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A theoretical investigation of various electronic contributions to the electric field gradient
in hcp magnesium has been carried out. The dominant contribution comes fromthe anisotropic
filling of the K space and is therefore a Fermi-volume effect. In contrast, the contribution
associated with the distortion of the Fermi surface by the l =2 component of the lattice poten-
tia1 is found to be extremely small. The total electronic contribution is 0. 0046ea03 and anti-
shields the lattice contribution of 0. 0018eaoe.

I. INTRODUCTION

The nature of crystalline fields in noncubic met-
als is of considerable experimental and theoretical
interest. For example, the nuclear quadrupole in-
teraction' depends upon the electric field gradient
(EFG) at the nucleus and its study provides infor-
mation about the l = 2 component of the crystalline

field. Furthermore, spin- resonance studies of
rare-earth impurities in noncubic metals provide
valuable information about the nature of the crys-
talline fields in these metals.

In the present paper we investigate the nature of
the l = 2 component of the crystallinefield by analyz-
ing the electronic and lattice contributions to the
EFG in magnesium. In contrast to other hypefine
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properties, ' the EFQ derives contributions di-
rectly from the electrons' as well as the ionic
charges in the lattice. The lattice contribution
q&,« to the EFG can be evaluated quite accurately '

and one can then indirectly obtain the electronic
contribution q, & by subtracting q&,« from the experi-
mentally obtained total field gradient q. However,
a general theoretical understanding of the origin
of q, & is still lacking although two notable attempts '

have been made. One of these studies was in the
semimetal antimony where the smallness of the
Fermi surface made the quantitative evaluation of
q, & from all the electrons in the occupied k space
particularly simple, by using a Wannier represen-
tation for the electronic wave functions. The elec-
tronic contribution. for this semimetal was found
to be a factor of 4 larger and of the same sign
(antishielding) as q&«t, . This contribution, since
it arises from the anisotropic filling of k space, can
be referred to as a Fermi-volume effect. The
other investigation, ' which proposed a rather in-
teresting mechanism contributing to q,&, has been
carried out on transition metals and their com-
pounds. For these systems, it was shown that a
sizable contribution, again several times larger
than q„«, but of opposite sign (shielding), arose
from the electrons near the Fermi surface, through
the distortion of the latter by the l = 2 components
of the lattice potential. It is not clear at the pres-
ent time under what general conditions one of
these mechanisms is more important than the other.
Another point of interest is that while the sign of

q, & due to the WGY mechanism is expected to repre-
sent a shielding effect, a similar unequivocal
statement cannot be made about the Fermi-volume
contribution which, for Sb, is an antishielding
effect. This is an important question because of
the continuing interest in the experimental study
of nuclear quadrupole interaction in metals and
the fact that the sign of q is becoming available in
an increasing number of cases' '" through various
experimental techniques.

The present work, representing a first-principles
evaluation of the field gradient in metals, is an
attempt at answering the questions just raised
through a quantitative study of q, q in magnesium.
The choice of magnesium was dictated by two con-
siderations. First, a fairly detailed understanding
of its energy bands as well as hyperfine properties
is currently available. ' Second, it is a metal
that is somewhat intermediate between the two ex-
tremes represented by antimony and the transition
metals with respect to the density of states at the
Fermi surface which is directly involved in the
WGY mechanism.

In Sec. II we briefly outline the basic equations
to obtain q, & and q& «. The procedures to obtain.
the electronic wave functions and the effect of crys-

tal symmetry on contributions to q,& from different
bands are given in Sec. III. Finally, in Sec. IV,
we present the results of our numerical calculation
and discuss the relative importance of various con-
tributions to the EFG.

II. BASIC THEORY

The electronic contribution to q, namely, q, &
is

given by

q„= f p, (r) [(3cos 8 —I)/r ] dr

where the nucleus under study is placed at the ori-
gin. We will evaluate q, q in units of —e, the elec-
tronic charge. p, (r) is the total conduction-elec-
tron charge density at the point r,

p.(r) = 2 & Itc.'(r) I', (2)
np7

the sum on nk being over the occupied states only,
n being the band index, and the factor 2 coming
from the summation over the spin states. In the
present work, the wave functions („p(r) are linear
combinations of orthogonalized-plane-wave (OPW)
functions, for the calculation of which Falicov's
crystal potential was utilized. It should be noted
that this potential does not include the l = 2 and
higher components, the influence of which on q,&

is incorporated through the WGY mechanism.
In an earlier calculation ' we had observed that

the wave functions obtained by using Falicov's crys-
tal potential and the OPW procedure gave a value
of the Knight shift (K, ) which was about 50% of the
experimental value. On the other hand, wave func-
tions obtained by a pseudopotential method and using
the pseudopotential parameters of Kimball, Stark,
and Mueller" gave excellent agreement with the
experimental value of Z, . It therefore appears
that the OPW procedure underestimates the s char-
acter of the wave function of the Fermi-surface
electrons, particularly their contributions to the
spin. density at the nucleus. In spite of this limita-
tion of the OPW procedure, we have utilized it to
calculate q, & for the following two reasons: (i) The
pseudopotential parameters were obtained for elec-
trons at the Fermi surface and therefore are in-
appropriate for off-shell energy eigenvalues and
eigenvectors. Since for q,& we need the wave
functions for the entire occupied K space and not
just those for the Fermi surface alone, the pseudo-
potential parameters are inadequate. (ii) In con-
trast to K, , which requires the knowledge of the
wave function at a point in r space, i. e. , at the
nucleus, the EFG involves an integration over all
r values and should therefore be less sensitive to
the value of the wave function at a single point in
r space.

Since p, (r) is a periodic function, one can write

p, (r) = Z p, (r R,) . — (3)



THEORY OF NUCLEAR QUADRUPOLE INTERACTION IN. . .

It is convenient to separate the contribution from
p, (r) into two parts, p, (r) referringtothe electronic
charge density inside the cell containing the nucleus
and E,&0 p, (r —R„) from the other cells. The con-
tribution to q,& from the first part of the electronic
density, namely, q,&,„has been obtained using Eq.
(1) and calculated wave functions at 5400 R points
in the first Brillouin zone. The second contribu-
tion arising from the electronic charges in the other
cells can also be obtained directly using Eq. (1).
This contribution is best expressed as a fraction
of the lattice contribution q&,«. In magnesium,
this contribution is found to be less than 10% of

qlatt q ia)) (I Y ) (4)

The third contribution to q,&, q,», is given by

q&,«. The latter requires the replacement of the
integration in Eq. (1) by a summation ' over the
ionic charges at the lattice sites. For this contri-
bution, the polarization of the core electrons sur-
rounding the nucleus of Mg" ion, due to q&a«, has
to be included through a Sternheimer antishielding
factor' (1—y„). Thus qq, qq is related to q«„ the
electric field gradient at the nucleus due to an
array of divalent positive ions, by the relation

qa 3 = q ov = 2 "—qi:~(Bz) )&&Car l~'(3 «"e 1) l-t.z& &C.z l~ '(3«"8 1) l-(az&& —&&Ca. I&'(3 «"e I)-

~lc. » «(. l~ '(3cos'e-»lq-&&j, &5)

where (A) is the expectation value of the operator
A over an electronic state at the Fermi surface
and ((A)) refers to the average of the matrix ele-
ment (A& over the Fermi surface. It should be
noted that in Eq. (5) there is a coherence effect in
the sense that, although the angular part of (A) can
have different signs for different points on the
Fermi surface, that of the product &A& &B& always
has the same sign. Further, the first term of
the form ((A) (B» in the square brackets of Eq.
(5) is finite even for a spherical Fermi surface (in
the absence of the effect of the l = 2 component of
the potential). The second term, however, vanishes
for this case but is finite when the Fermi surface
is nonspherical and can give an opposing contribu-
tion to the first term.

III. CALCULATION

Contributions from different k points inside the
first Brillouin zone have been evaluated for all the
occupied bands. The electronic wave function for
a state k and band index n can be written in OPW
representation as

4C)~)=& ~.(~+ K) XLK —& (Ail)Xa K)bi)
K t

where gp, K is a properly normalized plane wave and

Q& are the core wave functions to which the plane
waves are orthogonalized. (Qq lyI,x) are the orthog-
onalization parameters. The contribution from
each state nk is separated into plane-wave and
core contributions, the former arising from only
the plane-wave components of the OPW functions
and the latter referring to terms in the integrand
in Eq. (1) involving products of core functions or
of plane waves and core functions. The core con-
tributions are further subdivided into P-P and s-d
contributions. The P-P-type core contribution is

TABLE I. Contributions to q,~ ~ from individual bands
in magnesium (in units of —eao ).

Plane
wave sd Total

1
2
3
4

—0. 003 40
0.00411

—0. 001 25
0. 00032

—0. 05463
0. 052 31

—0. 004 09
0.001 91

—0. 000 88 —0. 05891
0. 000 57 0. 056 99
0„00054 —0.004 80

—0. 000 08 0. 002 15

seen to dominate for each band since the core com-
ponents of the OPW functions involve the 2P wave
function of the Mg ions through orthogonalization„
For the s-d-type contribution, on the other hand,
the d component of the wave function arises from
the plane waves only and involves terms of the form
jz(k&) which have much less density near the nucle-
us than an atomiclike function. From Table I we
see that the plane-wave and s-d components of

q,&„are comparable. To understand the signs of
the contributions from the various bands, it is
helpful to examine the k dependence of q,&, &. Figure
I shows the k dependence of q, &, , for the first and sec-
ond bands which make the leading contributions to
q„, [Note that we have plotted q„,, from Eq. (1),
which does not include the factor —e, the negative
charge of the electron. The actual field gradient
should, however, include this negative sign. ] The
k dependence of q, &, , in Fig. 1 can be explained from
a consideration of the angular character of the
conduction-electron wave functions as expected
from symmetry arguments. For example,
starting from I"~ (s-like) point, where q, q, , is
expected to vanish, if one moves along the 4
axis to A, , the first band has &, (P,-like) symme-
try and therefore leads to a positive qe&, &. The
second band has d~ (also P;like) symmetry, but
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FIG. 1. Contributions to qeJ f as a function of k along different symmetry directions. The factor -e is not included
and the scale is arbitrary up to a constant multiplicative factor.

since it connects X"3 and A„both involving P, char-
acter, q,~, &

is also positive but much larger than
the contribution from the first &~ band. A similar
interesting situation occurs along the 1"K direction.
The first band has T, symmetry (s- and P, -P, -like)
and q,» is negative. The second band starting
from I

q has T2 (P,-like) symmetry leading to a
positive q„,, In the neighborhood of IkI = 0. 5ao',
)k ) being the length from l along the ZX line, the
T2 band leaves the Fermi surface and q, &, , falls to
zero. However, near the K point the second band
has T4 symmetry and therefore q, q, & is negative.
The sharp drop in q&, , from the second band in Fig.
I at Ik I = 0. 5aoi on the I'K line is thus the result
of the fact that the second bandin this direction con-
sists of two bands of different symmetry. Thus,
the signs of the total q, &, &

from the various bands
are a result of the combination of contributions of
opposing signs from various points in k space. In
addition, there appears to be a substantial cancel-
lation between the contributions from the various
bands. These cancellation effects emphasize the
need for a careful scanning of the k space and ac-
curate evaluation of the contributions from each
point in k space.

IV. RESULTS AND DISCUSSION

The lattice contribution to q has been evaluated
earlier for magnesium and we only quote the result.

q, &,, = 0. 0002eao .
The major electronic contribution that we have
calculated using OPW functions is

q,» = 0. 0046eao

(8)

As we see, q, &, &
is more than a factor of 2 larger

than the lattice contribution in Eq. (7).
For the WGY contributions, ' one needs the values

of the two terms in the square brackets of Eq. (5),
both of which require an averaging over the Fermi
surface. This averaging involves all four seg-
ments' of the Fermi surface, namely, the lens,
cigars, butterflies, and monster. For the first
term, the signs of the contributions from all four
segments are found to be the same (positive),
while for the second term, there is substantial
cancellation, the contributions from the cigars,
butterflies, and monster having positive sign and
the lens a negative sign. It was pointed out before
that the second term vanishes for a spherical Fermi
surface. For magnesium, we find that even after
cancellation between various segments of the Fer-

Using a value 4. 2 for the Sternheimer antishielding
for factor'6 (I —y ), we have

q&«t = 0. 0018eao

The electronic contribution q,&, ~ from noncentral
cell charge distribution was estimated to be
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mi surface, the second term is about 40%%uq of the
first term. The net values of the two terms in the
square brackets of Eq. (5) are, respectively,
5. 23ao' and 2. 14ao, leading to a value of 3. 0Sao'
which results in

qwop = —0. 0001ea03 . (10)

This is an order of magnitude smaller than q,».
On combining the three contributions to q, one gets

q t,&~&
——0. 0065eao

This compares very well with the value q,„,t
= 0. 0063eao that one obtains from the experimental
value' of e qQ for magnesium and the nuclear
quadrupole moment for Mg

' derived from atomic
quadrupole-coupling data in the excited 3s3p('P)
state.

The relative smallness of q«~ for magnesium,
where the density of states at the Fermi energy,
dn/dEs, is sizable, in contrast to the semimetal
antimony' for which the density of states is negli-
gible, indicates that for the WGY mechanism to be
dominant or comparable to the Fermi-volume
mechanism one requires a very large density of
states accompanied with substantial non-s (I 0 0)
character at the Fermi surface. The transition
metals with d bands near the Fermi surface for
which the WGY mechanism' was first developed
appear to be the most appropriate ones in this re-
spect. However, since in magnesium our calcula-
tions show that the Fermi-volume effect is about
two orders of magnitude larger than the contribu-
tion from the WGY mechanism, it is quite possible
that the Fermi-volume contribution from the d-
band electrons in transition metals can be compara-
ble to that contributed viathe WGYmechanism. This
question can be answered by actual calculations in
transition metals. In this connection, in rhenium
metal, which has 5d-band electrons, there seems
to be evidence" that a contribution comparable to
the estimated WGY contribution is needed to ex-
plain the experimental result.

In comparing the theoretical value of qt, t,& for
magnesium with experiment, too much significance
should not be attached to the near-exact agreement
between theory and experiment. The theoretical

value has an uncertainty of about 5%%up from considera-
tions of convergence of the Fermi-volume contri-
bution with respect to the number of OPW functions
occurring in the wave function. In addition, for
q, &,„we have not used any antishielding factor
because it is expected to be much smaller than
(1 —y„) and more in the nature of an atomic anti-
shielding factor (1—B). From atomic calculation'
of R one finds it to be of the order of 0. 1 and hence
the (I-R) factor will not change the band contribu-
tions appreciably. One might worry about the dif-
ferences in (1 —R) for different bands, particularly
for the two lowest bands. However, our analysis
of the wave functions indicates that both bands are
made up of R and 3P characters. They differ in
the relative mixing of these two characters, as
well as in the nature of their angular distributions,
namely, the relative amounts of 3P„, 3P, , and 3P,
characters. Since R depends on the interaction be-
tween the spherical 1s, 2s', 2P core and the 3P
radial density, independent of the angular charac-
ter of the latter, we do not expect (1 —R) to be
significantly different for the two bands.

As far as the experimental result is concerned,
there is also some uncertainty due to the influence
of neglected many-body effects on the atomic field
gradient in the 3s3P( P) state which was used to
derive the quadrupole moment Q of Mg, which in
turn was used to obtain q,„,t in the metal from the
experimental value of e'qQ.

V. CONCLUSION

In summary, the results of our calculation have
indicated that a first-principles evaluation of q
using actual wave functions in the metal does pro-
duce reasonable agreement with experiment in
magnesium. The nature of the various contribu-
tions to q indicates that the Fermi-volume contri-
bution q, &, , is the main contributor in nontransition
metals and can have either a positive or negative
sign. The WGY Fermi-surface mechanism is
expected to be significant mainly in transition met-
als with a large density of states at the Fermi sur-
face, but here also a quantitative evaluation of
q,~, & is desirable, as it may well be comparable to
qwoy ~
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