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Constant-stress Hugoniostat method for following the dynamical evolution of shocked matter
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We present an alternative equilibrium molecular dynamics method—the uniaxial constant-stress
Hugoniostat—for following the dynamical evolution of condensed matter subjected to shock waves. It is a
natural extension of the recently developed uniaxial constant-volume Hugorjidstitlet et al, Phys. Rev. E
63, 016121(2001)]. Integral feedback is employed to reach the Hugo(fiotl) state of the shock process by
controlling both the normal component of the stress tensor and internal energy. The finite strain rate imposed
on the system is closely related to that inherent in the front of a shock wave. The method can easily identify
phase transitions along the Hugoniot shock states, even those that exhibit multiple wave structures. As an
example of the method, we have simulated the Hugoniot of a Lennard-Jones crystal shocked aj@h6 the
direction. The results agree well with multi-million-atom nonequilibrium molecular-dynamics simulations.
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[. INTRODUCTION loop nucleation and growth at the shock frrthis finding
is also in agreement with NEMD simulations of shock propa-
The study of material behavior under shock-loading congation in fc¢100) crystals®1%11 However, NEMD simula-
ditions has been actively pursued for almost a century. In théions are currently limited to time scales of tens of picosec-
1970s, the first computer experiments of shock waves in solbnds, and probing longer times is important in order to make
ids demonstrated that nonequilibrium molecular dynamicsx more direct comparison with current experiments.
(NEMD) simulations can be a powerful tool to study the  Several dynamical approaches have emerged recently as
dynamics of shock propagation in solids and liquidssrom  alternatives to traditional NEMD, aimed at extracting dy-
those early days, the field of NEMD simulations of shocknamical and structural information, using smaller system
phenomena has advanced to the point where the study &fzes to allow the study of longer-time processes. One such
shock-induced  plasticity, phase transitions, and approach is the “ramjet” or “moving window?2 This is a
detonations in single crystals is now possible, employing NEMD method where a region around the shock front is
systems as large as several hundred million atoms. Despifellowed in time by moving the computational cell at the
this enormous progress, NEMD simulations of shock waveshock-wave speed. As long as the shock front is steady, the
remain a computationally intensive undertaking, requiringmethod allows accurate determination of shock profiles with
ever larger systems in order to probe longer time scales, or aauch smaller system sizes than traditional NEMD. By em-
in the case of polycrystalline materials of even submicromloying time averaging, it can provide accurate information
size grains, systems larger than what is currently possible iof nonequilibrium thermodynamic quantities as a function of
order to achieve steady shock profifes. distance from the shock front. The method, by construction,
Recent advances in experimental techniques, especially itannot be used to follow multiwave structures, such as those
the areas of laser-shock processih@P) andin situ time-  produced in mixed-phase regions of the Hugoniot.
resolved x-ray diffraction and photoelectron spectroscopy, A recently developed equilibrium molecular-dynamics
have dramatically increased the spatial and temporal resolunethod aims at reproducing the final state of the compressed
tion of shock-loaded experiments, allowing the study of lat-material after the shock wave has passed through. In
tice structures and material response on subnanosecond tirttés method, termed the “uniaxial Hugoniostét the system
scales. At the same time, advances in massively parallés instantaneously, uniaxially, and homogeneously com-
computer simulations have allowed the investigation of plapressed to the volume of the final state, and then it is relaxed
nar shocks at length and times scales that are approaching the final internal energy on the shock Hugoniot by time-
those in current computational techniques. As a result, simureversible integral feedback. Because the method focuses on
lations and experiments are converging, in particular in thahe final state, rather than the full propagation of the shock
area of single-crystal plasticity and deformation. For in-wave, longer times in the relaxation process can be followed
stance, experiments on LiF single crystals have revealedsing more accurate semiempirical &b initio descriptions
marked differences in the yield stress as a function of shocbkf the interatomic interactions. A comparison with NEMD
direction! This orientational dependence is also observed irsimulations of Lennard-Jones single crystals shocked along
large-scale NEMD simulations of shock propagation inthe (100 direction has shown that the Hugoniostat repro-
defect-free fcc crystaf.Recent laser-driven shock experi- duces not only the shock Hugoniot over a wide range of
ments of C@100 single crystals indicate that the observeddensities, but also the defect structures and final temperatures
dislocation generation and defect structure is consistent witwhich are unavailable from experiments on optically opaque

0163-1829/2004/70)/0141039)/$22.50 70014103-1 ©2004 The American Physical Society



RAVELO, HOLIAN, GERMANN, AND LOMDAHL PHYSICAL REVIEW B 70, 014103(200%

material3.® In addition, its implementation irab initioc  The internal energy relaxes to the final shocked-gtatego-

molecular-dynamics methods is straightforward and has reniot) energy, and the change from initial to final state is the
cently been used to obtain the shock Hugoniot of tin up towork done by the piston plus the heat flow into the system.
200 GP&a* In this paper, we will employ the moniker \We will refer to this version of the constant-stress Hugo-
“NVHug,” when referring to this uniaxial constant-volume njostat by the moniker “NPzzHug,” since in this approach

(or constant-strainHugoniostat, since the number of par- the final P,, becomes the constraint variable rather than the
ticles N and the periodic, uniaxially compressed computa-,qjume.

tional cell of volumeV are both held constant, while the In the next section we outline the formalism and equa-

interr:jal erg)ergky i? “r(]argost?]tt((ajd”hto its final Hhugoniot. Valtr‘]‘?'htions of motion and review some of the salient features of the
A drawback of the method, however, is the way in which o qe) 'Ag 3 demonstration of the method, we present results
Bf shock propagation along t{&10 direction of a Lennard-

the system is instantaneously compressed, the initial tem: tal ing direct | le NEMD with th
perature and stresses can become unrealistically large, in p Ones crystal, comparing diréct farge-scaie wi €
equilibrium NPzzHug method.

ticular at very high compressioigstraing. These initial large
transients can lead to differences between the shock states

produced by the NVHug Hugoniostat and those produced via Il. FORMALISM
full NEMD simulations, as will be demonstrated below.

The passage of a shock wave imposes a finite strain rate For one-dimensional steady flow, the conservation of
on the system. However, in the NVHug formalism the ap_mass, momentum, and energy across a planar shock front

plied strain rate is effectively infinite. One way to circumvent CoNnecting the initia{unshockegiand final(shocked states

the anomalously large transients resulting from the Hugo!€@ds to the Hugoniot relations:

niostat’s instantaneous uniaxial compression is to apply the mass: pols = p(Us = Uy), (1)
deformation over a finite amount of time. This can be accom-
plished by imposing the strain at a constant rate, which
brings the system more gradually to the final compressed
volume. At that point, the same NVHug feedback dynamics
can be employed. The magnitude of the strain rate can be energy: EH:EO+E(PZZ+ Po(Vo—V). (3)
related to that imposed at the shock front. 2

15 ilibri
Recently Reec_iet al=> have propos_ed an_equilibrium . The subscript 0 in the above equations refers to those quan-
molecular-dynamics method for simulating shocked states iRties in the unshocked initial state,, is the normal compo-

which the length of the computational box in the shock di'nent of the stress tensor in the direction of the shock wave
rection is modified dynamically, rather than instantaneously . o _ ; .
as is done in the NVHug formulation. Instead of the final (chosen to be in the direction, p=1/V s the mass per unit

strain or pressure, they choose the shock velocity as the Covplume,us s the shock velocity, and, is the particle veloc-
. P » tNEY CNOOS ! ocity ﬂy. From Egs.(1) and(2) above, one obtains the following
straint parameter in determining the final equilibrium volume

i 17
along the Hugoniot. However, like the Hugoniostat, therelanons.

momentum: P,,= Py + poUgUp, (2

method exhibits large initial transients in stress as well as in u vV

volume. In addition, it displays long-lived volume oscilla- GE =1 VA =€ (4)
tions that are qualitatively unlike the corresponding NEMD s 0

shock-wave profilé§ and that also make an accurate deter-

mination of phase changes along the Hugoniot more difficult. U.= Pz~ POVO (5)

In this paper we improve upon the original Hugoniostat S Vo-V 7
equations of motion in order to take into account the finite
strain-rate dependence inherent in the shock front and to Up=V(P,,= Po) (Vo= V). (6)

remedy some of the shortcomings discussed above. In

this new formalism, the system is uniaxially and homoge-For a steady shock wave, all quantities in the final state
neously compressed—not instantaneously, but rathefE,PzzV,Us,Up) in Egs. (1)~6) are well defined and
dynamically—to a final preset normal-stress value. This iginiquely identify the corresponding shocked state. The curve
accomplished by introducing into the Hugoniostat equationglescribing the locus of final states, plotted as a function of
of motion an extra dynamical, integral-feedbatiarostaty ~ any pair of these quantities, defines the Hugoniot with re-
variable, namely the strain rate, which acts like a pistonspect to those variables.

compressing the system uniaxially and homogeneously to a In the NVHug method of Ref. 13, the traditional
final normal stresgor normal pressupeP,, in the direction ~ molecular-dynamics equations of motion of a systeniNof
(2) of the shock. In this approach, the stresses and tempergarticles with coordinates and momentg; are augmented
ture evolve dynamically and naturally. The large initial tran- Py the addition of one extra degree of freedom, namely, the
sients present in the NVHug method are eliminated by introdimensionless heat-flow variablethat is used to relax the
ducing damping rates in the equations of motion of both thénstantaneous internal energyof the system to the Hugo-
strain-rate(barostat and heat-flow(ergostaf variables. As a  niot energy given in Eq(3): Ey(t)=Eg+35[P,{t)+Pl(Vo
result, the time evolution of the stress tensor and temperatureV). The equilibration employs integral feedback analogous
resembles very closely that generated in NEMD simulationsto the constant-temperature molecular-dynamics method of
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Nosé?8 but cast in the simplified formulation of HoovEtWe tively. Damping has been incorporated in order to eliminate

write the equations of motion as follow8: unrealistically large initial transients in temperature and
stress, to make the time evolution of the stress tensor and
Fi= %, 7) temperature more closely resemble that produced by the pas-
m; sage of a shock wave, and to reduce thereby the errors in
determining phase transition boundaries.
Pui = Fai = "ulPui» (8) Equations(10)—<14) form a closed set of coupled differ-

ential equations that can easily be integrated. Starting from
_ ” an initial unshocked state at press®g(usually zerg, tem-
{= W[E - Ex(0)]. (9)  peratureT,, volumeV,, and internal energg,, the system is
070 dynamically and uniaxially compressed to the desired normal
The subscriptr refers to Cartesian componeriisy,z). The  pressureP,, within a natural relaxation time that is inversely
energy difference in the dynamical evolution of the dimen-proportional to the barostat frequeney. Ideally, v, should
sionless heat-flow variablé [Eq. (9)] has been normalized be chosen so as to reproduce as closely as possible the strain
by the bulk modulus at zero pressuBg times the zero- rate produced by the passage of an NEMD shock wave
pressure volum¥,, since the variation of the internal energy through the medium. Even though the long-time average of
with compression depends strongly on the compressibility ofhe€ normal stress-, is independent of the choice of, and
the material. The heat-flow coupling rafeequency v, isa By the density of defects in the plastic deformation depends
constant that provides the time scale for the heat flow. Besomewhat on the strain rate imposed on the system. The final
cause/ couples only to the momenta of the particles, thetemperature, in turn, depends upon the plastic work done on
internal energy is in fact relaxed by adjusting the kineticthe crystal. Selecting appropriate valuesigfand 8, helps,
temperature of the system, assuring that the final temperatui@ practice, produce better agreement between the final states

is correct for the shocked state characterized by the finaand shock temperatures obtained using NPzzHug and those
volumeV. resulting from traditional NEMD simulations. Computational

We have modified these equations by introducing an extrgletails and other features inherent in the model are discussed
degree of freedom, a “piston” or dimensionless strain-ratdn the next section with the help of a numerical example.
variable n,, whose role is to equilibrate the component of the
stress tensor in the shock propagation direction to the desired . NUMERICAL EXAMPLE
value (P,,). The implementation of this uniaxial “barostat”
into the NVHug equations of motiof¥)—<9) closely follows
the isobaric-isothermal molecular-dynamics prescription o
Hoover! with the modifications introduced by Melchionna

We have chosen to study, as an example of the NPzzHug
Pwethod, the Hugoniot of a Lennard-Jones crystal shocked
along the(110 direction. This crystallographic direction is
known to have a large value of the normal stress at the Hugo-

.22
etal: niot elastic limit(HEL).2 All simulations reported here were
. Pai performed on systems containing 25 200 atoms interacting
Fai = H + Vp7al o (10 via a Lennard-Jones LJ 6-12 spline potential as described in
Ref. 23. The computational cell is approximately a cube of
Dt = Fui = (0770 + 740 Pis (11) size 18< 25X 28 unit cells, with the, y andz ax_es _oriented
along(001), (110), and(110), respectively. Periodic bound-
L =pml (12) ary cq_nditions were emp_loyed in all three di_rections. All
a”= VpTatas quantities are expressed in Lennard-Jones units: masses are
given in units of the atomic mass, lengths in units of the
o PH e _ bond distance,, and energies in units of the bond eneegy
¢ BOVO[E En(V] = Bu, (13 as a result, time is in units @§=rq(m/e,)Y/?, temperature in
units of gg/ kg (Kg is Boltzmann’s constajtand pressure in
.Y units of solrg. The equations of motion are numerically in-
Na= BO(U““_ Paa) = BpTas (14) tegrated using Starmer finite differenc@sap-frog with a
time stepdt=(0.002—0.00%,.
wherer,;=2(p,iPg/Mi+15F,)/V is the internal stress ten-  The initial unshocked state is taken to be a perfect fcc

sor and nov\EH(t)=E0+%[azz(t)+Po][Vo—V(t)]. For simplic-  crystal atP,=0 andT,=0.01, wherepy=1.469,E,=-6.334,

ity, the equations have been written in a compact formandB,=81.8. We employ the same criterion as in Ref. 13 for
where it is understood thaj,=0= 7, for a=x,y. There is  selecting an optimal value for the heat-flow ratg namely
only one strain-rate variablg, that dynamically modifies the that it should be close to either the Einstein frequency or
length of the computational box in the shock direction mean natural vibrational frequency of the atoms. This fre-
[Eg. (12)] and adjusts the instantaneous normal componerjuency increases with compression. Typical valuesior

of the stress tensar,(t) to the preset valu®,, [Eq. (14)].  employed in the simulations reported here are in the range
The heat-flow(ergostax Eq. (13) and strain-ratgbarostat  (30—60t;*. The damping ratg,, was chosen so that the heat
Eqg. (14) include coupling-rate parametefBequencies v,  flow variable{ in Eq. (13) is critically damped, which gives
and v, as well as damping coefficien3; and g, respec-  By=2vy.
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The barostat frequency, is selected by equating the 1S0—————T1 T ]
maximum strain rate imposed by the piston to the strain rate - - °zz(ﬁp:*)> O]
inherent in a shock wave of the same strength, which, for 125 & T fg{g Ao 17
shock-wave thickness, is given by e=uy/\. The shock - "l ‘;u(ﬁv;s) 30 1]
thickness can be obtained from NMED profiles of particle «~ 100 ] L I P 20 J4
velocity, density, or stresgnormal or shegr For weak }, Lo ', ol ]
shocks along thé100 direction, the strain rate as a function ~ 75 | ; e N/ T
72} [ .
of pressure has been fouti closely follow a power law of E ! . iy C” ey
the formety=a(P/pocd)™, wherec, is the longitudinal sound & 50[ e 2 Iy ey 0 _ 3
speed a.t zero pre.ssurmz_B.S, anda=1. From Eq.(14), r ,~'——;4—————i'————‘—‘——-/-'-----\-\-'--f-t ______ =3
the maximum strain rate is sl oy g T ]
E I'. K \\./ o . ]
. PZZ oot v v Telet . RN ] ML et MRt R0 o
Emax=V ~ - p,—=, 15 0 2 4 6 8 10
max— YpTmax P By (15 . (to)
For normal pressures in the range=B,, the strain rate is FIG. 1. (Color online Time evolution of normal stress,, and
|e=1, which implies thaty,~1. We chose values of,  shear stress [27=0,,~ (oy+0y,)/2] for a 25 200-atom LJ crystal
=0.5-1.0 for the simulations reported here. shocked along th€110) direction to a normal pressure,,=40,

The damping rate constar, was chosen so that the close to the Hugoniot elastic imHEL) for this crystallographic
strain-rate variabley, is critically damped. An effective har- direction (P{"=41). The molecular-dynamics equilibration to this
monic frequency in the strain-rate equations of motion carfinal state has been done for two cases: no damfig=0=4,)
be obtained by expanding,, in Eq. (14) around its equilib- and with damping8,=30,8,=5). In both cases, the rate param-
rium preset value?,, The resulting equation of motion is eters have been set ig=30, v,=1. The large initial fluctuations,

that of a damped harmonic oscillator with an effective fre-evident in the undamped case, lead to plastic deformation below the
quencyQ given by actual HEL with an accompanying reduction in the shear stress. No

plastic deformation is observed in the damped case. The inset shows

Coat CLP the early time evolution of the normal stress for the damped case,

Q2= ,2 238 = 2z (16)  Which reaches the target equilibrium value at significantly earlier

P Bg times than the undamped case.

where Cj; is the pressure derivative @3 In the elastic

regime, and for compression alond10 direction, Cs;

=156 andCj;;=13.9. Employing these values in EAL6)  where

above and setting,=2() gives the variation of the damping \ N

rate with compression. For,=1, 8,=5-15 forP,, in the . . .

range 40-300. E= E mVi - Vi = E Fi-ri.
Figure 1 shows the time evolution of both the normal and ' '

shear stress from damped and undamped simulations. In bothsing Eqs.(10) and(11), this can be expressed in terms of

sets of runs, the system was shocked to a final normal preshe heat-flow and strain-rate variablesind 7,:

sure P,,=40. This target normal pressure is just below the .

HEL of this system(P}®-=41). Damping reduces the large E == 3NKgTvpl = o3V 07, (19

initial fluctuations present in the undamped simulations and

therefore helps determine more accurately critical Va|ueé°\ssum|ng the final state is reached in timehe change in

near a phase transition. As depicted in Fig. 1, in the unjnternal energy between initial and final stateé)-E(0)

damped system the elastic-plastic transition can occur at aZ2E=AQ~AW, can be expressed in terms of integrals of the

lower normal pressure than the HEL value due to large tranStrain-rate and heat-flow variables over the simulation time:

sient fluctuations, leading to errors in the determination of t

the HEL transition pressure. Moreover, when critical damp- AQ=- 3NkaHJ dt’ Z(t")T(t"), (20)

ing is included in an NPzzHug simulation, the resulting time 0

series(as in Fig. 3 resembles much more closely the corre-

sponding NEMD shock-wave profile. t
AW= 1,

E=Q-W, (17)

(18)

dt’ n(t") o Lt)V(L"). (21
0

A. Work and heat flow . . .
Figure 2 shows a typical trajectory of normal stress as a

In the NPzzHug formalism, the internal enerxK+®  function of volume. The work done by the piston, given by
(kinetic plus potentiglchanges dynamically with time, with the integral in Eq(21) above, is equal to the area under the
a rate of change that can be be related to the work done bgurve. From the Hugoniot conservation laws, the work done
the piston in compressing the system to the desired pressuby a steady shock in compressing the material from initial
(-W) and the heat flow into the syste(®@): state(Py, Vy, Ep) to final state(P,,,V,E) is given by the area
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VIV, FIG. 4. (Color onling A generic Hugoniot. The dashed curve

between the Hugoniot elastic limiHEL) and the overdrivetOD)
FIG. 2. (Color online NPzzHug trajectory of normal stress, points is a region of the Hugoniot inaccessible from the initial state
as a function of volumé/ from a simulation in which the target O. It is characterized by an elastic wave traveling LélFL (e)
P,,=160. Also shown is the Rayleigh line connecting the initial and-HEL line) and a plastic wave whose velocity< u-c",
final states. The final state is in the overdriven region of the Hugo-

niot. The hump in the t_rajectory is_caused by initial overshoot of the  This exercise in thermodynamic bookkeeping demon-
HEL followed by plastic deformation. strates why it is so important to include ergostatting in the
Hugoniostat formalisms, even while barostatting at a finite
under the Rayleigh line, the straight line P,,~V space rate. Not all the Hugoniot energy change is stricByV
connecting the initial and final statggf. Eq. (3)]: AE  work, as it would appear from Eq3). If that were so, one
:%(PZZ+ Po)(Vo—V). In the present formalism, this conserva- might be tempted to conclude that the process of shock com-
tion relation is satisfied by construction. Figure 3 shows thepression is isentropic. Figure 3 shows, however, that the tran-
time evolution of the heat flotAQ and workAW for same  sient heat flow in the shock front from hot shocked to cold
simulation whoseo,V diagram is shown in Fig. 2. The unshocked material is clearly nonzero, so that entropy in-
curves have been obtained by numerically integrating Eqscreases, and temperature in shock compression to a given
(20) and (21). As expected, most of the change in internalvolume is higher than in the corresponding isentropic com-
energy(about 90%is due to the work done by the strain-rate pression.
(piston variable, while the heat-flow variable ensures that

final shock Hugoniot temperature is achieved.
IV. PHASE CHANGES: ELASTIC-PLASTIC TRANSITION

20 ' : ' : The plastic deformation that accompanies an elastic-
plastic transition, while not rigorously a structural phase
change, can similarly cause a two-wave structure to develop,
------------- namely, an elastic precursor followed by a plastic wave. Fig-
___________________________ ure 4 shows a generic Hugoniot. The region of the Hugoniot
between the HEL and overdrivé®D) points, indicated by
the dashed curve, corresponds to shock states inaccessible
from the initial statg O). Shock states in this region, such as
point A, are characterized by a two-wave structure: an elastic
wave that compresses the material up to the HEL and travels
with a velocityu!'®", and a plastic wave that compresses the
material from the HEL toA and travels atis<uf=". Slopes
| of the straightP-V lines (known as Rayleigh lingsare pro-
----------------------------------- - portional to the square of the wave speddse Eq.(5)]:
00—--""' - T R P,,=Po+(us/Vo)2(Vo-V). The plastic wave speedg in-
Time (t,) creases with shock compression untiEut'=". This condi-
tion defines the OD point. For compressions above the OD,
FIG. 3. (Color online Heat into the NPzzHug systeQ and  the plastic wave speed exceeds the elastic, resulting in single
work done by the piston AW as a function of time, as obtained plastic-wave states.
from numerically integrating Eq$20) and (21), respectively. The As an example of phase changes and identification of
sum of the two terms is equal thE=3(Py+Pg)(Vo-V,). Most of  transition boundaries, we have investigated the elastic-plastic
this energy changé~90%) is due to the work done by the piston. transition in the LJ system shocked along ¢h&0) direction.

PPV, V2

&
: ; |
W
L
=2
!

Work/atom (g,)
S
|
|
2
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TABLE |. NPzzHug HEL (calculateg and initial (zero- 2 A U A
pressurg quantities for the LJ system shocked along thé0 C ra"" ]
direction. These values, together with the bulk moduBs are 175F H‘]EL (iD ﬁ/ ]
parameters used in Eq®) and(13) to obtain the Hugoniot. L O :d,@_‘ ___________

n 15k s pﬁp ]
Initial state HEL /'/ : /iﬁ{ ]
(=]
Energy/atom -6.3340 -4.9905 <, 1250 o ¢ ° ]
Volume/atom 0.6807 0.6142 =y & ]
Temperature 0.0100 0.1314 i i -
Pressure 0.0 41.0 : ? o Hugoniastat (0)
0.751 ,I &-© Hugoniostat (HEL)| |
A series of equilibrium Hugoniostat simulations were per- é' NEMD ]
formed for shock normal—pr_essure values in the raRgge Rt ot e ottt oy
=10-340. In the plastic regime, the system was allowed to Pzz(s(/foa)

evolve in time for abouf100—200t,. In the elastic regime,
hpwevgr, th'e system reaches equilibriu_m_ very _quickly, and FIG. 5. (Color onling NPzzHug and NEMD shock velocityg
simulation times of less than gfare _SUffICIen'F._T|me aver- (normalized by the zero-pressure longitudinal sound spegd
ages of all relevgnt thel_’rr_]odyr?amm quantities were PE€r=10.3 vs P,, in fcc (110-direction shocks. Label0) indicates
formed after allowing sufficient time for steady-state equili- gystem started from initial zero-pressure state, WHHEL) refers
bration [usually within (20-50t,]. Standard deviations of {5 states obtained from re-centering at the HEL. The horizontal
the computed averaged values in temperature and densi@iashed line has been drawn to help identification of the OD point,
were typically of the ordeAT/T<0.005 andAp/p<1.2  where the plastic wave speed equal§".

X 1074 over the range of pressures reported here.

We find that along th€110 direction, Lennard-Jonesium crystal is hurled towards an infinitely massive piston with a
yields at compressions aboved% with a transition charac- velocity -u,, which produces a shock wave that propagates
terized by a large volume collapae//V, of 7.7%. The HEL  away from the piston with velocitys—u,. Thermodynamic
is easily identified by a drop in the computed shock velocity,quantities are obtained by spatial averaging over 3000
accompanied by plastic deformation for shock pressureatomic planes, excluding the first 1000 planes near the pis-
above the HEL. Due to plastic work, the plastic deformationton.
results in a jump in temperature, which can be easily moni- Figure 5 shows computed shock velocities as a function
tored as a function of time. A decrease in computed wavef P,, from Hugoniostat and NEMD simulations. In the elas-
speed with increase in pressure is caused by either a redutie regime, the shock velocity increases with normal pressure
tion in the compressibility of the material with increase in up to the HEL. The first point beyond the HEfilled circle)
density, or else regions of the Hugoniot that exhibit a negadoes not correspond to a physical shock state, rather it has
tive curvature, i.e., concave downwar@éP/d\V?<0), indi-  been included to show how a decrease in shock velocity
cating a phase change. For the shock wave to be stable, tkemputed from the zero-pressure state serves to identify the
shock velocity must increase with pressure. Since the squasdastic limit of the Hugoniot, which in this system is at
of the shock velocity is proportional to the slope of the Ray-PH--=41. For normal pressures larger tha§-, but below
leigh line connecting initial and final states in tlig,V  the OD regime, the shock states are characterized by a two-
plane, those lines connecting the zero-pressure state witliave structure: an elastic wave with velociui'z’EL and a
states in the two-wave region of the Hugoniot, such as poinplastic wave that travels at < ug'E". The plastic states in the
Ain Fig. 4(O-A dashed ling have lower slopes than the line two-wave region, indicated by open circles in Fig. 5, are
connecting the initial state with the HEIO-HEL line). Once  obtained by recentering the initial state to the HEL instead of
the HEL is determined, the plastic states in the two-wavehe zero-pressure state. The values of the thermodynamic
region are obtained by recentering the initial state of thevariables(temperature, pressure, densitigat define the ini-
system at the HEL rather than at the zero-pressure stat@al state recentered at the HEL are indicated in Table I. The
Table | shows the pressure, volume, temperature, and energyastic-wave speed increases with normal pressure until it is
values at the HEL obtained from the simulations, as well agqual to the HEL elastic-wave speaf®" at the OD point.
their values at the initialzero-pressupestate. For compressions beyond the overdriven point, the plastic-

In order to check the accuracy of the equilibrium wave speed is larger than the elastic, resulting in single
molecular-dynamics results, we carried out multimillion- plastic-wave states obtained from the initial zero-pressure
atom NEMD simulations in the elastic-plastic region of the state(O). As seen in Fig. 5, the Hugoniostat results are in
Hugoniot. The simulations involved up to 49 million atoms very good agreement with the much more computationally
arranged in a perfect fc(110) rectangular crystal slab with intensive NEMD simulations in the two-wave and over-
up to 10 000 atomic planes in the shock propagation direceriven regimes.
tion (z direction and periodic boundary conditions in the  Figure 6 shows the computed shock velocities as a func-
transverséx andy) directions. The procedure used to initiate tion of particle velocity from NPzzHug and NEMD simula-

a shock wave of a given strength is detailed in Ref. 3: theions. The open circles indicate plastic-wave shock velocities
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FIG. 6. (Color onling NPzzHug and NEMD shock velocitieg FIG. 7. (Color onling Comparison between NEMD and

as a function of particle velocity, normalized to the longitudinal NPzzHug shock temperature as a function of norfal
sound speed at zero pressicg=10.3. Also shown is a lineautg

—u, fit using the Hugoniostat data points above the @b:7.98

+2°03 simulations is sufficient to capture correctly the defect struc-
.03y,

tures, and also that the HEL has been correctly identiBed

. ) i o , Table ).

in the two-wave region while the solid circles are single- |t should be noted that such good agreement for shock
wave states, either elastibelow HEL) or plastic (above  emperatures from the Hugoniostat would not be possible,

OD). Even though they are not drawn, for each plastic wavggpecially for strong shocks, if the heat flow were turned off
in the two-wave region, there exists an elastic wave tha

HEL EVHEO). Then, temperatures would be lower, more nearly
travels atug™. ) ) . resembling those observed in isentropic compression.
It is common to describe thes-u, Hugoniot by a linear
relation of the formus=c+sy,, wherec is the zero-pressure _ _ _
shock velocity and the slopcan be related to the pressure ~ B. Comparison with the constant-volume Hugoniostat

derivative of the bulk modulus at zero pressure. A linear fit \We also carried out simulations of Lennard-Jones fcc
of the Hugoniostat data above the OD giwes7.98 ands  (110) shock states using the constant-volume Hugonibstat
=2.03, shown in Fig. 6. In general, the high-pressugel,  (NvHug) for the same system size and initial conditions
data should extrapolate to the zero-pressure bulk soun@seq in the constant-stress method, setiigg8,= =0 in
s_peech, |n_d|cat|ng that the high-pressure states are isotrog,q NPzzHug Eqs(10)—(14). The normal-pressure versus
pic. For this systemgg=(Bo/ po)!/?=7.46, which is lower  y0lume Hugoniot is shown in Fig. 8. As already noted, the
than c. This might indicate a phase change, in which theg|ssiic-plastic transition is characterized by a volume col-

compressibility of the material has increased, or that the?apseAV/Vo of 7.7%. The region betweetz, and (Viyg,
high-pressure states exhibit residual shear stress and are NOAv) is an unstable region with low compressibility. Since

completely isotropic, as is the case here. the volume cannot change in the NVHug formalism, tem-
peratures and pressures computed in the unstable region will
exhibit anomalously low values, as shown in Fig. 8. A series
of NVHug simulations is therefore necessary in order to cor-
Figure 7 shows NEMD and Hugoniostat shock temperarectly assess the transition volume change, and to determine
tures as a function dP,,. A discontinuous jump in tempera- the corresponding stable regions of the Hugoniot by finding
ture occurs at the HEL and indicates a transition from elastithe compression at which the normal pressure equals the
to plastic states. Most of the NEMD simulations were doneHEL value. In constrast, the NPzzHug formalism yields only
in the two-wave regiortbetween the HEL and OD in Fig)5  stable states with increasing normal pressure.
This region is the most sensitive to defect densities, since it One major difference between the two methods is in the
is closest to the HEL. In either version of the Hugoniostat—way the deformation is applied to the system. In the
constant-volume or constant-stress—shock temperatures gonstant-volume method, the uniaxial deformation is applied
the two-wave region depend on the value of the state varihomogeneously and instantaneously. This creates unwanted
ables(EngL, Ve, Pre) at the HEL. They are also strongly initial transients in both temperature and stréssrmal
dependent on system size, since too small a system will n@nd/or shegrthat increase with compression. In constrast,
be able to capture the appropriate defect densities, whicthe constant-stress version presented here produces no tran-
increase with strain rate and shock strenyffihe good sients in either temperature or pressure, and by design, the
agreement between NEMD and Hugoniostat temperatures inmposed strain rate is approximately equal to that produced
dicate that the system size used in both kinds of Hugoniostdily a shock wave of the strength being simulated.

A. Shock temperatures
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constrast, NPzzHug gives only stable phases along the Hugoniot 000000030000 eep 0 t0odINR000209020258000 9508
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sion. It should be noted that at this compression, the material A 3308528 R 000000e002050%0000000 %
is very far from the melt line. In constrast, no such amor- = 9802088 oo E e e e 0es000000000
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phization is seen in the NPzzHug method at any of the simu- Y %2600 AN s§g§g§g,’g§3§§§3§;§§°§g§§g
@5000 20! 09090090950 4
lated normal pressures reported here. Furthermore, the struc- :-ngg 5% ,‘_.,:.gn:,::..ngggaga.,g,gg:.gé:,o
- e . oD 9@ Ui 2@, °° Q
tural deformation and defects densities produced in the sooee :ggggzgggj :§:g:§§§§£§c°§g::°
NPzzHug simulationgFig. 9b)], are in close agreement s8¢ R ““;-5“§g§g§y"5°2§§°2§
with those produced in the NEMD simulatiofisig. 9(c)]. 0°0o88BE oo LBRRE R
In summary, the structure resulting from an instantaneous <001>

compression in NVHug might show marked differences with _ , 2 : ,
those produced by the passage of a shock wave and its finite FIG. 9. Crooss'secnona.l profila@5>x 25rg) of atomic Con.ﬂg”'_
strain rate. The constant-stress Hugoniostat incorporat [gtions at 2f6/° CorEpreSS'on from three types of hs Imulatieas:
strain-rate dependence naturally, and it is therefore bettesr[;eHug (Ref. 13, (b) NPzzHug, and(c) NEMD. The structure

ble t d the d d stat duced in sh own in(a) is not melted, but amorphous. The instantaneous com-
able 1o reproduce the damaged states produced In SNOf.ssion in NVHug produces very large initial shear stress values

waves. and results in amorphization on a short time scalghin 2tg). In

constrast, no such amorphization is seen in NPzziygr NEMD

(c) simulations over the entire range of normal pressures reported

here(i.e., below shock-induced meltingin addition, the observed
The strain rates inherent in shock waves, while large, arstructural deformation in the NPzzHug simulations closely re-

finite. The constant-stress Hugoniostat formulation intro-semble those produced in large-scale NEMD simulations.

duced here takes this into account. A strain-rddarostat

variable acts as a piston, compressing the computational baxitical damping in the barostat and ergostat variables, large

in the shock direction at a finite rate like that at the shockovershoots in stress and temperatasbich can artificially

front, while a heat flow(ergostat variable relaxes the inter- induce plasticity or phase changeme eliminated, and the

nal energy to the final shocked-state value. By incorporatingime profiles of pressure and temperature resemble more

V. CONCLUSIONS
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closely those produced in NEMD simulations. As a result, In summary, the NPzzHug method overcomes the limita-
the plastic damage produced by the NPzzHug method is inions of other methods, without increasing the computational
distinguishable from full-scale NEMD simulations, as is theeﬁort_ We have demonstrated here that, together with
final temperature at the shockédugonio) state, provided NEMD, NPzzHug is a robust method for mapping out the
the system size is sufficiently large to correctly capture degpqck response of condensed matter, even for the case of

fect densities. -
Ergostating has been shown to be necessary in order trguIUpIe waves.

correctly reproduce shock temperatures. Shock waves are in-

trinsically a nonhomogeneous, nonlinear phenomena. It is

not pc_)ssible, within an equilibrium moIecuIar-dynamics for—' ACKNOWLEDGMENTS
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