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We present an alternative equilibrium molecular dynamics method—the uniaxial constant-stress
Hugoniostat—for following the dynamical evolution of condensed matter subjected to shock waves. It is a
natural extension of the recently developed uniaxial constant-volume Hugoniostat[Maillet et al., Phys. Rev. E
63, 016121(2001)]. Integral feedback is employed to reach the Hugoniot(final) state of the shock process by
controlling both the normal component of the stress tensor and internal energy. The finite strain rate imposed
on the system is closely related to that inherent in the front of a shock wave. The method can easily identify
phase transitions along the Hugoniot shock states, even those that exhibit multiple wave structures. As an
example of the method, we have simulated the Hugoniot of a Lennard-Jones crystal shocked along thek110l
direction. The results agree well with multi-million-atom nonequilibrium molecular-dynamics simulations.

DOI: 10.1103/PhysRevB.70.014103 PACS number(s): 64.10.1h, 02.70.Ns, 62.50.1p, 62.20.Fe

I. INTRODUCTION

The study of material behavior under shock-loading con-
ditions has been actively pursued for almost a century. In the
1970s, the first computer experiments of shock waves in sol-
ids demonstrated that nonequilibrium molecular dynamics
sNEMDd simulations can be a powerful tool to study the
dynamics of shock propagation in solids and liquids.1,2 From
those early days, the field of NEMD simulations of shock
phenomena has advanced to the point where the study of
shock-induced plasticity,3 phase transitions,4 and
detonations5 in single crystals is now possible, employing
systems as large as several hundred million atoms. Despite
this enormous progress, NEMD simulations of shock waves
remain a computationally intensive undertaking, requiring
ever larger systems in order to probe longer time scales, or as
in the case of polycrystalline materials of even submicron
size grains, systems larger than what is currently possible in
order to achieve steady shock profiles.6

Recent advances in experimental techniques, especially in
the areas of laser-shock processingsLSPd and in situ time-
resolved x-ray diffraction and photoelectron spectroscopy,
have dramatically increased the spatial and temporal resolu-
tion of shock-loaded experiments, allowing the study of lat-
tice structures and material response on subnanosecond time
scales. At the same time, advances in massively parallel
computer simulations have allowed the investigation of pla-
nar shocks at length and times scales that are approaching
those in current computational techniques. As a result, simu-
lations and experiments are converging, in particular in the
area of single-crystal plasticity and deformation. For in-
stance, experiments on LiF single crystals have revealed
marked differences in the yield stress as a function of shock
direction.7 This orientational dependence is also observed in
large-scale NEMD simulations of shock propagation in
defect-free fcc crystals.8 Recent laser-driven shock experi-
ments of Cus100d single crystals indicate that the observed
dislocation generation and defect structure is consistent with

loop nucleation and growth at the shock front.9 This finding
is also in agreement with NEMD simulations of shock propa-
gation in fccs100d crystals.3,10,11 However, NEMD simula-
tions are currently limited to time scales of tens of picosec-
onds, and probing longer times is important in order to make
a more direct comparison with current experiments.

Several dynamical approaches have emerged recently as
alternatives to traditional NEMD, aimed at extracting dy-
namical and structural information, using smaller system
sizes to allow the study of longer-time processes. One such
approach is the “ramjet” or “moving window”.12 This is a
NEMD method where a region around the shock front is
followed in time by moving the computational cell at the
shock-wave speed. As long as the shock front is steady, the
method allows accurate determination of shock profiles with
much smaller system sizes than traditional NEMD. By em-
ploying time averaging, it can provide accurate information
of nonequilibrium thermodynamic quantities as a function of
distance from the shock front. The method, by construction,
cannot be used to follow multiwave structures, such as those
produced in mixed-phase regions of the Hugoniot.

A recently developed equilibrium molecular-dynamics
method aims at reproducing the final state of the compressed
material after the shock wave has passed through. In
this method, termed the “uniaxial Hugoniostat,”13 the system
is instantaneously, uniaxially, and homogeneously com-
pressed to the volume of the final state, and then it is relaxed
to the final internal energy on the shock Hugoniot by time-
reversible integral feedback. Because the method focuses on
the final state, rather than the full propagation of the shock
wave, longer times in the relaxation process can be followed
using more accurate semiempirical orab initio descriptions
of the interatomic interactions. A comparison with NEMD
simulations of Lennard-Jones single crystals shocked along
the k100l direction has shown that the Hugoniostat repro-
duces not only the shock Hugoniot over a wide range of
densities, but also the defect structures and final temperatures
(which are unavailable from experiments on optically opaque
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materials).13 In addition, its implementation inab initio
molecular-dynamics methods is straightforward and has re-
cently been used to obtain the shock Hugoniot of tin up to
200 GPa.14 In this paper, we will employ the moniker
“NVHug,” when referring to this uniaxial constant-volume
(or constant-strain) Hugoniostat, since the number of par-
ticles N and the periodic, uniaxially compressed computa-
tional cell of volumeV are both held constant, while the
internal energy is “ergostatted” to its final Hugoniot value.

A drawback of the method, however, is the way in which
the uniaxial deformation is applied to the system. Because
the system is instantaneously compressed, the initial tem-
perature and stresses can become unrealistically large, in par-
ticular at very high compressions(strains). These initial large
transients can lead to differences between the shock states
produced by the NVHug Hugoniostat and those produced via
full NEMD simulations, as will be demonstrated below.

The passage of a shock wave imposes a finite strain rate
on the system. However, in the NVHug formalism the ap-
plied strain rate is effectively infinite. One way to circumvent
the anomalously large transients resulting from the Hugo-
niostat’s instantaneous uniaxial compression is to apply the
deformation over a finite amount of time. This can be accom-
plished by imposing the strain at a constant rate, which
brings the system more gradually to the final compressed
volume. At that point, the same NVHug feedback dynamics
can be employed. The magnitude of the strain rate can be
related to that imposed at the shock front.

Recently Reedet al.15 have proposed an equilibrium
molecular-dynamics method for simulating shocked states in
which the length of the computational box in the shock di-
rection is modified dynamically, rather than instantaneously,
as is done in the NVHug formulation. Instead of the final
strain or pressure, they choose the shock velocity as the con-
straint parameter in determining the final equilibrium volume
along the Hugoniot. However, like the Hugoniostat, the
method exhibits large initial transients in stress as well as in
volume. In addition, it displays long-lived volume oscilla-
tions that are qualitatively unlike the corresponding NEMD
shock-wave profiles16 and that also make an accurate deter-
mination of phase changes along the Hugoniot more difficult.

In this paper we improve upon the original Hugoniostat
equations of motion in order to take into account the finite
strain-rate dependence inherent in the shock front and to
remedy some of the shortcomings discussed above. In
this new formalism, the system is uniaxially and homoge-
neously compressed—not instantaneously, but rather,
dynamically—to a final preset normal-stress value. This is
accomplished by introducing into the Hugoniostat equations
of motion an extra dynamical, integral-feedback(“barostat”)
variable, namely the strain rate, which acts like a piston,
compressing the system uniaxially and homogeneously to a
final normal stress(or normal pressure) Pzz in the direction
szd of the shock. In this approach, the stresses and tempera-
ture evolve dynamically and naturally. The large initial tran-
sients present in the NVHug method are eliminated by intro-
ducing damping rates in the equations of motion of both the
strain-rate(barostat) and heat-flow(ergostat) variables. As a
result, the time evolution of the stress tensor and temperature
resembles very closely that generated in NEMD simulations.

The internal energy relaxes to the final shocked-state(Hugo-
niot) energy, and the change from initial to final state is the
work done by the piston plus the heat flow into the system.
We will refer to this version of the constant-stress Hugo-
niostat by the moniker “NPzzHug,” since in this approach
the final Pzz becomes the constraint variable rather than the
volume.

In the next section we outline the formalism and equa-
tions of motion and review some of the salient features of the
model. As a demonstration of the method, we present results
of shock propagation along thek110l direction of a Lennard-
Jones crystal, comparing direct large-scale NEMD with the
equilibrium NPzzHug method.

II. FORMALISM

For one-dimensional steady flow, the conservation of
mass, momentum, and energy across a planar shock front
connecting the initial(unshocked) and final(shocked) states
leads to the Hugoniot relations:

mass: r0us = rsus − upd, s1d

momentum: Pzz= P0 + r0usup, s2d

energy: EH = E0 +
1

2
sPzz+ P0dsV0 − Vd. s3d

The subscript 0 in the above equations refers to those quan-
tities in the unshocked initial state.Pzz is the normal compo-
nent of the stress tensor in the direction of the shock wave
(chosen to be in thez direction), r=1/V is the mass per unit
volume,us is the shock velocity, andup is the particle veloc-
ity. From Eqs.(1) and (2) above, one obtains the following
relations:17

up

us
= 1 −

V

V0
= e, s4d

us =ÎPzz− P0

V0 − V
V0, s5d

up = ÎsPzz− P0dsV0 − Vd. s6d

For a steady shock wave, all quantities in the final state
sE,Pzz,V,us,upd in Eqs. (1)–(6) are well defined and
uniquely identify the corresponding shocked state. The curve
describing the locus of final states, plotted as a function of
any pair of these quantities, defines the Hugoniot with re-
spect to those variables.

In the NVHug method of Ref. 13, the traditional
molecular-dynamics equations of motion of a system ofN
particles with coordinatesr i and momentapi are augmented
by the addition of one extra degree of freedom, namely, the
dimensionless heat-flow variablez that is used to relax the
instantaneous internal energyE of the system to the Hugo-
niot energy given in Eq.(3): EHstd=E0+ 1

2fPzzstd+P0gsV0

−Vd. The equilibration employs integral feedback analogous
to the constant-temperature molecular-dynamics method of
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Nosé18 but cast in the simplified formulation of Hoover.19 We
write the equations of motion as follows:20

ṙai =
pai

mi
, s7d

ṗai = Fai − nHzpai , s8d

ż =
nH

B0V0
fE − EHstdg. s9d

The subscripta refers to Cartesian componentssx,y,zd. The
energy difference in the dynamical evolution of the dimen-
sionless heat-flow variablez [Eq. (9)] has been normalized
by the bulk modulus at zero pressureB0 times the zero-
pressure volumeV0, since the variation of the internal energy
with compression depends strongly on the compressibility of
the material. The heat-flow coupling rate(frequency) nH is a
constant that provides the time scale for the heat flow. Be-
causez couples only to the momenta of the particles, the
internal energy is in fact relaxed by adjusting the kinetic
temperature of the system, assuring that the final temperature
is correct for the shocked state characterized by the final
volumeV.

We have modified these equations by introducing an extra
degree of freedom, a “piston” or dimensionless strain-rate
variablehz, whose role is to equilibrate the component of the
stress tensor in the shock propagation direction to the desired
value sPzzd. The implementation of this uniaxial ‘‘barostat’’
into the NVHug equations of motion(7)–(9) closely follows
the isobaric-isothermal molecular-dynamics prescription of
Hoover21 with the modifications introduced by Melchionna
et al.:22

ṙai =
pai

mi
+ npharai , s10d

ṗai = Fai − snpha + nHzdpai , s11d

L̇a = nphaLa, s12d

ż =
nH

B0V0
fE − EHstdg − bHz, s13d

ḣa =
np

B0
ssaa − Paad − bpha, s14d

wheresab=ospaipbi /mi +rbiFaid/V is the internal stress ten-
sor and nowEHstd=E0+ 1

2fszzstd+P0gfV0−Vstdg. For simplic-
ity, the equations have been written in a compact form,
where it is understood thatha;0; ḣa for a=x,y. There is
only one strain-rate variablehz that dynamically modifies the
length of the computational box in the shock directionLz
[Eq. (12)] and adjusts the instantaneous normal component
of the stress tensorszzstd to the preset valuePzz [Eq. (14)].
The heat-flow(ergostat) Eq. (13) and strain-rate(barostat)
Eq. (14) include coupling-rate parameters(frequencies) nH
and np, as well as damping coefficientsbH and bp, respec-

tively. Damping has been incorporated in order to eliminate
unrealistically large initial transients in temperature and
stress, to make the time evolution of the stress tensor and
temperature more closely resemble that produced by the pas-
sage of a shock wave, and to reduce thereby the errors in
determining phase transition boundaries.

Equations(10)–(14) form a closed set of coupled differ-
ential equations that can easily be integrated. Starting from
an initial unshocked state at pressureP0 (usually zero), tem-
peratureT0, volumeV0, and internal energyE0, the system is
dynamically and uniaxially compressed to the desired normal
pressurePzz within a natural relaxation time that is inversely
proportional to the barostat frequencynp. Ideally, np should
be chosen so as to reproduce as closely as possible the strain
rate produced by the passage of an NEMD shock wave
through the medium. Even though the long-time average of
the normal stressszz is independent of the choice ofnp and
bp, the density of defects in the plastic deformation depends
somewhat on the strain rate imposed on the system. The final
temperature, in turn, depends upon the plastic work done on
the crystal. Selecting appropriate values ofnp andbp helps,
in practice, produce better agreement between the final states
and shock temperatures obtained using NPzzHug and those
resulting from traditional NEMD simulations. Computational
details and other features inherent in the model are discussed
in the next section with the help of a numerical example.

III. NUMERICAL EXAMPLE

We have chosen to study, as an example of the NPzzHug
method, the Hugoniot of a Lennard-Jones crystal shocked
along thek110l direction. This crystallographic direction is
known to have a large value of the normal stress at the Hugo-
niot elastic limitsHELd.8 All simulations reported here were
performed on systems containing 25 200 atoms interacting
via a Lennard-Jones LJ 6-12 spline potential as described in
Ref. 23. The computational cell is approximately a cube of
size 18325328 unit cells, with thex, y, andz axes oriented

along k001l, k11̄0l, andk110l, respectively. Periodic bound-
ary conditions were employed in all three directions. All
quantities are expressed in Lennard-Jones units: masses are
given in units of the atomic massm, lengths in units of the
bond distancer0, and energies in units of the bond energy«0;
as a result, time is in units oft0=r0sm/«0d1/2, temperature in
units of «0/kB (kB is Boltzmann’s constant), and pressure in
units of «0/ r0

3. The equations of motion are numerically in-
tegrated using Størmer finite differences(leap-frog) with a
time stepdt=s0.002–0.005dt0.

The initial unshocked state is taken to be a perfect fcc
crystal atP0=0 andT0=0.01, wherer0=1.469,E0=−6.334,
andB0=81.8. We employ the same criterion as in Ref. 13 for
selecting an optimal value for the heat-flow ratenH, namely
that it should be close to either the Einstein frequency or
mean natural vibrational frequency of the atoms. This fre-
quency increases with compression. Typical values fornH
employed in the simulations reported here are in the range
s30–60dt0

−1. The damping ratebH was chosen so that the heat
flow variablez in Eq. (13) is critically damped, which gives
bH=2nH.
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The barostat frequencynp is selected by equating the
maximum strain rate imposed by the piston to the strain rate
inherent in a shock wave of the same strength, which, for
shock-wave thicknessl, is given by ė=up/l. The shock
thickness can be obtained from NMED profiles of particle
velocity, density, or stress(normal or shear). For weak
shocks along thek100l direction, the strain rate as a function
of pressure has been found3 to closely follow a power law of
the formėt0=asP/r0c0

2dm, wherec0 is the longitudinal sound
speed at zero pressure,m<3.3, anda<1. From Eq.(14),
the maximum strain rate is

«̇max= nphmax< − np
Pzz

B0
. s15d

For normal pressures in the rangeP<B0, the strain rate is
uėu<1, which implies thatnp<1. We chose values ofnp
=0.5–1.0 for the simulations reported here.

The damping rate constantbp was chosen so that the
strain-rate variablehz is critically damped. An effective har-
monic frequency in the strain-rate equations of motion can
be obtained by expandingszz in Eq. (14) around its equilib-
rium preset valuePzz. The resulting equation of motion is
that of a damped harmonic oscillator with an effective fre-
quencyV given by

V2 = np
2C33 + C338 Pzz

B0
, s16d

where C338 is the pressure derivative ofC33. In the elastic
regime, and for compression alongk110l direction, C33

=156 andC338 =13.9. Employing these values in Eq.(16)
above and settingbp=2V gives the variation of the damping
rate with compression. Fornp=1, bp=5–15 for Pzz in the
range 40–300.

Figure 1 shows the time evolution of both the normal and
shear stress from damped and undamped simulations. In both
sets of runs, the system was shocked to a final normal pres-
sure Pzz=40. This target normal pressure is just below the
HEL of this systemsPzz

HEL=41d. Damping reduces the large
initial fluctuations present in the undamped simulations and
therefore helps determine more accurately critical values
near a phase transition. As depicted in Fig. 1, in the un-
damped system the elastic-plastic transition can occur at a
lower normal pressure than the HEL value due to large tran-
sient fluctuations, leading to errors in the determination of
the HEL transition pressure. Moreover, when critical damp-
ing is included in an NPzzHug simulation, the resulting time
series(as in Fig. 1) resembles much more closely the corre-
sponding NEMD shock-wave profile.

A. Work and heat flow

In the NPzzHug formalism, the internal energyE=K+F
(kinetic plus potential) changes dynamically with time, with
a rate of change that can be be related to the work done by
the piston in compressing the system to the desired pressure
s−Wd and the heat flow into the systemsQd:

Ė = Q̇ − Ẇ, s17d

where

Ė = o
i

N

mivi · v̇i − o
i

N

Fi · ṙ i . s18d

Using Eqs.(10) and (11), this can be expressed in terms of
the heat-flow and strain-rate variablesz andhz:

Ė = − 3NkBTnHz − szzVnphz. s19d

Assuming the final state is reached in timet, the change in
internal energy between initial and final statesEstd−Es0d
=DE=DQ−DW, can be expressed in terms of integrals of the
strain-rate and heat-flow variables over the simulation time:

DQ = − 3NkBnHE
0

t

dt8zst8dTst8d, s20d

DW= npE
0

t

dt8hzst8dszzst8dVst8d. s21d

Figure 2 shows a typical trajectory of normal stress as a
function of volume. The work done by the piston, given by
the integral in Eq.(21) above, is equal to the area under the
curve. From the Hugoniot conservation laws, the work done
by a steady shock in compressing the material from initial
statesP0,V0,E0d to final statesPzz,V,Ed is given by the area

FIG. 1. (Color online) Time evolution of normal stressszz and
shear stresst f2t=szz−ssxx+syyd /2g for a 25 200-atom LJ crystal
shocked along thek110l direction to a normal pressurePzz=40,
close to the Hugoniot elastic limitsHELd for this crystallographic
direction sPzz

HEL=41d. The molecular-dynamics equilibration to this
final state has been done for two cases: no dampingsbH=0=bpd
and with dampingsbH=30,bp=5d. In both cases, the rate param-
eters have been set tonH=30, np=1. The large initial fluctuations,
evident in the undamped case, lead to plastic deformation below the
actual HEL with an accompanying reduction in the shear stress. No
plastic deformation is observed in the damped case. The inset shows
the early time evolution of the normal stress for the damped case,
which reaches the target equilibrium value at significantly earlier
times than the undamped case.
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under the Rayleigh line, the straight line inPzz−V space
connecting the initial and final states[cf. Eq. (3)]: DE
= 1

2sPzz+P0dsV0−Vd. In the present formalism, this conserva-
tion relation is satisfied by construction. Figure 3 shows the
time evolution of the heat flowDQ and workDW for same
simulation whoseszz-V diagram is shown in Fig. 2. The
curves have been obtained by numerically integrating Eqs.
(20) and (21). As expected, most of the change in internal
energy(about 90%) is due to the work done by the strain-rate
(piston) variable, while the heat-flow variable ensures that
final shock Hugoniot temperature is achieved.

This exercise in thermodynamic bookkeeping demon-
strates why it is so important to include ergostatting in the
Hugoniostat formalisms, even while barostatting at a finite
rate. Not all the Hugoniot energy change is strictlyP-V
work, as it would appear from Eq.(3). If that were so, one
might be tempted to conclude that the process of shock com-
pression is isentropic. Figure 3 shows, however, that the tran-
sient heat flow in the shock front from hot shocked to cold
unshocked material is clearly nonzero, so that entropy in-
creases, and temperature in shock compression to a given
volume is higher than in the corresponding isentropic com-
pression.

IV. PHASE CHANGES: ELASTIC-PLASTIC TRANSITION

The plastic deformation that accompanies an elastic-
plastic transition, while not rigorously a structural phase
change, can similarly cause a two-wave structure to develop,
namely, an elastic precursor followed by a plastic wave. Fig-
ure 4 shows a generic Hugoniot. The region of the Hugoniot
between the HEL and overdrivensODd points, indicated by
the dashed curve, corresponds to shock states inaccessible
from the initial statesOd. Shock states in this region, such as
point A, are characterized by a two-wave structure: an elastic
wave that compresses the material up to the HEL and travels
with a velocityus

HEL, and a plastic wave that compresses the
material from the HEL toA and travels atus,us

HEL. Slopes
of the straightP-V lines (known as Rayleigh lines) are pro-
portional to the square of the wave speeds[see Eq.(5)]:
Pzz=P0+sus/V0d2sV0−Vd. The plastic wave speedus in-
creases with shock compression untilus=us

HEL. This condi-
tion defines the OD point. For compressions above the OD,
the plastic wave speed exceeds the elastic, resulting in single
plastic-wave states.

As an example of phase changes and identification of
transition boundaries, we have investigated the elastic-plastic
transition in the LJ system shocked along thek110l direction.

FIG. 2. (Color online) NPzzHug trajectory of normal stressszz

as a function of volumeV from a simulation in which the target
Pzz=160. Also shown is the Rayleigh line connecting the initial and
final states. The final state is in the overdriven region of the Hugo-
niot. The hump in the trajectory is caused by initial overshoot of the
HEL followed by plastic deformation.

FIG. 3. (Color online) Heat into the NPzzHug systemDQ and
work done by the piston −DW as a function of time, as obtained
from numerically integrating Eqs.(20) and (21), respectively. The
sum of the two terms is equal toDE= 1

2sP1+P0dsV0−V1d. Most of
this energy change(<90%) is due to the work done by the piston.

FIG. 4. (Color online) A generic Hugoniot. The dashed curve
between the Hugoniot elastic limitsHELd and the overdrivensODd
points is a region of the Hugoniot inaccessible from the initial state
O. It is characterized by an elastic wave traveling atus

HEL (O
-HEL line) and a plastic wave whose velocityus,us

HEL.
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A series of equilibrium Hugoniostat simulations were per-
formed for shock normal-pressure values in the rangePzz
=10–340. In the plastic regime, the system was allowed to
evolve in time for abouts100–200dt0. In the elastic regime,
however, the system reaches equilibrium very quickly, and
simulation times of less than 20t0 are sufficient. Time aver-
ages of all relevant thermodynamic quantities were per-
formed after allowing sufficient time for steady-state equili-
bration [usually within s20–50dt0]. Standard deviations of
the computed averaged values in temperature and density
were typically of the orderDT/Tø0.005 andDr /rø1.2
310−4 over the range of pressures reported here.

We find that along thek110l direction, Lennard-Jonesium
yields at compressions above,9% with a transition charac-
terized by a large volume collapseDV/V0 of 7.7%. The HEL
is easily identified by a drop in the computed shock velocity,
accompanied by plastic deformation for shock pressures
above the HEL. Due to plastic work, the plastic deformation
results in a jump in temperature, which can be easily moni-
tored as a function of time. A decrease in computed wave
speed with increase in pressure is caused by either a reduc-
tion in the compressibility of the material with increase in
density, or else regions of the Hugoniot that exhibit a nega-
tive curvature, i.e., concave downwardssd2P/dV2,0d, indi-
cating a phase change. For the shock wave to be stable, the
shock velocity must increase with pressure. Since the square
of the shock velocity is proportional to the slope of the Ray-
leigh line connecting initial and final states in thePzz-V
plane, those lines connecting the zero-pressure state with
states in the two-wave region of the Hugoniot, such as point
A in Fig. 4 (O-A dashed line), have lower slopes than the line
connecting the initial state with the HEL(O-HEL line). Once
the HEL is determined, the plastic states in the two-wave
region are obtained by recentering the initial state of the
system at the HEL rather than at the zero-pressure state.
Table I shows the pressure, volume, temperature, and energy
values at the HEL obtained from the simulations, as well as
their values at the initial(zero-pressure) state.

In order to check the accuracy of the equilibrium
molecular-dynamics results, we carried out multimillion-
atom NEMD simulations in the elastic-plastic region of the
Hugoniot. The simulations involved up to 49 million atoms
arranged in a perfect fcck110l rectangular crystal slab with
up to 10 000 atomic planes in the shock propagation direc-
tion (z direction) and periodic boundary conditions in the
transverse(x andy) directions. The procedure used to initiate
a shock wave of a given strength is detailed in Ref. 3: the

crystal is hurled towards an infinitely massive piston with a
velocity −up, which produces a shock wave that propagates
away from the piston with velocityus−up. Thermodynamic
quantities are obtained by spatial averaging over 3000
atomic planes, excluding the first 1000 planes near the pis-
ton.

Figure 5 shows computed shock velocities as a function
of Pzz, from Hugoniostat and NEMD simulations. In the elas-
tic regime, the shock velocity increases with normal pressure
up to the HEL. The first point beyond the HEL(filled circle)
does not correspond to a physical shock state, rather it has
been included to show how a decrease in shock velocity
computed from the zero-pressure state serves to identify the
elastic limit of the Hugoniot, which in this system is at
Pzz

HEL=41. For normal pressures larger thanPzz
HEL, but below

the OD regime, the shock states are characterized by a two-
wave structure: an elastic wave with velocityus

HEL and a
plastic wave that travels atus,us

HEL. The plastic states in the
two-wave region, indicated by open circles in Fig. 5, are
obtained by recentering the initial state to the HEL instead of
the zero-pressure state. The values of the thermodynamic
variables(temperature, pressure, density) that define the ini-
tial state recentered at the HEL are indicated in Table I. The
plastic-wave speed increases with normal pressure until it is
equal to the HEL elastic-wave speedus

HEL at the OD point.
For compressions beyond the overdriven point, the plastic-
wave speed is larger than the elastic, resulting in single
plastic-wave states obtained from the initial zero-pressure
statesOd. As seen in Fig. 5, the Hugoniostat results are in
very good agreement with the much more computationally
intensive NEMD simulations in the two-wave and over-
driven regimes.

Figure 6 shows the computed shock velocities as a func-
tion of particle velocity from NPzzHug and NEMD simula-
tions. The open circles indicate plastic-wave shock velocities

TABLE I. NPzzHug HEL (calculated) and initial (zero-
pressure), quantities for the LJ system shocked along thek110l
direction. These values, together with the bulk modulusB0, are
parameters used in Eqs.(3) and (13) to obtain the Hugoniot.

Initial state HEL

Energy/atom −6.3340 −4.9905

Volume/atom 0.6807 0.6142

Temperature 0.0100 0.1314

Pressure 0.0 41.0

FIG. 5. (Color online) NPzzHug and NEMD shock velocityus

(normalized by the zero-pressure longitudinal sound speedc0

=10.3) vs Pzz in fcc k110l-direction shocks. Label(0) indicates
system started from initial zero-pressure state, whilesHELd refers
to states obtained from re-centering at the HEL. The horizontal
dashed line has been drawn to help identification of the OD point,
where the plastic wave speed equalsus

HEL.
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in the two-wave region while the solid circles are single-
wave states, either elastic(below HEL) or plastic (above
OD). Even though they are not drawn, for each plastic wave
in the two-wave region, there exists an elastic wave that
travels atus

HEL.
It is common to describe theus-up Hugoniot by a linear

relation of the formus=c+sup, wherec is the zero-pressure
shock velocity and the slopes can be related to the pressure
derivative of the bulk modulus at zero pressure. A linear fit
of the Hugoniostat data above the OD givesc=7.98 ands
=2.03, shown in Fig. 6. In general, the high-pressureus-up
data should extrapolate to the zero-pressure bulk sound
speedcB, indicating that the high-pressure states are isotro-
pic. For this system,cB=sB0/r0d1/2=7.46, which is lower
than c. This might indicate a phase change, in which the
compressibility of the material has increased, or that the
high-pressure states exhibit residual shear stress and are not
completely isotropic, as is the case here.

A. Shock temperatures

Figure 7 shows NEMD and Hugoniostat shock tempera-
tures as a function ofPzz. A discontinuous jump in tempera-
ture occurs at the HEL and indicates a transition from elastic
to plastic states. Most of the NEMD simulations were done
in the two-wave region(between the HEL and OD in Fig. 5).
This region is the most sensitive to defect densities, since it
is closest to the HEL. In either version of the Hugoniostat—
constant-volume or constant-stress—shock temperatures in
the two-wave region depend on the value of the state vari-
ablessEHEL,VHEL,PHELd at the HEL. They are also strongly
dependent on system size, since too small a system will not
be able to capture the appropriate defect densities, which
increase with strain rate and shock strength.3 The good
agreement between NEMD and Hugoniostat temperatures in-
dicate that the system size used in both kinds of Hugoniostat

simulations is sufficient to capture correctly the defect struc-
tures, and also that the HEL has been correctly identified(see
Table I).

It should be noted that such good agreement for shock
temperatures from the Hugoniostat would not be possible,
especially for strong shocks, if the heat flow were turned off
snH;0d. Then, temperatures would be lower, more nearly
resembling those observed in isentropic compression.

B. Comparison with the constant-volume Hugoniostat

We also carried out simulations of Lennard-Jones fcc
k110l shock states using the constant-volume Hugoniostat13

sNVHugd for the same system size and initial conditions
used in the constant-stress method, settingnp=bp=b=0 in
the NPzzHug Eqs.(10)–(14). The normal-pressure versus
volume Hugoniot is shown in Fig. 8. As already noted, the
elastic-plastic transition is characterized by a volume col-
lapseDV/V0 of 7.7%. The region betweenVHEL and sVHEL

−DVd is an unstable region with low compressibility. Since
the volume cannot change in the NVHug formalism, tem-
peratures and pressures computed in the unstable region will
exhibit anomalously low values, as shown in Fig. 8. A series
of NVHug simulations is therefore necessary in order to cor-
rectly assess the transition volume change, and to determine
the corresponding stable regions of the Hugoniot by finding
the compression at which the normal pressure equals the
HEL value. In constrast, the NPzzHug formalism yields only
stable states with increasing normal pressure.

One major difference between the two methods is in the
way the deformation is applied to the system. In the
constant-volume method, the uniaxial deformation is applied
homogeneously and instantaneously. This creates unwanted
initial transients in both temperature and stress(normal
and/or shear) that increase with compression. In constrast,
the constant-stress version presented here produces no tran-
sients in either temperature or pressure, and by design, the
imposed strain rate is approximately equal to that produced
by a shock wave of the strength being simulated.

FIG. 6. (Color online) NPzzHug and NEMD shock velocitiesus

as a function of particle velocityup normalized to the longitudinal
sound speed at zero pressuresc0=10.3d. Also shown is a linearus

−up fit using the Hugoniostat data points above the OD:us=7.98
+2.03up.

FIG. 7. (Color online) Comparison between NEMD and
NPzzHug shock temperature as a function of normalPzz.
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The effect of these large initial transients on the damaged
state in the NVHug method can be significant, in particular at
large compressions. Figure 9 shows cross-sectional views
(about 6k110l planes thick) of the atomic configuration from
NVHug, NPzzHug, and NEMD simulations with about the
same uniaxial compressions26%d. The structure produced
by NVHug [Fig. 9(a)] is not liquid, but rather, amorphous.
The amorphization is produced by the very large initial shear
stress imposed on the system under instantaneous compres-
sion. It should be noted that at this compression, the material
is very far from the melt line. In constrast, no such amor-
phization is seen in the NPzzHug method at any of the simu-
lated normal pressures reported here. Furthermore, the struc-
tural deformation and defects densities produced in the
NPzzHug simulations[Fig. 9(b)], are in close agreement
with those produced in the NEMD simulations[Fig. 9(c)].

In summary, the structure resulting from an instantaneous
compression in NVHug might show marked differences with
those produced by the passage of a shock wave and its finite
strain rate. The constant-stress Hugoniostat incorporates
strain-rate dependence naturally, and it is therefore better
able to reproduce the damaged states produced in shock
waves.

V. CONCLUSIONS

The strain rates inherent in shock waves, while large, are
finite. The constant-stress Hugoniostat formulation intro-
duced here takes this into account. A strain-rate(barostat)
variable acts as a piston, compressing the computational box
in the shock direction at a finite rate like that at the shock
front, while a heat flow(ergostat) variable relaxes the inter-
nal energy to the final shocked-state value. By incorporating

critical damping in the barostat and ergostat variables, large
overshoots in stress and temperature(which can artificially
induce plasticity or phase changes) are eliminated, and the
time profiles of pressure and temperature resemble more

FIG. 8. (Color online) NPzzHug, NVHug, and NEMD normal
pressurePzz vs volume of the LJ system shocked along thek110l
direction. NVHug simulations(triangles) in the unstable region of
the Hugoniot give equilibrium temperatures and normal pressures
below those at the HEL. Several simulations are required in order to
identify the stable region beyond the HEL, wherePzzù Pzz

HEL. In
constrast, NPzzHug gives only stable phases along the Hugoniot
curve. Both methods agree well with NEMD simulations.

FIG. 9. Cross-sectional profiless25325r0
2d of atomic configu-

rations at 26% compression from three types of simulations:(a)
NVHug (Ref. 13), (b) NPzzHug, and(c) NEMD. The structure
shown in(a) is not melted, but amorphous. The instantaneous com-
pression in NVHug produces very large initial shear stress values
and results in amorphization on a short time scale(within 2t0). In
constrast, no such amorphization is seen in NPzzHug(b) or NEMD
(c) simulations over the entire range of normal pressures reported
here(i.e., below shock-induced melting). In addition, the observed
structural deformation in the NPzzHug simulations closely re-
semble those produced in large-scale NEMD simulations.
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closely those produced in NEMD simulations. As a result,
the plastic damage produced by the NPzzHug method is in-
distinguishable from full-scale NEMD simulations, as is the
final temperature at the shocked(Hugoniot) state, provided
the system size is sufficiently large to correctly capture de-
fect densities.

Ergostating has been shown to be necessary in order to
correctly reproduce shock temperatures. Shock waves are in-
trinsically a nonhomogeneous, nonlinear phenomena. It is
not possible, within an equilibrium molecular-dynamics for-
mulation, to exactly reproduce the stress and density gradi-
ents present at the shock front. Hence, it is necessary to
supplement the work done by the barostat with the right heat
flow, controlled by the ergostat.

In summary, the NPzzHug method overcomes the limita-
tions of other methods, without increasing the computational
effort. We have demonstrated here that, together with
NEMD, NPzzHug is a robust method for mapping out the
shock response of condensed matter, even for the case of
multiple waves.
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