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Continuum limit of amorphous elastic bodies Il: Linear response to a point source force
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The linear response of two-dimensional amorphous elastic bodies to an external delta force is determined in
analogy with recent experiments on granular aggregates. For the generated forces, stress, and displacement
fields, we find strong relative fluctuations of order 1 close to the source, which, however, average out readily
to the classical predictions of isotropic continuum elasticity. The stress fluctuations @=ssaytially expo-
nentially with distance from the source. Only beyond a surprisingly large distéme80 interatomic dis-
tances, self-averaging dominates, and the quenched disorder becomes irrelevant for the response of an indi-
vidual configuration. We argue that this self-averaging lerm#iso sets the lower wavelength bound for the
applicability of classical eigenfrequency calculations. Particular attention is paid to the displacements of the
source, allowing a direct measurement of the local rigidity. The algebraic correlations of these displacements
demonstrate the existence of domains of slightly different rigidity without, however, revealing a characteristic
length scale, at least not for the system sizes we are able to probe.
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I. INTRODUCTION role of the quenched stresses is actually a matter of

The recent years have seen a tremendous effort to detefiebate’®*?as well as the role of local heterogeneities in the
mine the response of granular matter subject to paiatta) eIastu; constants Qf the matenals. One way to answer those
sources as indicated in Fig.(@. These theoreticd® questions experimentally is to perform nanoscale
experimentaﬁ—lo and Computationé:l studies have been mo- indentationz,l that is to StUdy the response to a point force.
tivated by the desire to understand the static properties of,
say, a humble sandpile—to quote an important paradigmatic
examplé? It has been argued that these aggregates forme
under gravity as external driving force—alongside with other
special “solids” such as jammed colloids, emulsions or
foams—may not necessarily be described as classical elasti
or elastoplastic continuum bodié&!*Hence, the interest to
determine experimentally and by computer simulation the
linear and quasistatic response to a localized incrementa
force, in order to distinguish between the different models
proposed. In a nutshell, stress distributions below the sourct
rather close to classical elasticity predictions have beer(a) (b) L
found for standard sand, although minor differences seem to
appear in the distribution taifsThis has prompted the more ~ FIG. 1. (Color onling Sketch of two boundary conditions of
recent focus on the fact that these systems are typically coniterest for measuring the response to an additional point force
posed of a small number of constituehtand on the para- sourcef. (a) The source may be applied to the freg upper §u_rface of
mount role of the quenched disorder. a prestress_ed aggrega_te formed at constant gravnty_on a rigid bottom

In this paper, the point source response problem is carrieflat€ (Possibly containing some stress transducefbis setup has
over to a definitely much simpler disordered model systemPe" Studied extensively recentigefs. 2, 3, and Bin order to
the two-dimensional amorphous solid formed by quenching geterm'ne the static response of packingéhaird and_c_ohesuonl_e)ss_
Lennard-Jones fluid. It is well known for amorphous materi_granular mattercb) One of the three boundary conditions studied in

| h talli . . al that th this paper. The source is applied withimecroscopicallyisotropic
als such as metallic, organic, or mineral giasses, that thelf, , homogeneous “computer solid” in a periodic simulation box of

mechanlcal_ properties are quite different frpm those of th€finear sizeL. The center of the source defines the origin of the
corresponding crystals at the same denSity. They are oo dinate systerfx,y). For mechanical stability we either apply a
characterized by allarge decreasg in both the apparent Sh%'Enpensation force off</N (N being the total number of beads

and Young's moduli, and a large increase of the yield stresg| particles or we freeze some particiggay beadsas shown in
associated with a localization of the plaStiC deformatiot? the right panel. We study the response of amorphous packings of
These properties have been interpreted in terms of locaarefully quenchedslightly polydispersg Lennard-Jones beads.
rearrangement$1’ due to the heterogeneity of the micro- Obviously, this is a further simplification with regard to the granular
scopic structure. But these rearrangements have never begraterial case with its more intricate nonlingatatic frictior) par-
identified clearly. Particularly, like in granular materials, the ticle interactions.
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FIG. 2. (Color onling Snapshot of the incremental forces in one ..0'..0......‘.....0......0° .0:0.0: o

[ )
ool °26%0
small periodic box containingl=1000 particles generated by the
source applied on all the beads within the disk indicated. We have FIG. 3. (Color onling Snapshot of thgreduced displacement
chosen here a disk diameter of 4 particle sizes. The line widthield su=u-u.. generated in the same configuration as in Fig. 2.
between interacting beads is proportional to the incremental forcesye have substracted from the total displacement figlthe dis-
(Only forces larger than 0.02 have been drawn for clarBfack  placement fieldu.e obtained analytically from classical CET. The
(gray) lines correspond to incremental compressi¢tensile  difference from continuum theory is quite marked for the displace-
stresses. Also indicated on top and bottom are the beads fixed t@ent of beads on the “force chains” of Fig. 2. On larger distances
balance the source. The snapshot shows that the forces generatedrbyatory structures become visible—quite similar to the ones ob-
one additional source are strongly heterogeneous and resemhigined from the nonaffine part of the displacement fields under mac-
qualitatively the “force chains” known from granular matt&ef. roscopic strainRef. 23.

2).

acterization of thenonaffinefield generated by macroscopic

As_schematlcally lllustrated in Fig.() we study stress . deformationgshear or elongation Only after coarse grain-
and displacement fields generated by an external force actlr]ﬁg over distances of ordef does the nonaffine response

on the Lennard-Jones beads contained within a small diSIBecome nealiaible. This does in turn explain why modes
Snapshots of the incremental stresses and displacement fielg ghgivle. P y

presented in Figs. 2-4 show a rather noisy response. Sin Ssociated with smaller wave lengths do not behave as pre-

these systems behave clearly as classical elastic bodies%‘?Ctecj from an approach formulated in terms of affine dis-

. - yacement fields.

provided suﬁlmently Iarge wave lengths and small forces ar In this paper, we first describe briefly some technical
probed—they provide important reference systems, th_e repoints related to the initial samples, the computational meth-
sults from granl_JIar matter may b_e compared \.N'th‘ The IIneaods and measurements. In the subsequent Secs. I, IV, and
response to point sourc,:e IS equalem to ¢heisy and po- V, we present our numerical results for stress and displace-
sition dependet)tGree_:ns function. Th|§ study. presents the ment fields, and their distributions. We have regrouped our
zg?rt]eemaiucegfs md'?:éits'gzzl :;Td¥e%§rgzéz:;$§|n’ Sv)gei?f“ngresults following the three different boundary conditions in-

P y y: vestigated. In the first section, we demonstrate that the self-

XE:;??;? ggrgrir:l?hsmn?r:se%raﬁzcrfz tr?swa\t/heéag;?rigﬁi?g’nasrede?/eraging is characterized by a length scale similar to the
Y, 9€%ritical wave lengthé from our previous study. In the latter

harrower W.'th Increasing distance from the source, due t ¥vo sections we analyze the source displacements and their
self-averaging. The spatial correlations of the responses @

N : . correlations. Our results are summarized in Sec. VI. The ana-
close sources are studied in order to verify whether domain

of different rigidity exist as has been argued recehtty? mgglmpiﬁgl;tlonesn;rigm classical elasticity theory are out-
This work is in fact the natural sequel of our stééis? PP '
where the applicability of classical elastic continuum theory
on small length scales has been tested by comparing with
theory the low end of the eigenfrequency spectrum obtained
by diagonalization of the dynamical matrix. We found that The initial configurations and their preparation have been
only for system sizes and wave lengths larger than a charate some extent described in Ref. 23. Of relevance here is a
teristic wave lengthgé= 30 interatomic distances, the eigen- large ensemble of 16 independent configurations containing
frequencies show the degeneracy predicted for a classicahch 10 000 Lennard-Jones particles quenched fiem
isotropic and homogeneous body. This surprising large lowedown to zero temperature following a fixed protocol using
limit for classical continuum theory is also seen in the char-standard molecular dynamics, steepest descent and conjugate

II. COMPUTATIONAL TECHNICALITIES
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FIG. 4. (Color onling LEFT: Snapshot of théreduced displacement fieldSu=u—u.e superimposed with the noise component of the
incremental stresséthat iso— oguenched 0ced- The chosen configuration is the same as in Figs. 2 and 3. Stresses are represented by ellipses
whose large principal axis is proportional to the largest eigenvalue of the(iocaémenta)l stress tensor. The small axis is proportional to
the smallest eigenvalue of this stress tensor. The directions of the axes of the ellipses give the main directions of stress. The arrows represent
the displacement field, as in Fig. 3. RIGHT: Histogram of the anglbstween the localreduced displacement, and the main direction of
the (incrementa) stress tensor. The histogram is peaked around zero, with a broad distrib#tidhhas been obtained from 10 configu-
rations ofN=10 000 particles.

gradient method%! Note that, while the particle mass is  same results for sufficiently small external forces. For com-
strictly monodisperse, we use sufficiently polydisperse parparison, we present in Sec. V results obtained directly from
ticle diameterg(uniformly distributed between 0.8 and 1.2 the dynamical matrix.

to prevent crystalline order. Théinear size of the periodic In all cases, as shown in Fig(i®, we apply a localized
boxes isL=104, the corresponding volume fraction 0.925.€xternal force offs/ng to all theny beads contained in small
The mean pressui@=0.25 was chosen to be close to zero.Source disks of fixed diametdd. The center of the disk
The two Lamé coefficient®?526 \~39.5 andu~11.7, 'efers naturally to the origin of our coordinate systemy).
have been measured directly using Hooke's law by applyingd he special limit with sources containing only one bead
macroscopic elongation angure) shear to the simulation (No=1,D—1) will be used in Sec. V. Obviously, the re-
box. We recall that the associated Poisson raten/(\  SPonse becomes locally less noisy with increasing source
+2u)~2/3 is larger than 1/2 which is permissible in a two- SIZ€: As we are interested in disorder on distances larger than

. ) . the typical particle distance we have also distributed the
d|men3|0n§1l(2D) solid. H‘?fe as ever_ywhere later we hav_e source over more than one bead. Most of the results reported
naturally given the numerical values in Lennard-Jones unit

L . Sin Secs. Il and IV are foD=4 corresponding tgng) =~ 12

tior|1ts h;s d 2;3:5 r%%rﬁglﬂirghaerzkﬁ%mt;{' ?né'l'ﬂg:ﬂig?zgﬁﬁébeads. All the source forces considered here point vertically
. ; itting in| - £ h | qd downwards. It turns out that an applied force of order one per
rium, i.e., are sitting inlocal) minima of the energy land- ). 5 sufficiently small to ensure linear elastic response for

scape. The linear response to a small external force direct minimization method¢See Fig. 5 latey.The av-
imposed displacement can, hence, be described by means ghyes are taken over different disk positions in the same

the (2N) X (2N) dynamical matrix Mwhose elements depend ¢onfiguration, and also over the configuration ensemble.

on the frozen tension€quenched stressesand stiffnesses For mechanical stability, we have either imposed a com-
of the links between interacting beatfsin principle, it is  pensation force of &/N on all beads or fixed the positions
straightforward to solve numerically the linear equationsof certain beads, as shown in Figh). The first method has
M-U=E. Here,F andU are the N-dimensional force and the advantage of being free of any fixed boundary layer mak-
displacement fields respectively containing the imposed exing it possible to use the full initial periodic box. Care has to
ternal body forces and displacements. Since we are considbe taken however, in this case, for numerical reasons, be-
ering very large systems and standard linear equation solveause small drifts of the system cannot be completely
being of orderN® we have mainly usedSecs. lll and Iy  avoided. The displacement fields must thus be considered in
direct steepest descent and/or conjugate gradient methotise center of mass frame. Section IV presents results aver-
which are in this caséwhere the neighbor contact lists re- aged over nearly 4000 linear responses obtained with this
mains constantof order N. The advantage of the direct boundary condition.

methods is also that they allow to probe the nonlinear re- Most of the work presented in this papg&ecs. Ill and VY
sponse regime. We have checked that both methods yield theses instead fixed beads to compensate the source force. Ei-
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FIG. 5. (Color onling Unaveraged vertical stresg,close to the bottom plate/=50) caused by sources of various disk diame2r@s
indicated in the figurgat the same position of one configuration of linear dizel04. The total vertical force dfs has been used here as
a normalization. The open symbols correspond to a total applied forck0, the filled circles are for a source wih=ny=1 andfs/ng
=1. The bold line shows the theoretical prediction. It corresponds also to the statistical agg@adég. 6. The linear responses f@
=4,6, and 8 argerfectly identical. This only applies as long as the force per bead remains sufficiently small.

ther we fix all beads in a horizontal layer witil >h and  éu depicts the noisy response due to the quenched disorder.
h<L/2 (Sec. Ill, or all beads which are beyond a given In order to do a comparison of both snapshots, we show in
number of topological layers around the source particlesig. 4 the residual displacement fiedd, and the noise com-
(Sec. V. ponent of the local incremental stress on each particle. In
It is well known for elastic bodies in two dimensions that order to obtain the noise component, we have substracted the
stresses and strains far from both source and boundary détress calculated with standard continuum elasticity theory,
crease inversely with the source distancee., the displace- and the quenched stresses, from the total stress in the pres-

ment field varies logarithmically. Obviously, the response de€nce of a source. The total stress has been calculated here on
g y y P igach particle, using the standard Kirkwood definitidfiThe

of the rigorous analytical treatment, exemplified for thenoisy part of the incremental stress is then represented by an

. S : : lipse centered on the particle, whdagge principal axis is
ﬁ]oghnedirg/pgcr)]ré?)l(tlons studied in the next section, are OUtIIne‘groportional to the largest eigenvalue, and whesell prin-

cipal axis is proportional to the smallest eigenvalue of the
residual stress tensor. The directions of these axes give thus
IIl. RESULTS FOR FIXED TOP AND BOTTOM LAYERS the r_nain directions of the incremental stresses. The snapshot
of Fig. 4 shows clearly thatu is corrrelated to the local
The two snapshots of the forces and displacement fieldiicremental stress. To get more quantitative results, we have
depicted in Figs. 2 and 3 show the response fields obtained irawn in the inset of Fig. 4 the distribution of the angles
a small system of linear size=32.8 containing onlyN between the residual displacements and the main direc-
=1000 beads, but at the same volume fraction and pressut®n of the incremental stressé¢the direction associated to
as the larger samples studied quantitatively later. Thehe largest eigenvalijieWe show a peak for zero angle, with
strength of the forces between beads are represented in Figa2broad distribution(linear with #). The residual displace-
by the width of the lines repulsivétensile forces being ment field thus reveals a clear tendency to align with the
black (gray). Only the incremental force$f due to the main direction of the incremental stresses. On larger dis-
source are given, i.e., the rather strong quenched or residugnces, however, we see a vortex like structurestosimilar
forces of the amorphous body have been subtracted. The the structure revealed by the non-affine displacement field
force chains visible resemble strongly the ones known fromunder macroscopic strain found in Ref. 23. The reason for
granular mattet,>* although our system is certainly a clas- this can be easily understood for the latter case where the
sical isotropic elastic body at large distanégs. pressure must become macroscopically constant, and with it
The displacement fieldu=u-u.e indicated by the arrows the particle density as well. This generates the “backflow” of
in Fig. 3 has been obtained by substracting from the totathe nonaffine displacement, just like in a uncompressible
displacement fieldu, the displacement fieldi,, calculated fluid. We recall that the continuum displacement fielg for
for standard continuum elasticity theaqi@ET)?>?6following  the point source problem flows also back, but on a distance
the prescription indicated in the Appendix. In other words,L/2 given by the system size. The size of the vortices mea-
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<o (x,y)> <o, (x,y)>

FIG. 6. (Color onling Aver-
aged incremental stressesyy
(left) and oy, (right) versusx for
different vertical distanceg from
the source. HereD=4, f,=10.
The boundary conditions indi-
cated in Fig. 1b) are used. Data
from configurations containing
=10000 beads in boxes of
=104 is averaged over 220 inde-
pendent measurements and com-
pared with the predictions from
classical elasticity (bold lines.
The agreement is surprisingly
good even for smally and im-
proves systematically with in-
creasing source distance.

sured indu, however, does not depend on the system size. Two additional points have to be made here. First, the
Note that, from one configuration to the next, the vortices areéesponses compare already quite well with the analytical pre-
not located at the same place, and that they disappear aftdiction (bold line) albeit they are not averaged over different
averaging the displacement field over many configurationstealizations and despite the fact that thet given snapshot
Moreover, these vortices are not due to the natural discretiof the forces still looks quite noisy. This is obviously to be
zation of our system: they would disappear if the spatialexpected for large distances from the source as the response
distribution of atoms were ordered, as can be infered fromn an elastic body should self-average over the noise. While
the direct computation of the Green functiosee for ex- we shall make this more quantitative in a moment, Fig. 5
ample Ref. 2Y. Note finally that the three-dimension@D)  shows clearly that a distance of ordgr=50 yields a
case is now under study. We would not be surprised if thegeasonable—although not perfect—self-averaged response.
size of the structure involved in the local rearrangements of his confirms our finding in Ref. 23 that systems of size
the atoms were smaller in the 3D case, due to the minor 104 show accurately the lowest eigenmodes and can there-
effect of disorder and the smaller range of elastiitidlow-  fore be regarded as free of finite size effects. This motivated
ever, systems with gery large number of atoms have to be our choice of this system size. Note that the continuous re-
studied in this cagé to fit with the continuum limit. sponse and the response averaged over many configurations
Figure 5 shows the vertical normal stregg generated by (bold line in the Fig.  coincide at this distance from the
one source of diameteD, at a distancey=50 below the point sourcgsee also Fig. 6 on this point
source, i.e., just above the fixed beads of the bottom layer. As Second, we note in Fig. 5 that the responses are identical
in the snapshot Fig. 2, only the incremental stresses due for all systems where the forces per bead remain of order one
the source are shown here. To make comparison between tloe lower. This appears to be independent of the disk diam-
sources of different strengths, the total vertical stress hastersD despite the additional beads charged for larger disks.
been normalized by the total vertical forég Apparently, these differences at the source are screened at
The stress tensor has been measured, as everywhere in §®e50>D. The response fdD =1 andfs/ny= 10 is different,
following, by means of the virial definitidd averaged over as the force per bead is outside the elastic regime. If we
all beads contained in small rectangular volume elements akduce the force per bead for=1 further(filled circley we
width 5 and height 3 centered @t,y). Adopting in this work  obtain finally similar responses as for the larger disks. Note,
the sign convention usual in granular matter, compressiv8owever, that linear response requires smaller forces per
stresses are taken as positive, i.e., have the same sign as tread for smaller disks than for larger ones.
pressure. The size and the aspect ratio of the volume ele- We now consider the mean stresses, i.e., the stress profiles
ments were chosen for convenience. A typical volume eleaveraged over many realizatiogdifferent samples and dif-
ment contains 14 beads, and averages over about 100 intderent application points of the forgeFar from the source,
actions which takes out some of the noise. On the other hanthe self-averaging discussed earlier implies that these mean
it remains small enough to achieve a good spatial resolutiorprofiles should behave in accordance with CET. This is less
Note that a given interaction may contribute to two neigh-obvious close to the source, where fluctuations from one re-
boring volume elements. Data points corresponding to twalization to the other are large. In Fig. 6 we present the
such elements are therefore statistically correlated, and theormal mean stressés,,) and(oy,) as functions ofx for
curves appear slightly smoother as they would otherwise. different vertical distanceg, with D=4 andf,=10. Similar
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FIG. 7. (Color onling Com-
parison of thegincremental stress
fluctuations 805=((0%p)
~(0,p?Y? with the mean vertical
normal stresgoy,). This is done
in two directions through the
source:(a) along the vertical line
(x=0) and (b) for |x/y|=1. We
note that mean stresses and their
fluctuations scale quite differently
with distancer from the source in
both directions. For small dis-
tances we find relative fluctuations
80 4p5l{0,pg) Of order 1. While the
mean stresses decrease, as ex-
pected in 2D, essentially as 11/

1/r
— = exp(-r/b),b=30

the fluctuations are found to be
well fitted by an exponential de-

10 cay expg-r/b) with b= 30.

-2 1 1 1 | 1 L L] | 1 1 1 | L

LU 20 40 60 80
(b)

curves have been obtained for the shear st(esp. The  figure correspond to measurements along two straight lines
agreement with CETbold lineg is surprisingly good even through the sourcga) x=0, (b) x/y=tan(6)=+1. Both fig-
for small distances from the source. It improves further withures look qualitatively similar.
increasing distancg. Apparently, the noise entering in the ~ More importantly, we compare in both panels both normal
stress calculation is ofessentially vanishing mean. While average stresses with their respective fluctuations from
the vertical normal stress must have always one peak cesample to sampléo, ;= (0%~ (0% We note first that
tered below the source, the horizontal normal stress is presoy,~ do,=~ do,, (the latter relation not being represented
dicted by classical isotropic theory to show a minimum atin the figurg and that the fluctuations do not depend on the
x=0 between two peaks f@ <|y| <h. This is a direct con- angle # of the straight line, but solely on their distance
sequence of elasticity. The double peak disappears close tfimm the source. Surprisingly, we find fluctuations of order of
fixed surface as there horizontal displacements which caugee meannorma) stresses, i.e., the relative fluctuations are
the tensile horizontal forces are suppressed. of order one close to the sour€eThis striking observation

As can be seen from Fig. 7 for the normal stresses, alis by no means in conflict with the observed self-averaging
measured stresses decrease essentially as the inverse distaflacdrom the source, due to the different distance dependence
from the sourcétaken aside the expected corrections due thef mean stresses and fluctuations. While the former decrease
finite value of the system sizeThe two panels given in this (essentially analytically, our data suggests an exponential
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FIG. 8. (Color online Normal-

- ® y=10 . ized distributions of incremental

= A Y= 20 g vertical normal stresses for differ-

i * y= i ent distancey >0, along the ver-
y= 40 tical line through the sourcéx

i h =0). The histograms are plotted

i ey i versusu=ay,/(a,,). The data are

averaged over 220 independent
point source experiments. The his-
tograms are more or less symmet-
ric. With increasing distance, the
rescaled distributions become sys-
tematically narrower, in agree-

A ment with the previous figure,

however, the effect is weak. For
- y <40, the tails of the histograms
exp(u-1) are not Gaussian, but roughly ex-
0011 T L ponential as indicated by the bold

5 3 0 1 5 7 lines.
cyy(O,y) /< ny(O,y) >

0.1

decay for the latter. Our fits are compatible with a characterfigure, an exponential fit is not unreasonable. In this sense
istic screening length scakleof order 30. Interestingly, thisis the noise is large.
of same order as the characteristic wave lengjthie have

found in Ref. 23 for the breakdown of the classical eigen- |v. RESULTS FOR SYSTEMS WITH COMPENSATION

modes. Only for distances somewhat larger thathe self- FORCES
averaging dominates over the analytical decay of the average ) ) ) )
stresses, and thelative fluctuations vanish eventually. While the previous section was mainly concerned about

stresses along the=0 line through the source. Only the rest of this paper, investigate the displacemeruf the cen-

vertical normal stresses,, are presented here, as the histo-ter of mass of the source region. This is the direct route to
grams fora,, anda,, show similar behavior. The normalized characterize the local elastic properties of an amorphous
histograms have been rescaled and plotecusthe natural body. Here we use open periodic boundary conditions with-

scaling variableu=oy,/{a,,) which takes out the trivial dis- out fixed particles, but with additional small compensation

tance dependence of the mean stress. Incidentally, as V\f,grces on all beads. As before, a vertically downwards point-

know from Fig. 6, we may equally use the analytically ob- "9 force acts on source disks of diameir 4. ,
tained stress as reference in the scaling variable, without F19uré 9 presents a typical snapshot of the noisy part
changing the reduced histograms. dus=Us—(uy) of the source displacements measured in one
Three remarks have to be made here: First, we note th&onfiguration. For the given box size, the mean displacement
all histograms scale reasonably well and the fluctuations, i.eSubstracted is roughly four times larger than the average
the width of the unscaled peaks, scale broadly as the medltctuation(u})¥’? (see Fig. 11 latgr Hence, the local elas-
stresses. Closer inspection reveals, however, that the rescalé@ properties vary weakly with position. The snapstmt a
peak width becomes slightly narrower with distance to themore detailed histograjmshows the bimodality of theus
source. Both observations are obviously in perfect agreemeslistribution: Very few strong displacements point downwards
with the previous Fig. 7 where more or less constant relativén the direction of the force. They are due to some very soft
fluctuation have been found due to the large value of thépots. The remainingus are much smaller and strongly cor-
self-averaging lengtb=h. This masks somewhat the differ- related in space. While pointing pretty much in all directions,
ent functional dependencganalytic versusexponential of ~ they compensate obviously the net downward component of
the first two moments of the stress distributions. Second, théhe soft spots.
distributions are more or less symmetric and the mean stress We have checked the spatial correlations of the source
corresponds to the maximum of the histogram. This confirmglisplacements, by means of th@ormalized correlation
the statement made earli¢Fig. 6), that the fluctuations function (du(r)-éuy(0)) which is summed oveall pairs of
around the analytical prediction appear to be of vanishinglisplacements of a given configuration, and averaged over
mean. Third, although our statistics is certainly insufficient tothe configuration ensemble. In total, nearly 4000 responses
characterize much better the shape of the distributions, speontribute to the average correlation function presented in
cifically the scaling of their tails, a Gaussian distribution canFig. 10. For very small distances, the correlation function
be ruled out with the present data. In fact, as shown in thehould become constant since two sources of finite disk di-
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LA ‘{,‘ ”‘ N TR Interestingly, the same dependency has been observed for the
y ‘ AR AN \/ o correlation function of the nonaffine part of the displacement
AN y U U R field discussed in Ref. 23. Finally, we remark that an addi-
e KR AL tional nonanalytic and possibly exponential regime bor
L ‘ PN ATRSES NS {gg% “] <r<L/2 is conceivable for even larger boxes. This is sug-
N/ ‘ ' ‘/ S gested by the existence of the characteristic lerigtbb-
ol A / PR TN 4 \ RN served in the self-averaging of the stresses. Unfortunately, as
S ol N A / indicated by the broken line, this is at present not supported
/// P f gy T by our simulations due to the limited system sizes available.
{\\;"u WA q RS ”'1 ‘ ;! The reader will have observed that we do not probe here
' a S \ the rigidity of an isolated patch of material in a fixed frame.
s\ A A S The fluctuations of the source displacements do not depend
\\\ A / N SR N only on the local elements of the dynamical matrix but on a
| ] \\‘\},f- A much larger neighborhood, in principle the whole system,
RSP REL (R ,f AR whose effective size is estimated in the next section.

V. RESULTS FOR FIXED TOPOLOGICAL LAYERS

FIG. 9. (Color onling Snapshot of the reduced displacement = Vi he i di v b f th
vectors sus=us—(ug of the center of mass of the source region. or solving the linear response directly by means of the

(The size of the arrows is proportional to the length of the reducedjyn""m?CaI matri>§, it is useful to renumber and_regroup the
displacement vectgrThese data have been obtained for completelyP®ads in topological layers around the source disk. Alithe
periodic boundary conditions where no particles have been fixed?€@ds, interacting directly with the, disk beads, are con-

The vector field varies greatly in size and direction. Closer inspecfained in the first neighbor layer, the, beads interacting
tion shows strong spatial correlations. directly with then; beads of the first neighbor shell are con-

tained in the second layer, and so @here are no direct

ameter excite the same beads. Equally, it is expected to béateractions between the) beads of the source and those of
come flat around =L/2 due to the periodic boundary con- the second layér Both the number of beads of each layer
ditions. Both limits are in agreement with our data. Moreand the mean radiuR of the fixed particle layer around the
importantly, the intermediate distance regibé2<r<L/2  source increase linearly with the topological rank from the
may be reasonably fitted in log-log coordinates by a powesource. The width of a topological layer is of order 3 due to
law slope. Although a somewhat weaker value would even fithe cutoff of our potential and to the weak polydisperstty.
a larger range of the data we have indicated an exponent —The last layer of free particles containingbeads, we fix the

100 T T T T 11T

—_ 1 i

— = exp(-r/30) .

10

10° 10'

FIG. 10. (Color onling Spatial correlation functiofdu(r) - us(0))/{us?) of the source displacement veci®i,=us—{us) with r being the

distance between source terms within the same configuration. Note that the correlation function is normalized. The average is taken over a
total number of nearly 4000 linear responses using open periodic boundary conditions without fixed particles. As indicated by the bold line,

the correlation function decreases essentially like the inverse distande/fxr<L/2. It becomes constant for smaller and larger
distances. We strongly suspect an additional exponential qata$hed ling however, our data are too noisy and, more importahtig, too
small to demonstrate this unambiguously.
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positions of theN-(ng+n;+---+n;) >0 remaining beads.

With this renumbering, the structure of the dynamical ma-
trix becomes more transparent, picturing systematically the0.04
influence of the subsequent topological layers. While in the
last sectionall beads have been allowed to respond to the
external load, here we study the effect of additional degree:
of freedom when more and more topological layers and de-0-03
grees of freedom are allowed to relax. The method used her
is a systematic inversion of the dynamical matrix.

As in the last section, we only consider the displacement
field at the source. In contrast, we use a source containin©-02
only one beadny=1). The applied force is arbitrarily set to
one. Obviously, the response of the source, when all othe
beads are fixedl=0), is directly described by the inverse
diagonal coefficients of the dynamical matrix, which is a
function of the local quenched forces and spring constant:
between neighboring monomers. Hor 0, the displacement
U of the source can be computed recursively by writing the
equilibrium equations on all free beads. Her2, for ex- 0'00100 1(',1 10°
ample, we get after combining all thexdny+n;+n,) equi- 2R
librium equations in the two directionsandy:

0.01 -

FIG. 11. (Color onling Vertical component of the displacement
of the source center of mass for a given total forcefg as a

F=[Mn;xn, = Mnoxn, - (M xn, function of system size R The open symbols correspond to the
_ _ mean displacemer{u2>1’2/fs, the filled symbols to the fluctuation
“Mnsn M - Mon) ™ Mo n JU, (D) 21/2 i ole ition with fi
2nyxny " Xnyxn, " XnyXny 2ny Xngl (oug)+'¢/ . The circles are for the boundary condition with fixed

topological layers discussed in Sec.Rbeing the mean distance to
the fixed border shell. The squares are for responses in periodic
where M, ., is the matrix of size & X 2n; containing all the  systems of linear siz&=2R=104 without fixed beadsSec. IV).
coefficients of the dynamical matrix relating the particles ofThe mean displacement increase logarithmically with system size
the layeri with the particles of the laygr The ratioug/f, of (ug)/fs=0.011 lod2R/D) in agreement with theory. The fluctua-
the vertical component of the source displacement to thé&ons level off at distances of order b 30, as can be better seen
applied vertical force, can thus be easily computed, with thérom the inset.
direct use of the coefficients of the dynamical matrix.
The vertical component of the source displacemens VI. CONCLUDING REMARKS
shown in Fig. 11 as a function of the mean diametera?

the spherical region around the source which is allowed t0 \ya have probed the incremental stress and displacement
respond to an external force. The open symbols correspong,| s que to a point source force acting on two-dimensional
to the (reduced mean d|sglacemer{us)/fs, the filled sym- 5morphous Lennard-Jones solids. Focusing on the linear
bols to the fluctuation(ug)*//fs. The squares are for the e|astic response, this has been done for three different bound-
responses measured numerically after relaxation in periodigry conditions by means of the linearized Eu|er-|_agrange

systems of linear size=2R=104 without fixed beadgSec.  forcesi.e., the dynamical matrixor by direct minimization
V). Note that the response at the source depends of courgg the total Hamiltonian.

on D for all 2R3° . _ ~ We demonstrate that thaveragestresses and displace-
‘We show, that the mean displacement increases logarithnent fields compare well with the predictions from classical
mically with system siz€uy)/fs~0.011 log2R/D) in quali-  sotropic elasticity, and this already for small distances from

tative agreement with continuum theory and this already fothe source and for small system siz€gys. 6 and 1L Con-
systems with only one free topological layer around thetrasting to this, large stregand, hence, strajrfluctuations
source(l=1). Hence, although=0 is not sufficient, one can are found for small distances to the source decreagsg
obtain the average local elastic moduli from a surprisinglysentially) exponentially with distancéFig. 7). A surprisingly
small neighborhood region. Interestingly, the fluctuationslarge length scaleb~30 is associated with this self-
level off at much larger distances of the orderbef30 (cor-  averaging with distance. Similarly, the fluctuations of the
responding td =6 topological layerg as can be better seen source displacement fields are found to become system size
from the inset.(It can be shown that the approach of the independent fok. =2R> 30. The self-averaging lengthis of
large system size limit is exponentjallhis shows that, at the same order as the characteristic length s¢alesociated
system sizes of the order of the self-averaging length, thevith the nonaffine displacement field under macroscopic
fluctuations become system size independent. For larger systrain setting the lower bound for allowing classical eigen-
tems,b determines the size of the region responsible for thédrequency calculation to be applicable. We believe that both
noise in the source displacement field. length scales express the same physical fact and are indeed
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(up to prefactorgidentical quantities. This explains why vi- Vio;;=F3(x)8(y) with i,j=x,y and F being the external
bration modes corresponding to wavelengths larger than point force applied if0,0). The main assumption of classi-
(and, hence, averaging over larger distapdedow con-  cal elasticity® is that the system may be entirely described
tinuum theory, while modes with smaller wavelengths doby the continuous displacement fielidx,y). Due to global
not23 translational and rotational invariance, only the strain field—
As it has been pointed out, better statistics and muchyy definition the symmetric part of the gradient of the dis-
larger box sized./2>b=~ ¢ would be required to establish placement field—appears in the equations. Moreovéinin
unambiguously the scaling of the various distribution func-ear elasticity, the stress tensor is related to the strain tensor
tions discussed here. Especially, an improved correlatiorgij through Hooke’s law. Only two phenomenological param-
function of the source displacements would be highly intereters are required for isotropic homogeneous syst&nasd
esting to test the range of the observed power (Big. 10. 3 (or A and w). Supposing this, it follows the compatibility
We strongly expect the existence of final cutoff at a characequatiod® 4,0 Y~ VOyyOyy Oy Oxx = Vo= 2(1+ 1) dyy oy
teristic length of ordeb. Additional theoretical guidance is and thus, combined with the force balance equations, the
also required to explain how such a large length scale arisgge|l-known Laplace equationA(oy,+ay,,)=0 for (x,y)
for the fluctuations given the short-range correlation of the (0,0).
dynamical matrix elements. These results should be com- g 5 specific example we present here the calculation for
pared with experiments of nanoscale indentation ORpe point source problem between two fixed horizontal walls
glasseg}! allowing a first experimental evidence of large posed in Fig. ). Hence, the displacement field must
scale fluctuations of the elastic properties in amorphous mas5nish forly| =h. Periodicity and symmetry of the simulation
terials. The study of the pressure dependence of our results jg)x in horizontal direction impose a solution periodic and
currently in progress. symmetric(odd or evehin x. These boundary and symmetry

Coming back to the static properties of granular aggreéxongitions can be readily reformulated in terms of the
gates(composed of hard, cohesionless grains in frictionalsiesses.

contacj invoked in the introduction, this work suggests sev- 1o obtain the elastic response, the idea is to use the

eral computer experiments. As a first step, one should cOMyethod presented in Ref. 7 in the case of an elastic layer
pare the average incremental stress and displacement g pmitted to a force localized at its surface. We divide our
sponses. It may be interesting to verify if the double peakyedium into two parts: part 1 above, part 2 below the point

structure found for the horizontal normal stress is alsoggyrce. The continuity of the displacement field along the
present in granular matter although there th&al normal fictitious dividing line requiresuf(l)(x,0):u(X2)(x,0) and u(yl)

stresses may not become tensil&. priori this is possible _ @ . . )
since theincrementalstresses are perfectly entitled to be- _X (x,O?—u;()l()x,O). Th(ez)pomt force is taken mFo account. by
come negative as long as Coulomb’s criterion is not Vio_lmposmgo-yy(x,O)=ayy(x,0)—p(X) Wherep(x). |s.th-e verti-
lated) More importantly, the self-averaging properties of cal external pressure. An add|t|ongl constra}|2r)1t is imposed by
granular systems should be put to a test. Various experimeibe continuity of the shear stresg’(x,0)=01/(x,0). Note

tal facts(especially for forces in vertical columns and sjfos that the continuity oti, aty=0 together with the discontinu-
suggest much larger fluctuations with much weaker selfity of oy, imposes the discontinuity ofy,. Imposing a con-
averaging properties compared to amorphous elastic bodielnuousoy, would yield to a discontinuous displacement field
Finally, it is a matter of debate, if the response to an arbitrarylx With large scale vortice¥.

weak source does correspond to a Green’s function in a strict The stress tensor components are decomposed into a base
mathematical sense. Additivity, linearity and reversibility of of harmonic functions, typically affine functions or product
the responses should be tested directly. As the force netwo® trigonometric functions with exponentials. Taking into ac-

is subject to incessant restructuring due to the missing peeount thex— —x symmetry, we look for a solution of the
manent grain contacts it may not be possible to describe-type

even in the hydrodynamic limit—the total charging of the

packing as dinear operatior? e
a2+ op? = 2 codgxa®?eV + b2,
n=0
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APPENDIX: TWO-DIMENSIONAL ELASTIC RESPONSE Ty gosm(qx){qy/Z[a v+l

TO A POINT FORCE
. . + [P + 127V} (A1)
At equilibrium the stress state of a two-dimensional elas-

tic material must satisfy théwo) force balance equations a2, b*?, ¢:2, andd*? are coefficient functions depend-
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ing on the frequencyj=nAq. The latter is quantized with with p(x) either equal to a gaussigs(q)=F/me-272], or a
Aq=2w/L, due to the finite horizontal width of the layer,  niform force of width 2 [s(q)=F sin(qa)/(wag)].
and periodic boundary conditions. A similar looking ansatz Replacing the general expressions for the stresses and the

for the corresponding displacement fields is read”yObtainEddisplacement fields in the equations characterizing the

for;heas\’/ertlcal external pressure is expressed in the SarT}‘;oundary conditions and the continuity at the fictitious divid-

ing line, leads to the following explicit expressions for the

oo eight functionsa*?, b2, ¢12, and d*? depending on
p(x) = X, cogax)s(q)Aq s(q), gh, and v:
n=0

S(@AQ[(1+v) - 2gh+3 - p]e X"+ (v - 3"

1 - _

ai(q) = 4 D) ,
, . S(@AQ[(1+v)2gh-3+v]e 2" (v-3)
as(q) = 4 D) ,

- v —ple+ (p-3)

bt :s(q)Aq[ (1+v)2gh+3-v]e ,
(@ 4 b

b2(q) = s(q)Aq[(1 +v)2gh+ 3 - v]e 2"+ (p — 3)e4an
Y=y D(q) ’

L S(@Ag [2(1+v)%g?h?+ (1 - v)2gh+ (1 - ) (3 -1)]e "+ (1 -p)(v- e |
C(q)—8(1+v) b(g) . =dq),
Aq [2(1 +v)2Ph% - (1 -1A2gh+ (1 -v)(3-v)]e @+ (1 -v)(v-3
CZ(Q):sS((?j)[( B +|(3(q> ]

-3 r—3

+ g4ah
20v+1) 2(v+1)

with D(q) = 2ghe 2" -

Substituting these coefficient functions back into the genboundary condition studied in Ref. 7, the coefficient func-
eral ansatz for stress and displacement fields, one obtait®ns depend now om. The displacement field is propor-
explicit expressions for the stress and the displacemertional to 1/E. The solution also depends on the system height
fields. We have drawn numerically these expressions to geth, on the sizea of the source, and on the width the latter
the theoretical fits presented in Sec. Ill. Note that unlike thedue to the quantization of the Fourier integration.
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