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Generalized regular singular-point description of low-frequency dielectric responses
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This paper presents a generalized regular singular-gGRISP model developed to account for dielectric
spectra of the wide range of materials having a frequency response containing more than two power-law
regions. In fact, the model is valid for an unlimited number of such regions, and is shown to provide a good
description of the entire dielectric spectrum of tablets made of microcrystalline cellulose, including two relax-
ation peaks and power-law responses at low and high frequencies. This finding puts the GRSP model in a
unique position, since no model existing in the literature is able to describe the totality of features present in the
spectrum, without resorting to a superposition of more elementary responses.
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Different polarization mechanisms contribute to the di- Many materials exhibit more complicated spectra, which
electric permittivity of a material, each giving rise to disper- contain more than two power-law regions. Since no theory
sion in a certain frequency range, and contributing a constanbday is able to account for these “nonideal” cases, the some-
to the permittivity at lower frequenciés’ For high frequen-  what unsatisfactory solution usually is to use different ex-
cies, electronic and ionic polarization result in resonanc%ressions in different frequency regions' or to use a superpo-
absorptiod* at more or less well-defined resonance frequensition  of expressions. Often the  Cole-Céfe,
cies, typically in the ultraviolet and infrared ranges, payvigson-Colé* or Havriliak-Neganmf® expressions are
respectively:> Whereas this high-frequency response nowayseq for this purpose. Moreover, recent broad-range dielec-
days is well understoodsee, e.g., Ref. 6, and references yjc measurements on disordered materials have revealed that
”;e”?"?; the response for Iovyer frequenmesh femd?éns MOT&n additional power-law usually exists for frequencies in the
O el 00 U o e Te i GH (0 THz regiore thus even the “deal specta rost
It?me as a fractior?al power-law. Much later gonéﬁdﬁi/enti- likely are characterized by more th_an two power-law regio_ng
fied a second power-law at low frequencies, i.e., long times'.:or these reasons, there IS an obvious need to extend existing

descriptions of the dielectric response.

Since the current response function, according to linear re- h h f ; Is. th
sponse theor{t12is proportional to the current autocorrela-  Contrary to the other aforementioned models, the RSP

tion function, this observation appears to be related to th&0del allows animmediate generalization that includes these

so-called long-time tails of the autocorrelation functidit ~ more complicated cases. This generalization is presented

is now a well-established experimental fact that the low-here, and comparisons are made with experimental data for

frequency response of most solid materials exhibits universghblets made of microcrystalline cellulogCC), whose

featuresi® being characterized by certain power-laws, both atpectra contain a rather large number of separate power-law

the high (typically ~MHz) and low frequency regions?’

(~mHz—H2 ends of the spectrum, i.e., short and long In the time domain, the delayed response of a dielectric

times?15 material to a time-varying electric field may be described in
Dissado and Hil(DH) have developed a general cluster terms of the dielectric response functiti) or, equivalently,

model of the dielectric respond®l” A macroscopic sample the current response functigt) (t is the time. The current

is assumed to contain a large number of microscopic subresponse functiomg(t) is essentially the time derivative of

units, and a “cluster” is defined as a spatially limited regionf(t) or, conversely®

containing many microscopic subunits over which a micro-

scopic structure is maintained. The DH theory considers two 1t 1 %

coupled processes each described by a first-order equation, f(t) = —J g(t")dt’ = —(adc—f g(t’)dt’), (D

which together give rise to a second-order differential equa- €0Jo €0 t

tion for the dielectric response functiéfin a similar vein, it

has been shown that a combination of two fractal processes being the permittivity of free space. The second equality

yields the generalized Davidson—Cole expressfowhich  in Eq. (1) follows from the fact that the integral of the cur-

also predicts a second power-law at low frequencies. Rerent response function over all times equals the direct-current

cently a model has been propog8dyhich is based on the (dc) conductivity oy, according to the Kubo formufe:'2

mathematical concept of regular-singular pcth#8 (RSP$  For a time-harmonic applied electric field, the response is

of an ordinary differential equation in time for the current most conveniently described in terms of the complex relative

response function. It is well-knowh22that a RSP of such an dielectric permittivity e(w)=¢'(w)—ie"(w) as a function of

equation gives rise to a power-law behavior in the neighborangular frequencw. The dielectric permittivity is calculated

hood of the singular point. according té1112
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© n
e(w) - 1= lim f f()e o dtgt, 2) m,=-S m#0. 5)
0—0+J g k=1

o Since experiments show that a power-law exists for long
where the free-space contribution has been subtracted froffimes, we expeain. to be nonzero, and the “point at infinity”
the permittivity, since this contribution is considered to beto be a RSP. Inserting Eq4) in Eq. (3), and solving the
instantaneous and, hence, is not described by the responggulting equation by the method of integrating factor, we

function g(t). obtain

Whereas the above discussion was completely general, let N
us now restrict our attention to the specific response func- t)= _A@H t + ty M 6
tions that may be obtained by using the RSP concept. We 9:(0) = e\t )

will primarily work with the current response functiagit),
since this response functigoontrary tof(t)] exhibits power- Where the normalization constahich is negativg has
law behaviors for both short and long times, regardless of thé€en written Aso/t5 for dimensional reasons. When deriv-
value of the dc conductivity. ing Eqg.(6) we have assumed that the finite singularities fulfil
As linear response theory shosi2the current response 0=t;<t,<<---<t,; hencet, has been used to nondimen-
function is proportional to the current autocorrelation func-sionalize the time variable. It is evident from K@) that the
tion evaluated at equilibrium. The time-dependence of thidimest, may be identified with the crossover times between
autocorrelation function is determined by that of the currenthe different power-laws. In order to describe the power-laws
Operator, which is known to Satisfy the Heisenberg equatioﬁhemselves, it is more convenient to introduce a second set of
of motion in the quantum case or the corresponding equatiofiXponentsy, (k=1, ... n), defined by
formulated in terms of Poisson brackets in the classical S m=-(y+1) @
regime!12 poth of which are first order in time. From the = Ve -
above considerations it follows thgtt) fulfills a first order
homogenous differential equation in time, which we write asAs a result, the current response function decayg(&s
«t-*D) petween the appropriate crossover times.
Whereas Eq(6), thus, provides the functional form of
dg(t) +Q(t)gt) =0 3) g(t) for timest= &, we have no knowledge of the behavior of
dt ' g(t) for smaller times. When evaluating the dielectric re-
sponse function, this ignorance amounts to the introduction
of an arbitrary integration constant, which, in fact, may be
identified as the dc conductivity, as E@.) shows. As ex-
g!ained in Ref. 20, the integration in E@) yields, provided

where Q(t) is an, as yet, unspecified function of time. We
note that de la Fuentet al?® have shown that the memory

effect in the dielectric response can be described by an equ ; ; I

. ) . w<<1/¢, another constant, which may be identified &as
tion OT the form of Eq.(S), apd that the functioR(t) |n'fac.t -1, &, being the high-frequency permittivity. In fact, pro-
contains the same information as the memory function intro-

. < : e 0
duced in nonequilibrium statistical mechanics to describewdedw<l/§’ we find by combining Eqs(1) and(2) that

non-Markovian processésee, e.g., Ref. 29 N R s
Since our objective is to describe the power-law processes xw)=- ; 0 e t(Jt Gu(t")dt )dt’ (®)
that occur at relatively low frequencigise., large timeswe
now restrict our attention to times= £, whereé represents a where
time sufficiently large that resonance absorption is unimpor- o
tant. We replace the functio@(t) in Eq. (3) by another func- Y(@) = e(w) — g, - —2 (9)
tion Q,(t), and require thaQ,(t) and Q(t) be identical for lweg
times t=¢. The response functiog(t) is analogously re- s the dielectric susceptibility.
placed byg,(t), which is identical tog(t) for timest=¢. The short and long time behaviors gji(t) are determined

Two finite singularities were used in Ref. 20 to obtain aby the values of the short and long time exponedmts y;
unified description of two coupled power-laws. Now we in- and 8= ,,. We note thatx and 8 are the exponents seen in
stead usen finite singularities in order to couple power-  the conductivity spectra at high and low frequencies, respec-
laws (n=2). If Eq. (3) hasn finite singularities located dt  tively. For Jonscher’s “universal” response, the exponents
=—t, (k=1, ... n), the functionQ,(t) may be writted! are constrained by the inequalities <@ <1 and
0<B<22%For 0<B<1, low-frequency dispersiofLFD)
is obtained, while for KX 8<2 a relaxation peak is de-
scribed. Even though, strictly speaking, always should be
positive, to ensure that the current response function is finite
for all times, we may fore<<1 lett;— 0 in order to simplify
the calculations, as was done in Ref. 20. This procedure
where m, (k=1, ... n) is the exponent of the RSE=-,. changes the value df;(t) for very small times only, for
Furthermore, the “point at infinity” is a RSP which other processes than those considered here, neverthe-

n

Qi =->

et

(4)
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10* ppe . : TABLE |. Parameters used to calculate the dielectric permittiv-
\:m ity displayed in Fig. 1

0 % ° & exp. ]
) k (o) %)
é 1 0.00 0.926
g, 2 1.41¢ 107 1.69
£ 3 1.47x10° 0.690
ol 4 0.0109 0.00
a 5 0.945 3.47

6 4.78 0.0242
—1 | L . | | | . L | | L L
10 107 10" 100 100 100 107 10

10*and 16 Hz and the other between &and 16 Hz. The
low-frequency dielectric measurements used a Solartron
FIG. 1. Comparison between the experimental and calculated260 Frequency Response Analyzer together with a Novo-
dielectric permittivity for MCC tablets. control Broadband Dielectric Converter, while a Novocool
Quatro Cryosystem with an Agilent 4291B was used for the
less, dominate. If, however, we use the model to describe thkigh-frequency measurements. In both measurements the
superlinear power-law in the GHz to THz region, discoveredamplitude of the applied voltage was 1.00 V. The electrodes
by Lunkenheimer and Loid we will find that 1<«<2.In  and the tablet were situated in an enclosed and electrically
order to ensure that the integrals in E8) converge, we then screened encasement containing the Nal solution, thus ensur-
need a cutoff at short times, which means that we must dqng a constant RH of 37% during the measurements.

mand thatt; >0. ) The measurement procedure is described more thoroughly
Forn=2, the transform in Eq(8) may be calculated ana- i, ref. 27.
lytically, and the result expressed in terms of a confluent Eigyre 1 displays the experimental dielectric permittivity
hypergeometric functiof3° For n>2 this is not possible, for MCC tablets compacted at 150 MPa, measured over
and one has to resort to numerical methods. In this work, thgore than 12 orders of magnitude in frequency. This figure is
following strategy was employed: First a functigp(t) was  apalogous to Fig. 1 of Ref. 27, which displays the permittiv-
introduced, with known analytic transform, which had jty for tablets compacted at 50 MPa. It is evident that the
the same asymptotic behavior gg(t) for short and long gjelectric permittivity exhibits a rather complex behavior. At
times. The functiorg,(t) was constructed as a combination |ow frequencies, both the real and imaginary parts appear to
of a number of power-type functions. Then the differenceobey a power-law, which is indicative of LFH.At higher
Ag(t)=g,()—gy(t), for which the numerical transform frequencies, two relaxation peaks, centered~&f and
was needed, was everywhere finite and exhibited anr-10° Hz are clearly seen. Moreover, an additional power-
asymptotic decay at least as fast &i$ for large times. low region in between the two relaxation peaks may be dis-
By using the analyticity ofAg(t), the oscillatory integral cerned.
along the positive redlaxis was transformed into a virtually The low-frequency relaxation process appears as a
nonoscillatory integral along the negative imaginary consequence of the presence of water in the matrial,
axis. This integral was finally transformed into an integralbut its molecular origin is not entirely clear. It has been
with finite limits, and decomposed into real and imaginarysuggested that this process takes place in a micro-gel-like
parts. Thus two real, virtually nonoscillatory integrals water-cellulose mixed phase and that it represents a
with well-behaved integrands over finite intervals resultedcollective but local motion of water-linked chain segmefts.
which were evaluated by using th@UADPACK FORTRAN  The high-frequency relaxation peak is, on the other hand,
routine DGAG. known to be related to the segmental motion of the polymer
The MCC tablets investigated in this study were com-chain3? This peak may be observed not only for cellulose
pressed from MCC powddAvicel PH 101, FMC, Ireland  but for other polysaccharides as well, and is only weakly
in a single punch tablet machin&orch, EKO, Germany influenced by the particular substructure of the polymer
equipped with circular punches having a diameter ofchain3?
11.3 mm. The maximum compression pressure used was In order to describe this spectrum quantitatively by using
150 MPa, and the powder mass was adjusted so as the GRSP model we, thus, need 6 exponegt®ne for each
produce tablets of~2.0 mm height. Prior to compression power-law, and two for each relaxation pgaRonsequently,
the powder was stored for at least one week over a saturatege use Eq.(6), with n=6 finite singularities, located &t
salt solution of Nal corresponding to a relative humidity =-t,. Since the short time exponeatis smaller than unity,
(RH) of 37% or a moisture content of~4 wt.% in  we keept, fixed at zero. At both ends of the spectrum, the
the powdef’ After compression the tablets were againreal and imaginary parts appear to follow power-laws, with
stored over a Nal solution for approximately one month tothe same low- and high-frequency exponents. The experi-
ensure equilibrium. mental data, thus, indicate that the contributions feonand
Two different sets of dielectric spectroscopy measurevy. are negligible. These parameters were, consequently,
ments were performed; one for circular frequencies betweekept fixed at zero. The lines in Fig. 1 show the best least-

Angular frequency [Hz]
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squares fit of the calculated permittivity to the displayed ex-interesting theoretical implications, since the reason why the
perimental data. The least-squares fitting was performed on@rdinary differential equation for the current response func-
logarithmic scale for both the real and imaginary parts at theion [Eq. (3)] is characterized by a number of RSPs remains
same time, and employed tM&NPACK FORTRAN routineLM- an open question.

DIF1. The parameters obtained are given in Table I. It is evi-

dent from the figure that the GRSP expression is able to One of the authoréM.S)) is a Royal Swedish Academy of
describe the experimental spectrum well. Even though th&ciencegKVA ) Research Fellow and would like to thank the
comparison presented here is restricted to one material, whdcademy for their support. The Swedish Foundation for
conclude that the GRSP model provides an interesting an8trategic ReseardlsSH is also acknowledged for their sup-
potentially very useful tool for the interpretation of dielectric port to our multidisciplinary research in materials physics
data in general. If the RSP concept is correct, it also haand pharmaceutics.
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