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The dynamics of magnetostatically coupled vortices in ferromagnetic two-dimensional(2D) nanodisk arrays
is theoretically investigated using the rigid vortex model and Thiele’s equation whereby the circular motion
with the lowest energy for each vortex core is described. We present here dispersion relations and density of
states for eigenfrequencies of coherently rotating vortices with ordered core polarizations. This behavior is
analogous to the lattice vibration of a 2D molecule bound with a dipolar interaction.
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Experimental observations by means of magnetic force
microscopy1 and spin-polarized tunneling microscopy2 have
recently revealed the presence of the out-of-plane magneti-
zation component in the vortex core as calculated by Feldt-
keller et al. in the 1960s.3–5 An array of magnetic vortices in
ferromagnetic nanodisks have then drawn renewed attention
because of their potentialities as novel patterned recording
media as well as a model system for research on
nanomagnetism.6–11 The static properties of magnetic vorti-
ces have been intensively studied so far. The general research
objective on magnetic vortices has now gradually shifted to-
wards dynamic properties.

Theoretical analyses on the dynamics of the off-centered
vortex, for example, have shown the circular motion around
the disk center where the rotational direction depends on the
sign of the core polarization.12,13 Such a circular motion has
been recently observed by means of time-resolved Kerr
microscopy.14 In our previous work,15 we have theoretically
demonstrated that the magnetostatically coupled two vortices
coherently rotate around the disk centers with eigenfrequen-
cies given by the combinations of vortex core polarizations.
We have also drawn an analogy between this vortex system
and a van der Waals diatomic molecule.

There are millions of magnetostatically coupled magnetic
nanodisks in a fabricated array. In analogy with the coupled
two-vortex system, the many-vortex system should exhibit
collective rotational motions of vortices dependent on the
combination of vortex core polarizations in a two-
dimensional(2D) lattice bound by dipolar interactions. In
this study we thus investigate the dynamics of magnetostati-
cally coupled vortices in theN3N vortex lattice.

For this analysis, the rigid vortex model16 is employed to
describe the vortex configuration, and Thiele’s equation17,18

is used to formulate the collective motion of vortices. It
should be noted that this rigid vortex model is considered
effective for the qualitative understanding for the case of
small enough vortex displacements.12 We calculate eigenfre-
quencies for the magnetostatically coupled vortex lattice
with various combinations of vortex core polarizations. We
show that the vortex lattice with ordered core polarizations
exhibits the collective circular motion of vortices that satis-
fies the dispersion relations of eigenfrequencies in reciprocal

space. Furthermore, we can design a density of states for
eigenfrequencies by choosing combinations of vortex core
polarizations.

Let us calculate the interaction energy of magnetostati-
cally coupled vortices. We consider here a square lattice sys-
tem with a nanodisk array as shown in Fig. 1. The separating
distance between each disk center is defined asD;dR,
whereR is the disk radius andd is the nondimensional sepa-
rating distance.

When each vortex core is shifted from its disk center,
magnetic charges emerge on the side surface of the disk and
each vortex then magnetostatically interacts with each other.
Here, we assume the vortex displacement is much smaller
than the disk radius. Using the rigid vortex model16 and a
calculation method similar to that of Ref. 15, the magneto-
static energy can be expressed as a function of the nondimen-
sional vortex displacement from each disk center,xi,j =xi,jex
+yi,jey:

Wi,j
int = Ci,jsI i,j

x xi,j + I i,j
y yi,jd + Osuxi,ju3d, s1d

whereCi,j is the si , jdth chirality, which refers the counter-
clockwisesCi,j =1d or the clockwisesCi,j =−1d rotational di-

FIG. 1. Schematic illustration of a squareN3N nanodisk array.
Black dots represent off-centered vortices.
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rection of the magnetization in the disk plane, and

I i,j
x = d1sd,0d o

l=±1
Ci,j+lxi,j+l + d2sd,0d o

k=±1
Ci+k,jxi+k,j

+ d1sd,dd o
k,l=±1

Ci+k,j+lxi+k,j+l

+ d3sd,dd o
k,l=±1

skldCi+k,j+lyi+k,j+l , s2ad

I ij
y = d1sd,0d o

k=±1
Ci+k,jyi+k,j + d2sd,0d o

l=±1
Ci,j+lyi,j+l

+ d1sd,dd o
k,l=±1

Ci+k,j+lyi+k,j+l

+ d3sd,dd o
k,l=±1

skldCi+k,j+lxi+k,j+l , s2bd

d1sa,bd =
m0Ms

2R3

8p
E dz1dz2df1df2 sin f1 sin f2

Ksa,b,f1,z1,f2,z2d
,

s3ad

d2sd,0d =
m0Ms

2R3

8p
E dz1dz2df1df2 cosf1 cosf2

Ksd,0,f1,z1,f2,z2d
,

s3bd

d3sd,dd =
m0Ms

2R3

8p
E dz1dz2df1df2 sin f1 cosf2

Ksd,d,f1,z1,f2,z2d
,

s3cd

Ksa,b,f1,z1,f2,z2d = fa2 + b2 + 2ascosf2 − cosf1d

+ 2bssin f2 − sin f1d + 2

− 2 cossf2 − f1d + sz2 − z1d2g1/2,

s4d

where Ms is the saturation magnetization and
Ksa,b,f1,z1,f2,z2d is a demagnetizing function. The inte-
gration of Eq.(3) runs from 0 tog=L /R in z1,z2 and from 0
to 2p in f1,f2, whereL is the disk thickness. Note that the
x axis is defined as the horizontal direction while they axis is
the vertical direction; polar anglesf1 andf2 are measured at
each disk center from thex axis. Since the core radius of the
vortex is small enough compared to the disk radiusR, the
magnetostatic interactions between the magnetic charges dis-
tributed on the top and bottom surfaces of neighbor disks are
negligible. The total energy of off-centered vortices in the
square lattice system is given by adding the interaction en-
ergy in Eq.(1) to the energy in Ref. 16,

Wshxjd = o
i,j=1

N

Wi,j, Wi,j = Wessuxi,jud + Wi,j
int. s5d

Here, Wessuxi,jud=juxi,ju2/2+Osuxi,ju4d is the sum of the ex-
change and magnetostatic energies of the single off-centered
vortex. In the equation,j=m0Ms

2VfF1sgd−sRE/Rd2g with
F1sgd=e0

` dk fskgdJ1
2skd /k, fsxd=1−s1−e−xd /x, V is the vol-

ume of the disk,RE;ÎA/m0Ms
−1 is the exchange length with

the exchange stiffness constantA, and J1sxd is the Bessel
function of first order.

The formulation of the dynamics of vortices is based on
Thiele’s equation.17,18 This equation is described by collec-
tive degrees of freedom of magnetic domains derived from
the Landau-Lifshitz-Gilbert equation. Conditions for apply-
ing Thiele’s equation are the constant saturation magnetiza-
tion Ms and the vortex core displacement without distortion.
In the case of a magnetic vortex, these collective degrees of
freedom are the core position of the vortex. Here we consider
the time-dependent nondimensional displacementxi,jstd. Us-
ing xi,jstd, the equation of motion of the vortex center can be
written as

Gi,j 3
dxi,jstd

dt
=

1

R2

] W„hxstdj…
] xi,jstd

, s6d

where Gi,j is the gyrovector given by Gi,j
=−2ppi,jLm0Msez/g, whereg is the gyromagnetic ratio, and
pi,j is thesi , jdth polarization, which refers to the magnetiza-
tion direction of the vortex core. The up or down magneti-
zation of the vortex core corresponds topi,j =1 or −1, respec-
tively. In this calculation, we ignore the damping. Equation
(6) thus yields concretely a set of following equations:

dxi,jstd
dt

= − pi,jv0syi,j + Ci,jI i,j
y /jd, s7ad

dyi,jstd
dt

= pi,jv0sxi,j + Ci,jI i,j
x /jd, s7bd

wherev0=gMsfF1sgd−sRE/Rd2g /2 is the characteristic fre-
quency of the circulating single vortex. In the absence of
interactions I i,j

x = I i,j
y =0, all vortices rotate independently

around each disk center with eigenfrequencyv0. Further-
more, the vortex core polarization determines the rotational
direction of vortex. When polarizationpi,j =1 s−1d, the vor-
tex rotates in the counterclockwise(clockwise) direction.
Note that the chiralityCi,j of the vortex does not influence
the dynamics of the vortex. On the other hand, in the pres-
ence of interactionsI i,j

x , I i,j
y , the degeneracy of eigenfrequen-

cies is removed, and various eigenfrequencies appear for the
rotational motions of vortices in accordance with various
combinations of polarizations of vortices.

We now consider three types of orderly polarized vortex
lattices labeled types I, II, and III, corresponding to the com-
binations of polarizations of vortices,pi,j =1, pi,j =s−1di+j,
andpi,j =s−1di+1 as depicted in Fig. 2. Assuming the infinite
lattice system, we can analytically calculate the eigenfre-
quencies from the Fourier transform of Eqs.(7). The ob-
tained eigenfrequencies are

fvIskx,kyd/v0g2 = s1 + a1 + a3ds1 + a2 + a3d − a4
2, s8ad

fv±
IIskx,kyd/v0g2 = 1 +a3s2 + a3d − a1a2

− a4
2 ± Îs1 + a3d2sa1 − a2d2 + 4a1a2a4

2,

s8bd
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fv±
III skx,kyd/v0g2

= s1 + a5ds1 + a6d + a4
2 − a7a8

± Îfa7s1 + a5d − a8s1 + a6dg2 + 4s1 + a5ds1 + a6da4
2,

s8cd

where skx,kyd is the wave vector in the reciprocal-lattice
space of the array, and

a1 = 2sa1 coskxd + a2 coskydd, s9ad

a2 = 2sa1 coskyd + a2 coskxdd, s9bd

a3 = 4a3 coskxd coskyd, s9cd

a4 = − 4a4 sin kxd sin kyd, s9dd

a5 = 2a1 coskxd, s9ed

a6 = 2a2 coskxd, s9fd

a7 = 2a1 coskyd + a3, s9gd

a8 = 2a2 coskyd + a3, s9hd

where a1;d1sd,0d /j, a2;d2sd,0d /j, a3;d1sd,dd /j, and
a4;d3sd,dd /j.

Here, we take Permalloy as the computational material
with the saturation magnetizationMs=8.603105 A/m, the
exchange stiffness constantA=1.3310−11 J/m, the gyro-
magnetic constantg=2.23105 m/A s, the disk radiusR
=100 nm, the disk thicknessL=20 nm, and the separating
distanceD=240 nm. Figures 3(a), 3(b), and 3(c) show cal-
culated dispersion relations of eigenfrequencies for types I,

II, and III, respectively. In Fig. 3(a) for type I, the dispersion
curve corresponds well to that of the lattice vibration for
monatomic square lattice system. However, since the off-
centered vortex motion is limited to the rotational motion,
there is only the single branch with nonzero eigenfrequency
at Gsk =0d in the reciprocal-lattice space. In Figs. 3(b) and
3(c) for types II and III, there are two branches represented
by solid and dashed lines, corresponding, respectively, to the
polarizationp=1 or −1. These dispersion curves also show
nonzero mode eigenfrequencies atG. In the case of minimum
(maximum) eigenfrequencies for all the types, off-centered
vortices rotate in(out of) phase. Note that type I takes the
minimum in the difference between maximum and minimum
eigenfrequencies, whereas type II takes the maximum in the
difference. This can be understood as follows: since the ro-
tational direction of the off-centered vortex is decided by the

FIG. 3. (Color online) Dispersion relations of eigenfrequencies
for types I, II, and III.

FIG. 4. Density of states for
different combinations of polar-
izations of vortices:(a) pi,j =1, (b)
pi,j =s−1di+j, and(c) pi,j =s−1di+1.

FIG. 2. Schematic diagram of vortices for various combinations
of polarizationspi,j. White dots and black dots represent vortex core
polarizations,p= +1 andp=−1, respectively.
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sign of core polarization, all vortices in type I rotate in the
same direction. On the other hand, in type II, all the neigh-
boring vortices rotate in opposite directions. This difference
is important in determining the dipolar coupling of off-
centered vortices. As explained in Ref. 15, the averaged en-
ergy of vortices with ferromagnetically polarized coressp1

=p2=1d is smaller than that of vortices with antiferromag-
netically polarized coressp1=−p2=1d.15 This causes signifi-
cant difference in the eigenfrequencies.

To obtain the density of states for the eigenfrequencies,
we here numerically evaluate eigenfrequencies of Eq.(7) for
vortices with various types of core polarizations. Setting
xi,jstd=exps−ivtdxi,j in Eq. (7) yields the eigenfunction for
eigenfrequency. We then perform the numerical diagonaliza-
tion for this eigenfunction to obtain eigenfrequencies for
various combinations of polarizations of vortices;pi,j =1,
pi,j =s−1di+j, and pi,j =s−1di+1. Here we takeN3N disk ar-
rays withN=40 for calculation.

Figure 4 shows density of states(DOS) for eigenfrequen-
cies, rsvd=ol=1

1600 dsv−vld /N2, as a function of normalized
frequencyv /v0 for vortices with various combinations of
core polarizations. The DOS exhibits a single peak for types
I and II and double peaks for type III. These peaks corre-
spond to the local minima of the dispersion relations in Fig.
3. For example, the peak in type I atv /v0=1 [Fig. 4(a)]
corresponds to the local minimum atXsp /d,0d in Fig. 3(a).
For type III, polarizations along thex direction correspond to
that of type I (ferromagnetic polarizations), while polariza-

tions along they direction correspond to type II(antiferro-
magnetic polarization). Therefore, double peaks in type III
are observed due to the superposed effects of types I and II.

Finally, Fig. 5 shows the DOS for type III as a function of
the nondimensional separating distanced=D /R. When the
separating distance is increased, the double peaks gradually
approach to the center. Note that the difference in frequency
between double peaks varies proportional to the minus sixth
power of the separating distance, characteristic of van der
Walls bonding.

We have investigated theoretically the dynamics of vorti-
ces in a square lattice system with various combinations of
vortex core polarizations in the lattice. The vortex core po-
larizations play an important role in determining the rota-
tional dynamics of vortices. In the orderly polarized vortex
lattice, their dynamical properties can be represented by the
dispersion curves and the density of states. These can be
designed by choosing the combinations of vortex core polar-
izations. In this paper, we have used the rigid vortex model.
This model is based on the assumption that vortices are rigid
objects that do not deform as they move. However, in reality,
when the vortex moves, the spin configuration around the
disk edges changes to reduce stray fields. This discrepancy
leads to overestimation of the eigenfrequencyv0 and mag-
netostatic interaction energy between disks. Nevertheless we
believe that this model is a good approximation and useful
for qualitative understanding although we need to take into
account non-nearest-neighbor disks in the case of large vor-
tex displacement. Therefore, a more precise investigation on
the dynamics of magnetic vortices needs to be carried out in
future.

From our analysis, we can speculate on the following phe-
nomena. Arandomly polarized vortex latticeshould reveal
the localization behavior in the rotational motion of vortices
in the real space as a consequence of various superposition of
ferromagnetic type I and antiferromagnetic type II domains.
In analogy with the lattice vibration of a coupled diatomic
lattice, avortex lattice with two kinds of disksis expected to
exhibit an eigenfrequency gap in the dispersion curves. Fur-
thermore the localization mode can be controlled since we
can design adefective lattice. Finally, extension of the ex-
pected results encourages us to fabricate an electromagnetic
waveguide in the artificial crystal of the magnetic vortex sys-
tem similar to the two-dimensional photonic crystal.19,20
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FIG. 5. Dependence on the nondimensional separating distance
d=D /R of the density of states for type III.
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