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The Invar phenomenon(very small thermal expansion in some iron alloys or compounds) is usually ex-
plained by the thermally induced transitions between different spin states of Fe, having different atomic
volumes. We consider these processes taking into account elastic interaction between Fe atoms in different spin
states. Inclusion of these interactions explains why thermal expansion may be close to zero in a broad tem-
perature interval and thus gives rise to the Invar effect.
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Invar behavior—the absence of the dependence of the lat-
tice parameter on temperature in Fe-Ni alloys in certain con-
centration range, was discovered in 1897,1 and similar be-
havior was found later in certain other systems, e.g., in
ordered and disordered Fe3 Pt and Fe3 Pd.2 The most plau-
sible explanation of this phenomenon was suggested by
Weiss,3 who postulated the existence of two states of iron,
close in energy: the ground state with the high spin, or the
high-moment(HM) state with large specific volume, and the
low-lying excited state with low spin or low moment(LM ),
having smaller atomic radius or specific volume. According
to this picture, thermal excitation of the LM low-volume
states causes lattice contraction, which counteracts and may
cancel the usual positive thermal expansion. Although there
is yet no definite proof of the existence of such two states in
Invar alloys, many experimental facts are naturally explained
in this picture.2,4–6The existence of almost degenerate states
with different moments and different specific volumes is also
corroborated by the detailed band-structure calculations.7,8

Recent neutron scattering studies9 have confirmed the im-
portance of magnetoelastic coupling for the Invar effect—
apparently not the usual coupling present in magnetic mate-
rials with a given spin of the ions, but of the coupling with
multiplet excitations, e.g., HM-LM excitation in iron. Al-
though many particular details are still not clear, all these
results confirm the general validity of the Weiss two-state
model.

Of course the simple single-site picture proposed by
Weiss, though very appealing, it is not sufficient for many
purposes and has some issues to be resolved; see below.
There are many attempts to go beyond of the model and to
include intersite correlations. In most of these works(see,
e.g., Refs. 7–9) magnetic correlations between different sites
have been added. In the recent paper even noncollinear mag-
netic configurations have been proposed.7 Although an ex-
perimental search for noncollinear configurations was not
very successful,10 they still might be important and can not
be ruled out. In general, however, there is still no consensus
as to the detailed nature of magnetic correlations and their
role in the Invar effect.

In the present paper we want to explore the other physical
factor—elastic interactions between different sites. These in-
teractions, which are always present in real systems, can also
modify the behaviour of the system and, as we will show,

can “repair” some of the defects of a single-site two-state
Weiss model.3 Inclusion of these effects can significantly im-
prove the description of Invar systems, even if we ignore
intersite magnetic correlations, which, in general, could be
also included.

The simple explanation of the Invar effect in the two-state
model in the original form3 is very transparent and appeal-
ing. However, one problem in this explanation becomes im-
mediately apparent. The conventional thermal expansion is
usually more or less linear in temperature

asTd = a0 + a0T, s1d

whereasTd is the lattice parameter at a temperatureT anda0

is the conventional thermal expansion coefficient. On the
other hand the thermal population of the low-spin state with
smaller radius in simplest case of two well-defined LM and
HM states would be exponential in temperature:

asTd = a0 − c expS−
D

T
D , s2d

whereD=EL−EH is the excitation energy of the LM state;
a0=aH; c=saH−aLd /2; aH/L are the ionic radii of correspond-
ing spin states. Thus, the question arises, how can one com-
pensate in a reasonably broad temperature interval the nor-
mal positive thermal expansion(1), linear inT, by the extra
negative contribution(2) which depends on the temperature
exponentially.

The resolution of this problem should definitely lie in go-
ing beyond single-site description and taking into account
coupling between different sites. Intersite magnetic correla-
tions mentioned above are one possible mechanism. In this
paper we suggest another simple mechanism that should al-
ways exist in real materials and that helps to resolve this
paradox. When one discusses the coupling of the electronic
excitations(here HM-LM excitation) to the lattice, this elas-
tic interaction, besides coupling the electronic states with
local deformation, usually leads also to an effective interac-
tion between different sites(a somewhat similar interaction
was also taken into account by Grüneret al.11 in their Monte
Carlo numerical simulations). One can easily show that if we
consider predominantly a coupling to the short-range(or op-
tical) vibrations, this intersite interaction will be essentially
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of antiferro type:12–14If we transform one site from a HM to
a LM state with smaller volume, it would be favorable to
have close to this small-volume LM ion the larger, i.e., HM
ions. This interaction will modify the temperature depen-
dence of the occupation of different spin states, and, conse-
quently, will change the extra contribution to thermal expan-
sion, effectively stretching the exponential temperature
dependence(2). This would help to explain the almost full
compensation of two mechanisms of thermal expansion—the
usual one(1) and the additional stretched contribution, giv-
ing finally the Invar effect in a rather broad temperature in-
terval.

One can describe this situation introducing the pseudospin
operators, which describe two spin states, so that the state
t i

z=+1
2 corresponds to the HM state of an ioni andt i

z=−1
2 to

a LM state of it. The fact that these states have different ions
radii (or atomic volumes) gives rise to a coupling of these
states to the lattice, which classically can be written as:

H = − gt i
zsvi − v0d +

B

2
svi − v0d2 − Dt i

z s3d

Here v0 is an average volume,v0= 1
2svL+vHd, wherevL

andvH are the corresponding atomic volumes of the, respec-
tively, LM and HM states, andg=BsvH−vLd is the effective
coupling constant. By minimizing the average energyE
=kHl with respect to volume, we can indeed see that

vi = v0 +
g

B
t i

z, s4d

which, with our choice ofv0 and g, reproduce the correct
results, vist= 1

2
d=vH, vist=−1

2
d=vL. We included in the

Hamiltonian (3) also the term with the “magnetic field,”
−Dt i

z, which describes the initial splitting of the HM and
LM states:D=EL−EH.

The model(3) describes only the single-site effects. But
when one takes into account the coupling of local distortions
around different sites(giving rise to the dispersion of
phonons), one would get, besides these on-site effects, also
an intersite interaction. If one rewrites the model(3) includ-
ing the phonon dispersion,

H = o
i,k

g̃ikt i
zsbk

† + bkd + o
k

vkbk
†bk − Do

i

t i
z, s5d

where g̃ik= g̃ke
ikRi, one can in the usual way exclude the

phonons by canonical transformation and obtain the effective
pseudospin Hamiltonian, see, e.g., Ref. 13:

Heff = o
i j

Ji jt i
zt j

z − Do
i

t i
z,

Ji j = − o
k

eiksRi−Rjd
g̃k

2

vk
. s6d

The effective sign of an intersite interaction depends on
the detailedk dependence of the spin-phonon matrix element
g̃k, on the phonon dispersionvk, and on the type of the
lattice. One can easily show that the coupling via short-
wavelength phonons leads to a nearest-neighbor repulsion

J.1, i.e. to an antiferromagnetic interaction between pseu-
dospinst, in accordance with the qualitative considerations
presented above(the large HM statet 1

z=+1
2 would prefer to

have nearby the low-volume LM sites,t j
z=−1

2). Longer
range interactions may in general have different sign,14 but
usually the nearest-neighbor(NN) interactions dominate, and
this is what we will assume further on.

With this assumption we can reduce our model to an an-
tiferromagnetic Ising model with NN couplingJ in a parallel
field. For Invar systems, the parameters of the model should
be chosen such that the ground state corresponds to the HM
state, i.e., allt 1

z=+1
2, which requiresD.J. In this case the

standard mean-field equation for the total(not the sublattice)
magnetization takes the form:

t = ktl =
1

2
tanh

D − 2Jzt

2T
s7d

(z is the number of nearest neighbors), from which we can
determine the temperature dependence oft and conse-
quently, according to Eq.(4), of the average volume of our
system,

vsTd = v0 +
g

B
t sTd. s8d

It is convenient to rewrite Eq.(7) as

t =
1

2
tanh

D̃ + 2Jzs 1
2 − td

2T
, s9d

whereD̃=D+2Jzts0d=D+Jz is the renormalized initialsT
=0d splitting of the LM and HM states. If we would take this
splitting to be constant[i.e., if we ignore the second term in
the argument of Eq.(9)], we would get the conventional
temperature dependence oft (Brillouin function) and, con-
sequently, of the lattice parameter and of the thermal expan-
sion, which at low temperature would be exponential in tem-
perature:

t sTd =
1

2
− expS−

D̃

T
D , s10d

vsTd = vH −
svH − vLd

2
expS−

D̃

T
D ,

cf. Eq. (2) [herevsT=0d=vH]. This is what one would na-
ively get in the standard Weiss model, which ignores the
intersite interaction. As discussed above, we have then the
problem, how this exponental contribution can compensate
the usual linear positive thermal expansion in a broad tem-
perature interval.

The analysis of Eq.(9) shows that when we include the
intersite interactionJ, it leads, besides the renormalization
of the initial splitting of LH and HM states, to the modifica-
tion of the temperatures dependence oft and, correspond-
ingly, of the lattice parameters. This is shown in Fig. 1, in
which we present the results of the calculations for represen-
tative values of parametersD=550 K, Jz=440 K. The dot-
ted line is the dependence oft sTd [or of an extra contribu-
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tion to the volume vsTd] ignoring the intersite elastic
interaction[the term withJ in Eq. (9)], and the solid line
represents this interaction taken into account. By the thin line
we qualitatively show the conventional positive thermal ex-
pansion which behaves as,T 4 at low temperatures and goes
over to linear dependence for higherT. We see indeed that,
whereas without intersite interactionsJ=0d, (see the dotted
line in the figure) t changes with temperatures rather steeply

[initially as 1
2 −exps−D̃ /Td], with nonzero intersite coupling

J this dependence becomes much smoother(see the solid
line in the figure). This is easy to understand: if indeed there
exists a repulsion between similar spin states[antiferromag-
netic coupling in Eq.(6)], then the thermal excitations of
certain amount of LM states hinder corresponding transitions
on neighboring sites, so that as a result the average excitation

energyD̃+Jzf 1
2 −t sTdg would gradually increase with tem-

perature, making the extra negative contribution to lattice
parameter more smooth. If we now add to this term the usual
positive thermal expansion(qualitatively shown in Fig. 1 by
thin line), we indeed see that withJÞ0 one can get a better
cancellation of the normal and anomalous contributions to
thermal expansion(although this cancellation is not exact).

This is the main conclusion of the present paper. We used
the fact that the elastic interaction between different spin
(and volume) states of Fe in Invar alloys is always present.
We have shown that the inclusion of the elastic interactions
helps to resolve some of the problems inherent to the two-
state(Weiss) model traditionally used in this field. The es-
sence of our results is that due to this elastic interactions
between HM and LM states of Fe ions the effective energy
separating low moment/small volume and high moment/large
volume states in Invar alloys becomes temperature and con-
centration dependent. This modifies the temperature depen-
dence of the thermal expansion and finally guarantees the
Invar behavior in a broad temperature interval.

We have to stress that one should not take the notions of
HM and LM states of Fe ions too literally, in the same way
as we treat high spin(HS) and low spin(LS) states of Fe2+ in
insulators. There indeed the ionic radii of corresponding
states differ a lot. In contrast, we are dealing here with me-
tallic systems, in which it is not even clear whether we can
assign a particular valence(e.g., 2+) to Fe sites. Therefore,
retaining partially the “genetic” connection with the HS and
LS states of well defined Fe2+ ions, corresponding states in

Invar alloys may have much smaller difference in specific
volumes, as observed by Robertsonet al.6 In our opinion it is
an unavoidable consequence of metallic character of corre-
sponding systems(that is why, by the way, we choose to use
the notation HM/LM instead of the conventional HS/LS
states). But, despite that, the physical mechanism invoked in
our paper—elastic intersite interactions, or, more accurately,
spin state–phonon interactions, should be present also in this
case, and, as we have found in the framework of our simple
model, may strongly contribute to the Invar phenomenon.

It is also important to note that most of Invar systems are
alloys, mainly disordered(although some of them, such as
Fe3Pt, are ordered, i.e., are rather intermetallic compounds).
The main role of the second component of the alloys is ap-
parently to control the effective splitting between HM and
LM energy levels, so that, e.g., for too low concentration of
Ni in Fe-Ni alloys the excitation energy may be too large to
lead to noticeable effects in an interesting temperature inter-
val, and in the opposite limit the LM/small volume state may
become the ground state, in which case we will get only the
extra contribution increasing positive thermal expansion.
Disorder of course may play some role but just the original
Weiss model is in a sense less sensitive to it than many later
refined versions. Our treatment based on the introduction of
elastic coupling between Fe sites does not need a regular,
ordered state, and does not require all neighbors of a given
Fe being also Fe. Each time Fe ions are neigbors, our mecha-
nism would work; the only difference would be that instead
of the number of nearest neighborsz in our Eqs.(7) and(9)
there will be an average number of neighboring Fe’s, which
for random alloys of the type FexNis1−xd would be in average
equal tozx. As we do not aim at quantitative results and use
Jz as a free parameter, the substitution ofJz by Jzx would
not change our qualitative conclusions. Another consequence
of the random distribution of the “active”(Fe) and “passive”
(Ni) components may be certain broadening of the distribu-
tion of these level splittings, which will also smooth out the
temperature dependence of the properties of Invar alloys.

Extra consequences of our treatment are, first, that due to
this effect the energy separation of these two states becomes
dependent on the local coordination(occupation of neighbor-
ing sites); this can hinder the direct observation of these two-
level-systems, e.g., by the neutron scattering. On the other
hand, there should appear certain correlation in the occupa-
tion of different magnetic states; this effect should be observ-
able experimentally. This could even lead to the formation of
some textures in the Invar samples.

Some of the factors important for the Invar phenomenon,
such as the role of magnetic correlations and the metallic
nature of most of the Invar systems, were not included in our
treatment. Nevertheless, even in this simplified form the
model considered above, with the inclusion of the intersite
elastic interactions, can explain the main features of the Invar
systems, and these interactions definitely have to be taken
into account in the full theory of the Invar effect.

We are grateful to M. Abd-Elmeguid, K. Neumann and
K.R.A. Ziebeck for useful discussions. This work was sup-
ported by the German Physical Society via SFB 608 and by
the Leverhulme Trust.

FIG. 1. The extra negative thermal expansion[see Eq.(9)] with-
out intersite elastic interaction(dotted line) and with this interaction
taken into account(solid line). The thin line is a conventional posi-
tive thermal expansion.
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