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for each run of the spectrum by finding the intensity
ratio of 14.4-keV z rays and the other x rays and

y rays using the method suggested by Housley,
Erickson, and Dash. ' It should be noted that

Eq. (Al) strictly holds only if one charge state is
present. However, since the intensity of Fe'
resonance lines is much smaller than the Fe '
lines, Eg. (Al) holds to a good approximation.
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Symmetrized Multipulse Nuclear-Magnetic-Resonance Experiments &n Sohds:
Measurement of the Chemical-Shift Shielding Tensor in Some Compounds*
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An experimental study of the properties of one form of the three-state reflection-symmetry
cycle is presented. The cycle and its compensated form are used to measure the chemical
shielding tensor of 9F in polytetrafluoroethylene t(C2F4)„], and P in powdered zinc phosphide
(Zn3P2). The effect of phase errors is discussed and the principle of phase compensation is
demonstrated in a phase-alternated sequence. Amplitude-modulation effects of phase errors
are also discussed.

I. INTRODUCTION

In most solids which have a nuclear-spin spe-
cies the dominant spin-spin magnetic interaction
is via the nuclear dipole-dipole coupling. It was
recognized a long time ago' that high-speed ro-
tation of the specimen about the so-called "magic
axis" could substantially reduce the magnetic di-
polar interaction tensor but not the isotropic parts
of the chemical shift or shielding tensor or the
isotropic part of the electron-coupled nuclear

pseudodipolar interaction or exchange interac-
tion. Indeed, as with random motion in a mobile
liquid, one obtains the, familiar structured high-
resolution spectra.

More recently, it has been shown both the-
oretically and experimentally that irradiation of
solids with certain multipulse sequences can also
selectively remove or reduce the dipolar interac-
tion thus revealing previously hidden and usually
more interesting interactions in solids. This is
because these smaller interactions reflect the
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where the dipolar interaction coupling constant is
given by

and

1 PA;, = —2y SP),. (2)

solid-state electronic structure around resonant
nuclei whereas the pure static dipolar interaction
carries information on the lattice structure. One
important difference between rnultipulse and spec-
irnen rotation experiments is that in the former,
since the specimen is at rest, all components of
the chemical shielding tensor are present in the

spectrum, whereas in the latter case only the iso-
tropic value of the chemical shielding tensor is
measured.

In almost all the multipulse work reported so
far, the four-pulse cycle of Waugh, Huber, and
Haeberlen has been employed. Recently, how-
ever, some new cycles have been proposed by
Mansfield' ' which are theoretically capable of
greater line-narrowing efficiency in a dipolar-
broadened solid with a chemical-shift distribution
on "resonance. " In these cycles, the dipolar in-
teraction Hamiltonian is switched successively
through three states and then by reflection syrn-
metry back to the initial state.

In this paper we wish to report several experi-
ments carried out with some of these new cycles
using a computer- controlled pulse spectrometer.
By way of example we have used these cycles to
study the chemical-shift tensor of 'P in powdered
zinc phosphide (ZnsPz) and of ' F in polytetraflu-
oroethylene L(C2F4)„], both at 77 K. The results
are discussed in terms of the current theories of
chemical shift. We also report experiments with
variations on some older cycles which for con-
venience are illustrated on a liquid sample.

II. REFLECTION-SYMMETRY CYCLES

In three-state reflection-symmetry cycles, '
the interaction Hamiltonian is switched for equal
times 7. through the three Hamiltonian states, 1, 2,
3, in the sequence 1, 2, 3, 3, 2, 1, where the num-
bers refer to the following Hamiltonian states:

AHA ——Q hA (~ ( I( IJ —3Igq Ig))

P;, = 2Pz(cos8;, )/ws„,

the terms in this expression having their usual
meaning, 5; is the resonance shift of the ith spin
due to chemical shielding and A;z is the exchange
interaction coupling constant. The switching is
achieved by appropriately chosen and spaced reso-
nant rf pulses. Since the labeling of the interaction
Hamiltonian states is arbitrary, it is clear that
there are six forms of the reflection-symmetry
cycle only three of which are required to cover all
permutations of the three states. We denote these
reflection cycles in shorthand notationli1, 2, 3]I,
(1, 3, 23, and f2, 1, 3) or alternatively (3, 2, 13,
(2, 3, 1), and (3, 1, 2). The various interaction
Hamiltonian states may be achieved by applying 90'
rf pulses, 120' rf pulses and/or video pulses which
modulate the static magnetic field. For resonant
90' rf pulses, the simplest pulse-timing represen-
tations of the first three forms of the reflection-
syrnmetry cycle are

(1, 2, 3j

-=(v —P„P,—7 —P, —27' —P, —w —P,P „-7.),

= (P, —7 —P y
—v —P„27 —P, ——v P, —7 —P—,),

(1, 3, 2I

—= (7 —P„—v —P ~
—27 —P~ —7 —P „—r),

where P, represents a 90' rf pulse applied along
the + e axis in the rotating reference frame. All
three forms of the reflection-symmetry cycle to-
gether with the expected nuclear signal under par-
ticular initial conditions are sketched in Fig. 1.

These particular conditions are rather important
ip that they exploit the refocusing properties of
solid echoes. "' Furthermore, the magnetization
is placed along the x and z rotating frame axes
only, making the analogy between these experi-
ments and the line-narrowing experiments similar
to those described by Lee and Goldburg' more
tenuous, In the multipulse analog of one form of
their experiments, ' the magnetization is made to
sample the x, y, and z axes for equal times. Al-
though it has been shown theoretically'4 that a fully
symmetrized cycle containing all three forms above
is required for the greater efficiency in line nar-
rowing, the simplest to produce experimentally is
(1,3, 2j which in itself is theoretically more effi-
cient than previous cycles of equal or lower rank.
For this reason we shall confine ourselves almost
exclusively to discussion and application of the
f 1, 3, 2 & cycle.
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which gives for the approximate effective chemical
shift over the cycle

5; „,= (5;/v 3)[1+ (t~/2r)(4/m —1)] .

For the compensated (1, 3, 2; 1, 3, 2]i cycle, the
average chemical-shift Hamiltonian over the 127
period is

(3b)

hII, = ~ Zg h5; [1+ (t„/27') (4/z —1)](I„(+I„),
(4a)

which gives for the effective chemical shift over
the compensated cycle

5; „,= 5; —,
'

v 2 [1+ (t„/2 r)(4/~ —1)] . (4b)

3 3

~t == 7 == -2t == t == Y

FIG. 1. Elementary forms of the three-state reflec-
tion-symmetry cycle. The expected signal response for
particular initial conditions is also sketched in. As
shown both (1,2, 3}}and I}.1, 3,2]} can be used in their own

right, the spin system in each case being assumed in an
initial equilibrium state. For }I2,1,33 as sketched, the
spin system is assumed to be initially in a nonequilibrium
state.

A. Compensated Cycles

All three forms of the reflection-symmetry cycle
can be compensated in first order for the impair-
ing effects of finite rf pulse width t„, rf inhomoge-
neity and deviation from the ideal 180 phase shift
in a phase modulator common to both x and y
pulses, as well as deviations from the ideal 90
phase shift implied in the x pulse. For compensa-
tion of the first two effects it has been shown that
one needs a cycle comprising two reflection-sym-
metry cycles, the second of which has the phases
of the x Pulses only shifted by 180 . Since this
procedure has the effect of reversing the sign of
the relevant linear term in the interaction Ham-
iltonian, we denote the compensated form of
(1, 3, 2 Il as 11,3, 2; 1, 3, 2) . Compensation of

the I[2, 1, 3}} cycle requires extra P„pulses in the
pulse-timing representation (see Ref. 14). We
discuss the details of phase compensation later on.

B. Effective-Chemical-Shif t Hamiltonian

and

(x(t)),= —', Z& cos(5, t/v 3)+ —,',
(x(t))o = ——,'Z; cos[(5,/v 3 ) (t —3~) —-,'w] ——,

'

(y(t)), = s Z; cos(5, t/v 3 —', m)+ —,', —

(5a)

(5b)

(5c)

(3 (t))0= kZ; cos[(5;/v 3) (t —3r) —s z] —~3, (5d)

where the time t = 6T n, m integer.
For the compensated cycle (1, 3, 2; 1, 3, 21}we ob-

tain

C. Signal and Baseline Response

In the interpretation of experimental multipulse
response oscilloscope traces one is often presented
with a complicated trace which includes "baseline"
modulation. Previous analysis was concerned with
signal response. However, it is instructive and
helpful in the interpretation of actual data to have
some clear picture of the expected ideal full re-
sponse. In this paper we restrict ourselves to a
discussion of the two cycles }}:1,3, 23 and
II1, 3, 2;1, 3, 23. In each case we calculate the in-
phase and quadrature components of magnetization
(x(t)), and (y(t)), and the "baseline" response of
each component (x(t))o and (y(t))0 in the average
Hamiltonian limit. For the baseline response the
averaging has to be performed over a differently
defined cycle with consequently a different average
Hamiltonian. Evolution over noncumulative periods
which is ignored e~ cept for the effect of the rf
pulses, introduces time-origin shifts b t of 37 and
97 as indicated below. For I(1, 3, 2& we obtain

For the IL1, 3, 23 cycle, the average chemical-
shift Hamiltonian over the 6~ period is

(x(t)), = —,'[1+2; cos (
—', v2 5; t)],

(x(t)) = —(1/ v 2 )2; sin f
—'v 2 5, (t —3w) ]

(Ga)

t 4liH, = ZK5; (I„~/„+I() 1+———1)
and

+ (1/v 2)Z; sin[3' 2 5&(t —Qv)] (6b)
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Eq. (5b) is that in the limit r -0 the (x(t))s base-
line signal component actually contains all the in-
formation necessary for a sine transform. To ex-
tract the useful information from (x(t))e one re-
quires very accurate data, since the quantity (x(t)),
+ (x(t))e is required in the computation which in-
volves baseline differences. Our own preliminary
efforts with single shot data have not been very
successful. However, meaningful results could be
obtained with signal averaged data. Simultaneous
observation of both (x(t)), and (y(t)), would, of
course, allom a direct procedure for full Fourier
transforms. However, as we discuss later on, this
is actually unnecessary if the transverse response
is observed off-resonance.

D. Fourier Transformation

(x(t))

k' 3/(64'2)

The transverse response function f(t) is related
to the complex susceptibility of the ith component
of an inhomogeneously broadened line by the Fou-
rier integral expression' '"

(y (t &(e ' ' d(a(u), (7a)

FIG. 2. Sketch of transverse response (x(t)l, 0 and
(y(t)), 0 in a noninteracting spin system for the ideal
(1,3, 2I and (1,3, 2;1,2, 2I cycles considered in the limit
7 0 and shifted slightly above resonance. Note the
"baseline" modulations (x(t)) 0 and (y(t)) 0.

(y(f)).= (1/v 2)Z; sin(-,'W2 5; t), (Gc)

(y(f))Q 2 II Z( cos[3l/2 5&(t —3w)])

+ —,'(I-4; cos[-', v 25((t —9r)]j, (6d)

where the time t= 12Tn, n integer.
These results are summarized schematically in

Fig. 2 and illustrate the general complexity of the
response if studied visually on an oscilloscope.

Since the anisotropic part of the chemical-shift
tensor remains in these experiments the effective
line shape that we expect mould in general be asym-
metric. This means that in taking Fourier trans-
forms of the transverse response one should per-
form the full cosine and sine transform on the in-
phase and quadrature components of signal, re-
spectively. We discuss this in more detail later on
in Sec. IID. From Eqs. (5a) and (5c) we note
that full Fourier transforms can only be performed
if the constants are subtracted and the data have a
common normalization. An interesting result from

where + denotes the Cauchy principal part of the
integral and 4&0& is the resonance shift of the ith
spin from its unshielded value. The constant K is
given by

K= 2ureNI(I+ I)/3kT, (7b)

= x(t)+ iy(f),
where the step function 8(t) is defined as

8(t)=1, f &0

=0, t(0.

(8a)

(8b)

Now for a symmetric distribution of chemically
shifted spine the summation over the sin(4&uz t)
term vanishes for t &0 but does not vanish for an
asymmetric distribution. Clearly, therefore, in
regenerating the absorption line shape from the
transverse response function one should include
both the x(t) and y(t) components of the transverse
response and perform the full cosine and sine
transf orm:

lt" (de) = J"„[xcos(Ant)+ y sin(drat)] dt .

where N is the total number of spins, &0 is the
unshielded Larmor angular frequency, I is the
spin number, k is Boltzmann's constant, and T the
absolute temperature Integ. ration of Eq. (7a) gives
for the transverse response in the absence of di-
polar line broadening

f(f) = —ayKB(t) [Z; cos(&~a; f)+i sin(d(uo; f)]
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Neglect of the y(t) component clearly always will
give a symmetric line on or off the "resonance"
condition. For example, if we move off-resonance
by imposing a bias of angular frequency 0, the ab-
sorption line, neglecting the sine transform, is
from the above discussion

y" («u) = —,' yÃ+—,5(he+ A&so, + Q)

+ 5(hv —b, +0& —Q) . (10)

%e see therefore that although the summation over
the inhomogeneous distribution may be asymmetric
about + 0, the over-all line transform is still sym-
metric about eo. The neglected y(t) component
holds information on the Phase so that the full
transform would automatically select the correct
side of the above line-shape equation (10) corre-
sponding to an arbitrary shift +Q. If the x(t) com-
ponent alone is to be used for asymmetric lines the
correct sign of 0 must be determined experimental-
ly, that is, by purposely shifting off-resonance
above or below by some angular frequency 0 large
enough to give resolution of the doublet about Np.

This condition is satisfied if 0 & A~p,.&,„&.As a cau-
tionary remark we note that in seeking to satisfy
this last inequality one must be sure that another is
not violated, namely, the condition on the cycle it-
self that it will register rapid oscillations. To en-
sure this, one must simultaneously satisfy the con-
dition

the resonance condition. This alignment is further
checked and adjusted until the correct scaling fac-
tors are obtained as discussed below.

9. Scaling Factors

In our experiments on fluorine and hydrogen the
90' pulse length was 1. 1 p, sec. For w= 8. 0 p. sec,
the departure from the ideal scaling factor of I/v 3
= 1/l. 73 in lll, 3, 2 ll is significant and gives
1/1. 705, Eq. (3b). In the case of ll1, 3, 2;1, 3, 2ll

departure from the ideal value of —,'v 2= 1/2. 12
gives 1/2. 08, Eq. (4b). The experimental scaling
factors obtained for It1, 3, 2 and II1, 3, 2; 1, 3, 2 )
were 1/1. 69 and 1/1. 96, respectively. Figure 3
shows the response to a ll 1, 3, 2; 1, 8, 2 I cycle in

C6F6 off-resonance. The latter section of the trace
includes the normal free-induction decay for com-
parison. In our experiments on phosphorus the 90
pulse length was 2. 2 psec. For v=9. 6 p, sec and in

the IC1, 3, 2) cycle the theoretical scaling factor is
1/1. 69, while the experimental value recorded was
1/1. 70.

C. Resonance Shifts

The multipulse experiments in solids involve
moving off-resonance by some predetermined

-EA)-

1t/(Q+ &&o;( )) ~+T,

where n7. is the relevant cycle time. Because of
this constraint, in some cases, it may be better
experimentally to work on "resonance, " i. e. , at a
field close to the isotropic value of the chemical
shift.

( I
I I i I I I I I~I I i I I I)((t) I I I I 'gyp j 'I I I I I I

5 I(II

'I

'(l
I I I . Sl I I lf I ~ I I
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h ]&
I I ]
I l.l!
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III. EXPERIMENTAL DETAILS

A. Alignment Procedure

All initial pulse length and phase alignment is
performed on 'H in H&O,

' F in C6F6, or 'P in

H3PO4 liquid samples. The 90' pulse s for the x
and y channel are adjusted separately. This is
done by adjusting the response to trains of x and y
pulses in turn to give what we call the "double-tri-
angle" pattern on resonance using a phase-sensi-
tive detector. The 90' phase shifts are set maxi-
mizing the transverse (x(t)) component in a P,
—(~ —P„—~)„sequence. The 180' phase shift is
adjusted for a monotonic decay in a P,
—(w —P„—2r —P, —w)„sequence. For reflection-
symmetry cycles final fine adjustments to pulse
width and transmitter output stage tuning are made
to give a monotonic liquid inhomogeneous decay on
resonance. Correct alignment is determined by
attainment of symmetric oscillatory behavior about

i
I

x(t))
0

I
~

[

I1
I 0 I 1 I I I I g I I I

~ I

, t)
. a

h
I ILI I
I I I I

FIG. 3. Photographs of the response of F to the
I|1,3, 2; 1,3, 2II cycle in liquid C6F~ shifted 0. 37 G from
resonance. (a) (x(t)), response only, (x(t)) 0 suppressed,
(b) (x(t))0 response only, (x(t)), suppressed. The hori-
zontal sweep is 0. 5 msec/large division and v =8. 0 @sec
in both traces. Note that in both photographs the multi-
pulse sequence is switched off at 3.1 msec and the sub-
sequent signal is the ordinary free-induction decay.
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amount. For both fluorine and phosphorus this
was done by first obtaining the free-induction de-
cay of the reference compound at the sample site.
The Varian Fieldial was then calibrated above and
below the resonance point by measuring the beat
frequency on the free-induction decay of a liquid.
We found that field calibrations made at room tem-
perature were not reliable when extended to low
temperatures, and it was necessary to calibrate
at the actual working temperature.

A reliable way of achieving this was to quickly
lower a small phial of the reference liquid into the
liquid-nitrogen bath. Since it takes about 30 sec
for the liquid sample to freeze solid, we found
there was plenty of time when initially lowered to
observe good liquid signal decays. Clamps on the
sample rod and the reference liquid tube ensured
reasonably accurate replacement of the samples to
the same place in the magnet each time and thus
guaranteed reproducible shifts to within about + 10/p.

D. Line-Narrowing Efficiency "On-Resonance"

A comparison of the line-narrowing efficiency
between the (1, 3, 2 ~ cycle and its compensated
form &1, 3, 2; 1, 3, 2& was made "on-resonance"
in (CsF4)„at 298 and 77 K. The alignment pro-
cedure was as follows: First the static magnetic
field was adjusted to give the longest monotonic re-
sponse for the It1, 3, 2 & cycle using a phase-sensi-
tive detector. With no further adjustments both the
.(1,3, 2 jI and I|1,3, 2.;1,3, 2 j cycle responses were
recorded photographically. Of course the pulse
widths and scaling factors, etc. , were previously
set up as described earlier using liquid perfluoro-
benzene. The results for 298 'K are shown in Fig.
4. Treating the decays as exponential we find the
ratio of the time constants to be 2. 7 at 298 K, and
at 77'K the corresponding ratio is found to be 3. 0.
In each case the theoretical ratio based on just the
scaling factors is 1. 225 for ~ = 8. 0 ILt. sec. We con-
clude, therefore, that the first-order terms in-
troduced into the average Hamiltonian by the finite
90 pulse length of 1.1 usec and the rf inhomog-
neity are primarily responsible for the observed
damping in the lt1, 3, 2) cycle on resonance. In
both cycles off-resonance the experimental ratio
is only slightly greater than the theoretical ratio
mentioned above, suggesting an additional averaging
mechanism no doubt similar to that discussed re-
cently by Haeberlen, Ellett, and Waugh2 for their
nonsymmetrized four-pulse cycle. We hope to re-
port elsewhere a more detailed comparative study
of damping in various symmetrized cycles which is
presently in progress on "F in a single crystal of
calcium fluoride. However, preliminary results
for the (1, 3, 2;1, 3, 2 j cycle with 7= 8. 0 psec and
the static magnetic field along the [111]crystal axis
indicate a residual linewidth on resonance of about

The chemical-shift Hamiltonian in the laboratory
reference frame in its most general form is given
b 21

hH, =AX;y, I' v' H, (11)

where I is the total spin vector, H is the applied
static magnetic field vector, the two being coupled
by the chemical shielding tensor or dyadic for the
ith spin g'. This is formed from its second-rank
tensor o' having, in general, nine components. If
we take the applied field to be along the z axis, that

(x(t))
Syo

HIIi„
I I I I I I I I

')~It's,
,'L

(x(t)) I I I I I I I I I I I I I
I I I I I I '( I I I I I I

FIG. 4. Photographs of the F signals in (C2F4)„at
293'K in response to the following cycles applied at
resonance: (a) It1, 3, 2;1,3, 23, (b) I|1,3, 2' . In both
cycles v =8. 0 @sec and for both traces the horizontal
sweep is 0. 5 msecllsrge division.

230 Hz between the half -height points. Moving off-
resonance gives a linewidth of about 190 Hz. Pre-
liminary results on protons in the liquid crystal P-
methoxy benzylidene-P-n-butyl aniline (MBBA)
which, in the nematic phase, shows a featureless
broad line of similar width to CaF2, yields a resid-
ual linewidth of about 150 Hz for the [1,3, 2; 1, 3, 2]
cycle with 7. = 8. 0 p. sec. The residual broadening
functions used in the convolution integral to fit our
spectra (Sec. IV) were substantially broader being
1. 287 kHz for (CsF4)„, corresponding approximate-
ly to Fig. 4(a), and a half of this value for zinc
phosphide.

IV. CHEMICAL-SHIFT STUDIES IN SOLIDS

A. Shielding Tensor
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is H(0, O, II0) then the shift Hamiltonian for similar
spins becomes

tensor representation or principal-axes system by
the transformation

e +~1Iz1 osaH0 ~ (13)

hH, = hyE;(I„1O„',+I 1
o' +I„Cr,',)H0 . (12)

If we may further neglect the terms containing o'„,
and o,'„since the effect of these terms in the ro-
tation frame is likely to be quite small, we have

where

OP 11
Vpg

O33

0'= a'o~a (14a)

(14b)

1. Principal-Axes System

The laboratory axes components of the shielding
tensor may be expressed in terms of the diagonal

The rotation or transformation matrix A(o.', 8, P)
corresponding to rotation through the Euler angles
o., 8, Q is given by'2

coso.'cosQ —cos8 sing sino.'

R(o.', 8, Q)= —sino cosQ —cos8 sin@ coso.
sin8 sing

coso. sin8+ cos8cosg sino.
—sinn sing+ cos8 cosP coso.'

—sin8 cosP

sine sin6)
cos& sinI9

cos6t
(14c)

Thus from Eqs. (13) and (14a)-(14c) we obtain for
Ozz

o,', = sin 8 (sin~a) &&11+ sin 8 (cos &) &22+ (cos 8) 633

(15)

2 (~22 &33)(~11—&)X for K1]+ Q) ~ COga
(&11 ~22)(& —&33)

g(0l) 2 (0111 01) (0122 0133) K(x) (igc)

2. Isotropic Average

In the case of isotropic reorientation as in a liq-
uid the average value of each of the angular co-
efficients in Eq. (15) is —, so that the isotropic part
of the chemical-shift tensor is

and also

0133) (&11 &22)

(&11 01) (Id22 Id33)
for copy& co ~ (d33

—i & i & i i iozz= 3»o = 3(o11+o22+o33) . g(01) = O for (d ~ (d11 or (d ~ h)33 ~ (igd)

3. Axial Symmetry

If the shielding tensor has axial symmetry then we
we may set o1&=o'~&=0, and a33=o, for example, in
which case

o„=o,sin 8+a„cos 8 .

Here K(x) is the tabulated complete elliptic in-
tegral.

In practice there is always some additonal resid-
ual line broadening described by the function f(&).
This may be included in the over-all line shape
G(&) by convoluting with the ideal powder pattern
g(0l), thus

Clearly this may be expressed in terms of the
isotropic chemical shift, Eq. (16), and a traceless
part in which case for 0„=—2o, one obtains

'G(01) —J g(01 )f ((d —(d ) Ad

4. Molecular Axes System

(2O)

o„=—,
' Tr o —o,(3cos 8 —1) . (is)

g(&) = 2(&0 &X) (0l —01~) (iea, )

for ~,& ~ & ~„. They also give a general expres-
sion for the line shape when the shielding tensor
does not have axial symmetry. In this case

For a powder of isotropically oriented crystallites
and in the absence of dipolar or other sources of
line broadening, Bloembergen and Rowland
have shown that for small relative shifts, Eq. (18)
leads to the line-shape expression

The principal components of the shielding tensor
will not, in general, coincide with the molecular
axes i, j, k. The tensor components in this frame
will of course be related by a tensor transformation
and can be deduced from single-crystal studies.
Mehring et a/. have shown that in solids with
certain types of anisotropic motion the orientation
of the chemical-shift tensor with respect to the
molecular frame can be assigned.

B. Experimental Results

1. Poly tetrafluoroethylene

g(QJ) = 3' (&d —0133) (0111 —(d22) K(X)

with

(19b) We have studied polytetrafluoroethylene (C2F4)„
at VV 'K using the compensated Itl, 3, 2; 1, 3, 2)
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FIG. 5. Photographs of the F signals in {C2F4)„at

77'K in response to the following cycles applied off-
resonance by duV=1. 2 G: (a) (1,2, 2) showing (x(t)), and

(x(t))0 signals, (b) l[l, 3, 2;1,2, 2l showing (x(t)), only with

(x(t))0 suppressed. In both cycles t =8. 0 ttsec and for
both traces the horizontal sweep is 0. 5 msec/large divi-
sion.

2-

3 4

9 in kHz

ased screening

cycle slightly shifted off-resonance and with v = 8.0
psec. The data taken at 9.0 MHz were recorded
photographically. As a comparison, the photo-
graphic traces of both the uncompensated and com-
pensated forms of the cycle are reproduced in
Fig. 5.

Fourier transformation of the data points in Fig.
5(b) sampled once per cycle is presented in Fig.
6(a) with the frequency sealing factor removed. Our
results confirm the previously reported chemical-
shift anisotropy of Mehring et al. ' measured on
powdered (CsF4)„at 81 K using the nonsymmetric
uncompensated four-pulse cycle. Our sample was

FIG. 6. Fourier-transformed line shapes of multi-
pulse response signals sampled once per cycle from data
similar to Fig. 5(b) fox (C2F4)„and Fig. 7 for Zn3P2.
Frequency scaling factors have been removed. (a) {C F )2 4 n

extruded rod at 77'K, (b) ZneP2 powdex' at 77'K. The
dotted line indicates truncation of the spectral width in
both (a) and (b). The closed circles are the theoretical
powder line shape, Eqs. (19b)-(19d) and (20).

commercial grade extruded rod. Partial align-
ment of the molecular chains along the extrusion
axis would cause deviations from the isotropic
powder pattern and may be responsible for the dip
in our spectrum at 3 kHz. From our data, we
are able to estimate the mean chemical shift with

TPQ3LE I. Mean chemical shift with respect to the stated liquid reference compo d d th t 1un an e race ess components of
the anisotropic shielding tensor.

Substance
Traceless shift tensor components

(ppm)

Ao22

Isotropic shift
(ppm)

Reference
compound

(C2 F4)„

Zns P2

-100

(Dog)),

22

(Ao22) „

78

(Do33)~„ oav

210

ieF

85% aqueous
solution
HB PO4
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respect to liquid perfluorobenzene and the trace-
less components of the anisotropic shielding ten-
sor. These values are given in Table I.

2. Zinc Phosphide

Phosphorus in powdered zinc phosphide (Znsps)
has been the subject of several previous NMR
studies by the spinning solid method. ' In these
studies a pair of lines of equal intensity was ob-
served with chemical shifts o, and 0&. The aver-
age shift o,„=—,'(o, +o3) from 'P in an 85/o aqueous
solution of orthophosphoric acid (H3PO4) was found
to be 233 ppm with a separation of 33 ppm. These
shifts were of course isotropic values since the
anisotropic components of the shielding tensor are
averaged to zero.

We have looked at the response of "P to the
(1, 3, 2) cycle in powdered Zn3P2 at 77 'K shifted
slightly off-"resonance. " The data were taken at
9.0 MHz and recorded photographically. Since
T, =3.55 min at 77 K these experiments were
rather tedious to perform and difficult to align.
Figure V(a) shows a trace for r =9.6 jksec. In-
creasing the pulse spacing to 7 =12.8 p,sec made
no noticeable difference to the response Fig. 7(b).
We conclude therefore that we are essentially in
the limit T'- 0.

The composite Fourier transform of two sepa-
rate experiments is plotted in Fig. 6(b). The
horizontal scale which takes account of the scaling
factor, indicates real chemical shifts. Calcula-
tion of the second moment about the center of
gravity of the spectrum gives 0.07G . This is
somewhat lower than our estimate of the aniso-
tropic chemical-shift contribution to the second
moment measured from the double-yulse solid
echo response"''3 which gives (0. 13+0.08) G .
Some of the difference doubtless arises from our
truncation of the wings in the narrowed absorp-
tion spectrum.

We notice there is no trace of a resolved doublet
with 33 ppm splitting in our spectrum. This is
probably due to lack of resolution due to residual
broadening. Since T~ from the free-induction
decay is -150 psec which is much longer than the
pulse spacing ~, we do not think this broadening
can be predominantly dipolar in origin and could
be ascribed in part to imperfections in the pulse
sequence. However, we are able to estimate the
average isotropic part of the shift tensor cr = 210
+ 21 ppm. The line shape shows some deviation
from the powder pattern of an axially symmetric
chemical-shift distribution. From Fig. 6(b) we
are able to assign tentative values of the average
traceless principal components of the shift tensor
(&o»)«, (&o33)«, and (Lo33) y These values are
listed in Table I.

During the preparation of this paper a high mag-

3
+ii & +0 V jj +Pkk PkkPj j) &1

3
o'jj = 3 os (&«+&kk Pkk&«) ~

(21a,)

(21b)

(x(t))
~ro

i4
, I

1~ ~ ~,0
~ ~ I

~ 3
I II'

~ k

Ik

~ ~ ~ ~

~ I ~

~ ~ ~ ~
~ ~ ~ ~

~ ~
~ ~ ~ ~

Il
I I4I II i 33 II I)'I 4

~ ~ ~ ~

~ ~ ~ ~

Il-I

(A)

I

~ TQT 3$$ &

))~(~gg
( Ii I L ~ ~ ~ ~ ~ ~ ~ I I I E ~ ~ I a ~ . I I

x(t)) ~ w 't
~ I

't

I
I

~ ~ ~ I ~ 0 l I ~ ~ ~ ~

~ I ~ ~ 0 ~ ~ I I I I
1

(EI)
psst . 4

~ ~ I ~
~ ~ I

~
~ 3I~) II y&i

[ . ~ I

FIG. 7. Photographs of the 3 P (x{t)),and (x{t))0 sig-
nals in powdered Zn3P3 at 77'K in response to the (1,8, ZI
cycle applied off-resonance by ~=1.5 G. {a) ~=9.6
@sec, and {b) ~=12.8 @sec. The horizontal sweep in
both traces is 0. 5 msec/large division.

netic free-induction decay study of a number of
solid phosphorus compounds including Zn3Pz has
been published. The Fourier transformed spec-
trum for powdered Zn3P2, however, shows axial
symmetry although the spectral width agrees rea-
sonably well with our data.

Previous multipulse measurements on Zn3Pz
using the modified phase-alternated sequence~
gave a limiting resolution for phase modulation of
the solid echo train corresponding to 84 ppm.
The difference between this figure and the expected
33 ppm was ascribed to "a mean anisotropic part
of the chemical-shift tensor. . . ." It is clear that
our present results are consistent with our pre-
vious interpretation. ~8

C, Interpretation of Results

1. Poly tetrafluoroethylene

The semiempirical molecular orbital theory of
chemical shift developed from earlier work~ '3

by Karplus and Das, ' Jameson and Gutowsky, and
Letcher and Van Waxer forms the basis of our in-
terpretation. In this theory the paramagnetic com-
ponents of the shielding tensor in the molecular
frame are given by
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=3 oo-(& +&a &-* &»» (21c)

where the charge matrix elements p«refer to the
P;-orbital electronic population. Mixed orbital
terms p,.&

are dropped as well as d-orbital contri-
butions. A more general analysis including the
mixed terms and a d-orbital contribution has been
given by Jameson and Gutowsky. ' The coefficient
ao is given as

~, = —-.'(e'm'/m'c')(I/~)
& I/r'), , (22)

where e and m are the electronic charge and mass,
respectively, ~ is a mean electronic excitation en-
ergy, and (y ')~ is an average evaluated over the
p orbital.

The isotropic part of the chemical-shift tensor
is given by

1I&= 3(&&a+ &yy+ o'») = &+&a ~ (23)

p„2 p, p~~ —2 —
p~

p~ = 1+s+ I - Is = 1+z,
(24)

where p, , represents the double-bond character,
s the (sp) hybridization parameter, and I the ionic
character of the bond. Using the value of p'p = —863
ppm obtained by Karplus and Das for fluorine and
with p, = 0, we find our data give best fit for 0~
= —183 ppm in which case we obtain k = 0.846 and

p&= 0. 11

where o=0~ —0~ is the chemical shift of the sample
(S) relative to the same nucleus in some reference
compound (R), and os is the absolute paramagnetic

. shift of the nucleus in the reference compound rel-
ative to the unshielded nucleus.

For a completely closed p shell p«=pz&= p~= 2.
This would give zero anisotropy and zero shift.
For F one might expect from the ground-state
electronic configuration that p„.=

p&&
——2 and p~ = 1,

where k refers to the bond axis. Karplus and Das
suggest that one might represent deviations from
these conditons as follows:

Neglecting p-bonding effects and assuming the
o-bonding orbitals comprise s and p orbitals only,
they obtain from the orthogonality relationships
the following:

n + P'(1 ——', cos q) =0,
no. —p p sing=0,

n +P =h~,2 2

)2n +p =h~,

(25a)

(25b)

(25c)

(2M)

where n, P are the amplitudes of the s and p or-
bitals, respectively, for the Z substituent and n,
P' are the corresponding amplitudes for the M sub-
stituent.

The Z-P-Z bond angle 0 is related to g by

cosy = (2/v 3 ) sin —,'8 . (26)

From the definition of the charge-bond-order ma-
trix elements p&&, Letcher and Van Wazer obtain

3 2 2
p ~ ~ =pgg= pP cos 'g

~

p» ——3 p sin 7l + p

(2%a)

(2n )

If we put 0 = 90 ' + P, where P is a small deviation
from orthogonality of the Z-P-Z bond angle, we

obtain

cosy= M(cos —,'p+sin-,'p) = v 3 e . (26)

= 1+I, (29)

where E is the electronegativity of the element z.
Substituting the above expressions into Egs. (21a)-
(21c) we obtain

For triply substituted compounds 5„=2, the two

p electrons for a closed pair thus residing in the
phosphorus orbital. The fraction of charge resid-
ing in the phosphorus atom in the P-Z bond is taken
to be the Coulson expression

h„= 1+0.16(E~ —E„)+ 0.035(EJ, —E„)

2. Zinc Phosphide

Letcher and Van Wazer have applied the Kar-
plus and Das theory as developed by Jameson and
Gutowsky to the study of P in a series of sym-
metrically substituted phosphorus compounds of
the type MPZ3 where M and Z are substituents.
In the trivalent form the ground-state electronic
configuration of the three valence electrons is taken
to be the three orthogonal p orbitals. In their anal-
ysis, the k axis in the molecular reference frame
is the C„3 symmetry axis. [This corresponds to
the (111)axis in the orbital axis reference sys-
tem. ] The angle between the P Zbond axis and-
the ij plane is g and is by symmetry the same for
each bond.

oo(I +I- I[3(I+1)(I/~' ——;)+6(l —I/q')]),
(3Oa)

(3ob)o»=~ oo(1-I') .
Using the electronegativity values for phosphorus
of E~ = 2. 1 and a value for zinc of 1.66 gives
I= 0.07.

The structure of Zn3P2 is quite complicated,
there being 24 Zn atoms and 16 P atoms in the
tetragonal unit cell. The 24 Zn atoms comprise
three crystographically distinct groups of 8, while
the 16 P atoms comprise one group of 8, and two
groups of 4. The zincs are each surrounded by a
deformed tetrahedron of P atoms. Each P atom
has six zinc neighbors with no simple symmetry.
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The isotropic chemical shift of phosphine (pH3)
relative to HOPO4 is 240 ppm. In this material the
P-H bond length is 1.473 A and the bond is strongly
covalent. The H-P-H bond angle is 93. 5'. Zinc
phosphide has a similarly large isotropic chemical
shift. However, the Zn-P bond lengths are sub-
stantially longer lying between 2. 28 and 2. 77 A
leading to some doubt in the character of the bond.
Some phosphorus compounds, normally reckoned
to be covalent, do however have bond lengths of
the order of 2 A.

In trying to interpret our results we have con-
sidered Zn3P~ as being a covalent solid. Each
phosphorus is supposed connected to three Zn
atoms in such a way as to keep the bond angles
equal (if possible) and close to 90'. Calculation
of the actual bond angles gives an average of
111.2 and is close to the tetrahedral angle of
109.5'. Thus although our model deviates from
reality it allows straightforward application of the
existing theory. One consequence of this is that
the chemical shielding tensor is always axially
symmetric. From our data we assign a mean
perpendicular component of chemical shift

ate ax+ &gg. av

and hence an asymmetry parameter 60 = o, —o. .
Equations (23) and (30) can then be solved simul-
taneously for a Zn-P-Zn bond angle of 110' to give
00 = —1940 ppm and g~ = 2990 ppm. These values
of the constants differ considerably from those
deduced by Letcher and Van Wazer based on
studies of the isotropic chemical shifts of a num-
ber of triply substituted phosphines. Inclusion of
p-bonding orbitals could reduce this discrepancy.
However, we suspect that such a simple readjust-
ment of the theory to give agreement for the iso-
tropic shift wouM not explain the anisotropy. The
important point is that measurements of both the
isotropic and anisotropic parts of the shielding
tensor give a mutually compatible set of constants
without reference to other compounds. It is in-
teresting to note that with our values of the con-
stants, a decrease in the bond angle of 10' re-
duces the isotropic shielding tensor by 55 ppm.
This sensitivity to bond angle could thus be partly
respor. ~ible for the isotropic shift doublet reported
elsewhere. 2~ 26

V. APPARATUS

The spectrometer is a hybrid rig using mainly
transistorized control and rf gating logic at the
low-power end. Although these components are
broad band, the equipment over all is essentially
fixed frequency due to bandwidth limitations of the
intermediate and final rf amplifiers and operates
at 9.0 MHz. The final transmitter output is of
conventional tube design producing about 5-kW peak

power pulses in a cross-coil probe.
A block diagram of the equipment is shown in

Fig. 8 and illustrates the scheme of rf logic used.
The solid-state broad-band rf gates are fairly fast-
rise-time (-10 nsec) high-attenuation (-120 dB)
transmission gates and will be described together
with the broad-band solid-state phase shifters
elsewhere. 39 The phase shifters are switched
and the rf gate-width control pulses are triggered
directly from a Honeywell 316 computer. The
pulse patterns for any cycle, the pulse-train length
and the repetition rate are programed entirely by
software. All timings are therefore related to
integral multiples of the machine cycle time, 1.6
p,sec. We have not found this constraint to be a
hindrance so far. For r &4. 8 p,sec, our present
method for generating pulse patterns would be
limited to software programs which could not
accommodate the possibility of computer sampling
of the signal.

In our experiments the internal computer clock
was used directly for all timing. For greater
timing accuracy this could of course be replaced
by an external timing pulse derived from a master
crystal clock. This would also ensure pulse co-
herence, which we found to be necessary in all our
experiments. In our case pulse coherence is
achieved by a, straightforward retiming circuit (see
Fig. 8).

The sample probe consists of a cylindrical
Helmholtz cross-coil assembly following the de-
sign used by Lurie and Slichter. ' ' Signal re-
ception is performed using a standard-design
synchronously tuned broad-band receiver, modified
to include phase-sensitive detection. In order to
improve the recovery time of the system active
switching at the receiver input is employed. Use
of an FET p switch has enabled us to reduce the
resolution time including the 1.1-p,sec pulse to
8.0 p,sec. This time is controlled by transmitter
coil ringing and could be further reduced by heav-
ier damping or active switching of the transmitter
coil.

VI. PHASE EFFECTS

A. Phase Compensation

In addition to compensation for finite rf pulse
width and rf field inhomogeneity it is possible to
design cycles in which the systematic errors in
the 90' and 180' phase shifters are self-correct-
ing. Because of the increased complexity of fully
symmetrized compensated cycles we feel that the
full experimental realization of these cycles will
ultimately depend on the ease with which these
cycles can be set up. Phase compensation of the
type discussed here should make these cycles less
critical to exact phase settings and hence simpler
to adjust.
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FIG. 8. Block diagram of the computer-controlled spectrometer. F. F. denotes a bistable flip-flop circuit and
6 denotes an rf transmission gate.

To unde;rstand the operation we refer to Fig. 8.
The 180' phase modulator is common to both the g
and the y channel. Since it can be set only to a cer-
tain accuracy there will be, in general, a phase
error $, associated with this phase shifter. This
introduces modulation of the transient response in
competition to resonance shifts hence limiting the
resolution of small field shifts. Cumulative phase
errors can be removed in first order by employing
two phase modulators in series as in Fig. 9. The
second modulator will of course introduce a phase
error Q~.

We denote an rf pulse which has a 180 phase
shift derived from the first phase modulator as
P, and from the second as P', . It is evident that
in any cycle of rf pulses, systematic phase errors
introduced in one cycle can be removed in first
order in the second cycle by routing all rf pulses
in this cycle through the second phase modulator.
To maintain the basic properties of the cycle, how-
ever, it is clearly necessary to pass the phase
complement of the first cycle through the second
phase shifter. In this way both errors Q~ and Pz
vanish in first order with no special adjustment.
The frequency scaling factor, of course, remains
the same as for the uncompensated cycle.

As a simple example we take the phase-alter-
nated cycle. The phase-compensated form of
this is

P —(7' —P„—27' —P „—27' —P '„—27' —P„' —v)„.

Examples of this sequence are shown in Fig. 10
applied to H in water. The response in the un-
compensated case for h~ =0 and Q =0, Fig.
10(a), is compared with the compensated form
with 6 a& = 0 and p =0.35 rad [Fig. 10(b)j and is
seen to be substantially independent of phase er-
ror up to Q =10'. The latter part of each trace
is the normal free-induction decay which in both
cases is seen to be monotonic. For the same
phase error (-10') the compensated response
slightly shifted from resonance (K &v =4. 68 krad
sec ') is shown in Fig. 10(c) and the scaling fac-
tor is found to be the same as that for the uncom-
pensated cycle for the same resonance shift, in

PHASE COl4IPEN5ATlON

—180 $180~)2 G—

FlG. 9. Double-series 180' phase modulator. F. F.
denotes a bistable flip-flop circuit and G denotes an rf
transmission gate.
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by the above scheme. The first of these errors
can be reduced by pulse coherence, especially
if the gates are arranged to open at an rf zero
crossing, and also by careful tuning of the rf
stages. Thermal effects can be reduced by con-
servatively rating all resistive components and
active devices.

B. Amplitude -Modulation Effects

jj ~ f ~ 11
I II

~ »» j

j
~, j r

~ tf I / ~ l»Iijj
I I I I I' I I I
I I I I I I I

jj
I I jt

I I I ~ I 11 4' ~ Ij
I I I jI I I 111

t&i» . .
,Ijj I I

tl I I M I I I I I I I I I I I I
I I I: I I I I I I

'
~ ~

'I
'I
~ ~ ~

~ '»%

1,&

I I I I

l~
j',

'I
~
fg

I

4
I 41I'I I I

I

FIG. 10. Photographs showing phase compensation of
the signal response of ~H in water at room temperature
following a phase-alternated multipulse sequence. (a)
Uncompensated P ~

—(v' —P„—2v —P, —~)„sequence with
6~=0 and $ =0, (b) compensated sequence P ~—(~-P„—2~ -P, -2~ -P „—2w -P„'-~)„with 6(d =0 and

ft) =0.35 rad, and (c) as in (b) above but off-resonance
by &=4. 68 farad sec" . Horizontal sweep in all photo-
graphs is 1.0 msec/large division and v =12 @sec. Note
the latter part of each trace is the normal free-induction
decay.

(I„)
(I.)p

2
1+A,.

xI -,' sin'-,'y+-,'[cos-,'y+ 1+2A',. ]cos2nn, .), (3»)

where

A =t
sin(a, .~+ —,'P)

COS(kg'T —
psin(b, , 7 ——,'P) (31b)

In the phase-alternated experiment P —(7 —P„
—27 —P „-v')„carried out in a liquid with a
Gaussian inhomogeneous distribution of Larmor
frequencies, the response at resonance is a mono-
tonic decay with a time constant longer than the
usual inhomogeneous free-induction decay value
by the factor v 2 in the limit of 7-0 and with the
real time t=4yn finite, n integer. Waugh et al.
have calculated an exact expression for the re-
sponse to a phase-alternated sequence of a liquid
with spin —,'.

In a modified form of this sequence, in which the
phase of alternate pulses is varied from 180' by
a small phase angle P, we noticed in some solids
that the solid echo train decay time constant could
be increased. In homogeneously broadened liquids
and motionally narrowed solids such as lithium
metal at room temperature, the observed decrease
in the damping was even more dramatic. A phase
angle jjjj = 0. 05 rad caused the onset of beats and

a reduction in the damping. The damping reached
a minimum at jtj =0. 156 rad at which value it re-
mained constant for further increase in jtj.

We have evaluated the response for a set of non-
interacting spins —, including the phase deviation

P and obtain

this case a factor of 1.46.
It is clear that this procedure for phase com-

pensation also corrects for any systematic phase
errors in the alignment of phase quadrature
between the z and y channels in more complicated
cycles. As it happens, all six forms of the reflec-
tion-symmetry cycle and their compensated ver-
sions are self-correcting for this type of phase
error.

Phase transients caused by applying stepped rf
pulses to tuned amplifiers, phase shifts due to
thermal effects, particularly in long pulse trains.
and random phase errors cannot be compensated

and the resonance shift 6, =5, +~&. The angle n,
is defined by

tann; = sin(h, ~--,'jtj)(1+A', )'~'

co8(&,7' ——,
'

jtj )c0s (&,7 + z P )
(31c)

In the special cases (i) P =0, v-0 and (ii) b, , =0,
0, Eq. (31a) reduces to

(I„)j(I„)p= Zg cos2nn&, (32)

where for case (i) n, - b, , ~v 2 and for case (ii)
n, - —jtj/v 2 . Equation (31a) has been evaluated for
a Gaussian inhomogeneous static magnetic field
distribution of the form
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FIG. 11. Theoretical response
[Eq. (31a)] of noninteracting spins-~ to
the phase-alternated sequence P ~—(7 -P„—27 —P „—7)„, evaluated for
a Gaussian inhomogeneous distribution
of Larmor frequencies (see text) and
with ~ =15 @sec. (a) On-resonance,
~=0 and phase error Q =0. This
shows the inhomogeneous decay, (b)
off-resonance by 4 =25. 0 krad sec
Bnd phase error fIJ) =0. Note that the
wiggles are contained within the in-
homogeneous decay envelope, and (c)
on resonance, A~ = 0 but with phase
error ft) =0.156 rad. The damping is
significantly reduced.

lQ 20
t in rnsec

3.0 4.0

f ((o) = (m/2a')' 'e " "
with a= 2. 62&&10 rad sec corresponding to the
observed inhomogeneity in the free-induction de-
cay. The results for a~ = P = 0; h~ = 25. 0 krad
sec ', p =0; and h&u= 0, P =0. 156 rad are
plotted in Fig. 11 for 7 = 15 p, sec. Notice that for
on-phase and off-resonance the wiggles are con-
tained within the inhomogeneous field damping en-
velope. For nonzero phase, however, the effective
damping is substantially decreased. In Fig. 12 we
give actual experimental results for H in water
with v=15 p, sec.

Although Eq. (31a) is exact, except for finite
pulse-width effects and rf inhomogeneity, it is not
immediately obvious from its form that decreased
damping would result from including a phase term

It is true, of course, that for a perfect homo-
geneous static field and in the absence of spin-lat-
tice relaxation the response signal would not decay
for any Q. In the present circumstance one might
naively expect that the phase wiggles should be

amplitude modulated in exactly the same way as
those for the off-resonance case, that is to say,
contained within the inhomogeneous decay enve-
lope. That this conclusion is wrong is clear from
the experimental results and detailed computer
evaluation of Eq. (31a).

The average Hamiltonian approach gives essen-
tially the cosine term only in Eq. (31a) with

n, = [2(4,7)3+-,'Pa] ~~. Detailed computer evaluation
in this case shows that damped and highly dis-
torted phase wiggles do persist beyond the inho-
mogeneous decay time, but they bear little resem-
blance to the smooth regular wiggles observed ex-
perimentally, Fig. 12.

The main difference between the average Ham-
iltonian calculation and the exact expression [Eq.
(31a)] is the appearance of the —,

' sin —,'P term and
cosine amplitude factor. It would seem that their
exact form plays a significant role in the actual
shape and damping of the phase wiggles, even
though from the magnitude of P and 6&7 one ex-
pects to be in the average Hamiltonian limit. As



104 MANSFIEI D, ORCHARD, STALKER, AND RICHARDS

VII. CONCLUSIONS
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FIG. 12. Photographs of the response of H in water
to the phase-alternated sequence P ~

—(v —P~-2w -P „
—~)„applied at resonance with 7 =15 @sec. In (a) Q = 0
and in {b) &=0.156 rad. Horizontal sweep is 0. 5 msec/
large division.

evidence for this last point we can look to the
periodicity of the phase wiggles in the evaluated
expression [Eg. (31a)) which does agree fairly
well with the average Hamiltonian limit [Eq. (32),
case (ii)]. The inhomogeneous decay with P =0,
[Fig. (lla)] also agrees in the same limit. Cal-
culations in the average Hamiltonian limit show
that phase wiggles similar to those described above
should occur in all forms of the reflection-sym-
metry cycle.

We have demonstrated experimental realization
of one form of the reflection-symmetry cycle and
shown that in either its elementary form or its
compensated form it is capable of resolving chem-
ical-shift tensors in solids which are normally
hidden by the dipolar interaction. By way of an
example of the application of these cycles, some
preliminary data on .F in (C&F4)„and P in pow-
dered Zn, P~ is presented and discussed. These
data, obtained by a computer-controlled spec-
trometer, are single shot and could be greatly
improved by signal averaging.

The effect of phase errors in the setting up of the
pulse sequences is discussed and the principle of
phase compensation is demonstrated experimentally
on a phase-alternated sequence. Another striking
effect of introducing a phase error is the reduction
of damping beyond the u 2 effect in a phase-alter-
nated sequence. Detailed calculation for noninter-
acting spins —,

' is shown to predict the observed ex-
perimental behavior. The predictions of the sim-
ple average Hamiltonian theory, while correct for
the periodicity of phase wiggles, are at variance
with the observed facts regarding the shape of the
response signal and its damping.
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A general calculation of the Knight shift in metals with spin-orbit interaction is presented.
For terms involving the electron-nuclear contact interaction the spin-orbit interaction was in-
cluded to second order and is shown to result in anisotropy of the Knight shift even in cubic
metals. Our formalism for electron-nuclear dipole interaction with spin-orbit coupling also
yields anisotropy in cubic metals and reduces in the tight-binding limit to the result previous-
ly obtained by Boon. Nuclear-magnetic-resonance measurements on single crystals of the
cubic metals lead and platinum have shown the anisotropy in our samples to be less than, re-
spectively, 3.4 and 1.5&& 10 of the isotropic shifts. The upper limit for lead is half the
anisotropy in lead reported by Schratter and Williams.

I. INTRODUCTION

The Knight shift is normally taken to be mag-
netic shielding of a nucleus in a metal by the sur-
rounding electronic magnetic moments and their
orbital currents. If bB is the internal field seen
by the nucleus, and the external field Bp is applied
in the g direction, then the Knight shift K is

K= 6 B,/Bo .
In a (hypothetical) noncrystalline, isotropic sub-

stance, the direction of the internal field hB is the
same as the direction of the applied field Bp. In

a real metal the nature of the electronic wave func-
tions is determined by the periodic crystalline po-
tential; the orbital currents and, if there is spin-
orbit coupling, the spin direction are sensitive to
the nature of the crystal potential, and cor.sequent-
ly, in general, AB is not parallel to Bp. The con-
sequences are familiar in noncubic metals, where
the Knight shift has long been known to be aniso-
tropic. It is less obvious that the Knight shift can
be anisotropic in cubic metals as well. That it
can was first (to our knowledge) pointed out by
Boon, ' who displayed a formula for the anisotropic
part of the shift due to the combined effects of


