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A theory is presented for the structural phase transitions occurring in crystals in which the ionic
constituents are pseudo-Jahn-Teller ions with nearly twofold electronic degeneracy. We consider the case of
a strong Jahn-Teller coupling and study the dynamic properties by means of a time-dependent density
matrix which takes into account the correlation between the electronic and vibrational motions of a single
ion. The results are compared with those obtained in a recent theory of Pytte and Stevens, in which
single-ion terms are treated in a decoupling approximation.

The increasing attention being recently given to
the problem of structural phase transitions in
rare-earth compounds, ' especially in DyVO4,
makes the cooperative pseudo- Jahn- Teller effect
(PJTE) of conceptual interest. As the simplest
prototype of such systems we consider a crystal
containing complex ions (one per unit cell) the low-
est electronic states of which are only nearly two-
fold degenerate and well separated from the higher-
lying ones. The nearly degenerate ground doublet

g. .. gp, , at lattice site l is coupled to a single lo-
cal normal coordinate Q, which, in turn, interacts
lattice dynamically with other coordinates Q„be-
longing to lattice sites I'el. Q, represents a mode
of distortion of the complex made up of the PJT ion
and the ligands around it, all belonging to lattice
cell l. It transforms according to a one-dimen-
sional representation (not the totally symmetric
one) of the point group of the lattice cell.

~ith ~p' (g...+ gp, , ) taken as basis functions, the
matrix Hamiltonian we consider is

&=SQ&12' l+2ql+&qi~. .i+«..~ 2~ v-» «q~
l]
(1)

Here o&,, are the Pauli spin matrices operating
within the function space of the ion at lattice site l.
The local normal coordinate q, has been written in
dimensionless form, i.e. , q, = (MQ/5)'~ Q, with Q
the Einstein frequency and M the effective mass of
the local vibration, while P, is the dimensionless
momentum conjugate to q, . X, g, and v„. are, re-
spectively, the JT coupling coefficient, half the
splitting of the ground electronic energy level, and
the mutual interaction of ions at different sites, all
in units of hQ.

From this Hamiltonian the following equations of
motion are obtained for the nonequilibrium thermal
expectation values (denoted by ( ~ ~ )„)of the elec-
tronic and vibrational operators at lattice site l:

Q ' —(o„,)„=—2X(q, o„,)„,
Q —((T () = 2X (qgCf g) —2e(0'

Q '—(a„,)„=2e((r, , ,)„
82

& (q)..= —(q)..—&(o., )..+Zv„.(q .),.
(2)

The simplest decoupling procedure in order to
calculate the collective mixed-mode frequencies
from the equations of motion is that in which a ran-
dom-phase approximation (RPA) is used. Such a
treatment amounts to (i) replacing thermal aver
ages of products of operators such as, for instance
(q,o„,)„by the product of their thermal averages,
(q~)„(o'„,,)„, and (ii) linearizing the expressions
thus obtained with respect to the fluctuations about
the equilibrium mean-field values. The first stage
of this decoupling scheme treats the electronic and
vibrational coordinates as if they were independent
degrees of freedom, ignoring the intrinsic JT cou-
pling within each ion. Solutions for the frequencies
obtained in this way appear in a recent paper of
Pytte and Stevens. Their work, however, primar-
ily concerns the coupling to the elastic strain,
which we do not consider. If, in addition, a cor-
responding decoupling is introduced into the equi-
librium density matrix, i.e. , if the term &&0„&
which appears inc ~ is replaced by q, (o'„&)
+ (q~)&,, ~

—(q&)(o'„&), where ( ~ ~ )' denotes an equilib-
rium average, the density matrix becomes sepa-
rable in the electronic and vibrational coordinates.
Using a molecular-field approximation (MFA) for
the interionic interaction, the equilibrium aver-
ages can now easily be calculated and shown to
satisfy the static parts of the RPA-decoupled equa-
tions of motion. An immediate shortcoming asso-
ciated with such a decoupling scheme emerges from
the expression thus obtained for (q), which for a
"ferrodistortive" order is given by

(q) = (1 —v, )
' W-'X'(q) tanh(pkQW), (3

where W= (X'(q) +z )', p=1/kT, and vp is the
zeroth Fourier component of v», . (In our units
vp & 1. ) Equation (3) predicts a spurious phase
transition at a temperature T, given by A. &(1 —vp)
= tanh(P, @Qe) even if the interionic interaction v„,
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vanishes.
Elliott et al. ' have overcome this last difficulty

first by transforming the Hamiltonian into dis-
placed oscillators, which eliminates the JT term
and leaves an effective Ising interaction of the form
—2$&&.J&„o„,o„„. Their crucial step is the sub-
traction of the terms with l = l', which correspond
to the JT energy of single ions and give no contri-
bution to the ordering. The resulting coupling is
—g~ J~g, (k)o,(- k), where, in our notation,

J, = x'h))!!)—v, )'i' ——Z (1 —v, .) 'i'),

which cancels when v„.=0. However, the fact that
the displaced-phonon operators explicitly depend
on 0, and do not commute with the term SA&o„ in
the Hamiltonian has not been taken into account in
the calculation of the equilibrium averages (o&) in
Ref. 1.

The aim of this comment is to present a method
which avoids the difficulties associated with the
RPA by directly calculating thermal averages using
a time-dependent density matrix which, though
approximate, still takes into account correlations
between single-ion operators.

The static properties are calculated by means of

a molecular-field density matrix pM» = II
& p&, with

p, =z, 'exp(- PEA['P&+ '(q qo, ) +&qio, r'+so', ]j'
(4)

Here qo, , =-g, .v».{q„)is the molecular field acting
on the coordinate q, due to its interaction with the
other ions, and z, = Tr, exp{ ~ ~ }, where f ~ ~ j stands
for the expression inside the curly brackets in (4).

The condition for the existence of a double-min-
ima potential in the single-ion Hamiltonian in (1),
and hence for a PJTK to occur; is g(X . The
PJT stabilization energy (the depth of the minima)
is then Error = 2hAX (1 —e/Xm)3. Contrary to the
case in DyVO4, this comment considers a strong
JT coupling, namely, &SQ, SA«E~~ or &, 1«A. .
Restricting the treatment to the temperature range
kT» SQ, the thermal average of an observable A,
may be approximated by an integral over phase
space I', = (p, , q, j (P, and q, denoting classical vari-
ables) and a trace over the electronic states. Hav-
ing performed the integration over P& we are left
with

&&r&= Tra f pc(qr)&rdqi

with p„ the probability density in configuration
space, given by

p, =z,'exp(- PEA[2(q —qo) + &qa, + eo„]j(1—~(PIA) + ~(PEA) [(q —qo) +2(q —qo)Xo, +X ]j .

The factor in curly brackets in Eq. (5) is the correction to the classical expression, here taken to order
(Pal) . The normalization factor z, is determined from Tr„fp, dq = 1.

The self-consistency equation which determines (q, ) is therefore

&q,&=x,'f"dq2qexp[- —,'ptA(q —q«)']([1 ~(p@A) ]coshpSAW'+~(pIA)~

x([(q —q, , )'+ X'] coshpKAW' —2(q- q, , ) X'qW' ' sinhpIAW'j), (6)

where W = (X q + s )'
It is instructive to point out that the equilibrium

averages obtained by means of p, satisfy the static
yarts of the uncoupled equations of motion. For
instance, in accordance with the second equation
in (2) we find e(o,) = X(qo ) W X(q)(o„).

In order to study the linear response of the sys-
tem, we conceive the molecular field qp g to con-
tain an additional external field F&'"' which couples
to q, via a term —F& 'q& in the Hamiltonian. The
static single-particle susceptibilities ~„(T) and
~„(T)in the ordered and disordered phases are
then obtained by linearizing Eq. (6) with respect to
I" P about q, , = g„v„.(q„) or about q...= 0, re-ext

spectively. If we assume that the maximum value
of the Fourier transform of v». occurs for k = 0,
the disordered phase will become unstable with
respect to a ferrodistortive ordering at a stability

limit T, which is determined by vo ~„(T,) = 1.
For «&X vp we find

where the function f is defined by

f(u) = [2v(1- u) u]-'"e"-""i'

xJ x 'sinh[x(u ' —1)'i ] e i dx. (8)

The stability limit of the ordered phase is found to
coalesce with T„and (q) = e(T, —T)/T, for T &T„
as is the case in a second-order transition. The
proportionality factor is

n=3X'(1 —vo)
'

x (1+[3(1-2v, ) -(1 —4vo) f(vo)]s'/(4X'vo)j.
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where the primed symbols denote column vectors.
Similarly, the time-dependent parts 5(q, e, , ,), etc. ,
of the thermal averages which appear in the right-
hand sides of Eqs. (2) may also be expressed in
terms of A&, , (and A&, ). Having Fourier trans-
formed the resulting equations of motion we obtain
another linear transformation, denoted by S (v~),
for the kth Fourier components:

~(o„,„)
h(~, ,)
h(o„,)

Q '5(q,)-
The equations of motion will have nontrivial solu-
tions provided that the following condition is met:

det[U (&o„) ~ M- S (v~)] =0, (11)

(lo)

where the matrix elements U„„(co~) are given by
i~~g 5„ for e = 1, 2, 3 and by —co~A 5„ for n = 4.
Equation (ll) has one single root &o, =0 which above
T& corresponds to a„while below T, it corresponds
to a mixed mode which involves the motion of g,
and q as well. For k=0, g «1, and T&T, we find
for the remaining two double roots

Inspection of Eq. (8) in the interval of physical in-
terest 0&vo &1 shows that f(vo) & 1, with the equal-
ity sign holding true at the boundaries. Also, f,„-1.64 at np-0. 27. It thus appears that the transi-
tion temperature of the PJT system is always lower
than that of the corresponding pure JT system.
This is a direct consequence of the presence of the
term eo„ in (1), which induces tunneling between
the otherwise uncoupled, doubly degenerate sets of
vibronic states which are localized at the two po-
tential wells of each ion.

In order to study the dynamic behavior we con-
struct an approximate nonequilibrium density ma-
trix by allowing the coefficients of the operators p

and q in (4) to become time dependent. In other
words, we take p, (t) and p, (t) of the same form as
in Eqs. (4) and (5) but now' with qp, (t)=qp+A„, (t)
and with three more additional terms appearing in
the exponential, which are —PAQ[A„, , (t)o„,
+ A„~(t)o„~+A„z(t)o„z) Cl.early, this particular
choice for p(t), which excludes time-dependent co-
efficients of products of operators, implicity intro-
duces a truncation in the number of equations of mo-
tion. At the equilibrium state, the vector A(t)
= [A„,A„A~, A, ] vanishes by definition. For linear
deviations from equilibrium, the thermal averages
in Eq. (2) are directly calculated by means of p, (t),
which we expand near Z, = 0, retaining only terms
linear in A, , z(j=x, y, z, and q). Setting (o„,&)„,
= (o'„)+5(o'„,,), etc. , we then have a linear trans-
formation relating the components of the vector
5~ (t) = (5(o„,~), ..., 5(q,)) to those of A, (t):

5', (t) =M A, (t), (0)

(go,, - 4Q'6'vof(v, )A,
(12)

~o z=Q {I—voy4e f(vo)+2e Avo'[(I —2vo) f(vo) —I]),
where A= ( T T,-(/T, «1. The eigenmodes are
represented in terms of the relative amplitudes of

e„, o„, cr„q, andP when each mode oscillates sep-
arately in the system. The dominant terms in
these ratios are found to be

0: +i[a,f(v, )A]'~': 1:—:v [v,f(vo)A]'t'
1 —vp 1 —vp

and

0:+2ie(1 —v, )' 'f(v, ):4e'f(v, ).X: +iX('1 —v, )' ',
corresponding to ~p, a and wp „respectively.
Equation (12) shows ~o & to be the frequency of
the soft mode associated with the transition,
which vanishes in a Cochran-type behavior as
T- T, . For T& T, we find &uo, z--2X(q)Qf '(vo)
x [1 —2& f(vo)/(1 —vo)), where the dominant term,
which is 2v3X'A'~'Ql[(l- vo)f(v, )] ', exhibits a much
steeper rise of wp, a versus 6 than that above T, .

It is interesting to compare these results with
those obtained from the RPA theory of Ref. 2,
where single-ion terms are treated in a decoupling
approximation. In addition to a single root +& = 0
one finds for T & T&, g «1, and k = 0 two RPA dou-
ble roots, which are Np g = 40 & 4 and QPp 3 = 0
x [1 —vo+4e (1 —A)], with the corresponding relative
amplitudes given by

O: +z A"': I:—X/(I —v, ): +2ieXAz "/(1- v, )

and

0: a 2ze(1 —vo)'~: 4e: X: + zX(l —vo)' ~

For T & T„ the RPA solution gives ~o z = 2X(q) Q

x[1—2g /(1 —vo)]. Bearing in mind that 1 &f(vo)
~ 1.64, it thus appears that at least for the con-
sidered range of parameters the RPA expressions
for the mixed-mode frequencies and amplitudes
are numerically rather similar to those of our the-
ory, except when vp becomes small compared to
unity. In the limit T- the results of the two the-
ories coincide, giving urz = 2eQ and vz= (1 —v~)' Q,
which are, respectively, the unperturbed electron-
ic excitation and phonon energies.

To conclude, we should point out that our theory
considers the case where the dominant driving
mechanism for the phase transition is the coupling
of the electronic states of the PJT ion to a k = 0 op-
tical-phonon mode, and disregards couplings to
acoustic-phonon modes and elastic strain. The
structure of the ferrodistortive phase corresponds
to a "freezing" of this optical mode, without chang-
ing the dimensions of the unit cell.

I am indebted to Professor H. Thomas for valu-
able discussions and suggestions and for his critical
reading of the manuscript.
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A variational treatment is used to calculate the contributions of longitudinal and transverse
phonons towards the phonon conductivity of Ge in the Ziman limit. The matrix elements oc-
curring in the formula for thermal conductivity are evaluated using the corrected expressions
of three-phonon scattering strengths.

In this short paper we present the results of cal-
culation of the phonon conductivity due to three-
phonon scattering processes for the different po-
larization branches. The calculations are per-
formed in the Ziman limit, ' the first and the lowest
term of a sequence of the bounds approaching the
thermal transport coefficient K. We take the varia-
tional trial function @'~ as

C'; = —a, q ~ &T/T,

where a, is the variational parameter for the po-
larization S. This leads to the following expres-
sions for the separate contributions of longitudinal
and transverse phonons:

u x'x' p"- 2x,'x'I "
0 11 11 11 11

ko 2X(Xg Pgg —XgXgPgg
&~0)T ~ fl PL IP TT P TL P LT

0 11 11 11 11

calculated values are nearly equal to or somewhat
higher than the experimental values at low tem-
peratures (say, 140'K). This is due to neglect
of mass-defect scattering. At higher temperatures
(say, 300 'K) the calculated values are lower than
the experimental values. As a matter of fact, if
one includes mass-defect scattering also, the
calculated values will lie below the experimental
ones' (shown in the fourth column of Table I) at
all temperatures, This is evident because the
Ziman limit K0 gives the lowest bound of a sequence
of transport coefficients all of which bound the ex-
act transport coefficient K from below. The next
higher bounds, viz. , K'„K&, etc. , may give re-
sults nearer to the exact coefficient K.

The authors wish to express their thanks to
Professor B. Dayal and Professor K. S. Singwi for
their interest in the present work. One of us
(G. P. S.) is also grateful to the Council of Scientific
and Industrial Research, India for the award of a
Junior Research Fellowship.

in the notations of Hamilton and Parrott. 3 The
matrix elements are evaluated with the modified
expressions for three-phonon scattering strengths,
which are given elsewhere. 4

The separate contributions of longitudinal and

transverse phonons, (go)~ and (~0)r, respectively,
are shown in Table I. It may be noted that the con-
tribution of transverse phonons is as high as 74/o

of the total conductivity a~~= (z)~+ (v)r. The total
conductivity zo (Ziman limit) is also given in the
third column of Table I. It can be seen that the

Temp.
( K} (lcm 'K )

(&p)g
(%cm ' 'K ')

K

Expt.
(%cm ~ 'K ~) (W cm ~ 4K ~)

140
180
220
260
300

0.3301
0.3263
0.3031
0. 2786
0.2552

0.9158
0. 7623
0.6452
0.2592
0.1029

1.246
1.089
0. 9483
0.5378
0.3581

1.5
1.1
0. 82
0. 66
0.58

~Reference 5.

TABLE I. Contributions of longitudinal and transverse
phonons towards the thermal conductivity of Ge.


