PHYSICAL REVIEW B 70, 012404(2004)

Magnetic vortex dynamics in a two-dimensional square lattice of ferromagnetic nanodisks
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The dynamics of magnetostatically coupled vortices in ferromagnetic two-dimengiidyahanodisk arrays
is theoretically investigated using the rigid vortex model and Thiele’s equation whereby the circular motion
with the lowest energy for each vortex core is described. We present here dispersion relations and density of
states for eigenfrequencies of coherently rotating vortices with ordered core polarizations. This behavior is
analogous to the lattice vibration of a 2D molecule bound with a dipolar interaction.
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Experimental observations by means of magnetic forcespace. Furthermore, we can design a density of states for
microscopy and spin-polarized tunneling microscédyave  eigenfrequencies by choosing combinations of vortex core
recently revealed the presence of the out-of-plane magnetpolarizations.
zation component in the vortex core as calculated by Feldt- et us calculate the interaction energy of magnetostati-
keller et al.in the 19608 An array of magnetic vortices in cally coupled vortices. We consider here a square lattice sys-
ferromagnetic nanodisks have then drawn renewed attentiogm with a nanodisk array as shown in Fig. 1. The separating
because of their potentialities as novel patterned recordingjstance between each disk center is definedDasdR

media as yvellllas a model system for research ORyhereR is the disk radius and is the nondimensional sepa-
nanomagnetisifr:1! The static properties of magnetic vorti- ing distance.

- - . rat
ces have been intensively studied so far. The general researc%When each vortex core is shifted from its disk center
objective on magnetic vortices has now gradually shifted to'magnetic charges emerge on the side surface of the disk and

wards dynamic properties. ach vortex then magnetostatically interacts with each other.

Theoretical analyses on the dynamics of the off-centere ere. we assume the vortex displacement is much smaller
vortex, for example, have shown the circular motion aroun ’ ; . X pic
an the disk radius. Using the rigid vortex modeand a

the disk center where the rotational direction depends on th ; e
sign of the core polarizatioR:13 Such a circular motion has calculation method similar to that of Ref. 15, the magneto-

been recently observed by means of time-resolved Kergatic energy can be expressed as a fum_:tion of the nondimen-
microscopyt* In our previous work® we have theoretically Sional vortex displacement from each disk cerxer=x; e
demonstrated that the magnetostatically coupled two vorticesVi,i€:
coherently rotate around the disk centers with eigenfrequen- int « 3
cies given by the combinations of vortex core polarizations. Wi,j =G + 1y + O(|Xi,i| ), 1)
Z\r/% gazgnaggr %iv;g Z?a;nrﬁ:gg%oﬁgzvd&n this vortex sySter\there Ci; is the(i,j)th chirality, which refers the counter-
There are millions of magnetostatically coupled magneticC
nanodisks in a fabricated array. In analogy with the coupled
two-vortex system, the many-vortex system should exhibit
collective rotational motions of vortices dependent on the
combination of vortex core polarizations in a two-
dimensional(2D) lattice bound by dipolar interactions. In
this study we thus investigate the dynamics of magnetostati-
cally coupled vortices in th&l X N vortex lattice.
For this analysis, the rigid vortex modeis employed to
describe the vortex configuration, and Thiele’s equétidh
is used to formulate the collective motion of vortices. It

lockwise(C; j=1) or the clockwise(C;;=-1) rotational di-

should be noted that this rigid vortex model is considered !
effective for the qualitative understanding for the case of @ ” @\ |
small enough vortex displacemenrtdie calculate eigenfre- S U A O = W N

with various combinations of vortex core polarizations. We
show that the vortex lattice with ordered core polarizations
exhibits the collective circular motion of vortices that satis- FIG. 1. Schematic illustration of a squakex N nanodisk array.
fies the dispersion relations of eigenfrequencies in reciprocalack dots represent off-centered vortices.

gquencies for the magnetostatically coupled vortex lattice @ ! @
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rection of the magnetization in the disk plane, and

I¥; = 61(d,0) > Ci j+1Xi j+1 + 65(d,0) > G jXitk j

I=+1 k=+1
+8,(d,d) X CiajarXink joi
kl=+1
+63(d,d) 2 (KDCiagejatYisk ol (2a)
Kl=+1
% = 6,(d,0) > CiskjYiskj T 62(d,0) > CijuYij+
k=x1 I=£1
+81(d,d) X CirkjatYiskj
Kl=+1
+85(d,d) > (KD Ciagej+1Xi i j+1 (2b)
kl=+1
2 . .
woMZR® [ dzdzde,de, sin ¢, sin ¢,
S(a,b) = ,
877 K(a1b1 ¢11217 ¢2122)
(33
woM2R® [ dzdz,de,dep, cos ¢y coS ¢,
5,(d,0) = )
8w K(d,0,¢1,21, $2,25)
(3b)
203 :
,LboMS d21d22d¢1d¢2 Sin d)l Ccos (,bz
53(d,d) = ’
8w K(d,d, qsl,zl! ¢2122)
(30)

K(a,b, 1,21, $5.2,) = [a® + b* + 2a(cos ¢, — cOS ¢by)
+ 2b(sin ¢, — sin ¢4) + 2
-2 coshy— 1) + (2 20)°T"2,
(4)
saturation

where Mg is the magnetization

gration of Eq.(3) runs from 0 tog=L/Rin z;,z, and from 0O

to 27 in ¢, ¢, WhereL is the disk thickness. Note that the

x axis is defined as the horizontal direction while yhaxis is

the vertical direction; polar angles, and ¢, are measured at

and
K(a,b, ¢1,21,¢,,2,) is a demagnetizing function. The inte-

PHYSICAL REVIEW E0Q, 012404(2004)

ume of the diskRg= \s’r,qugl is the exchange length with
the exchange stiffness constait and J;(x) is the Bessel
function of first order.

The formulation of the dynamics of vortices is based on
Thiele’s equatiort/18 This equation is described by collec-
tive degrees of freedom of magnetic domains derived from
the Landau-Lifshitz-Gilbert equation. Conditions for apply-
ing Thiele’s equation are the constant saturation magnetiza-
tion Mg and the vortex core displacement without distortion.
In the case of a magnetic vortex, these collective degrees of
freedom are the core position of the vortex. Here we consider
the time-dependent nondimensional displacemeit). Us-
ing x; ;(t), the equation of motion of the vortex center can be
written as

dx; ;(t) _ 1 aW(Ex()})
dt RZ (?Xi’j(t)

Gi; X ) (6)
where G;; is the gyrovector given by G
=-2mp; jLugMe,/ v, wherey is the gyromagnetic ratio, and
p;j is the(i,j)th polarization, which refers to the magnetiza-
tion direction of the vortex core. The up or down magneti-
zation of the vortex core correspondsgg=1 or -1, respec-
tively. In this calculation, we ignore the damping. Equation
(6) thus yields concretely a set of following equations:

dx
ch,lt(t) =R wO(yi,j + Ci,jliy,jlf), (73
dv -
DD = ot + €1, (7b)

dt

where wy=yMJF;(g) - (Re/R)?]/2 is the characteristic fre-
quency of the circulating single vortex. In the absence of
interactions Iﬁj:I{j:O, all vortices rotate independently
around each disk center with eigenfrequengy Further-
more, the vortex core polarization determines the rotational
direction of vortex. When polarizatiop; ;=1 (-1), the vor-

tex rotates in the counterclockwigelockwise direction.
Note that the chiralityC;; of the vortex does not influence
the dynamics of the vortex. On the other hand, in the pres-
ence of interactions’;, I{j, the degeneracy of eigenfrequen-
cies is removed, an(J various eigenfrequencies appear for the
rotational motions of vortices in accordance with various

each disk center from theaxis. Since the core radius of the cOmbinations of polarizations of vortices.

vortex is small enough compared to the disk radr)she

magnetostatic interactions between the magnetic charges di&tices lab
tributed on the top and bottom surfaces of neighbor disks arBinations o

We now consider three types of orderly polarized vortex
eled types I, Il, and Ill, corresponding to the com-
f polarizations of vorticeg;;=1, p;;=(-1)",

negligible. The total energy of off-centered vortices in the@nd p;=(=1)'"* as depicted in Fig. 2. Assuming the infinite
square lattice system is given by adding the interaction enattice system, we can analytically calculate the eigenfre-

ergy in Eqg.(1) to the energy in Ref. 16,

N
WD) = 2 Wej, Wi = Wad[x; ) + W (5)
=

Here, Wed|X; ) =& j12/2+0(|x; j|*) is the sum of the ex-
change and magnetostatic energies of the single off-centered

vortex. In the equation¢=uM2V[F4(g)-(Re/R)?] with
Fi(9)=/¢ dk f(kg)Jf(k)/k, f(x)=1-(1-€%)/x, Vis the vol-

guencies from the Fourier transform of Eq3). The ob-
tained eigenfrequencies are

[@' (K k) wo]? = (1 +ay +ag)(1 +a, +ag) = a;, (8a)

[l (koK) wol? =1 +a5(2 +ag) — aya,

—ag+ V(@ + ag)%(ay — ap)? + 4a,a,a5,
(8b)
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FIG. 2. Schematic diagram of vortices for various combinations Type I

of polarizationsp; ;. White dots and black dots represent vortex core

polarizationsp=+1 andp=-1, respectively.

where (k,,k,) is the wave vector in the reciprocal-lattice wﬂl(k,,k)/wn
space of the array, and

0.08 p(C.U)
0.06 1
0.04
0.02

0.00 -

(@)

ol (K k) wo]?

=(1+as)(1+ag) +a;— aag

£ \[ay(1+ag) — ag(1 +ag) ) + 4(1 +a5)(1 +ag)aj,

a; = 2(a; coskyd + a, cosk,d),
a, = 2(a; coskyd + a, cosk,d),
ag = 4a; cosk,d cosk,d,

a, = —4ay, sink,d sink,d,

as = 2a; cosk,d,

ag = 2a, cosk,d,

a; = 2ay cosk,d +as,

ag = 2a, cosk,d + ag,

where a; = 6,(d,0)/¢, a,=6,(d,0)/&, az=45,(d,d)/&, and
= 53(d,d)/g

Here, we take Permalloy as the computational materiahonzero mode eigenfrequencied atn the case of minimum
with the saturation magnetizatiov =8.60x 10° A/m, the
exchange stiffness constat=1.3x 10711 J/m, the gyro-
magnetic constanty=2.2x 10° m/A s, the disk radiusR
=100 nm, the disk thickness=20 nm, and the separating eigenfrequencies, whereas type Il takes the maximum in the
distanceD =240 nm. Figures @&), 3(b), and 3c) show cal-
culated dispersion relations of eigenfrequencies for types Iational direction of the off-centered vortex is decided by the

Type I
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FIG. 3. (Color onling Dispersion relations of eigenfrequencies
for types I, Il, and III.

II, and lll, respectively. In Fig. @) for type |, the dispersion
curve corresponds well to that of the lattice vibration for
monatomic square lattice system. However, since the off-
centered vortex motion is limited to the rotational motion,
there is only the single branch with nonzero eigenfrequency
at I'(k=0) in the reciprocal-lattice space. In FiggbBand

3(c) for types Il and lll, there are two branches represented
by solid and dashed lines, corresponding, respectively, to the
polarizationp=1 or —1. These dispersion curves also show

(maximun) eigenfrequencies for all the types, off-centered
vortices rotate in(out of) phase. Note that type | takes the
minimum in the difference between maximum and minimum

difference. This can be understood as follows: since the ro-

Type 1T

FIG. 4. Density of states for
different combinations of polar-
izations of vortices(a) p; j=1, (b)

pi;=(=1)"™, and(c) p;;=(-1)"*%
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tions along they direction correspond to type [(Bntiferro-
magnetic polarization Therefore, double peaks in type llI
are observed due to the superposed effects of types | and II.

Finally, Fig. 5 shows the DOS for type Ill as a function of
the nondimensional separating distartceD/R. When the
separating distance is increased, the double peaks gradually
approach to the center. Note that the difference in frequency
between double peaks varies proportional to the minus sixth
power of the separating distance, characteristic of van der
Walls bonding.

We have investigated theoretically the dynamics of vorti-
ces in a square lattice system with various combinations of
vortex core polarizations in the lattice. The vortex core po-

FIG. 5. Dependence on the nondimensional separating distandarizations play an important role in determining the rota-

d=D/R of the density of states for type III.

tional dynamics of vortices. In the orderly polarized vortex
lattice, their dynamical properties can be represented by the

sign of core polarization, all vortices in type | rotate in the gispersion curves and the density of states. These can be
same direction. On the other hand, in type I, all the neigh-yegigned by choosing the combinations of vortex core polar-
boring vortices rotate in opposite directions. This difference,4tions. In this paper, we have used the rigid vortex model.
is important in determining the dipolar coupling of off- This model is based on the assumption that vortices are rigid
centered vortices. As explained in Ref. 15, the averaged enspiects that do not deform as they move. However, in reality,
ergy of vortices with ferromagnetically polarized colgs  \yhen the vortex moves, the spin configuration around the
=p2=1) is smaller than that of vortices with antiferromag- yisk edges changes to reduce stray fields. This discrepancy
netically polarized coregp,=-p,=1)."* This causes signifi- |eads to overestimation of the eigenfrequengyand mag-
cant difference in the eigenfrequencies. netostatic interaction energy between disks. Nevertheless we
To obtain the density of states for the eigenfrequenciespelieve that this model is a good approximation and useful
we here numerically evaluate eigenfrequencies of(Epfor  for qualitative understanding although we need to take into
vortices with various types of core polarizations. Settingaccount non-nearest-neighbor disks in the case of large vor-
X j(=exp-iwt)x;; in Eq. (7) yields the eigenfunction for tex displacement. Therefore, a more precise investigation on
eigenfrequency. We then perform the numerical diagonalizathe dynamics of magnetic vortices needs to be carried out in
tion for this eigenfunction to obtain eigenfrequencies forfuture.
various combinations of polarizations of vortices;;=1, From our analysis, we can speculate on the following phe-
pij=(-D™, and p;;=(-1)'""%. Here we takeNx N disk ar- nomena. Arandomly polarized vortex latticehould reveal
rays withN=40 for calculation. the localization behavior in the rotational motion of vortices
Figure 4 shows density of statd30S) for eigenfrequen- in the real space as a consequence of various superposition of
cies, p(w) == 8(w-w)/N?, as a function of normalized ferromagnetic type | and antiferromagnetic type Il domains.
frequencyw/ wq for vortices with various combinations of In analogy with the lattice vibration of a coupled diatomic
core polarizations. The DOS exhibits a single peak for typesattice, avortex lattice with two kinds of disks expected to
| and Il and double peaks for type lll. These peaks corre€xhibit an eigenfrequency gap in the dispersion curves. Fur-
spond to the local minima of the dispersion relations in Fig.thermore the localization mode can be controlled since we

3. For example, the peak in type | at/ wy=1 [Fig. 4(@)]
corresponds to the local minimum 4{=/d,0) in Fig. 3a).
For type lll, polarizations along thedirection correspond to
that of type I(ferromagnetic polarizatiopnswhile polariza-

can design alefective lattice Finally, extension of the ex-
pected results encourages us to fabricate an electromagnetic
waveguide in the artificial crystal of the magnetic vortex sys-
tem similar to the two-dimensional photonic crystaf°
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