AL

−i+1. s15d

To solve Eqs.(14) and (15), we define the reflection matrix
R+

i , the transmission matrixTi and the general reflection ma-
trix R−

i as

AL
+i = R+

i AR
+i , s16d

AR
−i+1 = TiAR

i , s17d

and

R−
i = e−jbLhiR+

i ejbRhi , s18d

wherehi is the thickness of theith layer, then Eqs.(14) and
(15) can be rewritten as

SuR
i

t2R
i D = SuR
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i+1R−

i+1 − uL
i

t2R
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R+
i D . s19d

Note that the general reflection matrixR−
K in the outputting

layer equals zero, and the amplitude of incident waveAR
1 on

the left-most layer is known; the reflection and transmission
matrix of each layer can be obtained by repeatedly using Eq.
(19).

So the reflecting, transmitting, and incident waves can be
expressed as

SUref

jT2
refD = SuL

1

t2L
1 DR+

1AR
1 , s20d

SUtra

jT2
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N

t2R
N DTtotalAR
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jT2
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1

t2R
1 DAR

1 , s22d

whereTtotal=TKeibR
K
¯T1 is the total transmission matrix.

Reflection coefficient can be defined as the ratio of aver-
age reflecting energy flux and the average inputting energy
flux along they-direction

R= *o
i=1

2N

realfsU̇i
refd*T2i

refg

o
i=1

2N

realfsU̇i
ind*T2i

ing * . s23d

In the same way, we can define the transmission coefficient
as

T = *o
i=1

2N

realfsU̇i
trad*T2i

trag

o
i=1

2N

realfsU̇i
ind*T2i

ing * , s24d

wheresU̇id* means the conjugate of theith component of the

vectorU̇, and “real” is a operation deriving the real part of a
complex value. Energy conservation conditionT+R=1
should be expected in the calculation procedure.

III. RESULT AND DISCUSSION

As an example, we use the above EMMT method to in-
verstigate the transmission property of the system shown
schematically in Fig. 1. In the figure, the embedded material
is elastic isotropic rectangular lead rods with parametersr
=11 400 Kg/m3, cl =2160 m/s, ct=860 m/s, the back-
ground material is epoxy with r=1180 Kg/m3, cl
=2535 m/s,ct=1157 m/s. The transmission coefficients of
the system with 40 layers along they-direction(including 20
unit cells) are investigated, 17 plane wavessG=−8, . . . ,
+8d are used to expandU andT2 along thex-direction. For
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comparable convenience, the band structure of the system is
also calculated by using the PWE method withGx,Gy=
−8, . . . , +8; 289 plane waves in total. All the computation is
strictly controlled under the conditionR+T=1±1.0310−8.
We would like to point out that this adopted method is very
efficient and powerful, less than a half second(by the PC
with Pentium IV 1.7G CPU and 512M byte SDR RAM) is
needed for onev do-loop.

As some previous works pointed out,8,18 the transmission
spectrum strongly depends on the polarization of the incident
wave, longitudinal and transverse polarized incident waves
would give different transmission spectrum. To display this
point we present the transmission spectra of the longitudinal
polarized incident wave and transverse polarized incident
wave with incident angleu=0 and filling fractionf =0.16 in
Figs. 2(a) and 2(c), respectively. Figure 2(b) is the band
structure of the studied system along theGX direction, from
which we see that some permitted bands shown in Fig 2(b)
do not have corresponding nonzero transmission region, such
as the third and fourth band labeled in Fig. 2(b) for Fig. 2(a)
and the second and the fifth bands in Fig. 2(b) for Fig. 2(c).
The physical origin of it should be that not all of the modes
in the composite material can be excited by the single polar-
ized incident wave, which leads to a zero transmission coef-
ficient region in the spectrum. A superposition of these two
spectra is plotted in Fig. 3(a), which shows excellent agree-
ment with the band structure. This means that the permitted
bands of the phononic crystal can be separated into two
parts, one associates with the longitudinal polarized wave
and the other one associates with the transverse polarized
wave. On the other hand, the transmission spectrum of the
mixed incident wave including both longitudinal and trans-

verse polarized waves can be obtained by setting the ampli-
tude of incident wave

For this case, the numerical result is shown in Fig. 3(c),
where we can see that the spectrum shows the same profile
as Fig. 3(a).

We have also calculated the transmission spectrum of the
same system with filling fractionf =0.64 andu=0. The nu-
merical results are shown in Fig. 4, with Fig. 4(a) showing
the superposition of the transmission coefficients of both lon-
gitudinal and transverse polarized incident waves and Fig.
4(c) showing the transmission spectrum of the mixed inci-
dent wave. Figure 4(b) displays the band structure of the
system along theGX direction. These results support again
our above conclusions.

Another point we would like to state is that the presented
EMMT method can also be used to calculate the transmis-
sion spectra of the incident waves withuÞ0, which means
a0Þ0 in Eq. (8) exceptv=0. The results of a system with
f =0.64 andu=45° is presented in Fig. 5, where Fig. 5(a) is
the spectrum for longitudinal incident waves, Fig. 5(c) for
transverse incident waves, and Fig. 5(b) shows the band
structures along theXM andMG directions of the first SBZ
(surface Brillouin zone) of the system. From them ones can
see that the band gaps existing in Fig. 5(b) coincide with the
zero-transmission-coefficient region of Figs. 5(a) and 5(c)
very well. One may note that both of the transmission spectra
for longitudinal and transverse polarized incident waves
shown in Figs. 5(a) and 5(c) drastically fluctuate with the

FIG. 2. The transmission spectra with filling fractionf =0.16s2l /a=0.4d andu=0. The frequency is scaled aswa/2pct, wherect is the
velocity of the transverse wave in epoxy. In the figure,(a) for the longitudinal polarized incident wave,(c) for the transverse polarized
incident wave, the inset in(c) shows the transmission spectrum aroundva/2p=0.8 of (c). (b) Shows the band structure of the system along
GX direction of the first SBZ. Arabic numerals in(b) label the bands.
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frequency of the incident wave increasing, the reason is that
an incident wave with a nonzero incident angleu can excite
not only longitudinal but also transverse associated modes in
the phononic crystal. Another point we have to point out is
that we can not give a band structure along a certain direc-
tion of the SBZ, which directly corresponds to the spectra of
the incident waves with a regular nonzero incident angle, the

bands alongXM andMGpresented in Fig. 5(b) just show that
corresponding to the band gaps the transmission coefficients
are zero. The reason to calculate this spectra is that it can be
easily obtained and can be easily realized in practice.

Finally, we would like to point out that the presented
EMMT method can be easily extended to deal with the
liquid-solid composite systems consisted of the materials

FIG. 3. The transmission spectra with filling fractionf =0.16s2l /a=0.4d andu=0. (a) a simple superposition of Figs. 2(a) and 2(c). (c)
Results for the incident wave including both longitudinal and transverse polarized waves.(b) Band structure alongGX direction of the first
SBZ.

FIG. 4. Same as Fig. 3 with filling fractionf =0.64s2l /a=0.8d.
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with elastic constants independent of frequency. In fact, in-
stead of the plane wave expansion, the wave solution in lay-
ers can be obtained by first expressing the waves in each unit
cell with elementary functions and then using boundary con-
dition in x direction. For other more complicated systems,
such as the composite system with circular inclusion, the
transmission coefficient can also be investigated by the
present method, what we need is to cut the inclusions into
thin parallel slices.

IV. BRIEF SUMMARY

A calculation technique, the eigenmode matching theory
(EMMT), is developed to examine the transmission property
of the phononic crystals with rectangular shaped isotropic
elements embedded in uniform materials. A two-dimensional

epoxy-lead system is investigated by the presented method,
the numerical results show excellent agreement between the
phononic band structure and transmission spectrum when the
in-plane direct incident wave includes both of longitudinal
and transverse polarized waves. The transmission properties
of the same system with single longitudinal or transverse
in-plane oblique incident waves are also investigated and
discussed. The calculating procedure shows that this method
is very efficient for the materials with elastic constant inde-
pendent of the frequency.
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