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The linear response of two-dimensional amorphous elastic bodies to an external delta force is determined in
analogy with recent experiments on granular aggregates. For the generated forces, stress, and displacement
fields, we find strong relative fluctuations of order 1 close to the source, which, however, average out readily
to the classical predictions of isotropic continuum elasticity. The stress fluctuations decay(essentially) expo-
nentially with distance from the source. Only beyond a surprisingly large distance,b<30 interatomic dis-
tances, self-averaging dominates, and the quenched disorder becomes irrelevant for the response of an indi-
vidual configuration. We argue that this self-averaging lengthb also sets the lower wavelength bound for the
applicability of classical eigenfrequency calculations. Particular attention is paid to the displacements of the
source, allowing a direct measurement of the local rigidity. The algebraic correlations of these displacements
demonstrate the existence of domains of slightly different rigidity without, however, revealing a characteristic
length scale, at least not for the system sizes we are able to probe.
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I. INTRODUCTION

The recent years have seen a tremendous effort to deter-
mine the response of granular matter subject to point(delta)
sources as indicated in Fig. 1(a). These theoretical,1–5

experimental,6–10 and computational11 studies have been mo-
tivated by the desire to understand the static properties of,
say, a humble sandpile—to quote an important paradigmatic
example.2 It has been argued that these aggregates formed
under gravity as external driving force—alongside with other
special “solids” such as jammed colloids, emulsions or
foams—may not necessarily be described as classical elastic
or elastoplastic continuum bodies.2,5,11 Hence, the interest to
determine experimentally and by computer simulation the
linear and quasistatic response to a localized incremental
force, in order to distinguish between the different models
proposed. In a nutshell, stress distributions below the source
rather close to classical elasticity predictions have been
found for standard sand, although minor differences seem to
appear in the distribution tails.8 This has prompted the more
recent focus on the fact that these systems are typically com-
posed of a small number of constituents,5 and on the para-
mount role of the quenched disorder.3

In this paper, the point source response problem is carried
over to a definitely much simpler disordered model system,
the two-dimensional amorphous solid formed by quenching a
Lennard-Jones fluid. It is well known for amorphous materi-
als such as metallic, organic, or mineral glasses, that their
mechanical properties are quite different from those of the
corresponding crystals at the same density.12,13 They are
characterized by a large decrease in both the apparent shear
and Young’s moduli, and a large increase of the yield stress
associated with a localization of the plastic deformation.12,13

These properties have been interpreted in terms of local
rearrangements14–17 due to the heterogeneity of the micro-
scopic structure. But these rearrangements have never been
identified clearly. Particularly, like in granular materials, the

role of the quenched stresses is actually a matter of
debate,18,19 as well as the role of local heterogeneities in the
elastic constants of the materials. One way to answer those
questions experimentally is to perform nanoscale
indentation,21 that is to study the response to a point force.

FIG. 1. (Color online) Sketch of two boundary conditions of
interest for measuring the response to an additional point force
sourcefs. (a) The source may be applied to the free upper surface of
a prestressed aggregate formed at constant gravity on a rigid bottom
plate (possibly containing some stress transducers). This setup has
been studied extensively recently(Refs. 2, 3, and 8) in order to
determine the static response of packings of(hard and cohesionless)
granular matter.(b) One of the three boundary conditions studied in
this paper. The source is applied within amacroscopicallyisotropic
and homogeneous “computer solid” in a periodic simulation box of
linear sizeL. The center of the source defines the origin of the
coordinate systemsx,yd. For mechanical stability we either apply a
compensation force of −fs/N (N being the total number of beads) to
all particles or we freeze some particles(gray beads) as shown in
the right panel. We study the response of amorphous packings of
carefully quenched(slightly polydisperse) Lennard-Jones beads.
Obviously, this is a further simplification with regard to the granular
material case with its more intricate nonlinear(static friction) par-
ticle interactions.
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As schematically illustrated in Fig. 1(b) we study stress
and displacement fields generated by an external force acting
on the Lennard-Jones beads contained within a small disk.
Snapshots of the incremental stresses and displacement fields
presented in Figs. 2–4 show a rather noisy response. Since
these systems behave clearly as classical elastic bodies—
provided sufficiently large wave lengths and small forces are
probed—they provide important reference systems, the re-
sults from granular matter may be compared with. The linear
response to point source is equivalent to the(noisy and po-
sition dependent) Green’s function. This study presents the
systematic computational study of this function, extending
some aspects discussed only recently.5 Specifically, we in-
vestigate how this noise affects the averages compared to
classical continuum theory, and how the distributions get
narrower with increasing distance from the source, due to
self-averaging. The spatial correlations of the responses of
close sources are studied in order to verify whether domains
of different rigidity exist as has been argued recently.18–20

This work is in fact the natural sequel of our study22,23

where the applicability of classical elastic continuum theory
on small length scales has been tested by comparing with
theory the low end of the eigenfrequency spectrum obtained
by diagonalization of the dynamical matrix. We found that
only for system sizes and wave lengths larger than a charac-
teristic wave length,j<30 interatomic distances, the eigen-
frequencies show the degeneracy predicted for a classical
isotropic and homogeneous body. This surprising large lower
limit for classical continuum theory is also seen in the char-

acterization of thenonaffinefield generated by macroscopic
deformations(shear or elongation). Only after coarse grain-
ing over distances of orderj does the nonaffine response
become negligible. This does in turn explain why modes
associated with smaller wave lengths do not behave as pre-
dicted from an approach formulated in terms of affine dis-
placement fields.

In this paper, we first describe briefly some technical
points related to the initial samples, the computational meth-
ods, and measurements. In the subsequent Secs. III, IV, and
V, we present our numerical results for stress and displace-
ment fields, and their distributions. We have regrouped our
results following the three different boundary conditions in-
vestigated. In the first section, we demonstrate that the self-
averaging is characterized by a length scale similar to the
critical wave lengthj from our previous study. In the latter
two sections we analyze the source displacements and their
correlations. Our results are summarized in Sec. VI. The ana-
lytical predictions from classical elasticity theory are out-
lined in the Appendix.

II. COMPUTATIONAL TECHNICALITIES

The initial configurations and their preparation have been
to some extent described in Ref. 23. Of relevance here is a
large ensemble of 16 independent configurations containing
each 10 000 Lennard-Jones particles quenched fromT=1
down to zero temperature following a fixed protocol using
standard molecular dynamics, steepest descent and conjugate

FIG. 2. (Color online) Snapshot of the incremental forces in one
small periodic box containingN=1000 particles generated by the
source applied on all the beads within the disk indicated. We have
chosen here a disk diameter of 4 particle sizes. The line width
between interacting beads is proportional to the incremental forces.
(Only forces larger than 0.02 have been drawn for clarity.) Black
(gray) lines correspond to incremental compressive(tensile)
stresses. Also indicated on top and bottom are the beads fixed to
balance the source. The snapshot shows that the forces generated by
one additional source are strongly heterogeneous and resemble
qualitatively the “force chains” known from granular matter(Ref.
2).

FIG. 3. (Color online) Snapshot of the(reduced) displacement
field du=u−ucet generated in the same configuration as in Fig. 2.
We have substracted from the total displacement fieldu, the dis-
placement fielducet obtained analytically from classical CET. The
difference from continuum theory is quite marked for the displace-
ment of beads on the “force chains” of Fig. 2. On larger distances
rotatory structures become visible—quite similar to the ones ob-
tained from the nonaffine part of the displacement fields under mac-
roscopic strain(Ref. 23).
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gradient methods.24 Note that, while the particle massm is
strictly monodisperse, we use sufficiently polydisperse par-
ticle diameters(uniformly distributed between 0.8 and 1.2)
to prevent crystalline order. Thelinear size of the periodic
boxes isL=104, the corresponding volume fraction 0.925.
The mean pressureP=0.25 was chosen to be close to zero.
The two Lamé coefficients,23,25,26 l<39.5 and m<11.7,
have been measured directly using Hooke’s law by applying
macroscopic elongation and(pure) shear to the simulation
box. We recall that the associated Poisson ration=l / sl
+2md<2/3 is larger than 1/2 which is permissible in a two-
dimensional(2D) solid. Here as everywhere later we have
naturally given the numerical values in Lennard-Jones units.

It has been carefully checked that the initial configura-
tions and their monomers are indeed at mechanical equilib-
rium, i.e., are sitting in(local) minima of the energy land-
scape. The linear response to a small external force or
imposed displacement can, hence, be described by means of
thes2Nd3 s2Nd dynamical matrix M= whose elements depend
on the frozen tensions(“quenched stresses”) and stiffnesses
of the links between interacting beads.23 In principle, it is
straightforward to solve numerically the linear equations
M= ·UI=FI. Here,FI and UI are the 2N-dimensional force and
displacement fields respectively containing the imposed ex-
ternal body forces and displacements. Since we are consid-
ering very large systems and standard linear equation solver
being of orderN3 we have mainly used(Secs. III and IV)
direct steepest descent and/or conjugate gradient methods
which are in this case(where the neighbor contact lists re-
mains constant) of order N. The advantage of the direct
methods is also that they allow to probe the nonlinear re-
sponse regime. We have checked that both methods yield the

same results for sufficiently small external forces. For com-
parison, we present in Sec. V results obtained directly from
the dynamical matrix.

In all cases, as shown in Fig. 1(b), we apply a localized
external force offs/n0 to all then0 beads contained in small
source disks of fixed diameterD. The center of the disk
refers naturally to the origin of our coordinate systemsx,yd.
The special limit with sources containing only one bead
sn0=1,D→1d will be used in Sec. V. Obviously, the re-
sponse becomes locally less noisy with increasing source
size. As we are interested in disorder on distances larger than
the typical particle distance we have also distributed the
source over more than one bead. Most of the results reported
in Secs. III and IV are forD=4 corresponding tokn0l<12
beads. All the source forces considered here point vertically
downwards. It turns out that an applied force of order one per
bead is sufficiently small to ensure linear elastic response for
the direct minimization methods.(See Fig. 5 later.) The av-
erages are taken over different disk positions in the same
configuration, and also over the configuration ensemble.

For mechanical stability, we have either imposed a com-
pensation force of −fs/N on all beads or fixed the positions
of certain beads, as shown in Fig. 1(b). The first method has
the advantage of being free of any fixed boundary layer mak-
ing it possible to use the full initial periodic box. Care has to
be taken however, in this case, for numerical reasons, be-
cause small drifts of the system cannot be completely
avoided. The displacement fields must thus be considered in
the center of mass frame. Section IV presents results aver-
aged over nearly 4000 linear responses obtained with this
boundary condition.

Most of the work presented in this paper(Secs. III and V)
uses instead fixed beads to compensate the source force. Ei-

FIG. 4. (Color online) LEFT: Snapshot of the(reduced) displacement fielddu=u−ucet superimposed with the noise component of the
incremental stresses(that iss−squenched−scet). The chosen configuration is the same as in Figs. 2 and 3. Stresses are represented by ellipses
whose large principal axis is proportional to the largest eigenvalue of the local(incremental) stress tensor. The small axis is proportional to
the smallest eigenvalue of this stress tensor. The directions of the axes of the ellipses give the main directions of stress. The arrows represent
the displacement field, as in Fig. 3. RIGHT: Histogram of the anglesu between the local(reduced) displacement, and the main direction of
the (incremental) stress tensor. The histogram is peaked around zero, with a broad distribution~u. It has been obtained from 10 configu-
rations ofN=10 000 particles.
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ther we fix all beads in a horizontal layer withuy u .h and
høL /2 (Sec. III), or all beads which are beyond a given
number of topological layers around the source particles
(Sec. V).

It is well known for elastic bodies in two dimensions that
stresses and strains far from both source and boundary de-
crease inversely with the source distancer, i.e., the displace-
ment field varies logarithmically. Obviously, the response de-
pends generally on the imposed boundary conditions. Details
of the rigorous analytical treatment, exemplified for the
boundary conditions studied in the next section, are outlined
in the Appendix.

III. RESULTS FOR FIXED TOP AND BOTTOM LAYERS

The two snapshots of the forces and displacement fields
depicted in Figs. 2 and 3 show the response fields obtained in
a small system of linear sizeL=32.8 containing onlyN
=1000 beads, but at the same volume fraction and pressure
as the larger samples studied quantitatively later. The
strength of the forces between beads are represented in Fig. 2
by the width of the lines repulsive(tensile) forces being
black (gray). Only the incremental forcesdf due to the
source are given, i.e., the rather strong quenched or residual
forces of the amorphous body have been subtracted. The
force chains visible resemble strongly the ones known from
granular matter,1,5,11 although our system is certainly a clas-
sical isotropic elastic body at large distances.23

The displacement fielddu=u−ucet indicated by the arrows
in Fig. 3 has been obtained by substracting from the total
displacement fieldu, the displacement fielducet calculated
for standard continuum elasticity theory(CET)25,26following
the prescription indicated in the Appendix. In other words,

du depicts the noisy response due to the quenched disorder.
In order to do a comparison of both snapshots, we show in
Fig. 4 the residual displacement fielddu, and the noise com-
ponent of the local incremental stress on each particle. In
order to obtain the noise component, we have substracted the
stress calculated with standard continuum elasticity theory,
and the quenched stresses, from the total stress in the pres-
ence of a source. The total stress has been calculated here on
each particle, using the standard Kirkwood definition.5,18The
noisy part of the incremental stress is then represented by an
ellipse centered on the particle, whoselarge principal axis is
proportional to the largest eigenvalue, and whosesmallprin-
cipal axis is proportional to the smallest eigenvalue of the
residual stress tensor. The directions of these axes give thus
the main directions of the incremental stresses. The snapshot
of Fig. 4 shows clearly thatdu is corrrelated to the local
incremental stress. To get more quantitative results, we have
drawn in the inset of Fig. 4 the distribution of the anglesu
between the residual displacementsdu, and the main direc-
tion of the incremental stresses(the direction associated to
the largest eigenvalue). We show a peak for zero angle, with
a broad distribution(linear with u). The residual displace-
ment field thus reveals a clear tendency to align with the
main direction of the incremental stresses. On larger dis-
tances, however, we see a vortex like structure fordu similar
to the structure revealed by the non-affine displacement field
under macroscopic strain found in Ref. 23. The reason for
this can be easily understood for the latter case where the
pressure must become macroscopically constant, and with it
the particle density as well. This generates the “backflow” of
the nonaffine displacement, just like in a uncompressible
fluid. We recall that the continuum displacement fielducet for
the point source problem flows also back, but on a distance
L /2 given by the system size. The size of the vortices mea-

FIG. 5. (Color online) Unaveraged vertical stresssyyclose to the bottom platesy=50d caused by sources of various disk diametersD (as
indicated in the figure) at the same position of one configuration of linear sizeL=104. The total vertical force offs has been used here as
a normalization. The open symbols correspond to a total applied forcefs=10, the filled circles are for a source withD=n0=1 and fs/n0

=1. The bold line shows the theoretical prediction. It corresponds also to the statistical average(see Fig. 6). The linear responses forD
=4,6, and 8 areperfectly identical. This only applies as long as the force per bead remains sufficiently small.
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sured indu, however, does not depend on the system size.
Note that, from one configuration to the next, the vortices are
not located at the same place, and that they disappear after
averaging the displacement field over many configurations.
Moreover, these vortices are not due to the natural discreti-
zation of our system: they would disappear if the spatial
distribution of atoms were ordered, as can be infered from
the direct computation of the Green function(see for ex-
ample Ref. 27). Note finally that the three-dimensional(3D)
case is now under study. We would not be surprised if the
size of the structure involved in the local rearrangements of
the atoms were smaller in the 3D case, due to the minor
effect of disorder and the smaller range of elasticity.28 How-
ever, systems with avery large number of atoms have to be
studied in this case23 to fit with the continuum limit.

Figure 5 shows the vertical normal stresssyy generated by
one source of diameterD, at a distancey=50 below the
source, i.e., just above the fixed beads of the bottom layer. As
in the snapshot Fig. 2, only the incremental stresses due to
the source are shown here. To make comparison between the
sources of different strengths, the total vertical stress has
been normalized by the total vertical forcefs.

The stress tensor has been measured, as everywhere in the
following, by means of the virial definition23 averaged over
all beads contained in small rectangular volume elements of
width 5 and height 3 centered atsx,yd. Adopting in this work
the sign convention usual in granular matter, compressive
stresses are taken as positive, i.e., have the same sign as the
pressure. The size and the aspect ratio of the volume ele-
ments were chosen for convenience. A typical volume ele-
ment contains 14 beads, and averages over about 100 inter-
actions which takes out some of the noise. On the other hand,
it remains small enough to achieve a good spatial resolution.
Note that a given interaction may contribute to two neigh-
boring volume elements. Data points corresponding to two
such elements are therefore statistically correlated, and the
curves appear slightly smoother as they would otherwise.

Two additional points have to be made here. First, the
responses compare already quite well with the analytical pre-
diction (bold line) albeit they are not averaged over different
realizations and despite the fact that the(not given) snapshot
of the forces still looks quite noisy. This is obviously to be
expected for large distances from the source as the response
in an elastic body should self-average over the noise. While
we shall make this more quantitative in a moment, Fig. 5
shows clearly that a distance of ordery<50 yields a
reasonable—although not perfect—self-averaged response.
This confirms our finding in Ref. 23 that systems of sizeL
=104 show accurately the lowest eigenmodes and can there-
fore be regarded as free of finite size effects. This motivated
our choice of this system size. Note that the continuous re-
sponse and the response averaged over many configurations
(bold line in the Fig. 5) coincide at this distance from the
point source(see also Fig. 6 on this point).

Second, we note in Fig. 5 that the responses are identical
for all systems where the forces per bead remain of order one
or lower. This appears to be independent of the disk diam-
etersD despite the additional beads charged for larger disks.
Apparently, these differences at the source are screened at
y=50@D. The response forD=1 andfs/n0<10 is different,
as the force per bead is outside the elastic regime. If we
reduce the force per bead forD=1 further(filled circles) we
obtain finally similar responses as for the larger disks. Note,
however, that linear response requires smaller forces per
bead for smaller disks than for larger ones.

We now consider the mean stresses, i.e., the stress profiles
averaged over many realizations(different samples and dif-
ferent application points of the force). Far from the source,
the self-averaging discussed earlier implies that these mean
profiles should behave in accordance with CET. This is less
obvious close to the source, where fluctuations from one re-
alization to the other are large. In Fig. 6 we present the
normal mean stressesksxxl and ksyyl as functions ofx for
different vertical distancesy, with D=4 and fs=10. Similar

FIG. 6. (Color online) Aver-
aged incremental stressessxx

(left) and syy (right) versusx for
different vertical distancesy from
the source. Here,D=4, fs=10.
The boundary conditions indi-
cated in Fig. 1(b) are used. Data
from configurations containingN
=10 000 beads in boxes ofL
=104 is averaged over 220 inde-
pendent measurements and com-
pared with the predictions from
classical elasticity (bold lines).
The agreement is surprisingly
good even for smally and im-
proves systematically with in-
creasing source distance.
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curves have been obtained for the shear stressksxyl. The
agreement with CET(bold lines) is surprisingly good even
for small distances from the source. It improves further with
increasing distancey. Apparently, the noise entering in the
stress calculation is of(essentially) vanishing mean. While
the vertical normal stress must have always one peak cen-
tered below the source, the horizontal normal stress is pre-
dicted by classical isotropic theory to show a minimum at
x=0 between two peaks forD! uyu!h. This is a direct con-
sequence of elasticity. The double peak disappears close the
fixed surface as there horizontal displacements which cause
the tensile horizontal forces are suppressed.

As can be seen from Fig. 7 for the normal stresses, all
measured stresses decrease essentially as the inverse distance
from the source(taken aside the expected corrections due the
finite value of the system size). The two panels given in this

figure correspond to measurements along two straight lines
through the source:(a) x=0, (b) x/y; tansud= ±1. Both fig-
ures look qualitatively similar.

More importantly, we compare in both panels both normal
average stresses with their respective fluctuations from
sample to sampledsab=sksab

2 l−ksab
2 l2d1/2. We note first that

dsxx<dsyy<dsxy (the latter relation not being represented
in the figure) and that the fluctuations do not depend on the
angle u of the straight line, but solely on their distancer
from the source. Surprisingly, we find fluctuations of order of
the mean(normal) stresses, i.e., the relative fluctuations are
of order one close to the source.29 This striking observation
is by no means in conflict with the observed self-averaging
far from the source, due to the different distance dependence
of mean stresses and fluctuations. While the former decrease
(essentially) analytically, our data suggests an exponential

FIG. 7. (Color online) Com-
parison of the(incremental) stress
fluctuations dsab;sksab

2 l
−ksabl2d1/2 with the mean vertical
normal stressksyyl. This is done
in two directions through the
source:(a) along the vertical line
sx=0d and (b) for ux/yu=1. We
note that mean stresses and their
fluctuations scale quite differently
with distancer from the source in
both directions. For small dis-
tances we find relative fluctuations
dsab / ksabl of order 1. While the
mean stresses decrease, as ex-
pected in 2D, essentially as 1/r,
the fluctuations are found to be
well fitted by an exponential de-
cay exps−r /bd with b<30.
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decay for the latter. Our fits are compatible with a character-
istic screening length scaleb of order 30. Interestingly, this is
of same order as the characteristic wave lengthj we have
found in Ref. 23 for the breakdown of the classical eigen-
modes. Only for distances somewhat larger thanb, the self-
averaging dominates over the analytical decay of the average
stresses, and therelative fluctuations vanish eventually.

In Fig. 8, we discuss in more detail the distribution of
stresses along thex=0 line through the source. Only the
vertical normal stressessyy are presented here, as the histo-
grams forsxx andsxy show similar behavior. The normalized
histograms have been rescaled and plottedversusthe natural
scaling variableu=syy/ ksyyl which takes out the trivial dis-
tance dependence of the mean stress. Incidentally, as we
know from Fig. 6, we may equally use the analytically ob-
tained stress as reference in the scaling variable, without
changing the reduced histograms.

Three remarks have to be made here: First, we note that
all histograms scale reasonably well and the fluctuations, i.e.,
the width of the unscaled peaks, scale broadly as the mean
stresses. Closer inspection reveals, however, that the rescaled
peak width becomes slightly narrower with distance to the
source. Both observations are obviously in perfect agreement
with the previous Fig. 7 where more or less constant relative
fluctuation have been found due to the large value of the
self-averaging lengthb<h. This masks somewhat the differ-
ent functional dependency(analytic versusexponential) of
the first two moments of the stress distributions. Second, the
distributions are more or less symmetric and the mean stress
corresponds to the maximum of the histogram. This confirms
the statement made earlier(Fig. 6), that the fluctuations
around the analytical prediction appear to be of vanishing
mean. Third, although our statistics is certainly insufficient to
characterize much better the shape of the distributions, spe-
cifically the scaling of their tails, a Gaussian distribution can
be ruled out with the present data. In fact, as shown in the

figure, an exponential fit is not unreasonable. In this sense
the noise is large.

IV. RESULTS FOR SYSTEMS WITH COMPENSATION
FORCES

While the previous section was mainly concerned about
forces and stresses and their distribution, we will now, for the
rest of this paper, investigate the displacementuIs of the cen-
ter of mass of the source region. This is the direct route to
characterize the local elastic properties of an amorphous
body. Here we use open periodic boundary conditions with-
out fixed particles, but with additional small compensation
forces on all beads. As before, a vertically downwards point-
ing force acts on source disks of diameterD=4.

Figure 9 presents a typical snapshot of the noisy part
duIs=uIs−kuIsl of the source displacements measured in one
configuration. For the given box size, the mean displacement
substracted is roughly four times larger than the average
fluctuationkduIs

2l1/2 (see Fig. 11 later). Hence, the local elas-
tic properties vary weakly with position. The snapshot(or a
more detailed histogram) shows the bimodality of theduIs
distribution: Very few strong displacements point downwards
in the direction of the force. They are due to some very soft
spots. The remainingduIs are much smaller and strongly cor-
related in space. While pointing pretty much in all directions,
they compensate obviously the net downward component of
the soft spots.

We have checked the spatial correlations of the source
displacements, by means of the(normalized) correlation
function kduIssrd ·duIss0dl which is summed overall pairs of
displacements of a given configuration, and averaged over
the configuration ensemble. In total, nearly 4000 responses
contribute to the average correlation function presented in
Fig. 10. For very small distances, the correlation function
should become constant since two sources of finite disk di-

FIG. 8. (Color online) Normal-
ized distributions of incremental
vertical normal stresses for differ-
ent distancesy.0, along the ver-
tical line through the sourcesx
=0d. The histograms are plotted
versusu=syy/ ksyyl. The data are
averaged over 220 independent
point source experiments. The his-
tograms are more or less symmet-
ric. With increasing distance, the
rescaled distributions become sys-
tematically narrower, in agree-
ment with the previous figure,
however, the effect is weak. For
y,40, the tails of the histograms
are not Gaussian, but roughly ex-
ponential as indicated by the bold
lines.
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ameter excite the same beads. Equally, it is expected to be-
come flat aroundr <L /2 due to the periodic boundary con-
ditions. Both limits are in agreement with our data. More
importantly, the intermediate distance regimeD /2! r !L /2
may be reasonably fitted in log-log coordinates by a power
law slope. Although a somewhat weaker value would even fit
a larger range of the data we have indicated an exponent −1.

Interestingly, the same dependency has been observed for the
correlation function of the nonaffine part of the displacement
field discussed in Ref. 23. Finally, we remark that an addi-
tional nonanalytic and possibly exponential regime forb
! r !L /2 is conceivable for even larger boxes. This is sug-
gested by the existence of the characteristic lengthb ob-
served in the self-averaging of the stresses. Unfortunately, as
indicated by the broken line, this is at present not supported
by our simulations due to the limited system sizes available.

The reader will have observed that we do not probe here
the rigidity of an isolated patch of material in a fixed frame.
The fluctuations of the source displacements do not depend
only on the local elements of the dynamical matrix but on a
much larger neighborhood, in principle the whole system,
whose effective size is estimated in the next section.

V. RESULTS FOR FIXED TOPOLOGICAL LAYERS

For solving the linear response directly by means of the
dynamical matrix, it is useful to renumber and regroup the
beads in topological layers around the source disk. All then1
beads, interacting directly with then0 disk beads, are con-
tained in the first neighbor layer, then2 beads interacting
directly with then1 beads of the first neighbor shell are con-
tained in the second layer, and so on(there are no direct
interactions between then0 beads of the source and those of
the second layer). Both the number of beads of each layer
and the mean radiusR of the fixed particle layer around the
source increase linearly with the topological rank from the
source. The width of a topological layer is of order 3 due to
the cutoff of our potential and to the weak polydispersity.23

The last layer of free particles containingnl beads, we fix the

FIG. 9. (Color online) Snapshot of the reduced displacement
vectorsdus=us−kusl of the center of mass of the source region.
(The size of the arrows is proportional to the length of the reduced
displacement vector.) These data have been obtained for completely
periodic boundary conditions where no particles have been fixed.
The vector field varies greatly in size and direction. Closer inspec-
tion shows strong spatial correlations.

FIG. 10. (Color online) Spatial correlation functionkdussrd ·duss0dl / kus
2l of the source displacement vectordus=us−kusl with r being the

distance between source terms within the same configuration. Note that the correlation function is normalized. The average is taken over a
total number of nearly 4000 linear responses using open periodic boundary conditions without fixed particles. As indicated by the bold line,
the correlation function decreases essentially like the inverse distance forD /2! r !L /2. It becomes constant for smaller and larger
distances. We strongly suspect an additional exponential cutoff(dashed line), however, our data are too noisy and, more importantly,L is too
small to demonstrate this unambiguously.
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positions of theN−sn0+n1+¯ +nld.0 remaining beads.
With this renumbering, the structure of the dynamical ma-

trix becomes more transparent, picturing systematically the
influence of the subsequent topological layers. While in the
last sectionall beads have been allowed to respond to the
external load, here we study the effect of additional degrees
of freedom when more and more topological layers and de-
grees of freedom are allowed to relax. The method used here
is a systematic inversion of the dynamical matrix.

As in the last section, we only consider the displacement
field at the source. In contrast, we use a source containing
only one beadsn0=1d. The applied force is arbitrarily set to
one. Obviously, the response of the source, when all other
beads are fixedsl =0d, is directly described by the inverse
diagonal coefficients of the dynamical matrix, which is a
function of the local quenched forces and spring constants
between neighboring monomers. Forl .0, the displacement
UI of the source can be computed recursively by writing the
equilibrium equations on all free beads. Forl =2, for ex-
ample, we get after combining all the 23 sn0+n1+n2d equi-
librium equations in the two directionsx andy:

F = fM=n03n0
− M=n03n1

· sM=n13n1

− M=n13n2
· M=n23n2

−1 · M=n23n1
d−1 · M=n13n0

gU, s1d

where M=ni3nj
is the matrix of size 2ni 32nj containing all the

coefficients of the dynamical matrix relating the particles of
the layeri with the particles of the layerj . The ratious/ fs, of
the vertical component of the source displacement to the
applied vertical force, can thus be easily computed, with the
direct use of the coefficients of the dynamical matrix.

The vertical component of the source displacementus is
shown in Fig. 11 as a function of the mean diameter 2R of
the spherical region around the source which is allowed to
respond to an external force. The open symbols correspond
to the (reduced) mean displacementkusl / fs, the filled sym-
bols to the fluctuationkdus

2l1/2/ fs. The squares are for the
responses measured numerically after relaxation in periodic
systems of linear sizeL=2R=104 without fixed beads(Sec.
IV ). Note that the response at the source depends of course
on D for all 2R.30

We show, that the mean displacement increases logarith-
mically with system sizekusl / fs<0.011 logs2R/Dd in quali-
tative agreement with continuum theory and this already for
systems with only one free topological layer around the
sourcesl =1d. Hence, althoughl =0 is not sufficient, one can
obtain the average local elastic moduli from a surprisingly
small neighborhood region. Interestingly, the fluctuations
level off at much larger distances of the order ofb=30 (cor-
responding tol =6 topological layers), as can be better seen
from the inset.(It can be shown that the approach of the
large system size limit is exponential.) This shows that, at
system sizes of the order of the self-averaging length, the
fluctuations become system size independent. For larger sys-
tems,b determines the size of the region responsible for the
noise in the source displacement field.

VI. CONCLUDING REMARKS

We have probed the incremental stress and displacement
fields due to a point source force acting on two-dimensional
amorphous Lennard-Jones solids. Focusing on the linear
elastic response, this has been done for three different bound-
ary conditions by means of the linearized Euler-Lagrange
forces(i.e., the dynamical matrix) or by direct minimization
of the total Hamiltonian.

We demonstrate that theaveragestresses and displace-
ment fields compare well with the predictions from classical
isotropic elasticity, and this already for small distances from
the source and for small system sizes(Figs. 6 and 11). Con-
trasting to this, large stress(and, hence, strain) fluctuations
are found for small distances to the source decreasing(es-
sentially) exponentially with distance(Fig. 7). A surprisingly
large length scaleb<30 is associated with this self-
averaging with distance. Similarly, the fluctuations of the
source displacement fields are found to become system size
independent forL=2R@30. The self-averaging lengthb is of
the same order as the characteristic length scalej associated
with the nonaffine displacement field under macroscopic
strain setting the lower bound for allowing classical eigen-
frequency calculation to be applicable. We believe that both
length scales express the same physical fact and are indeed

FIG. 11. (Color online) Vertical component of the displacement
of the source center of massus for a given total forcefs as a
function of system size 2R. The open symbols correspond to the
mean displacementkus

2l1/2/ fs, the filled symbols to the fluctuation
kdus

2l1/2/ fs. The circles are for the boundary condition with fixed
topological layers discussed in Sec. V,R being the mean distance to
the fixed border shell. The squares are for responses in periodic
systems of linear sizeL=2R=104 without fixed beads(Sec. IV).
The mean displacement increase logarithmically with system size
kusl / fs<0.011 logs2R/Dd in agreement with theory. The fluctua-
tions level off at distances of order ofb=30, as can be better seen
from the inset.
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(up to prefactors) identical quantities. This explains why vi-
bration modes corresponding to wavelengths larger thanb
(and, hence, averaging over larger distances) follow con-
tinuum theory, while modes with smaller wavelengths do
not.23

As it has been pointed out, better statistics and much
larger box sizesL /2@b<j would be required to establish
unambiguously the scaling of the various distribution func-
tions discussed here. Especially, an improved correlation
function of the source displacements would be highly inter-
esting to test the range of the observed power law(Fig. 10).
We strongly expect the existence of final cutoff at a charac-
teristic length of orderb. Additional theoretical guidance is
also required to explain how such a large length scale arises
for the fluctuations given the short-range correlation of the
dynamical matrix elements.23 These results should be com-
pared with experiments of nanoscale indentation on
glasses,21 allowing a first experimental evidence of large
scale fluctuations of the elastic properties in amorphous ma-
terials. The study of the pressure dependence of our results is
currently in progress.

Coming back to the static properties of granular aggre-
gates(composed of hard, cohesionless grains in frictional
contact) invoked in the introduction, this work suggests sev-
eral computer experiments. As a first step, one should com-
pare the average incremental stress and displacement re-
sponses. It may be interesting to verify if the double peak
structure found for the horizontal normal stress is also
present in granular matter although there thetotal normal
stresses may not become tensile.(A priori this is possible
since theincrementalstresses are perfectly entitled to be-
come negative as long as Coulomb’s criterion is not vio-
lated.) More importantly, the self-averaging properties of
granular systems should be put to a test. Various experimen-
tal facts(especially for forces in vertical columns and silos)2

suggest much larger fluctuations with much weaker self-
averaging properties compared to amorphous elastic bodies.
Finally, it is a matter of debate, if the response to an arbitrary
weak source does correspond to a Green’s function in a strict
mathematical sense. Additivity, linearity and reversibility of
the responses should be tested directly. As the force network
is subject to incessant restructuring due to the missing per-
manent grain contacts it may not be possible to describe—
even in the hydrodynamic limit—the total charging of the
packing as alinear operation.2
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APPENDIX: TWO-DIMENSIONAL ELASTIC RESPONSE
TO A POINT FORCE

At equilibrium the stress state of a two-dimensional elas-
tic material must satisfy the(two) force balance equations

¹isi j =Fdsxddsyd with i , j =x,y and F being the external
point force applied ins0,0d. The main assumption of classi-
cal elasticity26 is that the system may be entirely described
by the continuous displacement fielduIsx,yd. Due to global
translational and rotational invariance, only the strain field—
by definition the symmetric part of the gradient of the dis-
placement field—appears in the equations. Moreover inlin-
ear elasticity, the stress tensor is related to the strain tensor
ei j through Hooke’s law. Only two phenomenological param-
eters are required for isotropic homogeneous systems,E and
n (or l and m). Supposing this, it follows the compatibility
equation26 ]xxsyy−n]yysyy+]yysxx−n]xxsxx=2s1+nd]xysxy

and thus, combined with the force balance equations, the
well-known Laplace equationnssxx+syyd=0 for sx,yd
Þ s0,0d.

As a specific example we present here the calculation for
the point source problem between two fixed horizontal walls
posed in Fig. 1(b). Hence, the displacement fieldu must
vanish foruyu=h. Periodicity and symmetry of the simulation
box in horizontal direction impose a solution periodic and
symmetric(odd or even) in x. These boundary and symmetry
conditions can be readily reformulated in terms of the
stresses.

To obtain the elastic response, the idea is to use the
method presented in Ref. 7 in the case of an elastic layer
submitted to a force localized at its surface. We divide our
medium into two parts: part 1 above, part 2 below the point
source. The continuity of the displacement field along the
fictitious dividing line requiresux

s1dsx,0d=ux
s2dsx,0d and uy

s1d

3sx,0d=uy
s2dsx,0d. The point force is taken into account by

imposingsyy
s1dsx,0d=syy

s2dsx,0d−psxd wherepsxd is the verti-
cal external pressure. An additional constraint is imposed by
the continuity of the shear stresssxy

s1dsx,0d=sxy
s2dsx,0d. Note

that the continuity ofux at y=0 together with the discontinu-
ity of syy imposes the discontinuity ofsxx. Imposing a con-
tinuoussxx would yield to a discontinuous displacement field
ux with large scale vortices.31

The stress tensor components are decomposed into a base
of harmonic functions, typically affine functions or product
of trigonometric functions with exponentials. Taking into ac-
count thex↔−x symmetry, we look for a solution of the
type

sxx
s1,2d + syy

s1,2d = o
n=0

+`

cossqxdfas1,2deqy + bs1,2de−qyg,

sxx
s1,2d − syy

s1,2d = o
n=0

+`

cossqxdhqyfas1,2deqy − bs1,2de−qyg

+ 2fcs1,2deqy − ds1,2de−qygj,

sxy
s1,2d = o

n=0

+`

sinsqxdhqy/2fas1,2deqy + bs1,2de−qyg

+ fcs1,2deqy + ds1,2de−qygj. sA1d

as1,2d, bs1,2d, cs1,2d, andds1,2d are coefficient functions depend-
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ing on the frequencyq=nDq. The latter is quantized with
Dq;2p /L, due to the finite horizontal widthL of the layer,
and periodic boundary conditions. A similar looking ansatz
for the corresponding displacement fields is readily obtained.

The vertical external pressure is expressed in the same
form, as

psxd = o
n=0

+`

cossqxdssqdDq

with psxd either equal to a gaussianfssqd=F /pes−q2a2/2dg, or a
uniform force of width 2a fssqd=F sinsqad / spaqdg.

Replacing the general expressions for the stresses and the
displacement fields in the equations characterizing the
boundary conditions and the continuity at the fictitious divid-
ing line, leads to the following explicit expressions for the
eight functionsas1,2d, bs1,2d, cs1,2d, and ds1,2d depending on
ssqd, qh, andn:

a1sqd = −
ssqdDq

4

fs1 + nd · 2qh+ 3 −nge−2qh + sn − 3de−4qh

Dsqd
,

a2sqd =
ssqdDq

4

fs1 + nd2qh− 3 +nge−2qh − sn − 3d
Dsqd

,

b1sqd =
ssqdDq

4

f− s1 + nd2qh+ 3 −nge−2qh + sn − 3d
Dsqd

,

b2sqd =
ssqdDq

4

fs1 + nd2qh+ 3 −nge−2qh + sn − 3de−4qh

Dsqd
,

c1sqd =
ssqdDq

8s1 + nd
f2s1 + nd2q2h2 + s1 − n2d2qh+ s1 − nds3 − ndge−2qh + s1 − ndsn − 3de−4qh

Dsqd
, =d2sqd,

c2sqd =
ssqdDq

8s1 + nd
f2s1 + nd2q2h2 − s1 − n2d2qh+ s1 − nds3 − ndge−2qh + s1 − ndsn − 3d

Dsqd
, =d1sqd,

with Dsqd ; 2qhe−2qh −
n − 3

2sn + 1d
+

n − 3

2sn + 1d
e−4qh.

Substituting these coefficient functions back into the gen-
eral ansatz for stress and displacement fields, one obtains
explicit expressions for the stress and the displacement
fields. We have drawn numerically these expressions to get
the theoretical fits presented in Sec. III. Note that unlike the

boundary condition studied in Ref. 7, the coefficient func-
tions depend now onn. The displacement fieldu is propor-
tional to 1/E. The solution also depends on the system height
2h, on the sizea of the source, and on the widthL, the latter
due to the quantization of the Fourier integration.
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