
PHYSICAL REVIEW B VOLUME 7, NUMBER 8 1 F EBRUARY 1973

Effect of Interchain Coupling on Electron-Spin Resonance
in Nearly One-Dimensional Systems

Michael J. Hennessy and Carl D. McElweet
Department of Physics, University of Kansas, I amxence, Kansas 66044

and

Peter M. Richardst
Depart'tment of Physics, Unive~si ty of Kansas, I-amxence, Kansas 66044

and Sandia Laboratories, A. /buquexque, New Mexico 87115
(Received 20 July 1972)

We present a theoretical and experimental study of the electron-spin-resonance (ESR) line
shape in Heisenberg linear-chain systems which have small but non-negligible interchain cou-
pling. Weak interchain coupling can drastically alter the characteristic one-dimensional line
shape as well as produce three-dimensional ordering below a critical temperature TN. Since
TN is observable in a majority of "linear-chain" compounds, the treatment given here has
broad application to ESR and structure studies. The rate for off-chain diffusion is propor-
tional to J'(J'/J), where J and J' are the intra- and interchain couplings, respectively.
This dependence comes from the slow rate of diffusion in one dimension. Interchain spin
flips then proceed at a rate considerably faster than would be expected on the basis of an an-
isotropic diffusion equation or transition probabilities. As a consequence, interchain coupling
can be very effective in limiting the one-dimensional divergences which produce a non-Loren-
tzian line. Measurements are reported in Cu(NH3)4SO4' H)O (CTS), CsMnC13'2H)O (CMC),
and CuC12 2NC&H& (CuPC). CTS has a Lorentzian line shape out to almost 14 half-widths,
which is consistent with our theory and the observed T~. The line shape in CMC is only
moderately non-Lorentzian. The value of J' required to fit the present theory to the line-
shape data is between 2 and 4 times greater than estimated from the observed Tz and spin-
wave spectrum in CMC. The line shape in CuPC is highly non-Lorentzian, from which we
estimate J /J = 2 & 10 . This is in reasonable accord with a recent measurement of Tz in the
compound.

I. INTRODUCTION

One-dimensional magnetic systems have been of
theoretical interest at least since the classic work
of Bethe' on the antiferromagnetic Heisenberg
chain. In recent years, the interest has become
considerably more than academic with the dis-
covery of compounds which exhibit one-dimension-
al magnetic properties even though the crystals
themselves are three dimensional. In particular,
the salt (CHS)4NMnCls, referred to as TMMC, has
been shown to be highly one dimensional.

Experiments on TMMC and other compounds have
provided detailed comparison with theories of
properties which are peculiar to one dimension.
Spin dynamics is one such property, and in the
high-temperature region where spin diffusion is
expected to characterize the motion, magnetic
resonance has proved to be a very useful tool. The
value of magnetic resonance stems from the fact
that the linewidth and line shape in strongly ex-
change-coupled systems are determined by the
long-time behavior of spin correlation functions
such as (S;(t)S;.(0)), where S'; is the z component
of spin at lattice site j. If this correlation function
behaves diffusively for long times t, then it is
proportional to t " for t-~, where d is the di-

mensionality, as results from solution of the dif-
fusion equation given the initial condition of only
the ith spin having a nonequilibrium value at t = G.

In one or two dimensions, there is thus a diver-
gence as w- 0 in the Fourier component of
(S;(t)Sf(0)) at frequency ~. This has profound
consequences, particularly in one dimension where
the divergence is stronger than logarithmic ~

Theories of exchange-narrowed magnetic-reso-
nance linewidth' ' predict the width ~H to be pro-
portional to the + =0 component of certain spin
correlation functions. If there is a divergence for
co- 0, then an anomalously broad line results and
the line shape is non-Lorentzian (a Lorentzian
shape is predicted if the z = 0 component is finite).
These features have been observed and striking
agreement has thus been obtained with the theories
of spin diffusion in one dimension.

The one-dimensional magnetic-resonance anom-
alies have previously been reported in systems for
which any off-chain coupling is possibly three or
more orders of magnitude smaller than the strong
intrachain interaction. A more common class of
"one-dimensional" compounds has measurable in-
terchain coupling J' as determined from the ob-
served temperature T„at which the chains order
antiferromagnetically. Although J' has a signifi-
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cant effect in ultimately producing three-dimen-
sional order, it does not alter the thermodynamics
at temperatures well above T~. Thus, it has
fortunately been possible to study one-dimensional
specific heats and susceptibilities in less than ideal
one-dimensional compounds. Two cases in point,
which we treat here, are' '" Cu(NHp)4804 HpO

(referred to as CT8) and CsMnClp. 2H, O (referred
to as CMC).

It is less clear whether spin dynamics of ma-
terials with small but observable interchain cou-
pling show the characteristic magnetic-resonance
signature of a one-dimensional system in the same
way that thermodynamic properties do. This
paper is devoted to an investigation of the problem.
We present quantitative theory for the manner in
which small interchain coupling alters the one-di-
mensional features and give experimental results
for the line shapes in CTS, CMC, and the recently
studied ' ' CuClp 2NC, H, , dichlorbis-(pyridine)-
copper (II) (referred to as CuPC).

The essential result is that one-dimensional spin
dynamics significantly alter the off-chain diffusion.
When this is accounted for, the linewidth and line
shapes both in CMC and in CTS are reasonably
well accounted for. In particular, we can under-
stand why CTS shows a Lorentzian line shape even
though the interchain coupling is quite small. This
feature has previously been unexplained and the
subject of some conjecture. '

We analyze the data in CuPC in a somewhat dif-
ferent manner. The non-Lorentzian line shape
gives, by itself, indication of the size of J'; and
in this way we can estimate the ordering tempera-
ture.

Another feature of this work is that we do not
limit ourselves to equal coupling strengths J& = J2
= J' in the two directions perpendicular to the
chain. The crystal structures of both CMC and
CuPC suggest that J,» J2 is a distinct possibility
so that the interchain coupling first makes the
system behave two dimensionally. Arbitrary ra-
tios of j, / jp are considered both in the line-shape
theory and in the relation between T~ and the inter-
actions J& and J~. Knowledge of.T„ together with
the line shape can fix separate values for J, and

jp, and we find that j,/ jp» 1 gives a, more rea-
sonable fit for CMC.

The paper is organized as follows. The general
formalism of exchange-narrowed line shape as
developed by others is reviewed in Sec. II. The
peculiar features of one dimension are stressed.
Section III contains the theory of how weak inter-
chain coupling affects the line shape. A largely
physical argument is given in Sec. III A and formal
details are presented in Sec. III B. Certain of the
approximations in Sec. III B are discussed in the
Appendix. In Sec. IV, we review the theory for

calculating the ordering temperature T~ in terms
of interchain coupling and extend it to the case of
unequal interactions J, and J~. Pertinent proper-
ties of the three compounds studied are reviewed in
Sec. V. For completeness, a discussion of how

dipolar interactions affect interchain coupling and

T~ is contained in Sec. VI. In most cases, how-
ever, they are not important. Our techniques for
measuring absorption far out in the wings of the
resonance line are discussed in Sec. VII. Experi-
mental results are presented and compared with
theory in Sec. VIII. Summary and conclusions are
found in Sec. IX.

II. LINE-SHAPE FORMALISM

Other authors ' have shown that decay of the
transverse magnetization may be approximated by

4(t)=exp[ J (t 7')$(-r)d7'],

where

iy(7) =h-'([X'(~), ~,] [/if, X'(0)])/(m, ZVC ) . (2)

In the above Q(t) describes decay of the transverse
magnetization in a frame rotating at the resonance
angular frequency ~0. The line profile at any fre-
quency ~ is then proportional to f dt Q(t)e' '" "p".
The quantities M, are the usual raising and lower-
ing operators for total transverse magnetization,
angular brackets stand for thermal average, and
$C

' is the perturbation —hyperfine or dipolar in our
case. Time dependence is given in the interaction
representation by

~p (~ ) (Ãpt/ p~s - kxpt/ p
)

where Ko is the unperturbed Hamiltonian consisting
of Zeeman and exchange parts

3Cp = h(up8, +Z j~/ 8; 8/ . (4)
f, j

The first term in Eq. (4) is the Zeeman interac-
tion of the z component of total spin S, with an ex-
ternal field Hp=~p/y, applied in the z direction.
(y, is the electronic gyromagnetic ratio. ) The sec-
ond term is the Heisenberg exchange interaction
between spins 5, and 8& on lattice sites i and j.
The exchange Hamiltonian commutes with all com-
ponents of total spin. A high-temperature approxi-
mation hap«ks 7 is implicit in (2) and the stated
relation between the Fourier transform of Q(t) and
the shape. The above equations have previous-
ly ' "bein applied to one-dimensional systems,
but it is convenient to review the results here.

We consider Q(t) in three cases.
a. No exchange ox motional nasroseing. Here

P(w) is independent of 7 since there is no random
modulation of 3C' (we neglect for the moment non-
secular parts of K' which have a simple e'"0' mod-
ulation due to the Zeeman interaction). Equation
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FIG. l. Orthorhombic
unit cell, defining axes and
interactions as used in this
paper. Chain axis is c,
Interchain couplings are such
that J(~42.

y(r ) = q(O) (~, /r )"'= (ti~') (~, /~)"'

for 7'» r, , then the result of using (5) in (1) is

y(t) e-(vt)

for t»v', , with

(1) then reduces to a Gaussian e '/~'~" " with-1/2(4+2)t2

(nod ) = $(0), the second moment of the resonance
line.

b. Norn". al exclza-nge narrow/ing. Here P(v ) de-
cays to a small value in a characteristic time v,
of the order of ti/J and f ~I&(7')dr is finite. For
t» r, an exponential dependence of /t/(t) = e "' re-
sults with v)= (h&u )w, . If (h~ )v, «1, the decay
of Q(t) is exponential over the region of experi
mental interest. The line is then I orentzian ex-
cept far from the center and has a half-width in
angular frequency units v/ «(b,v )'/ .

c. Inhibited-exchange nayyozving. This is the
situation for the linear-chain system. The cor-
relation function g(w) decays to zero but not fast
enough to guarantee convergence of f ~P(7 ) d~. De-
cay of P(t) will then be something intermediate
between Gaussian and exponential. In particular,
if g(r) is proportional to a spin correlation func-
tion (S, (r)S,'. ) which obeys a diffusion equation,
then in one dimension we expect t1/(7)-v ' for

If we now define v, by

III. INTERCHAIN COUPLING AND LINE SHAPE

A. Qualitative

The manner in which weak interchain coupling
alters the one-dimensional line shape is of prime
importance in this paper. To avoid confusion, it
is useful to establish notation at the outset. This
is done with the help of Fig. 1. The c axis is al-
ways defined as the chain direction. This often,
but unfortunately not always, coincides with crys-
tallographic conventions. For example the chains
in CuPC and TMMC are along the crystallographic
c axis; but in CMC they are parallel to the a axis.
Thus the reader should keep in mind, that for
CMC, our c axis is the a axis as used in the struc-
ture determination. A further source of confusion
is that although the chain axis in CTS was original-
ly defined as c, in a more recent study it has
been taken as the a axis. The principle directions
perpendicular to the chain are then taken as the a
and b axes. There is in general an interaction J,
between neighbors along the a axis and an interac-
tion J2 between neighbors along the b axis. We
adopt the convention J, & J2. It will often be con-
venient to discuss general features of interchain
coupling without worrying about whether J, = J2 or
J,»J2. In this case we refer to the interaction as
J'', with the understanding that J' = J, if Jy» J2.
The assumption J,«J is made throughout, where
J is the intrachain coupling.

It is instructive at first to see, in general, how

interchain coupling may or may not alter the line
shape. We imagine a characteristic time to beyond
which three-dimensional diffusion takes over, as
shown for il/(t) in Fig. 2. For times t& t, , the
relaxation function Eq. (1) has the one-dimensional

-(r~ )3/2form e ' ",since the observing time is less
than that required for manifest3tion of the inter-
chain effects, but for t& to it switches to an expo-

(4 )2/8 (n 2)2/Sr 1/3

Since we expect, once again, ~, to be of the order
of h/J; the quantity y/v/ is of the order of
(A&a~) '/3&, 3/3- (8/K')2/~» 1, which expresses the
ratio of the inhibited (one-dimensional) to the
normal exchange -narrowed relaxation rate.

The precise value of v, is related to the spin-
diffusion coefficient D. This quantity has been cnl-
culated by various authors'6 ' for both one and
three dimensions, and will be given later.

Note that for diffusion in.three dimensions $(7')
decays as 7 / and normal exchange narrowing
holds. ' In two dimensions the diffusive dependence
of |t (w) would be ~ '. This results in a weak log-
arithmic divergence, and the ratio between inhib-
ited and normal exchange-narrowing relaxation
rates is of the order of 1n(Z/K').

I/2

t,p

FIG. 2. Decay of autocorrelation function g(v'). For
times r &to one-dimensional 7- diffusion is cut off by
interchain coupling.
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The off-chain diffusion coefficient D' could then be

nential e "' with r/- y / &0/, since fo Q(v) dw

=f $(7')d7' for long times. The effect on line
shape depends on the size of yap, If Pp is suffi-
ciently long so that ytp +& 1, the relaxation function
Q(f) will have decayed to a negligibly small value
by the time interchain mechanisms become impor-
tant, and there will be no observable departure
of the line shape or width from the one-dimensional
behavior. But if yfo«1, P(t) will decay exponen-
tially throughout the region of interest and no one-
dimensional anomalies are expected.

The crucial question then becomes, "what is the
characteristic time tp'?" Considerations very
similar to those which lead to Eg. (7) show that
the rate to' is of the order of (J'/h) (J'/J)' s, which
is analogous to Eq. (7) if we identify (b,u&2), of
that equation, with J'' here. To understand quali-
tatively how this result comes about we regard Ip'

as the characteristic rate for the spin polarization
making a transition off the chain. By analogy with
the treatment in Sec. II, we may define a relaxa-
tion function

(j(t)=exp[- f (t-7)y(~)dv], (6)

which describes decay of spin polarization along
the chain. That is, y measures the manner in
which a spin-fluctuation mode is deviated from one-
dimensional motion or diffusion [a formal defini-
tion is given in Eq. (21)], and to is thus given by
the characteristic decay rate of P. The function
g(7') is rela. ted to J' by

g(&) (J'/@)'g(&),

where g(0) = 1 and time dependence of g(v ) is gov-
erned by the unperturbed motior. which in this
case is diffusion in one dimensiG. .. Hence we have
cast the problem of interchain-transition rate into
the standard form for relaxation by a perturbation
J'. Now the argument proceeds exactly as for the
three cases presented in Sec. II. If g(v) is con-
stant in time, corresponding to no interruption of
the off-chain motion by intrachain spin flips, then
to' J'/h. If g(7-) decays in a time of the order of
8/J and sufficiently rapidly that f g( )d7r con-
verges, then we have the usual narrowing result
to'- (J'/h) (J'/J'). For diffusion in one dimension,
though, we expect g(r)- (hv/J) '/~ for long times,
and thus the characteristic rate would be tp'
- (J'/I') (J'/J)'/, by reasoning identical to that
used in arriving at Egs. (6) and (7).

The result to'- (J''/jf) (J'/J) had been used pre-
viously' ' and was based on the assumption that
interchain-coupling effects could be described by
an anisotropic diffusion equation

In this subsection we give more formal justifi-
cation for the previous remarks about interchain
effects and derive an expression for the resulting
line shape.

We wish to calculate the wave-vector-dependent
time-correlation function (S;.(t)S', (0) ), where

~-1/2 Q Sz &q ~ r/y8

Sz(f) 8&3!g/h Sz - &Xpt/h

with 3Cp given by the fully three-dimensional Heisen-
berg plus Zeeman Hamiltonian of Eg. (4). Since
the Zeeman term commutes with 3Cp and with S', it
may henceforth be neglected. We then write

+0 C ++I

in which

Xc =2JZ S, S,„
(14)

is the Hamiltonian describing a set of independent
linear chains (r„,=—r, + c2, where 8 is a unit vector
along the chain axis and e is the nearest-neighbor
intrachain spacing), and the perturbation

3' =Z G&/S~
'

S/
$1

(16)

estimated from moments of the spin correlation
functions in the usual way'~' as

gy ~ iim (( R)8/8/( 4)l/a)I/ ?

q p

where the constant of proportionality is of the or-
der of unity and where (&u,") is the nth moment of
the spectral density of P, / (S', (&)S/) e"''~/. Exam-
ination of the high-temperature moments then
shows that D'- (J' /SJ)a for J' «J; in agreement
with the above remark.

The error in the reasoning of the above para-
graph, based on anisotropic diffusion, is that the
one-dimensional correlations do not decay rapidly
enough to allow one to apply the conventional ran-
dom modulation or Golden Rule approaches to cal-
culation of the rate I~'. Also, as we show below,
the correlation (8f(f)S/ ) does not decay as f 3/2

for t» to, as would be expected from Eq. (10). In-
stead, we find a more rapid t decay so that, for
J' «J, the characteristic time dependence of
three-dimensional diffusion is not realized.

Since J' «J, there is a big difference between

to - (J'/5) (J'/J) and to'- (J'/8) (J'/J)' 3. The
former estimate gives ytp-1 for CTS and thus
predicts a decidedly non-Lorentzian line shape in
that material. The latter results in yap«1 for
CTS and thus a Lorentzian line, which is in agree-
ment with experiment.

B. Quantitative
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6 (t) = eixc t/h Q(0)e-ixc t (19)

has a time dependence given strictly by the intra-
chain Hamiltonian. The equation of motion for
S', (t) is

gives the interchain coupling (G,&. =0 if i and j are
on the same chain, and G, i= Ji~ otherwise). An

interaction representation is introduced whereby

Sg(t) ixct~h Ss(t) ixcith

We assume sufficiently high temperature that K,
has no effect on the thermodynamic properties.
Then X~ may be commuted through the density ma-
trix in the calculation of the thermal average
(S (t)S (0)) so that

(s;(t)s', (o) ) = (s;(t)s', (- t) ), (16)

where, for any operator t9,

12' "=s(s.l)
x)~ (s, (~)s', , (0))'

I G, —G, , l', (26)

where

Because of the interchain nature of Xl, the four-
spin correlation functions such as

&s,.'(~ )s,.(~ )s,'(o)s, (o)),
which result from Eq. (25), are such that i, j, k,
and l cannot belong to the same chain. Hence, the
decoupling implied by (S, '(r)s, ,(0)) in Eq. (26)
is exact here. The quantities S',. are the usual
raising and lowering operators, and isotropy
[(S,"(T )Si(0)) = 2 (Si(7 )S&(0))] has been assumed.

For the orthorhombic lattice of Fig. 1, we have—s'(t)= —' [R (-t) s'(t)]
dt ~ 8

(2o)
G, = 2J, cosq„a+ 242 cosy, b . (27)

The correlation of S,'(t) is defined in terms of a
relaxation function p, (t) by

&s,*(t)s',(o)) = &s,'s', &9,(t) . (21)

where

g, (7)=ti '([3C (v), [K, , S;]]S',)/(S,'S', ) . (24)

In the high-temperature limit, the factors may
be rearranged to yield the more convenient form

y, ( )=re" (X,(~)[[X„S,'], S' ])/(S S ) (25)

which may then be expressed in terms of spin
time-correlation functions. The steps used in
going from (20) to (21) and (24) are the same as
used in deriving the fundamental Eq. (1).

Evaluation of the commutator in Eq. (25) to-
gether with Eq. (16) then yields

We then assume that Eq. (18) may be reduced to

(s;(t)s', (o) ) = (s;(t)s', (- t))

=(s;(o)s', (- t)) y, (t), (22)

which is equivalent to replacing S;(t) by S,(0)p, (t).
This approximation has the advantage of leading to
a form in which (S;(t)S',(0) ) is a simple product
of the unperturbed (linear-chain) relaxation func-
tion and a relaxation function governed by inter-
chain effects. It is an approximation in the sense
that it neglects correlations between derivatives of
S,(t) and of S,'(t). However, it is correct to order
t2 in the high-temperature limit and thus preserves
the second moment, as shown in the Appendix.

The equation of motion (20) is iterated in the
standard way, ' and thus we obtain in the long-
time —short-time approximation

P, (t) = exp[- f (t —v )g (r ) d~], (23)

We take the diffusion limit

(s;(~)s', (0) ) = —,
' s(s+1)e (26)

appropriate to high temperature and small q, .
Since G, depends only on q„and q, and (S;(w)s', (0))
depends only on q, , the summation in (26) is readi-
ly performed upon converting it to a three-dimen-
sional integral over the first Brillouin zone of an
orthorhombic lattice. The final result is

6 s(s+1)
P (~)=-

@ 3 1/2 2D~ 2

(j,(r) = exp(- (7/to)'~ [1 —cosq„a+ n2(1 —cosq, a)]},
(30)

where

(31)

and

o. = J2/Ji . (32)

Equation (31) gives formal definition of the charac-
teristic time to. Since D/c is proportional to J,
this definition is consistent with the predicted de-
pendence to'~ J,(J, /J)'~ based on the qualitative
arguments of Sec. IIIA.

&&[J&(1 —cosq„a)+ Jz(1 —cosq, b)] (29)

for Dv(ii /c )» 1, sothat theupper limits of the q,
integral may be extended to + ~. The v' ' depen-
dence is expected from the qualitative arguments
of Sec. IIIA.

The relaxation function p, (T) is obtained by per-
forming the integration required in Eq. (23) with

~p, (v) given by Eq. (29). We have, in terms of
dimensionless variables
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where

J,=Dr,&'(1 —3cos 8,, )e "' "(& . (38)

Note that the decoupling employed here is not ex-
act, as it is in Eq. (26), since all spins can belong
to the same chain.

In the neglect of interchain-dipolar interactions,
we have simply

=2(1 —3 cos 8).c cosq, c, (37)

where z is the chain axis, which makes an angle 8

with respect to the applied field. Since Dt(v /c )
» 1 for times of interest, we may further take
cosq, c=1 for values of q, which contribute appre-
ciably to the sum in Eq. (35). As a result of these
simplifications, we find that P, (7 ) is proportional to

P, (S;,(~)S', ), so that upon using Eq. (33), we
have

p, (~)=y, (0) 8 a
tc I'"

-s/c

w(i /a
- 2D

dq, e 'D' '
dq„

"-e/c

The final desired result from Eqs. (22) and

(28) is

(S;(7-)S', ) = ', S-(S+1)s '-"'$, (~), (33)

with p, (t) given by Eq. (30). We must now relate
(S;(v )S', ) to the function (Jr(v ) which, from Eq. (1),
describes the ESH line shape. For most systems
of interest the secular part of the dipolar interac-
tion dominates, and this gives

2'7 A N

iJkl

x (1 —3 cos 8, ) (S'(T)S&(v)S'„(0)S,(0)),
(34)

where the subscript d denotes the dipolar contri-
bution, y, . is the electronic gyromagnetic ratio,
and 8,&

is the angle between r, i and the applied field.
The nonsecular (d M =+ 1, + 2, where LM is the
change in magnetic quantum number) terms do not
contribute to one-dimensional anomalies since
they contain Zeeman-frequency modulation factors
which remove the divergence of f ((((r) dv. This
point is discussed in Hefs. 8 and 15.

Decoupling the four-spin correlation function in
Eq. (34) then leads to

27 yhN
((„(v)=—' ~ ~Z, ~'(S,'(~)S', )', (35)

x I (2(w/t ) )I (2a (7'/t ) ), (39)

where ta and o are defined in Eqs. (31) and (32) and
where Io is the zeroth-order Bessel function of
imaginary argument. The assumption Dr (7(z/cz)

»1 has been made so that the upper limit of the q,
integral may be extended to infinity.

For 7' «to, the Bessel functions and the expo-
nential are unity so that P~(7') is proportional to

, the one-dimensional diffusion result. For
v» to and n» to, the asymptotic expansion
fa(z) = e'/(2vz)'~ may be used to show that ~P, (7 )

2; whereas three-dimensional diffusion —even
anisotropic as in Eq. (10)—gives a 7 a~a decay for

If J& is much greater than J2, so that
e «1, there is a region for which v'0 «~ «z
Here the decay is proportional to r '
since only J, is effective in producing off-chain
motion.

Equation (39) may be used in Eq. (1) to obtain
the relaxation function (t((t). We show the related
quantity j~ (t —v)~P„(r)dr/P in Fig. 3 for two val-
ues n=1 and c(=10 . A change from Q(t) decay-

)3/ 2
ing as e ' to the slower e ' is seen, as expected,
for t-to. Specific computed line shapes from Eqs.
(39) and (1) are shown along with the experimental
data in Sec. VIII.

IV. INTERCHAIN COUPLING AND T~

A one-dimensional system with short-range in-
teractions can have no long-range order at finite
temperature. Hence, any ordering effects must
be attributed to interchain coupling, and the value
of the transition temperature T„can tell some-
thing about the strength of J'. The most reliable
estimates of T~ in terms of J' probably come from
random-phase approximation (RPA) and other
Green's-function schemes. These may be put in
the form

I.O—

c(l

KJ

C

' Oi

t n'/b ~ a ~ a ~ s il s i ~ s a a ~ al I I a ~ I s a ~

dq, [(j,(v )j (38)

() ('(0) (c e-stl )ti &i
2 1/2

~" ' =2m"' 2D

X
"-n'/b

after converting the summation to an integral. The
integrations may be performed exactly with y, (v)
given by (30). The result is

I.O

FIG. 3. Logarithm of relaxation function divided by
t3~2. Here —1n((((t) = f t (t —v) (t(z(v) dv and is normalized
so that —in@(t)/t =1 for t 0. The dipolar correla-
tion function P&(v) is given by Eq. (39) and the charac-
teristic time t by Eq. (31). The curves give an
asymptotic t ~ 2 dependence, which means —1 n((t(i)~t,

i.e. , an exponential decay.
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QT~/J=s S—(S+1)f/I,
where

(40)

I= f due "'"&'"2'"I,(o.&u)IO(o,u)I, (u), (43)

which can then be integrated numerically for a,r-
bitra. ry a, and n~. We have done this and found

I= 0.64(J/J, )' [1+0.253 ln(J, /Jq)]

for J/J, »1 and J,/J, &1.
Equation (44) can then be used together with Eq.

(40) to determine J~ and J~ for any observed value
of jh~T„/J.

(44)

V. PROPERTIES OF CTS, CMC, AND CuPC

We review below the evidence for linear-chain
behavior in the specific compounds studied. Crys-
tal structures, estimated linewidths and, where
possible, magnitudes of interchain coupling are
also considered.

A. CTS

The specific heat and susceptibility ' of CTS
have been shown by Griffiths'o to conform to those
of a spin- —,

' linear chain with J/ke = 3. 15 K. Anti-
ferromagnetic ordering occurs at a temperature
7 =0.43K.

I= X-' E [1 —J(q)/J(0)]-', (41)

in which J(tI) =
pz J&z e "' '&s. The quantity f is a

factor which depends on the decoupling and is given
by f= 1 for HPA, f= 1+ [(8+1)/3S][(I-1)/I] for
Callen decoupling and f= 1+ [(S—1)/3S] [(I-1)/I]
as suggested by Tahir-Kheli to obtain agreement
with Pade approximates for the critical tempera-
ture in cubic ferromagnets. Green's-function the-
ories predict the same transition temperature for
ferromagnetic and for antiferromagnetic interac-
tions, which are rigorously correct for classical
spins. Bushbrooke and Wood" have shown there is
about a 13% difference between antiferromagnetic
and ferromagnetic transition temperatures for spin-
—,
' and simple-cubic lattice. The difference drops
to l. 3/o for spin —,'. Thus, there should not be a
serious error in applying, for example, the Tahir-
Kheli values off to an antiferromagnet.

The integral I has been obtained analytically by
Montroll for the case J, = J~. Independently,
Oguchi calculated it numerically for J, = J& and
made the original estimate J, =10 2J for CTS with
f=1 and the then known figure for T„. For ar-
bitrary values of J, and J„we have

1 dxd$ dz
1 —cosa+ n, (1 —cosa) + n~(l —cosy)

(42)
where n, 2= J, 2/J«1. As shown by Montroll, this
can be converted to

The pertinent crystal structure as viewed along
the chain axis is given in Fig. 4. We show only
those ligands which are the most likely to take part
in interchain coupling by superexchange along hy-
drogen-bond paths. a From the figure, we note
that the distances Cu&-Cu2 and Cu, -Cu4 are ap-
proximately equal. Also the segments of the Cu-
N-0-N-Cu paths are about the same for Cu, -Cu~,
Cu2 —Cu4, and Cu2-Cu3 coupling. Hence, a simple
two-dimensional structure which is perhaps most
applicable to interchain coupling in CTS is a tri-
angular lattice, rather than a rectangular one.
The triangular lattice with equal coupling J'(6) to
six nearest neighbors should not give much differ-
ent results than the square lattice with equal cou-
pling J'(4) to four nearest neighbors. We can esti-
mate the effect on the characteristic time to as fol-
lows. Assume, consistent with the integrand in
Eq. (42) for small q, that T~ is a function of
ZJ'(Z) where Z is the number of interchain neigh-
bors. Then we have

J'(6) ='-J'(4), (45)

where J'(6) and J'(4) are, respectively, estimates
of J' for a triangular and square lattice with the
same T~. From Eqs. (26) and (29) we can deduce
that

(Z[J'(Z)]']'" (46)

should be approximately correct. Hence by com-
bining (45) and (46), we see that

to(6)/to(4) = (-'P" = 1.3, (4V)

where to(6) and to(4) are, respectively, the charac-
teristic times for triangular and for square lat-
tices, given the same intrachain coupling J and
Noel temperature T~. (By referring to triangular
and square lattices we mean, of course, only that
portion of the three-dimensional lattice which de-
scribes planes perpendicular to the chain. )

Since Eq. (47) shows that there is likely to be
only a 30% difference in to between assuming a
square or a triangular lattice, we approximate
CTS by the square lattice for convenience. The
important point is that the structure suggests a
fully two-dimensional (roughly equal couplings in
the x and y directions) interchain coupling. Wheth-
er the coordination number is 4 or 6 is of rela, -
tively minor consequence.

Values of J, = J2= J' are given in Table I for the
various choices off discussed after Eq. (41). As
mentioned above, equal coupling to four nearest
neighbors is assumed. The quantity $0, defined
in Eq. (31) gives the time at which the decay
ceases to be characterized by one dimensional dif-
fusion. It is determined from J& once D is known.
Here we take the Tahir-Kheli and McFadden re-
sult"
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1 ~&~ 1 cu
4714

1~4~1cu

FIG. 4. Structure of Cu(NH3)4SO4' H20 viewed along chain axis. Cu ions are shown in one plane only. Darkened
sulfate groups lie above the plane, lightly shaded ones lie below the plane. Nitrogens with "+"are above the plane, those
with "-"are below the plane. Only a few of the several N-0 paths in the likely Cu-N-0-N-Cu superexchange linkages
are shown, as indicated by dashed lines. They contribute to Cu —Cu interactions J;& as indicated. By symmetry J23 J34
and J~4= J~2, but J~4& J23 in general since there is not a mirror plane between 2 and 4. Plus (+) and minus (-) signs on
nitrogens are reversed in plane immediately above and below the one shown. N-0 distances for superexchange (and

hydrogen bonding) paths vary between 2. 978 and 3.183 A (Ref. 22). Cu-Cu distances are 443 =rf4 v33 r34=6. 968 A,
r34=7. 069 A. Not shown are H30 molecules, through which intrachain superexchange is believed to take place.

D=s' j /)3 (48)

for spin- —,'. Vse of (48) in (31) then leads to values
of Pp shown in Table II.

The relaxation rate y is related to the ideal one-
dimensional half-width at half-maximum LH, &, by

r = y. nH», /1 44, . (49)

where y, is the electronic gyromagnetic ratio and
the factor of 1.44 comes from the e '"" decay.&„,&3] a

(The factor would be 1 for a Lorentzian line and
1.67 for a Gaussian. ) The width LH, &3 is equal to
the observed width ~H, &2 only in the absence of
interchain effects. Its calculation is subject to
several uncertainties. Equations (1), (35), (36),
and (39) predict a full dipolar width 243H» 3

= 135
Oe for the field H applied along the chain axis. In-
cluded in this figure is an 11% contribution to F,
from interchain-dipolar coupling. However, the
same equations overestimate the width in TMMC by
about a factor of 1.7, and we expect aH, &~=bdE, + for
TMMC. Dividing by a factor of 1.7 then. reduces
the one-dimensional dipolar width to 80 Oe, which
is tantamount to scaling the width in CTS to the

observed width in TMMC —taking account of the
different spin values, J's, and lattice constants.

Recently, the salt his-(N-methylsalicylaldimin-

Cu (NH3) 4SO4 ' H20
(CTS)

CsMnC13 2H20 CuC12 '2NCSH5
(CMC) (CuPC)

J/kg
TN

Jg= J2
J,/J (aPA)
J,/J (C)
Jg/J (TK)

Jg=10J2
Jq/J (TK)

Jg = 100J2
J,/J (TK)

3.15 K
0.43 K

7.6x 10 3

2.2x 10-'
1.5x 10-'

3.0 K
4.89 K

7, 9x 10 3

4.1x 10 3

5.8x 10-3

1.5x 10-2

2.6x 10 2

13.6 K
1.135 K

2. 8x 10-'
1.5 x 10-3

5.7x 10 3

TABLE I. Intrachain coupling J and Noel temperature
TN for CTS, CMC, CuPC. From these numbers esti-
mates are shown for interchain coupling based on random-
phase-approximation (RPA), Callen (C), and Tahir-Kheli
(TK) methods. For CTS and CuPC figures are only for
J,=J,, while we also consider J,=10J, and J&=100J, for
CMC. [See Eq. (44) and accompanying text. ]



938 HENNESSY, Mc EL%EH, AND RICHARDS

TABLE II. Experimental and theoretical linewidths in CTS and CMC.

CTS

CMC

2~$/2 (expt)

40 Oe

230 Oe

2~(/g (theory)

75 Oe

490 Oe

Jg= J'2, RPA
Jg= J2, C
Jg= J2, TK

Jg =J2, RPA
Jg= J'2, C

J(=J2, TK
Jg =10J2, TK
J( = 100J2, TK

to (sec)"

1.8x10 ~

9.6x 10"
6.9x 10

4.9x 10" 0

1.2x 10-'
7.5x 10-~o

2.1x 10-"
1.0 x 10-"

0.8
4.3
0.32

1.5
3.5
2. 2
0.64
0.32

2~&/2 (theory)
(Oe)

43
72
28

340

370
306
240

'This work, field parallel to chain axis. Room temperature, 8.68 GHz.
Obtained from Eq. (31) and values of J& given in Table I.

is the decay constant for the pure one-dimensional relaxation function e"' . It is related to ~&/2 by y=y~~f/2
1.44, where 2~(/2 is the theoretical full width in the absence of interchain coupling. (y, =1.76x 10 sec 6" is the
gyromagnetic ratio for free-electron spins. )

"Chosen to give near-Lorentzian line for Tahir-Kheli {TK) value of Jg/J.
Obtained by scaling with observed width in TMMC.

ato)-copper (referred to as CuNSAL) has been
shown to have a one-dimensional line shape. The
structure of CuNSAL also suggests that it should
be as nearly a one-dimensional system as is
TMMC. Since it has the same spin and J value as
CTS, it would seem most reasonable to predict the
width of CTS by scaling to that observed in
CuNSAL. We have 26H, /~= 240 Oe in CuNSAL,
and the interchain distances in CTS and CuNSAL
are in the ratio 5. 33/3. 33. This method then
predicts 26H, /2=37 Oe —since AH&» scales as

—which is nearly equal to the observed width.
However, AH, /~ = hH, /2 should not be correct for
CTS since a Lorentzian line is observed.

A further complication is the large hyperfine
coupling in CTS. Rogers has deduced a hyper-
fine constant A„= 0. 02 cm ' from ESR studies of
the Cu(NHB)4' ' complex in a glass matrix, where
the subscript II is for the component parallel to
the tetramine axis. This converts to a predicted
one-dimensional linewidth 26'/p = 53 Oe due to
hyperfine coupling alone. '3

Thus there appears to be considerable latitude
in the "reasonable" values one might assign to y.
A possible source of the difficulty may be nondi-
polar interactions such as anisotropic exchange
which could be prevalent for the non-S-state Cu"
ion. We have taken y=4. 5&10 sec ', which cor-
responds to 2~H, /2=75 Oe. This choice is moti-
vated by the fact that it is about the largest value
of y which can give a Lorentzian line of the ob-
served width 26H, /2=40 Oe for any J, shown in
Table I. The resulting products yt~ are given in
Table II along with the predicted linewidths.

B. CMC

The susceptibility of spin- —,'CMC has been mea-
sured by Smith and Friedberg' who obtained J/k~

4L1F

CO
Cd

Mn &LlF
7285)(

FIG. 5. Representation of CsMnC13 ~ 2H20 (CMC).
View is projection onto a plane perpendicular to the chain
axis. Probable superexchange paths for interchain cou-
plings J& and J2 are shown.

=3.0 K by comparison with Fisher's' exact results
for the classical-spin Heisenberg antiferromagnet
and with interpolations for large, finite spin.
Antiferromagnetic ordering ' occurs at 7.'„
=4. 89 K.

The structure viewed along the chain axis is
shown in Fig. 5. The lattice of magnetic ions is
orthorhombic apart from a small zig-zag of the
chains which we ignore so that the theory of Secs.
III and IV may be applied directly. It is probable
that J&» Ja, as may be seen from the distances
given in the figure. The interchain-superexchange
linkage is likely to be Mn —0—Cl —Mn for both J,
and J, . A simple r ' dependence of J» upon
Mn-Mn separation r would then predict J, /J~ = 11.
Estimates ot 8, for various ratios J, /Ja are pre-
sented in Table I, where use has been made of Eq.
(44) to obtain 8, for a particular value of J, /J, .

The Tahir-Kheli and McFadden diffusion constant
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II
L

w r

FIG. 6. Structure of CuC12 2NC, H5 {CuPC) viewed
along chain axis. Cu-Cu distances and N-Cl part of
likely superexchange paths are shown.

is D=4. 34 Jca/k for spin S= —', . This number is
used in Eg. (31) to arrive at the figures for to in
Table II.

Skalyo et al. have done neutron scattering below
the ordering temperature and find J, + J2=6. 8
x10 J'(J, , J2, and J are in our notation, which
differs from theirs) from the spin-wave spectrum
for q, =0. The estimates in Table I all give higher
figures for J, + J2, but they are of the same order
of magnitude.

The relaxation rate is determined by scaling with
the observed width in TMMC, which is 2b, H, /2
= 1360 Oe for the field along the chain axis. Since
CMC and TMMC have the same spin and have S-
state magnetic ions, for which classical-dipolar
coupling should be valid, this appears to be a
reasonable procedure. Furthermore, hyperfine
coupling is unimportant for Mn" ESR widths be-
cause the large spin-& gives greatly added weight
to the dipolar term. Thus, for CMC, there should
not be the uncertainties associated with estimating
the CTS width. We then have 2nHq~z=1360(3. 25/
4. 53) (3/V)'~ =490 Oe for CMC, upon using 3. 25
and 4. 53 A as the intrachain distances in TMMC
and CMC, respectively, and taking J/ka =7 K as a
representative value' for TMMC. The resulting
values for to are given in Table II.

C. CQPC

The susceptibility' of CuPC has been measured
down to 1.3 K and fits that of a spin- —,

' Heisenberg
chain with J/ka = 13.6 K. Specific-heat data' down
to 2. 0 K give J/ka =11.5 K. No ordering transi-
tion has yet been reported in the literature; how-
ever, very recent specific-heat measurements by
Duffy3 and Strandburg indicate that T„=1.135 K.
The structure viewed along the chain is presented
in Fig. 6 and is suggestive of J, =3J, based on an
y

' dependence as discussed for CMC.
This work was completed before we were aware

of the value ' of T„ in CuPC. We therefore
adapted a different analysis technique than used for
CTS and CMC. In those materials we predicted
line shapes from the observed Noel temperatures.

There are three main ways in which interchain-
dipolar interactions can affect results and their
interpretation. We discuss them here and make
specific applications to CMC. They are (i) intro-
duction of a nonsecular contribution to the relaxa-
tion function &f& (f) when Ho is along the chain axis,
(ii) contribution of the isotropic part g gaS, SJ /
r, &

to an effective interchain-exchange coupling for
limiting one-dimensional diffusion, and (iii) effect
on the Noel temperature. We find in all cases that
such dipolar coupling is relatively unimportant
compared with nearest-neighbor interchain ex-
change.

(i) The nonsecular part of the dipolar interac-
tion comes from the terms giving rise to M =+ 1,
+ 2 changes in the Zeeman quantum number. It

$3/2does not produce an e ' decay of the relaxation
function since the spin correlation functions are
modulated by an 8'""0' factor which guarantees
convergence of f, $«f(~) d~, where g„(~) is the M
00 contribution to «)«(w). Hence we expect to find
an exponential decay rate «1„resulting from g„
which should be given by

= MM «/J (50)

where M2"' is the second moment due to the MWO

part of the dipolar interaction and 4 is a constant
of the order of unity. The form of Eq. (50) is con-
sistent with a decay of «)«„(v) in a characteristic
time I/&u, of the order of I'/J. It is also assumed
that ~0« ~„so that g„ is essentially independent
of &0. This is fairly well satisfied in the com-
pounds studied here. The second moment M2"'
is given by

MP' =-.' y.'a' s(s+1)

xgy, f6(sin 8,&+10sin 8,&
cos 8,&), (51)

where we have combined all the MWO terms into
one expression.

It is evident that M2"'=0 for a true linear chain
when Ho is along the chain axis. For a material
such as CMC, however, M,'"' can be appreciable
even at 8=0 because of non-negligible interchain
dipolar coupling. We have calculated the ratio

M'0'/M'"' = 4. 1 (52)

For CuPC we used the line shape as previously
reported and reproduced in this paper to estimate
7„. This analysis is presented in Sec. VIII. Be-
cause of the aforementioned difficulties with Cu"
in CTS, it is hard to give a meaningful prediction
for 26H, /2. We do note, though, that scaling with
the observed width in CuNSAL gives 26Hj/2 = 80
Oe, which agrees well with experiment (see Sec.
VIII).

VI. INTERCHAIN-DIPOLAR COUPLING
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y = a'Pvz'"]" '/(z/I)"'

and thus we expect to find, for TMMC,

(53)

for CMC at 8 = 0, where M2 ' is the secular part of
the dipolar second moment, which is given by Eq.
(51) with the quantity in parentheses replaced by
(3 cos'8,

&
—1)'.

Uncertainty as to the constant 4 makes it some-
what difficult to give a reliable calculation of g„
starting from Eq. (1). Rather, we choose to esti-
mate it by a simple scaling argument based on

comparison with the situation in TMMC. The rea-
soning is as follows.

The one-dimensional relaxation rate y is given

of the dipolar Hamiltonian, it can give rise to ef-
fective values of J& and J~ to be used in the formula
of Sec. III. We estimate the size of these terms
by noting from Eq. (26) that an interchain interac-
tion G,&

enters into the expressions as

& '~ IG, -&, ,I'=» I«, I'(I —cosq r,.~),
(»)

where we have assumed inversion symmetry.
Since we are interested only in that part of G„
which produces variations in directions perpendic-
ular to the chain, we take q, =0 and, further, con-
sider only interactions with the chains at x = + a
and y =+ b. Thence the effective dipolar contribu-
tions to interchain coupling are

y(8=0) L' 3
T)„(8= 55') k 2 [M,'"]' ' (54)

oo g/P

tf g a oo

(5aa)

where the factor —,
' results from the ratio of M~ '

at 8=0 and M~™at 8=55', namely,

(3cos 8 —1) I, 0/(10sin 8cos 8+sin 8)I,
Since Ma~0' is proportional to c and since the spin
values are the same for CMC and TMMC, the
scaling relation is

h/T))cMc
[y(8 = 0)/q„(8 = 55')],„,

4 53
~ 4' 1(~CMC /~TMMC)

where we have used Eq. (52) and the ratio 4. 53/
3. 25 between intrachain distances in CMC and
TMMC. The experimental value [y(8=0)/
q„(8 = 55')]TMMC = 4. 7 is obtained from the litera-
tures upon accounting for the relation Eq. (49) be-

-(r~)3~ '
tween y and dH for an e ' " relaxation function.
We take JcMc /JTMMC =+T for the ratio between ex-
change constants ' '" and thus arrive at

y/ri =14 for CMC at 8=0 .

The relaxation function calculated in Sec. III B
should then be multiplied by e "' to account for the
nonsecular terms. We have calculated the line
shape in CMC at 8=0 with this factor included for
g =~&y and find that there is negligible effect in the
range of experimental data.

There is a non-negligible effect at 8 =cos '(1/
v 3 ) where the interchain-dipolar coupling can pro-
duce a nonzero secular term, as is evident from
Eq. (34). The same scaling argument as used
above then predicts y/q = 1 for CMC in this case.
There is then a slight non-Lorentzian character to
the line even at the magic angle, which is shown

by the dashed curve in Fig. 9.
(ii) Since there is an isotropic part

+d, oxoh 2g PB ~ rf j Sf (55)

+gg=pg gs + (pPC +b ) (58b)

where the additional subscript "d" indicates di-
polar. Evaluation of the summations for CMC
yields

Jld = 2. Ox 10-3J

J2~ = 1.1 && 10 J
(59a)

(59b)

for J/ks =3.0 K. These values are close to an or-
der of magnitude smaller than what are required to
explain the observed line shape in CMC (Sec. VII).

We have also examined the effect of dipolar cou-
pling on the interchain-exchange constants as de-
termined by Skalyo et al. from the spin-wave
spectrum. Here we use previously derived for-
mulas to calculate E —Eo, where Ez is the spin-
wave energy at the zone-boundary wave vector
(w/a, w/b, 0) and Eo is the energy, at zero wave
vector.

We find that the observed Ez —Eo is too large to
be explained by dipolar interactions alone and that
the value of 8, + J'z (our notation) quoted by Skalyo
et al. is not significantly altered, where J, and

J~ are taken to be nondipolar in origin. Note that
lattice sums of the form

Z& r,, (3 cos 8,&

—1)e

rather than the type given in Eqs. (58), are re-
quired for computation of E.

(iii) Dipole interactions can also contribute to-
ward stablizing long-range order and thus affect
the Noel temperature. One way to estimate this
effect is to compute the mean field experienced by
a spin due to interchain-dipole interactions and
compare it with that due to nearest-neighbor in-
terchain-exchange interactions. For the antifer-
romagnetic state found by Skalyo et al. and by
Spence et al.~~ we calculate H,'/He « I, where H~
is the mean-interchain-dipolar field ~nd H~ is the
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exchange field. The fact that H„' is so small may
be seen at once from the spin alignments' since
the fields from antiparallel neighbors at a distance
of 7. 285 A, for which S& and r, &

are antiparallel,
nearly cancels that from antiparallel neighbors at
a distance of 5. 728 A, for which SJ and r,~ are
perpendicular [2/(7. 285) =1/(5. 728) I.

On this basis we then do not expect the dipolar
interaction to influence the Noel temperature sig-
nificantly. Other interactions, such as single-ion
anisotropy, could of course play a more important
role. Because of this, a certain amount of caution
has to be exercised in inferring values of inter-
chain-exchange constants from the Noel tempera-
ture.

VII. EXPERIMENTAL METHODS

signal-averaged traces from which data are pre-
sented in the following Sec. VIII are shown in
Fig. 7.

The symmetrical absorption curves obtained by
sweeping the magnetic field indicate that Bloch's
equations are incorrect even when the material has
a Lorentzian line shape. These equations predict
that the absorption is proportional to the bulk mag-
netization M, , which is proportional to the applied
magnetic field in the paramagnetic regime. This
would lead to an asymmetrical absorption which is
not observed in the experiment even out to

Measurements of ESR absorption y" were made
with an X-band microwave spectrometer operating
at 8. 68 GHz at room temperature. Straight dc
detection was used (i. e. , y" was detected directly
rather than its derivative) with the klystron fre-
quency tightly locked to the sample cavity.

Since we wished to study g" far from the line
center (measurements are reported here for
!H-Ho! ~ 14',H, &,), base-line drifts, dispersive
components of the signal, and impurity resonances
had to be carefully considered and eliminated.
Drifts were minimized by signal averaging with a
Fabritek model No. 1062 1024-channel analyzer.
Signal averaging, of course, also allowed us to en-
hance signal-to-noise ratio, which was necessary
for small samples far from the line center.

If the klystron frequency is well locked to the
sample cavity, then only y" (i. e. , the resistive
component) should influence changes in reflection
from the cavity. However, there is a secondary
effect produced by the dispersive component g' in
that it changes the frequency. This can lead to
undesirable changes in the reflection coefficient if
the over-all microwave circuit is not sufficiently
broadband. To overcome the problem, we used a
directional coupler, rather than a bridge, to moni-
tor reflected power and placed adjustable tuning
screws near (less than —,

' of a guide wavelength) both
the cavity iris and the directional coupler. In this
way a broad-band circuit was attained whose cen-
ter frequency coincided with the klystron frequency
on magnetic resonance.

Resonances associated with impurities in the
cavity walls presented an initial difficulty, but they
were eliminated by silver plating the cavity. Sil-
ver plating also had the desirable effect of produc-
ing a high unloaded @0=4000 which led to good
lock-in characteristics.

With these precautions, we were able to obtain
symmetric absorption curves with no observable
slope or other distortion of the baseline. Typical

(a)

H

(b)

Ho

14dH

H

FIG. 7. Experimental line shapes in CMC with H along
c axis. Shown are chart recorder outputs from memory
of Fabritek model No. 1062 1024-channel analyzer. In curve
(b) the gain is 16 times that of curve (a). For each the
total sweep is 5850 Oe. Curve (a) is subject to nonlineari-
ties, and direct measurements are not made from it.
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FIG. 8. Line shape for CTS. Room-temperature 8. 68-GHz field along chain axis (8 =0). Experimental linewidth is
2~&~2=40 Oe. Points are average between high-field (H-Ho&0) and low-field (H-Ho&0) values, and error bars repre-
sent difference between high- and low-field measurements. Theoretical curves are for values of J'/J shown in Table I.
The resulting theoretical linewidths are given in Table II.

+ 206H&/ 2 ~ Instead we find that the absorption is
proportional to the microwave frequency and line-
shape function, which is consistent with the quan-
tum-mechanical picture of absorption, Eq. (1), and

with the results of low-frequency-susceptibility
measurements in zero magnetic field. The fact
that Bloch's equations fail to give an adequate de-
scription of the absorption for a Lorentzian line
shape has been discussed earlier by Garstens. '
However, this is, to our knowledge, the first ob-
servation of the effect far out in the wings of the
absorption.

VIII. RESULTS AND COMPARISON WITH THEORY

A. CTS

Single crystals of CTS were grown from solu-
tions by dissolving CuSO4 2H20 in an excess of
NH4OH as described by Abe and Ono. The room-
temperature width at 8. 68 GHz with H parallel to
the chain axis was 26H&( p

= 40 45 Oe for a variety
of samples, in reasonable agreement with previ-
ously reported measurements. In Fig. 8, we
show the line shape out to 146'/Q The function
g" (H) is plotted vs [(H —Ho)//nH, ~~] (Ho is the val-
ue of the field H on resonance), since this yields a
straight line for a Lorentzian line shape. A non-

resonant term [(H+ Ho)/nH, ~2]' need not be included
since it gives less than a 1% effect even at 14'.H, & z.
The data show at most only a slight deviation from
a Lorentzian curve. As shown, they are in accord
with the theory of Sec. III for J, /J=1. 5x10 ~, the
Tahir-Kheli (TK) estimate (see Table I), but not
for the RPA value of 4, /8=7. 6x10- . We have
taken 2b, Hjg2= 75 Oe for the one-dimensional line-
width, as discussed in Sec, V A.

B. CMC

Single crystals of CMC were grown from aqueous
solution as described in Ref. 11. The room-tem-
perature width at 8. 68 GHz with H parallel to the
chain axis was 26H»& = 232 Oe, in agreement with
published data. ' The line shape is non-Lorentzian
for H along the chain axis, as shown in Fig. 9,
but, as expected, is nearly Lorentzian for H 54
from the chain axis (3cos~e —1=0). These line-
shape and linewidth data are in accord with inde-
pendent measurements by Ajiro et d,l. Lorentzian
shapes were reported in Ref. 44, but it is evident
from Fig. 9 that unless observations extend out to
about ten half-widths, the non-Lorentzian charac-
ter will not be seen.

From the observed Noel temperature and J
(Table I), we obta. in
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FIG. 9. Line shape for CMC. Boom-temperature 8.68-GHz field along chain axis (0=0) and at 54' from axis. Ex-
perimental linewidth is 2ddEf/2 232 Oe for 8=0. Differences between H-Hp &0 and H-Hp &0 points are smaller than
drawn circles, except where indicated by error bars. Solid-theoretical curves for 8=0 are (a) J~ = J&=6 && 10 J, which
gives 2~~/2=370 Oe; (b) J& —-100 J2=2.6&&10 J, which gives 2~&/2=240 Oe; (c) J~= J2=2&&10" J, which gives 2~$/2
=210 Oe. Dashed curve is theoretical for 8=54' including a one-dimensional contribution y=q due to interchain-dipolar
coupling (Sec. VI). Linewidth values for (a), (b), (c) are based on one-dimensional value 2ddS&/2 =490 Oe.

J, /J= 5.8x10 ~[1+0.245 ln(J, /J'2)]~ . (60)

Theoretical curves are presented in Fig. 9 for two
values of J, /Jwhich satisfy Eg. (60), correspond-
ing to J& = J& and to J& = 100J~. We have added the
dipolar contributions Eg. (59) to these values. The
only important influence of the dipolar term comes
from Ja„ for the case J&=100 J2. Also shown is the
line shape for J, = J2=0. 02 J.

The line shape does not depart from Lorentzian
as much as would be indicated either from the
Noel temperature estimate of Jj and J~ or from
the neutron data of Skalyo et al. The value of Jj
+ J~ needed to describe the line shape is about a
factor of 4 larger than measured from the spin-
wave spectrum. 3

There is a good agreement for the absolute width
in the sense that the J, and Ja required to give the
observed line shape also yield a value of 26H&/~
close to the measured 232 Oe, when we use
2b, H, &2=490 Oe, the result (Sec. V 8) obtained
from scaling with TMMC.

The dashed curve in Fig. 9 is the predicted line
shape at 8= 54' when a finite y due to interchain-
dipolar interactions is included, as discussed in
Sec. VI. It shows a slight departure from Lo-

rentzian, in accord with the data, but the deviation
from Lorentzian is only about 20% at 14 half-widths
and thus not important.

C. CuPC

Small needlelike crystals were grown as de-
scribed in Ref. 15. In order to obtain sufficient
signal strength, it was convenient to use a bundle
of crystals with a common needle axis. X-ray dif-
fraction verified that the needle axis coincides with
the chain c axis. Thus all the chain axes were
parallel and meaningful measurements could be
performed with the field along the c axis. Anisot-
ropy of the g tensor, however, complicates mea-
surements with H away from the chain axis. Fig-
ure 10 shows the line shape for CuPC at room tem-
perature. The line is highly non-Lorentzian for
H along the chain axis (8=0). For compari on,
we also show data at 8=90' which, as expected,
has less departure from Lorentzian. At 8= 54'
there was considerable structure in the line, pre-
sumably due to the multicrystals, and it was not
possible to obtain a meaningful line shape.

The data are used to estimate T~ for CuPC as
follows. The observed values 26H&/3= 53 Oe and
)f"(Ho)/y" (H) lead to a given number for J,/J for
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used. The curve labeled exp(- t )
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a particular ratio of J, /J~, upon application of the
theory of Sec. III. Once estimates are made for
J, /J and J, /J2, the Noel temperature is given by
the theory of Sec. IV. Our numerical method is
shown in Fig. 11, where g"(Ho)/g" (H) at H —Ho
=10'.H»z is plotted vs J, /J for several values of
J', /J~. We can then pick the proper J,/J for a
given J', /J2 which gives close to the observed
amplitude at lO~H, &~. Note that the curves are in-
sensitive to J, /Jz for J, /Jz~ 2. As a consequence,
we can give a reasonable estimate for J,/Jwithout'
knowing T„or the value of J, /J2. The physical

reason for this is that the line shape is insensitive
to Jz for yta»1, where t2=(J~/Ja) to isthecharac-
teristic time at which interchain motion in the y
direction (Fig. 1) becomes important. Once val-
ues for J, and Z2 are selected from curves such as
given in Fig. 11, the entire theoretical line shape
may be plotted. Two such curves are shown in
Fig. 10, corresponding to J, /J~ = 1 and to J, /Ja
=10. As mentioned in Sec. VC, the crystal struc-
ture makes it likely that J, /J~ lies between these
two values.

For the numbers found (J, /J'= 1.9&&10, J, /Ja
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FIG. 11. Theoretical line shape
at 10~&~2 vs J/J&. Values are for
CuPC with 2~(]2=77 Oe.
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TABLE III. Parameters obtained for CuPC from ob-
served line shape (Fig. 10) and experimental value 2~f/2
=53 Oe. Tahir-Kheli (TK), HPA, and Callen (C) methods
are used to predict T~ from J& and J2. Measured value
Ref. 39 is TN = 1.135 K.

Jf-J2
JI = 10J2

CuPC
2ddZ(g 2 JI/J
77 Oe 1 9x 10-
77 Oe 2. 9x 10 3

Tg (TK) Tg (RPA) T~ (C}

0.61 K
0.48 K

0.92 K
0.73 K

1.83 K
1.44 K

We have developed a theory for the effect of
weak interchain couplings on the ESR line shape in
Heisenberg linear chains. It has then been com-
pared with our experimental line shapes in three
compounds: Cu(NHS)4SO4 HzO (copper tetramine
sulfate monohydrate, referred to as CTS),
CsMnC13 2H20 (cesium manganese chloride dihy-
drate, referred to as CMC), and CuC13' 2NC, H~

[dichlorobis-(pyridine)-copper (II), referred to as
CuPC].

The main result of the theory is that the charac-
teristic time t0 at which interchain spin flips be-
come important is of the order of k[J''(J'/J) ~ ] '.
The factor (J'/J)'~~ occurs because the effective
rate at which off-chain motion is interrupted is
small because of the slow t '~~ decay of spin cor-
relations by intrachain diffusion. If the on-chain
correlations decayed rapidly enough to give a finite
zero-frequency component (a t '~ decay produces
an &o

'~ divergence as frequency ~-0), then the
factor would be (J'/J), as consistent with simple
Golden Rule and analysis-of-moments arguments.

The line shape may be computed numerically
once the interchain coupling is known; and this
coupling has been estimated from the observed
Noel temperatures using RPA and other Green's-
function decoupling schemes. Unequal inter chain
couplings J, and J~ for an orthorhombic lattice
have been treated.

= 1; J&/J= 2. 9&&10, J&/J2= 10), Eqs. (40) and

(44) can be used to predict T„ in the various
schemes. Results, which are contained in Table
III, show that a value off intermediate between the
RPA and the Callen values can account for the re-
cently observed T„=1.135 K. As mentioned in
Sec. VC, the analysis was performed before we
were aware of the measurement of T~. It has been
retained in the form of a prediction for T„since
it shows in principle how one might be able to esti-
mate the transition temperature from an observed
ESR line shape.

Both curves through the data in Fig. 10 corre-
spond to 26H, &2= VV Oe, which is in excellent
agreement with the estimate (Sec. V C) of 80 Oe
based on scaling with CuNSAL.

IX. SUMMARY AND CONCLUSIONS

Experimental data show a Lorentzian line in
CTS, which is consistent with theory if the Tahir-
Kheli (TK) scheme for estimating J'/J is used.
The non-Lorentzian line in CMC agrees with theory
only for J, /J'2=100. A difference between J, and

J~ is to be expected for the orthorhombic crystal
structure of CMC, but J, /J2 =10 seems to be more
reasonable. Since the transition temperature T„
was not known for CuPC during this work, we could
not compare the non-Lorentzian line with theoreti-
cal estimates. Instead, we used the observed de-
parture from Lorentzian to estimate the interchain
coupling and thereby gave predictions for T~. The
newly found value T„=1.135 K lies between our
estimates based on the RPA and the Callen
schemes, but is about a factor of 2 larger than
predicted by the TK method.

We conclude that the theory presented here can
explain at least the qualitative features of our data,
particularly the Lorentzian line in CTS. It is not
clear whether we can fully account for the effective-
ness of interchain coupling since the values for J,
and J~ in CMC are about a factor of 4 larger than
indicated by neutron measurements of the spin-
wave spectrum and about a factor of 2 larger than
indicated from the Noel temperature. Tempera-
ture dependence of the parameters could be playing
a role since our measurements are at room tem-
perature while the other data are in or near the
liquid-helium range. However, uncertainty about
approximations both in the theory of the transition
temperature and in the theory of interchain effects
on line shape makes it risky to assume quantitative
accuracy to within better than, say, a factor of 2.
It does seem possible, though, to assert that the
basic relation to'~ J'(J'/J)' is correct, since
the Golden Rule result f 0'~ J'(J'/J) would predict
line shapes to be very nearly pure one dimensional
for any of the parameters used in Figs. 8-10.

Comments are in order regarding effects other
than interchain coupling. Spin-lattice relaxation,
for example, is an alternate means whereby the

decay of the correlations could be damped
out. The argument against this is that a spin-lat-
tice relaxation rate I' must contribute an amount

I'/y, to the observed width in Oe. Thus, we must

always have y, AH, &~& 1"; but from Table II we see
that p&.&H&g 2 & t 0 is required for agreement with

experiment. Hence, the characteristic interchain
time to is less than any spin-lattice relaxation
time. Furthermore, it is likely for the Kramers
ions considered here that t0 is at least an order of
magnitude smaller than the spin-lattice relaxation
time. Note also that y, hH&&2 =1 would imply that
all the observed width is associated with spin-lat-
tice relaxation which hardly seems reasonable for
the temperature-independent (at high temperature),
strongly dipole-coupled widths observed in these
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materials. Similar arguments prevail against
other "randomizing" mechanisms such as pro-
posed by Soos. Any such mechanism with a char-
acteristic rate I" should contribute an amount
I"/y, «&H, &, , unless it comes from a, Hamiltonian
which commutes with the total spin. Isotropic-in-
terchain coupling is such a Hamiltonian, and there-
fore, it can produce a rate to' such that y, ,hH, &~
& to . It is difficult to envisage any other mecha-
nism which can do this.

Our model has been based strictly on isotropic
nearest-neighbor interchain couplings J, and J~.
In general, interchain-dipolar couplings can be
important and lead to different values for effective
interchw'n-coupling constants. We have treated
this in some detail for CMC, however, and find
that the dipolar effects for the most part are
negligible.
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APPENDIX: VALIDITY OF EQ. (22) TO ORDER t2

Consider

= ($~ $~ )+ ($, $', )+2 (S;S', ), (Al)

where dots ( ) represent time differentiation and
quantities are evaluated at t=o. Similarly, we
have

=($ $ )p +(S $ )+2 (S S )P . (A2)

It follows from Eq. (21) that the first terms on the
right-hand sides of (A1) and (A2) are equal. The
quantity p, is given by

y, = (1/8) ([X, , S,']S', )/(S;S', ) (As)

and is zero as long as static off-chain correlations
may be neglected. This is because [Xz, S;]S', in-
volves products of three-spin operators, at least
two of which must belong to different chains, be-
cause of the interchain nature of $CI . Since off-
chain static correlations are of the order of J'/
kJ, T, we find that the third term on the right-hand
side of (A2) is of the order of Jx J'x (j'/@AT),
whereas the first term is of the order (J') . Thus
the third and first terms are in the ratio J/haT.
Similarly, the term (S,'S', ) is of the order of
J'x J' x (J'/kaT) since it also is zero unless static
off-chain correlations are included. (This is be-
cause ~', contains two-spin operators which are on
different chains while S', has two-spin operators
which belong to the same chain. ) Thus, we find
that the third terms on the right-hand sides of
(A1) and (A2) are negligible in the high-tempera-
ture limit, J/k~T«1. Since the first two terms
are equal, this establishes validity of Eq. (22) to
order t .

*Work supported by the U. S. Army Research Office,
Durham and by the U. S. Atomic Energy Commission.
Preliminary accounts of portions of this work have ap-
peared in Bull. Am. Phys. Soc. 15, 269 (1970); 16, 380
(1971).

~Present address: Texaco inc. , Bellaire, Tex. 77401.
~Present address: Sandia Laboratories, Albuquerque,

N. M.
H. A. Bethe, Z. Physik 21, 205 (1931).

2R. Dingle, M. E. Lines, and S. L. Holt, Phys. Rev.
187, 643 (1969).

3R. J. Birgeneau, R. Dingle, M. T. Hutchings, G.
Shirane, and S. L. Holt, Phys. Rev. Letters 26, 718
(1971).

4M. T. Hutchings, G. Shirane, R. J. Birgeneau, and
S. L. Holt, Phys. Rev. B 5, 1999 (1972).

R. Kubo and K. Tomita, J. 'Phys. Soc. Japan 9, 888
(1954).

6H. Mori and K. Kawasaki, Progr. Theoret. Phys.
(Kyoto) 27, 529 (1962).

~General treatment of line shapes may also be found in
the texts, A. Abragam, P~inciPles of Nuclea~ Magnetism
(Oxford U. P. , New York, 1961); C. P. Slichter, P~inci-

ples of Magnetic Resonance (Harper and Row, New York,
leos).

R. E. Dietz, F. R. Merritt, R. Dingle, D. Hone, B.
G. Silbernagle, and P. M. Richards, Phys. Rev. Letters
26, 1186 (1971).

R. R. Bartkowski, M. J. Hennessy, B. Morosin, and
P. M. Richards, Solid State Commun. 11, 405 (1972).

R. B. Griffiths, Phys. Rev. 135, A659 (1964).
~T. Smith and S. A. Friedberg, Phys. Rev. 176, 660

(1968).
K. Takeda, S. Matsukawa, and T. Haseda, J. Phys.

Soc. Japan 30, 1330 (1971).
C. D. McElwee, thesis (University of Kansas, 1970)

(unpublished) .
~4P. M. Hichards, in Proceedings of the Midwinter

Solid State Research Conference, Newport Beach, Calif. ,
1972 (unpublished).

D. Hone, in AIP Conference Proceedings, Magnetism
and Magnetic Materials, No. 5, 1971, edited by C. D.
Graham, Jr. and J. J. Rhyne (AIP, New York, 1972),
p. 413.

P. G. de Gennes, J. Phys. Chem. Solids 4, 223
(1958).



E F FE CT OF INTR HCHAIN COUP LING ON E I F C TRON- ~ ~ ~ S4'7

VH. S. Bennett and P. C. Martin, Phys. Rev. 138,
A608 (1965).

~ R. A. Tahir-Kheli and D. G. McFadden, Phys. Rev.
182, 604 (1969).

~9J. E. Gulley, D. Hone, D. J. Scalapino, and B. G.
Silbernagle, Phys. Rev. B 1, 1020 (1970).

S. J. Jensen, P. Anderson, and S. E. Rasmussen,
Acta. Chem. Scand. 16, 1890 (1962).

~F. Mazzi, Acta. Cryst. 8, 137 (1955).
B. Morosin, Acta. Cryst. B 25, 19 (1969).
M. F. Collins and W. Marshall, Proc. Phys. Soc.

(London) 92, 390 (1967).
G. N. Watson, A Treatise on the Theory of Bessel

Functions (Cambridge U. P. , New York, 1962), p. 203.
H. B. Callen, Phys. Rev. 130, 890 (1963).
R. A. Tahir-Kheli, Phys. B,ev. 132, 689 (1963); see

also R. H. Swendson, Phys. Rev. B 5, 116 (1972).
G. S. Rushbrooke and P. J. Wook, Mol. Phys. 6, 409

(1963).
E. Montroll, Proceedings of the 3rd Berkeley Sym-

posium on Mathematical Statistics and Probability
(University of California Press, Berkeley, 1956), Vol.
III.

29T. Oguchi, Phys. Rev. 133, A1098 (1964).
T. Haseda and A. R. Miedema, Physica 27, 1102

(1961).
T. Watanabe and T. Haseda, J. Chem. Phys. 29,

1492 (1958).

S. Saito, J. Phys. Soc. Japan 26, 1388 (1969).
33R. N. Rogers (private communication).
4M. E. Fisher, Am. J. Phys. 32, 343 (1964).

3%. D. Spence, W. J. M. de Jol@e, and K. V. S.
Rama Rao, J. Chem. Phys. 51, 4694 (1969).

G. J. Butterworth and J. A. Wollam, Phys. Letters
2eA, 259 (196e).

37D. Bloch, J. Phys. Chem. Solids 27, 881 (1966); D.
H. Lowndes, Jr. , L. Finegold, R. N. Rogers, and B.
Morosin, Phys. Rev. 186, 515 (1969).

J. Skalyo, Jr. , G. Shirane, S. A. Friedberg, and
H. Kobayashi, Phys. Rev. B 2, 4632 (1970).

3~W. Duffy, Jr. (private communication).
4 O. Nikotin, P. A. Lindgard, and O. W. Dietrich, J.

Phys. C 2, 1168 (1969),
M. A. Garstens, Phys. Rev. 93, 1228 (1954).
H. Abe and K. Ono, J. Phys. Soc. Japan 11, 947

(1956).
43M. Date, J. Phys. Soc. Japan 11, 1016 (1956).
44S. Saito, Phys. Letters 24A, 442 (1967).

Y. Tazuke and K. Nagata, J. Phys. Soc. Japan 30,
285 (1971). Their peak-to-peak derivative linewidths
should be multipled by vT to obtain 2 AH&~2 for a nearly
Lorentzian line.

Y. Ajiro, N. S. Vanderven, and S. A. Friedberg, in
Ref. 15, p. 433,' Y. Ajiro and S. A. Friedberg (private
communication) .

+Z. G. Soos, J. Chem. Phys. 44, 1729 (1966).

PHYSICAL REVIEW B VO LUME 7, NUMBER 3 1 FEBRUARY 1973

Isomer-Shift Calibrations Using Multivalent States of Fe in KMgF3

A. Trautwein
Institut fur Metallphysik, Unieersit'at des Saarlandes, 66 Saarbrucken, West Germany

and

J. R. Regnard
Centre d'Etudes Nucleaires, Grenoble, I"rance

a11CI

Frank E. Harris
Department of Physics, University of Utah, Salt I-ake City, Utah 84112

aQcl

Y. Maedat
Institut fUr Metallphysik, Unieersitat des Saarlandes, 66 Saarbrucken, West Germany

(Received 14 July 1972)

KMgF3 single crystals were doped with 'Fe and irradiated by 6 Co y rays. The obtained
Fe', Fe, and Fe' states in KMgF3 were investigated by Mossbauer spectroscopy. The iso-
mer-shift values were correlated with electron densities p(0) as evaluated by using an open-
shell molecular-orbital procedure. The resulting isomer-shift calibration constant ~ is
( 0 34 + 0 04) ap mm sec

I. INTRODUCTION

The Mossbauer isomer shift (ls) between two
iron compounds is proportional to the difference of
the electron densities b, 5(0) at the Mossbauer nu-
clei: b4= nbp(0). Knowing n one could derive

electron densities directly from 5. There exist
several theoretical approaches to derive p(0), as
reviewed by Kalvius. In the present paper we use
a spin-proj ected configuration-interaction method
followed by a renormalization procedure of the
Fe 3s atomic orbital to evaluate p(0). The investi-


