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This paper presents a generalized regular singular-point(GRSP) model developed to account for dielectric
spectra of the wide range of materials having a frequency response containing more than two power-law
regions. In fact, the model is valid for an unlimited number of such regions, and is shown to provide a good
description of the entire dielectric spectrum of tablets made of microcrystalline cellulose, including two relax-
ation peaks and power-law responses at low and high frequencies. This finding puts the GRSP model in a
unique position, since no model existing in the literature is able to describe the totality of features present in the
spectrum, without resorting to a superposition of more elementary responses.
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Different polarization mechanisms contribute to the di-
electric permittivity of a material, each giving rise to disper-
sion in a certain frequency range, and contributing a constant
to the permittivity at lower frequencies.1,2 For high frequen-
cies, electronic and ionic polarization result in resonance
absorption3,4 at more or less well-defined resonance frequen-
cies, typically in the ultraviolet and infrared ranges,
respectively.1,5 Whereas this high-frequency response nowa-
days is well understood(see, e.g., Ref. 6, and references
therein), the response for lower frequencies remains more
elusive.7 A century ago, Curie and von Schweidler8,9 re-
ported that the polarization current initially decayed with
time as a fractional power-law. Much later Jonsher10 identi-
fied a second power-law at low frequencies, i.e., long times.
Since the current response function, according to linear re-
sponse theory,11,12 is proportional to the current autocorrela-
tion function, this observation appears to be related to the
so-called long-time tails of the autocorrelation function.13 It
is now a well-established experimental fact that the low-
frequency response of most solid materials exhibits universal
features,14 being characterized by certain power-laws, both at
the high (typically ,MHz) and low frequency
s,mHz–Hzd ends of the spectrum, i.e., short and long
times.2,15

Dissado and Hill(DH) have developed a general cluster
model of the dielectric response.16,17 A macroscopic sample
is assumed to contain a large number of microscopic sub-
units, and a “cluster” is defined as a spatially limited region
containing many microscopic subunits over which a micro-
scopic structure is maintained. The DH theory considers two
coupled processes each described by a first-order equation,
which together give rise to a second-order differential equa-
tion for the dielectric response function.18 In a similar vein, it
has been shown that a combination of two fractal processes
yields the generalized Davidson–Cole expression,19 which
also predicts a second power-law at low frequencies. Re-
cently a model has been proposed,20 which is based on the
mathematical concept of regular-singular points21,22 (RSPs)
of an ordinary differential equation in time for the current
response function. It is well-known21,22that a RSP of such an
equation gives rise to a power-law behavior in the neighbor-
hood of the singular point.

Many materials exhibit more complicated spectra, which
contain more than two power-law regions. Since no theory
today is able to account for these “nonideal” cases, the some-
what unsatisfactory solution usually is to use different ex-
pressions in different frequency regions, or to use a superpo-
sition of expressions. Often the Cole-Cole,23

Davidson-Cole,24 or Havriliak-Negami25 expressions are
used for this purpose. Moreover, recent broad-range dielec-
tric measurements on disordered materials have revealed that
an additional power-law usually exists for frequencies in the
GHz to THz region;26 thus even the “ideal” spectra most
likely are characterized by more than two power-law regions.
For these reasons, there is an obvious need to extend existing
descriptions of the dielectric response.

Contrary to the other aforementioned models, the RSP
model allows an immediate generalization that includes these
more complicated cases. This generalization is presented
here, and comparisons are made with experimental data for
tablets made of microcrystalline cellulose(MCC), whose
spectra contain a rather large number of separate power-law
regions.27

In the time domain, the delayed response of a dielectric
material to a time-varying electric field may be described in
terms of the dielectric response functionfstd or, equivalently,
the current response functiongstd (t is the time). The current
response functiongstd is essentially the time derivative of
fstd or, conversely,20

fstd =
1

«0
E

0

t

gst8ddt8 =
1

«0
Ssdc −E

t

`

gst8ddt8D , s1d

«0 being the permittivity of free space. The second equality
in Eq. (1) follows from the fact that the integral of the cur-
rent response function over all times equals the direct-current
(dc) conductivity sdc, according to the Kubo formula.11,12

For a time-harmonic applied electric field, the response is
most conveniently described in terms of the complex relative
dielectric permittivity«svd=«8svd−i«9svd as a function of
angular frequencyv. The dielectric permittivity is calculated
according to2,11,12
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«svd − 1 = lim
d→0+

E
0

`

fstde−siv+ddtdt, s2d

where the free-space contribution has been subtracted from
the permittivity, since this contribution is considered to be
instantaneous and, hence, is not described by the response
function gstd.

Whereas the above discussion was completely general, let
us now restrict our attention to the specific response func-
tions that may be obtained by using the RSP concept. We
will primarily work with the current response functiongstd,
since this response function[contrary tofstd] exhibits power-
law behaviors for both short and long times, regardless of the
value of the dc conductivity.

As linear response theory shows,11,12 the current response
function is proportional to the current autocorrelation func-
tion evaluated at equilibrium. The time-dependence of this
autocorrelation function is determined by that of the current
operator, which is known to satisfy the Heisenberg equation
of motion in the quantum case or the corresponding equation
formulated in terms of Poisson brackets in the classical
regime,11,12 both of which are first order in time. From the
above considerations it follows thatgstd fulfills a first order
homogenous differential equation in time, which we write as

dgstd
dt

+ Qstdgstd = 0, s3d

where Qstd is an, as yet, unspecified function of time. We
note that de la Fuenteet al.28 have shown that the memory
effect in the dielectric response can be described by an equa-
tion of the form of Eq.(3), and that the functionQstd in fact
contains the same information as the memory function intro-
duced in nonequilibrium statistical mechanics to describe
non-Markovian processes(see, e.g., Ref. 29).

Since our objective is to describe the power-law processes
that occur at relatively low frequencies(i.e., large times) we
now restrict our attention to timestùj, wherej represents a
time sufficiently large that resonance absorption is unimpor-
tant. We replace the functionQstd in Eq. (3) by another func-
tion Q1std, and require thatQ1std and Qstd be identical for
times tùj. The response functiongstd is analogously re-
placed byg1std, which is identical togstd for times tùj.

Two finite singularities were used in Ref. 20 to obtain a
unified description of two coupled power-laws. Now we in-
stead usen finite singularities in order to couplen power-
laws snù2d. If Eq. (3) hasn finite singularities located att
=−tk sk=1, . . . ,nd, the functionQ1std may be written21

Q1std = − o
k=1

n
mk

t + tk
, s4d

where mk sk=1, . . . ,nd is the exponent of the RSPt=−tk.
Furthermore, the “point at infinity” is a RSP if21

m` = − o
k=1

n

mk Þ 0. s5d

Since experiments show that a power-law exists for long
times, we expectm` to be nonzero, and the “point at infinity”
to be a RSP. Inserting Eq.(4) in Eq. (3), and solving the
resulting equation by the method of integrating factor, we
obtain

g1std = − A
«0

t2
2 p

k=1

n S t

t2
+

tk
t2
Dmk

, s6d

where the normalization constant(which is negative) has
been written −A«0/ t2

2 for dimensional reasons. When deriv-
ing Eq.(6) we have assumed that the finite singularities fulfil
0ø t1, t2, ¯ , tn; hencet2 has been used to nondimen-
sionalize the time variable. It is evident from Eq.(6) that the
times tk may be identified with the crossover times between
the different power-laws. In order to describe the power-laws
themselves, it is more convenient to introduce a second set of
exponentsgk sk=1, . . . ,nd, defined by

o
løk

ml = − sgk + 1d. s7d

As a result, the current response function decays asgstd
~ t−sgk+1d between the appropriate crossover times.

Whereas Eq.(6), thus, provides the functional form of
gstd for timestùj, we have no knowledge of the behavior of
gstd for smaller times. When evaluating the dielectric re-
sponse function, this ignorance amounts to the introduction
of an arbitrary integration constant, which, in fact, may be
identified as the dc conductivity, as Eq.(1) shows. As ex-
plained in Ref. 20, the integration in Eq.(2) yields, provided
v!1/j, another constant, which may be identified as«`

−1, «` being the high-frequency permittivity. In fact, pro-
vided v!1/j, we find by combining Eqs.(1) and(2) that20

xsvd = −
1

«0
E

0

`

e−ivtSE
t

`

g1st8ddt8Ddt, s8d

where

xsvd ; «svd − «` −
sdc

iv«0
s9d

is the dielectric susceptibility.
The short and long time behaviors ofg1std are determined

by the values of the short and long time exponentsa;g1
andb;gn. We note thata andb are the exponents seen in
the conductivity spectra at high and low frequencies, respec-
tively. For Jonscher’s “universal” response, the exponents
are constrained by the inequalities 0,a,1 and
0,b,2.2,15 For 0,b,1, low-frequency dispersion(LFD)
is obtained, while for 1,b,2 a relaxation peak is de-
scribed. Even thought1, strictly speaking, always should be
positive, to ensure that the current response function is finite
for all times, we may fora,1 let t1→0 in order to simplify
the calculations, as was done in Ref. 20. This procedure
changes the value ofg1std for very small times only, for
which other processes than those considered here, neverthe-
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less, dominate. If, however, we use the model to describe the
superlinear power-law in the GHz to THz region, discovered
by Lunkenheimer and Loidl,26 we will find that 1,a,2. In
order to ensure that the integrals in Eq.(8) converge, we then
need a cutoff at short times, which means that we must de-
mand thatt1.0.

For n=2, the transform in Eq.(8) may be calculated ana-
lytically, and the result expressed in terms of a confluent
hypergeometric function.20,30 For n.2 this is not possible,
and one has to resort to numerical methods. In this work, the
following strategy was employed: First a functiong2std was
introduced, with known analytic transform, which had
the same asymptotic behavior asg1std for short and long
times. The functiong2std was constructed as a combination
of a number of power-type functions. Then the difference
Dgstd;g1std−g2std, for which the numerical transform
was needed, was everywhere finite and exhibited an
asymptotic decay at least as fast ast−2 for large times.
By using the analyticity ofDgstd, the oscillatory integral
along the positive realt axis was transformed into a virtually
nonoscillatory integral along the negative imaginaryt
axis. This integral was finally transformed into an integral
with finite limits, and decomposed into real and imaginary
parts. Thus two real, virtually nonoscillatory integrals
with well-behaved integrands over finite intervals resulted,
which were evaluated by using theQUADPACK FORTRAN

routineDGAG.
The MCC tablets investigated in this study were com-

pressed from MCC powder(Avicel PH 101, FMC, Ireland)
in a single punch tablet machine(Korch, EK0, Germany)
equipped with circular punches having a diameter of
11.3 mm. The maximum compression pressure used was
150 MPa, and the powder mass was adjusted so as to
produce tablets of,2.0 mm height. Prior to compression
the powder was stored for at least one week over a saturated
salt solution of NaI corresponding to a relative humidity
(RH) of 37% or a moisture content of,4 wt.% in
the powder.27 After compression the tablets were again
stored over a NaI solution for approximately one month to
ensure equilibrium.

Two different sets of dielectric spectroscopy measure-
ments were performed; one for circular frequencies between

10−4 and 106 Hz and the other between 106 and 109 Hz. The
low-frequency dielectric measurements used a Solartron
1260 Frequency Response Analyzer together with a Novo-
control Broadband Dielectric Converter, while a Novocool
Quatro Cryosystem with an Agilent 4291B was used for the
high-frequency measurements. In both measurements the
amplitude of the applied voltage was 1.00 V. The electrodes
and the tablet were situated in an enclosed and electrically
screened encasement containing the NaI solution, thus ensur-
ing a constant RH of 37% during the measurements.
The measurement procedure is described more thoroughly
in Ref. 27.

Figure 1 displays the experimental dielectric permittivity
for MCC tablets compacted at 150 MPa, measured over
more than 12 orders of magnitude in frequency. This figure is
analogous to Fig. 1 of Ref. 27, which displays the permittiv-
ity for tablets compacted at 50 MPa. It is evident that the
dielectric permittivity exhibits a rather complex behavior. At
low frequencies, both the real and imaginary parts appear to
obey a power-law, which is indicative of LFD.17 At higher
frequencies, two relaxation peaks, centered at,5 and
,108 Hz are clearly seen. Moreover, an additional power-
low region in between the two relaxation peaks may be dis-
cerned.

The low-frequency relaxation process appears as a
consequence of the presence of water in the material,31

but its molecular origin is not entirely clear. It has been
suggested that this process takes place in a micro-gel-like
water-cellulose mixed phase and that it represents a
collective but local motion of water-linked chain segments.32

The high-frequency relaxation peak is, on the other hand,
known to be related to the segmental motion of the polymer
chain.32 This peak may be observed not only for cellulose
but for other polysaccharides as well, and is only weakly
influenced by the particular substructure of the polymer
chain.32

In order to describe this spectrum quantitatively by using
the GRSP model we, thus, need 6 exponentsgk (one for each
power-law, and two for each relaxation peak). Consequently,
we use Eq.(6), with n=6 finite singularities, located att
=−tk. Since the short time exponenta is smaller than unity,
we keept1 fixed at zero. At both ends of the spectrum, the
real and imaginary parts appear to follow power-laws, with
the same low- and high-frequency exponents. The experi-
mental data, thus, indicate that the contributions from«` and
sdc are negligible. These parameters were, consequently,
kept fixed at zero. The lines in Fig. 1 show the best least-

TABLE I. Parameters used to calculate the dielectric permittiv-
ity displayed in Fig. 1

k tkssd gks−d

1 0.00 0.926

2 1.41310−7 1.69

3 1.47310−6 0.690

4 0.0109 0.00

5 0.945 3.47

6 4.78 0.0242

FIG. 1. Comparison between the experimental and calculated
dielectric permittivity for MCC tablets.
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squares fit of the calculated permittivity to the displayed ex-
perimental data. The least-squares fitting was performed on a
logarithmic scale for both the real and imaginary parts at the
same time, and employed theMINPACK FORTRAN routineLM-

DIF1. The parameters obtained are given in Table I. It is evi-
dent from the figure that the GRSP expression is able to
describe the experimental spectrum well. Even though the
comparison presented here is restricted to one material, we
conclude that the GRSP model provides an interesting and
potentially very useful tool for the interpretation of dielectric
data in general. If the RSP concept is correct, it also has

interesting theoretical implications, since the reason why the
ordinary differential equation for the current response func-
tion [Eq. (3)] is characterized by a number of RSPs remains
an open question.
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