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We describe a quantum-mechanical theory of the inelastic scattering of low-energy electrons
by multiphonon processes, from the surface of a semi-infinite crystal. A model introduced
in an earlier paper is also employed in this work. The model describes the interaction of an
incident low-energy electron with surface optical phonons by means of the macroscopic elec-
tric field set up outside the crystal by the ion motion. The model may be used to describe
scattering either from ionic crystals, such as ZnO, or from nonionic crystals. In this paper,
we find an explicit expression for the wave function of the outgoing electron, and we obtain an

expression for the probability that n phonons are created or absorbed in the scattering pro-
cess. Two cases are considered. First we examine the cross section for scattering off
thermal phonons, and second from a coherent surface wave excited by external means.
For the first case, our result agrees with the earlier semiclassical theory of Lucas and Sun-
jic. However, the model here is more general than theirs, since it is fully quantum mechan-
ical. We show explicitly that the energy-loss cross section is proportional to the intensity of
the specular beam, for scattering off both ionic and covalent crystals. For the second case
(scattering from surface optical phonons generated coherently by an external source), we ob-
tain a closed expression for the cross section. The physical origin of differences between
the expressions is discussed.

I. INTRODUCTION

The study of the inelastic scattering of low-ener-
gy electrons by phonons from crystal surfaces pro-
vides a powerful method for the study of the vibra-
tional properties of the surface region, in principle.
However, until recently, it has proved difficult to
carry out such measurements, primarily because
it has proved difficult to produce electron beams
sufficiently monoenergetic so the energy spread of
the incoming electrons is small compared to pho-
non energies. However, Propst and Piper' re-
ported an experimental study of the inelastic scat-
tering of electrons by vibrational motions of hydro-
gen and other molecular species absorbed on a
tungsten surface. More recently, Ibach has studied
surface optical phonons on the surface of the ionic
crystal ZnO, ' and on the (111) surface of silicon
by means of inelastic low-energy electron scatter-
ing.

In the case of Zno, it is clear from the data that
the scattering is produced by the interaction of the
electron beam with the macroscopic electric field
set up outside the crystal by the ion motion. This
is so because the inelastically scattered electrons

have an angular distribution sharply peaked about
the specular direction. The absolute scattering in-
tensity, the dependence of the inelastic-scattering
cross section on incident electron energy and on the
number of phonons created in the scattering pro-
cess are in remarkable agreement with the semi-
classical theory of Lucas and Sunjic. ' In the the-
ory of Lucas and Sunjic, the electron is treated as
a classical point particle which moves along the
specular trajectory, at constant speed. The elec-
tric field of the electron excites the surface optical
modes (Fuchs-Kliewer modess) of the ionic crys-
tal. Lucas and Sunjic calculate the energy trans-
ferred to the surface modes, by a method which
takes due account of the quantized character of the
surface modes.

The data obtained on the silicon surface are in-
triguing, in that the inelastics emerge with an an-
gular distribution that is also narrowly peaked
about the specular direction. This means that even
though the atoms in the bulk have a dynamic or di-
pole-moment effective charge of zero, the atoms in
or near the surface layer have a nonzero effective
charge. This is presumably because the atoms
very close to the surface feel the absence of an in-
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version center in the crystal.
In an earlier paper, the present authors dis-

cussed a model which describes the interaction of
the electron with the surface optical phonons in a
nonionic crystal such as silicon. In the model, the
electron is treated in a quantum-mechanical fash-
ion, in the sense that the cross section for inelastic
scattering of the electron by the surface optical
modes is obtained from the solution of the Schrod-
inger equation. Actually, the model can be direct-
ly applied to the ionic crystal by the appropriate
choice of the parameter a(Q„), to use our previous
notation.

In the introductory section of the previous paper,
we raised some objections to the physical picture
employed by Lucas and Sunjic. One may feel that
the classical theory should be valid since the de
Broglie wavelength of the electron is small com-
pared to that of the optical phonons which play the
dominant role in the scattering. In this limit, one
may think of a picture in which the incident par-
ticle is described by a well-localized wave packet,
with spatial extent small compared to the surface
phonon wavelength. Then the classical point-par-
ticle picture is an appropriate one. However, one
point which brings this argument into question is
that the incident electron beam is highly monochro-
matic. The energy spread of the electrons in the
beam is so small that the smallest wave packet one
can construct is the order of several surface-pho-
non wavelengths in spatial extent. In this circum-
stance, it seemed to us that one ought to describe
the scattering process in fully quantum-mechanical
terms, by means of the Schrodinger equation. This
has the advantage that the kinematical aspects of
the scattering process (such as conservation of
wave-vector components in the plane parallel to
the surface) enter quite naturally, and a proper
description of the reflection of the electron off the
crystal surface is obtained. Both of these features
are not included in the semiclassical description.

In our previous work, we introduced a simple
model which may be used to obtain a quantum-
mechanical description of the scattering of low-
energy electrons from the crystal surface by sur-
face optical phonons, for the case where the scat-
tering is produced by the field set up outside the
crystal by the ion motion. We obtained an expres-
sion for the total cross section and the angular dis-
tribution of electrons scattered by surface optical
phonons. The theory could be applied either to
ionic crystals such as ZnO, or covalent crystals
such as Si. In this work, we examined only the
theory of one-phonon processes, in which the elec-
tron is scattered by emitting or absorbing a single
surface optical phonon. When our results were ap-
plied to ionic crystals, we recovered an expres-
sion for this case equivalent to that obtained earli-

er by Lucas and Sunjic.
Thus, as far as the total cross section associ-

ated with one-phonon scatterings is concerned,
there appears to be no discrepancy between the
results of our quantum-mechanical theory, and the
semiclassical theory of Lucas and Sunjic, even
though we raised questions about the validity of the
physical picture employed by these authors. It is
important to know if this is a feature of only the
lowest-order processes, or if our quantum-me-
chanical model provides predictions identical to
those of Lucas and Sunjic for multiphonon pro-
cesses as well. We should point out that energy-
loss peaks associated with the creation of several
surface optical phonons are observed in ZnQ, and
the Lucas-Sunjic theory gives an excellent account
of the relative intensity of these peaks. ' In this
paper, we demonstrate that our model provides the
same expression as the Lucas-Sunjic theory for the
energy-gain or energy-Loss cross section asso-
ciated with multiphonon scatterings from thermal
phonons. For reasons discussed above, our model
does give a more complete description of the scat-
tering process. For example, we can see quite
directly that the cross section for creating (or ab-
sorbing) an arbitrary number n of surface optical
phonons is proportional to the intensity of the spec-
ularly reflected beam.

We also consider the form of the cross section
for energy loss or gain associated with the scat-
tering of a low-energy electron from a coherently
generated surface -optical-phonon wave. Here we
do obtain an expression distinctly different from
that provided by the semiclassical Lucas-Sunjic
theory. The contribution to the cross section from
processes of higher than first order depends on the
fact that the electron wave at the time of a given
scattering carries with it information about the
phase of the coherent wave gained from previous
scatterings. A wave-mechanical picture of the
electron is required to include this feature into the
theory.

The discussion in this Introduction has been con-
cerned entirely with the small-angle inelastic scat-
tering produced by the macroscopic electric field
set up outside the crystal by the ion motion. We
should point out that low-energy electrons may also
scatter inelastically from phonons by interacting
with the ion cores. These scattering processes
deflect the electrons through a large angle. The
experimental study of the electrons inelastically
scattered by phonons through large angles has the
potential of providing very detailed information
about the lattice dynamics of the surface layers of
the crystal. Such an experiment would be a study
of the energy spectrum of electrons that form the
thermal diffuse background. The theory of large-
angle inelastic scattering by phonons, along with a
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discussion of the lattice-dynamical information one
may obtain by such a study, has been discussed
recently by Roundy and Mills.

The organization of this paper is the following.
In Sec. II, we write down the Schrodinger equation
for the model of the interactions of the incident
electron with surface optical phonons we considered
earlier. Then by a study of the structure of the
perturbation series obtained by repeated iteration
of the equation, we obtain an explicit form for the
wave function of the outgoing electron. The wave
function is valid for arbitrary values of the elec-
tron surface-optical-phonon coupling strength, and

the result is valid so long as the electric field set
up by the surface phonons varies slowly in space
on the scale of the electron's de Broglie wave-
length, and slowly in time compared to h/E' ',
where E' ' is the energy of the incident electron.
In Sec. III, we consider first a simple closely re-
lated physical situation where a very similar form
for the wave function is readily obtained by analytic
means. Then in Sec. III we obtain an expression
for the cross section for scattering with energy
loss or gain from thermal phonons. We show here
that our model gives the same result for the cross
section as the Lucas-Sunjic theory. In Sec. IV, we
discuss the interaction of an electron with a co-
herently generated surface optical wave.

II. GENERAL THEORY

We begin this section by recalling the properties
of the model employed in the earlier work. Con-
sider an electron incident on a semi-infinite crys-
tal. The surface of the crystal lies in the x-y
plane, and the crystal occupies the lower half-
space z & 0. Suppose the atoms are regarded as
fixed at their equilibrium position. The electron
is then Bragg scattered (elastically) from the sur-
face region, which is periodic in the two directions
parallel to the surface. We take Vo(x) to be the
potential appropriate to the semi-infinite crystal.
In this paper, we follow the procedure we employed
earlier, and we take for Uo(x) the simple step po-
tential

where

() 1, x&0
p, ~&p.

The parameter Vo will be taken to be complex,
with the physical origin of the imaginary part in
the presence of electron-electron interactions
which attenuate the incident beam within a mean
free path of the crystal surface. The simple form
for Vo(x) represents a severe idealization of the
actual state of affairs. However, with the ansatz
in Eq. (1), we will greatly simplify the discussion

that follows. The electric field outside the crystal
set up by the lattice vibrations which is ultimately
responsible for the inelastic scattering considered
here has a rather long range, the order of 100 A
or so, for a typical surface optical phonon. The
inelastic-scattering events thus occur rather far
from the crystal surface, if we measure distances
in units of the lattice constant, so we feel the gen-
eral structure of the inelastic-scattering cross
section should not depend on the precise form of
V,(x). Our ansatz for V, (x) leads to the presence
of a specularly reflected beam, but to no Bragg
scattering. All of the inelastic -scattering experi-
ments to date have involved electrons scattered
only a small angular distance from the specular
beam, so the model gives an adequate description
of this sort of scattering. The reflection coeffi-
cient IRI for specular reflection from the surface
is less than unity for our model, by virtue of the
imaginary part of Vo. By treating Vo as a phenom-
enological parameter, the intensity and energy de-
pendence of the specular beam associated with
scattering from the rigid lattice may be adjusted
to a particular set of data.

Now suppose the lattice vibrates, by virtue of
surface optical phonons that propagate along the
surface. The effect of the lattice vibrations is to
generate an electric field outside the crystal. We
describe this field by introducing a time-dependent
potential V~ into the Schrodinger equation of the
crystal. We confine our attention to the case
where scattering is produced by long-wavelength
surface optical modes, with frequency &, inde-
pendent of the wave vector Q„of the surface phonon
parallel to the surface. In our earlier work, we
discussed the form of V~ for surface optical pho-
nons (Fuchs-Kliewer modes) on the surface of an
ionic crystal and for surface phonons on a nonionic
crystal such as silicon. In both cases, we found
that V~ has the form

V =e'"&'5 &(Q )e' "'"' e ~~" +c c (2)

where for each of the two cases, the explicit form
of 6(Q„) has been given earlier. We shall not need
the explicit form of h(Q„) here. In Eq. (2), the
sum over Q„ is over the two-dimensional Brillouin
zone appropriate to the surface layer of the crys-
tal. Throughout the paper, the subscript II will be
used to denote either a vector which lies in a plane
parallel to the surface layer, or the projection of
a general vector onto the plane parallel to the sur-
face.

One comment about the quantity n(Q„) is impor-
tant. The coefficients 6(Q„), and nP(Q„) are di-
rectly proportional to the annihilation and creation
operator g~ and a~ associated with the surface

II II

mode. Thus, strictly speaking, V~ is not a c num-
ber, but an operator. In the main body of our dis-
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cussion, we follow our earlier approach and treat
a- and a- simply as classical c-number normal-

Qll Qa
mode amplitudes. This method gives the correct
expression for the cross section in the high-tem-
perature region kT» h(d„where the quantized
character of the surface phonons plays no essential
role. Ke make the transition to the case of general
temperatures by use of the correspondence princi-

pie, as we did earlier. By treating b, (Q„) and
&*(Q„)as c numbers, we simplify intermediate
steps in the discussion, without sacrificing any es-
sential aspect of the physics. The correspondence
principle allows us to construct the fully quantum-
mechanical result at the end.

Kith these remarks in mind, the Schrodinger
equation becomes (in units with k = I)

g2
8( z) +Q Q(Q ) efQ((' (( 8 Q((1 gI et ((~(c++ Q)c(Q ) e 4 I(Il'% II e Q(( 8 'i4tgt g(x t) t (x t) (3)2m at

Q))

At this point, it is convenient to perform a Fou-
rier expansion with respect to the time variable,
and a partial Fourier transform with respect to the
spatial coordinate:

dkd

then Eq. (3) may be rearranged to read

(
k, )

1 8
p+ Vp8(-z) g(k„, v,'z)

2m 2m

+(Q(() e " 4(k(( Q(( i & &g)

(Q(() e " tI'(k((+Q((i &+& ) (5)

We next rewrite Eq. (5) in integral form by in-
troducing the Green's function which satisfies

off the crystal surface. The explicit form of
))p(k„w;z) is readily obtained for our model. We
shall ultimately need the function only in the region
z) 0, outside the crystal. Let the incident electron
beam have energy E'P' and wave vector kp„parallel
to the surface. Define

kp, =+(2mEe' —k )
t

the wave-vector component of the incident electron
beam normal to the surface. Then the explicit
form of t)(p(k„~; z) is, for z & 0,

&p(k, &, z) = (2w)'5 (k„-k, „)5 (w —E tP i)

)( (e.-tkpgg + ft e+jkp g) (6)

In Eq. (8), Az is the rei'lection coefficient for
specular reflection from the rigid crystal. For
our model, R, has the explicit form

8 k„2 2

p + ——(u+ Vp 8(-z) G(k„, w; zz )2m ~z

ft, = (kp, —typ)/(k„+ iyp),
where

y, = (k,'„-2mE"'+ 2m V,)"'.
(9)

(9a)

and which is subject to the boundary conditions ap-
propriate to the scattering problem. Explicitly, for
fixed z', G(k„~; zz )-0 as z- —~, and G(k„~;zz )
is subject to an outgoing wave boundary condition
as z-+ ~. Kith the use of the Green's function,
Eq. (5) may be rewritten in the form of an integral
equation. We have

y= (k„—2m(@+ 2m Vp)
t (10a)

In Eq. (9a.), the choice of the square root is that
which gives to yo a positive real part.

Finally, we need the form of the Green's function
which enters Eq. ('7). This function is readily con-
structed explicitly from Eq. (6) and the associated
boundary conditions. Define the quantities

g(k„(u,'z) = gp(k„~; z) -Z J dz' G(k, , (o,.zz')

~+(Q(() e " *'
4(k(( Q((~ &

kg = (k„—2m(u)

and also let
ft = (k, —ty)/(k, + ty),

(Iob)

-Z J dz' G(k„~, zz') ~*(Q„)

&re o(("i y(k„+ Q„, (u+ (u„z') . ('7)

In Eq. (7), the function gp(k„~; z) is a solution to
the differential equation (5) with &(Q„) and n*(Q„)
set equal to zero. This function describes the
(elastic) scattering of an incident electron beam

-fk g R $A I
0 (k((»' z ) =

T +ygTe x&0
(1la)
(lib)

T=1-R .
Again, y is chosen to have a positive real part.

The Green's function is readily expressed in
terms of two solutions of the homogeneous equa-
tion associated with Eq. (6). We denote these two
functions as t) (R„~;z) and ))('(k„&u; z). Explicitly,
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coshyz+ i(k,/y) sinhyz, z & 0. (12b)
~ ~

~

Then the Green's function has the form

G(k„w, zz') =i —[y'(k„(u, z) y (k„(u; z') e(z -z')
kg

+y (k„~;z)y'(k„~;z') 0(.'-.)] . (»)
The equations displayed above allow us to study

the scattering of an incident electron by surface
optical phonons. %le shall proceed by examining
the form of the iterative solution to Eq. (7). In our
earlier paper, ' we considered the inelastic scatter-
ing produced by the one-phonon process. The am-
plitude of the scattered wave to lowest order in
b, (Q„) is obtained by simply replacing the factors
of g(k kQ&& + 2 4) z ) on the right-hand side of
Eq. (7) by the amplitude $0 of the specular beam.
The purpose of this paper is to study the contribu-
tion to the scatter ed wave from higher -order pro-
cesses. We proceed by repeatedly iterating Eq. (7).

Before we begin, we mention one approximation
used earlier that we also employ here. The pho-
nons responsible for the principal part of the scat-
tering have rather long wavelengths, the order of
100 A or so. ' The electric field set up by the
phonon thus extends quite far into the vacuum out-
side the crystal. From the form of the interaction
potential, which varies with space like e' II'"II 8 ~II '
for a phonon of wave Q„, we see that the field ex-
tends a distance the order of the surface-optical-
phonon wavelength into the vacuum. Because of
the strong electron-electron scattering present in
the medium (represented by the imaginary part of
Vo in our phenomenological potential), the electron
wave is attenuated very rapidly as it enters the
medium. The electron mean free path is expected
to be small compared to typical values of Q„. In
our formalism, this feature enters through the
form of $0(k„~;z), which is proportional to e"0'
for z & 0. The rapid attentuation of the electron
beam into the crystal means that the integrations
over z which appear in Eq. (7) may be taken to ex-

tend only over the vacuum region z & 0, where the
electron waves have propagating character. The
contribution from the crystal region z & 0 is
smaller than that from the vacuum region z' & 0 by
the factor (Q„)/yo« I, where ( Q„) is the wave
vector of those surface phonons which make the
dominant contribution to the cross section. The
earlier remarks indicate that ( Q„)/yo is typically
the order of 10 . Our calculation may be readily
corrected to take account of the finite penetration
of the electron beam into the crystal, if this is de-
sired.

To begin, we first extract from Eq. (7) an ex-
pression for the amplitude of the scattered wave

g, (k„a&;z) associated with an electron with wave
vector k„parallel to the surface, and energy ~.
Kith the remarks of the preceding paragraph in
mind, we find

g, (k„&d, z) = -Z f dz' e o«" G(k„&u; zz')

%e write

x[n, (Q«)&lj(k Q«& (d, z )

+ + (Q«) (( «+Q« ' (0+ &d«
' )] ~

+ &*(Q ) 0&" "(k +Q, ~+ ~., z')] . (16)

Consider the explicit form of the contribution to
the wave-function second order in b(Q„). It is a
short exercise to show that the outgoing wave
(z-~) has the form

y, (k„~, z) =2 q&" & (k„&z),
ff=i

where g&"'(k„(d, z) is the contribution to the ampli-
tude of the outgoing wave which is nth order in the
magnitude of the coupling constant 4(Q„). One
readily obtains a recursion relation between g&"'

and (&" ~'

y,'"'(k„(d, z)=-E f Cz'e "' G(k„(o,'zz )

x [a(Q„)q&" i& (k„—Q„, (u —(u„z )

y'z'(k„&d, z) = — e"" 2 g~ (Q„Q,'„k," ') &„I [&(Q,',) O((o -2(o, —E"')&(k« -Q«-Q«-ko)(2«)' m'

g Q Q' g
II II

(s, ) n*(Q&)
+&*(Q„)&I((o -E"')&(k«-Qii+Qii-kaid)]+ ~, au(Q«Q~~'k' ') k&r-)

@II@II g

x [n(Qii) f&(~ -E ') &(k«+ Q« -Qii —ko«)+ &*(Qi'i) &(&d+ 2~, —E"')&(kii+ Qii+ Qii —ko«)] I . (17)

While Eq. (17) has a rather complex structure,
we shall see that it simplifies shortly. In this ex-
pression k, = (2m+ —kz) ~ is the normal component

t

of the wave vector of the outgoing wave, 0,""is the
wave vector of an electron in an intermediate state,
given explicitly by
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k,""= [2m(td+ ~,) —(k„+Q„)']"' .

The quantity g,o (Q„Q„;k,' ') is an integral to be
discussed below. The first and fourth terms of
Eq. (17) describe a second-order inelastic process
in which an electron scatters by absorbing or emit-
ting two surface phonons, respectively. The sec-

ond and third terms describe elastic scattering, in
which the electron is deflected away from the
specular direction by emission and subsequent ab-
sorption of a surface optical phonon, respectively.
Note these processes produce an angular spread in
the outgoing elastically scattered electrons.

The integral/& (QIIQII„'k, ) is given by

g z(Q„Q„;k' ')= dz (e 'o""""'+R, e ' " '"g" )I f dz" e' ~ ' (e '"g ' +R~e' ~ "
)0

LIe-~q&It+&&IOz&& '+R e ~@It 't&toz&z' ~
& / d k kf e-(Q ttkkk ogz&''I, R - Qtt kok&g-\ fkts g" I -Ot I' kk Atq 8'&&

In this expression, Ro is the coefficient for specular reflection of the incident beam off the surface, RI
that for specular reflection of the electron off the surface while it is in the intermediate state, and R& that
for reflection of the electron off the surface while it is in the outgoing state. Explicit evaluation of the in-
tegrals is straightforward, and

Q„+ika, +ik,"' Q„+ik, —ik,"' Q„+Q'„~ik, +ik,' ' q„A, a'k' & q„+q', A +Aa)

Q'„+ika, —ik, Q„+ik, —ik,"' Q„+Q,', +Aa, +ik, Q„—ik, —ik,' ' Q„aq'„aika ' —ik),
q„'- ik„+ak "'

Q„ ~ A, '—
i,k,"'

Q„ + Q,', + ik, —ik, —a'k„ Q„ —A, —ik,"'
Q„~ Q,', —a'k, —a'k.'")

Q, ', —a'ka, —ik ' '
Q„ + ak,, —a:k,"'

Q„ —ik, —ak ' '
Q „ + Q,', —

a,ka, + ak, Q„ + Q„ —aka, —ik )',
Even in second order, for the present surface

scattering problem, the expression for the wave
function is most cumbersome and unwieldly. Little
progress can be made, so long as we retain the
full form of the wave function for the higher-order
processes. However, upon following the argument
employed in our earlier study of first-order scat-
tering, we find one approximation can be introduced
which greatly simplifies the problem. As mentioned
in the Introduction, the phonons which make the
dominant contribution to the scattering have a wave-
length long compared to the de Broglie wavelength
of the electron. This means the quantities ko„k,' ',
and k, are all very much greater than Q„or Q„.
The dominant contribution to ~ ~ will then come
from the three terms for which both denominators
contain differences between two k, 's. For exam-
ple, consider the two-phonon emission case, where
k,'" is given by

k',"= [2m(~ —~,) —(k„-Q„)']'~z

= [k', + 2(g„.Q„- nz~ ) + Q']' '

The last statement is valid when Q„and ~q are
small. Thus, the difference k,' ' —A, is propor-
tional to the small, quantities Q„and &u„while k,
+k,' ' =2ko, »k,'I' —k, . If we retain only the three
dominant terms, then, 'J,o (Q„Q„,k,'~&) becomes

(s) s
ejsO (QII Qlll 8 j

(Q k k(l&)(Q Qi k 'k )

R,+ I
Q„+ik,a

—ak,'a' Q„+ik, —ik„Q„+Q„+a'ka, —ik,)
In our earlier work, ' we presented a discussion
of the physical nature of the scattering processes
ignored by this approximation.

We now write the denominators in the expres-
sion for P,o in a simpler form, by making use of
the expansion in Eq. (18). Note that k, = V„/m,
where V„ is the velocity of the scattered electron
parallel to the surface and m the free electron
mass, and k, = V, /m, where V, is the magnitude
of the velocity of the scattered electron normal
to the surface. Since we have already seen that
small-angle scatterings give the dominant contribu-
tion to the wave function in second order, we can
safely ignore the difference between V~ and V, for
electrons in the incident, intermediate, or outgoing
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states. Then for the two-phonon emission case,

and

(19b)
The second-order contribution to the wave func-

tion may now be expressed entirely in terms of the

QQ, s:

g,"'(k„&,z) =(i)'(2Q)'e" ' Z a(g„}4(Q„)5(k„-Q„-Q„-R„,) f((~ —2~, —E"')
qllqll

(y ((r + ~ q) oI elks ae' ~ (ol+ y +g) + ~ (Qll) (@II) (kll 411+ Ill kQII) ( E )
Qll Qll Qll Qll Qll Qll QII Qll .

x ( (
', )+ ' + (, ' ))+&"((()&(0|II(ic„+Q„-Ql-X,. „)II(x -S"')

Ro Rr}+ ~ +
(

'
&

+&*(Q„)&*(Q„)&(k„+Q„+Q„-k„)&(&-2&,—E"')

(
Ro Rr

(olo + non) Qo ol(Qg &or (G'o + ol@g) P

The result displayed in Eq. (20) looks very un-
like the expressions that occur in the semiclassical
Lucas-Sunjic theory, in the sense that in their
theory, the transition probability for emission of
two surface phonons, one of wave vector Q„and
one of wave vector Q„, is the product of the one-
phonon transition probabilities, to within an over-
al]. numerical factor. In Eq. (20) no suchfactoriza-
tion is evident.

Since small-angle inelastic processes have al-

t

ready been observed to give the dominant contribu-
tion to g(Q', we may set Rz and Re equal to RQ, the
reflection coefficient of the incident beam, without
incurring further error. We then form a, new ex-
pression for (C(Q("(k„v, z} by interchanging the
dummy variables Q„and Q„on the right-hand side
of Eq. (20), then adding the resulting form to Eq.
(20), and dividing by a factor of 2. This procedure
produces a much simpler result for g',z':

(t.' '(k ~'z) =(f)' RQe'"' Z (&(all)&(all) &(kl -0 -4 -kQI) &(&-2&,-E"')
QII Q II

+(&(Q„)&*(Ql) &(k„-Q„+Q1-&Q„) + &(Q(1) &*(411)&(k(1-Q((+Q„-kQ„)]&((d-E"')

+ +*(Qn) +"(QII) ~(kll+Qll+QII- Qll) ~(++ 2+ -&"))
O'Q QQ+„QQ'„G+Q!,

(21)

If one recalls the form of eQ„, then

+Oil+ a~(Q)1 2@11 V,

Qll QII Q II J(@II II (I)
(21a)

x[a(g„)e(@'Q e-'""+c.c. ]. (22)'

If we now transform the wave function in Eq.
(21) back into coordinate space, a remarkably
simple form for the second-order wave function is
obtained. To obtain this form, the algebra is a
bit tedious, but the result follows from Eq. (21)
in a perfectly straightforward manner. Define
the function 8(r, t) as follows:

In this expression, the vector Q is given by

(22a)

If an electron absorbs a surface phonon of wave
vector Q, parallel to the surface in a manner that
conserves wave-vector components parallel to the
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the processes of Fig. 1(a) make the contribution

III IIIIIIIIIIIIIII

//////////////////

to the amplitude of the scattered wave function.
From the structure of the perturbation series, this
can be generalized to give a rule of computing the
amplitude of the wave function of n phonons emitted
by the electron after reflection from the surface.
U the wave vectors of the phonons are Q(„(&,

Q' '
~ ~ ~ Q'„"', with Q"' emitted first and Q,',

"'

emitted last, then the contribution to the wave
function is found to be

(c)

/////////////'////////

FIG. 1. Diagrammatic representation of some second-
order scattering processes.

surface, alongwithenergy, thenQis just the change
in wave vector of the electron. In terms of the
function 8(r, f), the outgoing~portion of the second-
order wave function becomes, in coordinate space

The quantity Ro e("0'~ (s ' in Eq. (23) is just the
outgoing portion of the specular beam, elastically
scattered off the rigid crystal with reflection coef-
ficient Bo. The amplitude of the outgoing wave to
second order in the electron-phonon coupling pa-
rameter &(Q„) is obtained by multiplying the am-
plitude of the outgoing specular beam by —,

' (i)~8~(r, t)
%e now obtain rules for a,. diagrammatic scheme

which enables us to obtain the form of the wave
function for an arbitrary order in 4(Q„), for the
case where the slow frequency and spatial depen-
dence of the scattering potential allow small-angl. e
scatterings to provide the dominant contribution
to the outgoing wave.

Consider that portion of the outgoing wave in
Eq. (20) associated with scattering from the sur-
face, accompanied by the emission of two sur-
face phonons, the first with wave vector Q„and
the second with wave vector Q„. In Fig. 1, we
present an illustration of the character of the
physical process responsible for each of the three
terms in this portion of the wave function. In Fig.
1(a), the electron emits, the two phonons on the
outgoing portion of its trajectory. Omitting the &

functions which describe conservation of energy
and wave vector, a glance at Eq. (20) shows that

(n& (~ (n&+(r (n-(&'). . . ((r (n&+. . . + ~ ((&) '
Q Il Q II Q II ' Q II QII

From Figs. 1(b) and l(c), along with the form
of the wave function in Eq. (20), one sees that
when a phonon is emitted on the incoming leg, a
factor of nQ* appears in the denominator rather

II

than aQ„. The physical reason for this may be
seen by considering the emission processes il-
lustrated in Fig. l. On the outgoing leg, emission
of the particular surface phonon Q„ indicated in the
figure den"ease the normal component on the wave
vector by an amount &4 „while emission of the
same phonon on the incoming leg increases the
normal component of the wave vector by the same
amount. The matrix el.ement of the scattering pro-
cess is proportional to ((&&„+ib k,) ', and changing
the sign of 4k, in the expression is equivalent to
taking the complex conjugate.

By considering the remaining processes in Fig.
1, we arrive at the following set of rules for con-
structing the nth-order correction to the wave
function. Before we write the rules down, recall
that processes which involve more than one (or
zero) direct reflection from the crystal surfaces
must also contain at least one large-angle inelastic
process, as we have pointed out previousl. y. ' As
a consequence, such processes make a small con-
tribution to the scattered wave, and we need only
consider processes in which a single factor of the
reflection coefficient is involved. %ith this in
mind, the rules for constructing the wave function
are

(a) Draw diagrams for all possible combinations
of emissions and absorptions of phonons, along with
a single reflection from the crystal surface.

(b) If the wave vectors of the phonons which
enter the scattering process on the incoming
portion of the trajectory have wave vectors

Q'„"', respectively, with (&&"' the
first in the sequence, multiply the wave function
by the factor

[P ((& (P ((& y Po(R&) ~ ~ ~ (Po(1&+ ~ ~ ~ + P (n&)]
Q(I QII Q, I Il II

where pQ«)= eQ*~) if the phonon is emitted, and
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/ /////////////////
FIG. 2. A typical fourth-order contribution to the wave

function.

Pz«& = ao(» if the phonon is absorbed.
II

(c) If the phonons involved in scattering while
the electron is on the outgoing portion of its tra-
jectory have wave vectors Q&I ', . ..,4„".

,
', with Q("&

the last phonon, encountered by the electron, then
multiply the wavefunctionby pz*„(»(p+4'(»+ pz*(n-1&)
. . . (Po4t(»+ ~ ~ ~ + Po4t(»), where Po is defined in
rule (b).

(d) Add a factor of i&(Q„) for each phonon of
wave vector Q„emitted, and a factor of irk*@„)for
each phonon absorbed.

(e) Include the 5 functions which describe energy
conservation, and conservation of wave vector

parallel to the surface.
(f) Sum over all the (&&g s involved.
(g) Multiply by a factor of (2(&)0 e(~~'R0, where

Ro is the specular reflection coefficient of the in-
cident beam, and k, is the wave vector normal to
the surface of the scattered wave, calculated from
the kinematics. For example, if the electron
emits n phonons of wave vectors Q(1& ~ Q'„"', and
absorbs m phonons with wave vector Q+'1 &. ..Q(t"'" &,

then for 0&, and Q„small, one may show that

n, = ~„+ [V„(Q(,"+ ~ ~ ~ +Q(„"'1
0» y

—Q(""& —~ ~ —Q(„"'"&) —(n —m) 0&, ]. (25a)

Equation (25a) may also be written

n, = I„+Z~a,"',
where 4k,"' is the change in 4k, associated with
each elementary scattering process.

As an example of the diagrammatic rules, in
Fig. 2 we show a fourth-order process. The
contribution to the wave function from this pro-
cess is

(2v)' Re'"" + (4)'~(Q"') ~*(4"')~*(Q"')~(Q"')5(~-&"') 5(k„-4"'+0"'+4"' 4"-k"')
~(g) (4)

(4&(OI (4 &+ Ot(t ( &) Ott&t(
& ( Ot

(1& + (&t (2&)
Qll ll Q() Q!) Q+ II

II

The general contribution to the wave-function nth
order in the coupling parameter 4(Q„) is difficult
to write down compactly. We first examine a par-
ticular special contribution. Let the electron emit
n phonons as it transverses its trajectory. There
are n+ 1 contributions to the wave function from
this process, given the n values of Q„ involved,
since the vertices can be arranged on the traj ec tory
in n+ 1 ways relative to the point where the elec-
tron reflects from the surface. If we first imagine
the diagram with all n phonons on the incoming
portion of the trajectory, then we construct the

remaining n diagrams by moving the lines one by
one past the point where the electron reflects from
the crystal surfaces. For each diagram in the se-
quence, the factors b, (Q(t ') ~ b,(, "') will be iden-
tical, as will be the 6 function which conserves en-
ergy and wave vector. Each time we move a line
past the specular reflection point, a factor in the
denominator acquires a complex-conjugation sign.
This process then gives a contribution to the wave
function of the form (replacing (I&(„(& by i for sim-
plicity)

g
(n1& ( ) (2 )8 (&t 1 1

0 1 3 tt, et'(t (ott&t + ott(t) (ottlt+ 4 ot4t) ott&t(oIt&t + ott&t) (oIt&t ~ + ot(t ) ot

+
~

&((' —E' '+n&0) &(k„-k0„~$'„"+~ ~ ~ +Q(,"') . (26)(~, + ~ ~ ~ +~& ~ ~ ~ «,+~) ~ )

Now form all n! equivalent forms of p,
'"1& obtained from Eq. (26) by all possible permutations of the dum-

my indicies. Add all of these forms together, and divide by &1. to obtain a new expression for g(" '. The
result assumes the form

(!t
" '= (i)" (2&() e' tt ~ Q 6 ~ ~ ~ 6„5((d—E +n(L& )5(k„-k0„+Q"+ ~ ~ ~ Q'"')

5 t ]~ ~ ~ ff

X(1 1
+ + ~ ~ ~ + +

~
(2V)

1

ef e4'. ~ . o(* Ot(4' O.04' ~ . .e, (r&' ot&1' (&4 ~ ~ ~ o( o, O. j
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2ps3 e&~z» n n* n n*
-=(i)" ' Q 4 ~ ~ ~ L 6((d —E"'+n(u ) (&(k —k +Q"'+ ~ ~ Q'"') ' '

~ ~ ~
" " (28)

n 0

If the wave function in Eq. (28) is now trans-
formed back to coordinate space, we obtain

ef k»»

q
(n1& (» f) (

~ )n 0

n n

This is only one contribution to the scattered
wave from processes in which n phonons are emit-
ted by the electron when it scatters from the sur-
face. For example, we can consider a process of
order n+2, where one phonon out of the group is
absorbed. This process wiH also l.ead to a con-
tribution to the energy-loss peak at n&, . It is
easiest to confine our attention to terms of order

n in &@„),however. Thus, consider a diagram of
order n, one phonon absorbed, and (n —1) emit-
ted,

The line associated with the absorbed phonon can
be inserted at any one of the n vertices of a given
diagram. The absorbed phonon has associated
with it a factor of 4* rather than 4. We note that
the arguments of the & functions which describe
wave-vector conservation are invariant under in-
terchange of any two emitted phonons. By con-
sidering all possible positions of the inserted ab-
sorbed phonon, a straightforward extension of the
argument devel. oped above may be employed to
show tha, t the process in which (n —1) phonons are
emitted and one absorbed leads to the contribu-
tion g(,"2& given by

(i)n (ll n

,I, (n2)
n~ R0 Z )t& [&d + (& 2)0&n & ) (&(kn+ All Qll ' ' ' All" )

1 ~ ~ 'n

x(5(62 6 +A)k(63''' 6„+~ +6)))2 „&,(
"

) )

2 y Q(2&

~

~ ~ ~

~

2 y q(f3)
'p) )&))))p( 'P ~ 0)))) j r) )&)")II ( &( . )&)")&2 ) (30)

In fact, we may write down the outgoing portion
of the wave function for the most general nth-
order diagram, with l phonons emitted and m pho-
nons absorbed, with /+m=n. The trend is quite
clear from Eq. (30), and we shall quote the re-
sult, since the derivation is tedious, but straight-
forward after employing the arguments described
above. We give the wave function in coordinate
space, since it assumes its simpl st form in that
case. We find the wave function may be written
in the form

R e'"0'
(n&(r f) ( )n 0 e

n1
„gg (0)]e

~
~

2I'iQii &(Qii)

or in terms of the function 8(r, t) introduced in
Eq. (22), we have the remarkably simple result

,), (n&( ~& n ((50 r E0 t& 2 ~ ( f)-r)( )
~ff goal/

n ~

A closed expression is obtained by summing this
result on n, from n= 0 to ~. One thus obtains the

simple form

p, (r, f) = R0 exp[i k0 r —iE "& f —ie(r, f) ] . (31)

This expression is the final result of the present
section. Before we conclude the present section,
we shall make a few remarks.

It should be stressed that the form in Eq. (31)
gives only the outgoing portion of the wave func-
tion, far from the crystal. It is only valid pro-
vided the electron is sufficiently far from the
crystal that is propagates as if in free space, free
of any perturbation by the crystal. The wave
vector k() is that of the outgoing specular beam,
and Ao is the specular reflection coefficient, from
the rigid crystal.

Notice the only assumption beyond those con-
tained in the model that we have made in order to
derive Eq. (31) is that the potential set up by the
lattice motion varies in time slowly compared to
E' &/h, and slowly in space on the scale of the de
Broglie wavelength of the electron. The first as-
sumption is always well satisfied for electrons
with energies in the electron-volt range, and the
second assumption will be valid for those elec-
trons which emerge near the specular direction.
So long as these assumptions are satisfied, the
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wave function is valid even when the electron-pho-
non coupling is very large.

III. GENERAL DISCUSSION: DERIVATION OF THE
INELASTIC-SCATTERING CROSS SECTION FOR

INTERACTION WITH THERMAL FHONONS

We begin with a discussion of the physical pic-
ture one obtains of the scattering process from our
approach. We consider the scattering of an elec-
tron by a contrived potential which produces a
wave function very similar to that in Eq. (31).
This will give one a feeling for the nature of the '

interaction of the electron with the surface optical
phonon. Then we shall proceed to derive the form
of the cross' section for inelastic scattering of the
electron by thermally excited surface optical
modes. We see at this point that our theory
agrees in this case with the earlier work of Lucas
and Sunjic although we feel our discussion is more
general than theirs, for reasons described in the
Introduction.

Consider an electron moving through a potential
V(x, t) which varies slowly in time and space.
The wave function may be written, quite gener-
ally, "

g(x, f) =A(x, f) e'"'"'"

where the functions A and 8 are real and satisfy

(vp) 1 vA
St 2m 2m A

represented by Vo(x) in the discussion of Sec. II.
The present method does not enable us to discuss
the influence of the rapidly varying steppotential.

Now we look for solutions of Eq. (33). Let

e,e~()', z & 0
8(x f) =e~@k'~n ~~s~

8 e'))', z&0

From Eq. (33), one finds

e i(~, -Vii'Qii)+ ~iQk
(38)

where

1nk, = —(~, —V„~ Q„) .

If we now require that 8(x, f) be continuous at
z= 0, and also that 8-0 as z- —, then in the re-
gion z &0, 8(x, f) becomes

2V q efkkkz

( V . g)z Vzqz I+c c (38)

Then, as z - , the wave function becomes

There is also a solution of the homogeneous part
of Eq. (33a):

8(x, f) = C exp[if„xk iR f+i4k, z]j,

8A A.
m —+v'A vp+ —v q =0.

at 2
(32b)

((x, t) = exp~ iko x-iE 't

—~+ (vy)'= —V(x, f) .et 2m
(33)

Now write y =ko ~ r —E'+ t+8(r, f), where 8(r, f)
varies slowly in space and time. To first order
in the space and time dependence of 8, Eq. (33)
becomes

88—+V, v8=-V(x f)0 (33a)

where Vo=ko/m.
Now for V(x, t) we take the form

V(x f) —ne Qg Ikl e'Ltlk'x(( e 'lhl 0

The problem we consider is that of the transmis-
sion of an electron through a potential similar to
that set up by excitation of a surface optical pho-
non. In this discussion, we omit the sharp step

If V'varies slowly in space and time, then one may
argue that the third term on the left-hand side in
Eq. (32a) may be ignored, since it is second order
in the ratio of the de Broglie wavelength of the
particle to the length that characterizes the spatial
variation of V(x, t). Thus, we may take A to be
constant, and y satisfies

22Vk Qk n $(Q x-a&kt)

8(r, f)= y(r)e' ' + y*(r)e'"k' (38a)

where

(37)
where Q= Q„+zan&, .

The wave function in Eq. (37) is very similar to
the form obtained in Sec. II, for the case where
the electron scatters from the crystal surface. We

may now obtain a simple physical picture of how

the wave function in Eq. (31) of Sec. II is produced.
As the electron moves in towards the crystal, it
encounters the potential set up by the surface op-
tical mode. This potential varies slowly in space
and time, and the phase of the electron's wave
function is modulated in an adiabatic fashion. If
the electron is at the point (x, t) on the outgoing
portion of its trajectory, and is also far from the
crystal surface, then 8(x, f) measures the amount

by which the phase has been modulated by the po-
tential.

We next derive the form of the energy-loss cross
section, from Eq. (31). For this purpose, we
write for the phase angle 8(r, t) of Eq. (31),
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y(r) =~ y(~ )e"", (38b)

with
2~J Ill +(Qll)

y(@II) y2 qR (~ y, Q )2 (38c)

In our previous work, we examined the angular
distribution of electrons scattered by one-phonon
processes. Here we use a method which gives the
intensity of the outgoing beam associated with the
n phonon loss of gain process, but we will not study
the details of the angular distribution.

Ne begin by noting that we may expand the func-
tion e' '"" in a Fourier series in time as follows:

fe( r, t) Q~ A fn~~t Q A 0 -Ine~t„e + n
n&o n &0

The intensity I„of the outgoing beam associated
with the gain or loss of n phonons is just given by
IRoi ~iA„I2. [We see the energy-gain and energy-
loss cross sections are equal. This is a conse-
quence of our treatment of h(Q„) as a classical
dynamical variable, and not a true boson operator.
In the classical limit, valid when kT» k~, , the
energy-loss and energy-gain cross sections be-
come equal. ]

Now we have

f 2~/so~

A p i j
~d t e ' ""~ ' exp (iy 8 ' "~' + iy 4 e ~ ~8 ~

) (39)'2F J

and if we change variables by letting ~= ~,t, then

form the expression for lA„t2, a short calculation
gives

2' 28'

d7,
i

d7., e'"'"-'2'
o ~o

methods of classical statistical mechanics. At this
point, we could invoke the correspondence princi-
ple, and proceed to obtain the general result.
However, we have found the classical calculation
instructive, so we present it first, and quote the
general result later. Note that P is a parameter
independent of both Qg and the phonon amplitude.
Now from Eq. (38b),

y( ) =~y(Q) "'.
Each normal mode is independent, in the har-

monic approximation, and

(e' e'" ' )=g(exp[iPy(Q„)e' ']
Mexp[iP*y*(Q„) e '@']).

Consider the averaging process for a particular
value of Q„. For compactness, we omit the index

Q, ~

from the quantities that follow. If u, and u are
the positive and negative frequency components of
the displacement field, respectively, then

y= Xu, , y+= X+u

where the form of the proportionality coefficients
follow from Eq. (38).

Now

(e' ""+e' ' "-) = Q '
', ((XPu, +X*P& )"),„on

where

((XPu, + X*P*u )") = 5
&&(XP)" (X*P*)"(u," "u") .

Thus, our task is to compute (u." u ). Instead
of averaging over u, and u, we write

where

f (4(~&, T2)+y 8 (~&, T2) ]
u, =ue'", u =ue '",

p(7.» ~,) =e "& —e "~ .

As we stated in Sec. II, the parameter h(Q„) is
proportional to the amplitude of the surface phonon.
If we call u(Q„, t) the normal coordinate of mode

Q„, then

u(Q„, t) =u, (Q„)e' '+u (Q„)e '""
and &(Q„) is proportional to the amplitude u, (Q„)
of the positive frequency part, while 6"(Q„) is pro-
portional to u (Q„). Then to calculate the ampli-
tude of the scattered wave, we must perform a
statistical average over the amplitudes of the nor-
mal modes. Denote the statistically averaged in-
tensity by (IA„I ). Then

1 2»'

n (2~)2 jl
2dw i d7. e'""& '2' (e'"~'" ~ )

(40)
In our model, the average is to be taken by the

and average over u and y separately. Now the
average over a function of u is taken according to
the following prescription:

(f(u u ))= J d ue '"' f(u u )/J d ue

= f duu e '"'~ J dcpf(u. , u )/

duu e

where E(u) is the energy of the oscillator when it
has amplitude u. Of course, E(u) is proportional
to u for a harmonic oscillator. With this pres-
cription, one may readily demonstrate that

nm m(". "-)= ni (u') n, m

if n is odd (41)
if n is even.

In Eq. (41), (u ) is the mean-square displacement
of the oscillator.

With this result, it is a short exercise to demon-
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strate that

&exp[t&r(4 )e"']e»[V*y*(Q„).""]&

g-~el (lRQII&I

The quantity ly(Q„)I is independent of r, so we
write

&e'"'"'e'" '"')= exp[- IPI'& &Ir(Q„) I')],

2 4l'i@i'i & I &(@n) I'&
(lr(Q„)l &- [.q. (

=-.--).]z .

We now return to Eq. (40), and recall the defini-
tion of the parameter tI. We then find

t
2IF

[
2l'

(IA„I')= exp[-2Z &Ir(4~~) I')], I dr, d~, xep[in(~, —~,)]exp[+ 2Z&ly(Q„) I') cos(r, —~,)]
~ll I2m'Jo

dec e= «1[-2~&lr(@)I'&] I"

II 0
exp[2E & I y(Q„) I') cos(8)]

or, finally

&IA. I'& = exp[- 2V &Ir(0) I'&]f„[2~& lr(@) I')]
(42)

In Eq. (42) I„(x) is the modified Bessel function of
order x.

Equation (42) is the final result of our classical
theory. The intensity of the beam associated with
the gain or loss of n phonons is just IROI (IA„I ),
in our model,

f.= Iftol'&IA. I'& .
We see quite explicitly that the intensity of the

inelastically scattered electrons is proportional to
the specular reflection coefficient. This result
seems amply confirmed by Ibach's experiments
on ZnO.

The result in Eq. (41) is valid only where the
classical limit applies. This result for the ratio
(IDIO) of the cross section for the loss or gain of
n phonons to the specular intensity is in agreement
with the high-temperature form of the Lucas-
Sunjic theory' in the reg1on pp»Scan, .

%'e conclude this section by showing how the
correspondence principle may be used to extend
our treatment to all temperatures. To do this,
in the expression for A„[Eq. (39)] one replaces
the classical variables y and y* by the appropriate I

boson annihilation and creation operators that
annihilate and create surface phonons, respective-
ly. Then, in performing the statistical average,
we average jA„ I over the appropriate quantum
ensemble.

In our preceding argument, we have used the
fact that (omitting the recurrent factor of Q„)

y= &u, (Q„), y*= X*u (Q„) .

But u, (Q„) and u (Q„) are proportional to at(Q„) and

a(Q„), respectively. Thus

y(Q„, r)=g(Q„, r)a'(Q„)

and

y*(4 r)=g (@r)a(4 )

where

x g &exp[i'(Q„, t, )]exp[- iI'(Q„, ta)]),

1'(Q„, t) = e'""[g(g„r)a'(Q„)+g*(Q„, r) a(g„)].

The average is over the appropriate quantum
statistical ensemble. One may easily show that

P 23'/ &g w

(IA I2) dt f 8 g &

fr(Q„, t $r Q„,o )
21T J Q

The statistical average is readily carried out by
the use of standard methods. For our particular
problem, this has been discussed in detail by Lu-
cas and Sunjic. ' One has

&e"""'"e'"'"""&= «p[- lg(4(i) I'(1+ 2n)]

x exp[lg(@e) I
(1+n)e'""+ lg(@n) I

ne'""

where Ig(Q„, r) I2 is independent of r, and

(
1l alegl kT 1)-1

is the number of thermally excited surface phonons
present at temperature T. Then

n'/cy

(IA„I ) = 2' exp[-Z Ig(Q„) I'(1+2n)] dt
0

xe'"""exp[+ lg(Q„) I
[(1+n)e'""+ne '""]j

(43
Equation (43) is identical to the classical result

The function g(Q„, r) for the case of ZnO and Si are
easily obtained from our previous paper, where
the parameters h(Q„) and h*(Q„) are related to
a(Q„) and a (Q„). Then, for (IA„I ) we obtain

2ff/ co P2ir /e
(IA„I ) — ', dt dt e'""'" '2

4m' J,
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displayed in integral form just before Eq (42), in

the limit n»1 appropriate to the classical regime.
Equation (43) is also identical to the finite-tem-
perature form of the Lucas-Sunjic theory, ' pro-
vided we identify our parameter (IA„ I ), related
to the magnitude of the intensity I„of the beam
associated with the energy loss n&, by the relation
I„= IRo I (IA„I ), with their parameter P„.

The expression in Eq. (43) may be written in a
closed analytic form, valid for all temperatures.
We quote the result, since we have not seen this
form displayed before. Let

(44a)

or
t 5&v, ~ 4V,'Q'„(I ~(Q„)I')

q„[~i li + ( .—
n Qo)']'

(44b)
Equation (44b) follows upon relating the average

(I 6(Q„)12) (taken over a quantum statistical en-
semble) back to Ig(@„)I'. The average (I 6(Q„) I')
is proportional to cot h(5+, /2ksT) so the right-hand
side of Eq. (44b) is in fact temperature indepen-
dent.

Then Eq. (43) becomes

If n» 1 (the classical region), Eq. (45) reduces
to the result in Eq. (42), provided the corre-
spondence between Ig(Q„) I and I f(Q„) I is noted.

At low temperatures, n «1. Then since I„(2x)
=x"/n! for x «1, one finds

(46)

This is just the Poisson distribution-function that
has been employed to interpret the dataon ZnOtaken
at room temperature by Ibach.

Equation (45) gives the cross section associated
with the emission of n phonons. The cross section
associated with the absorption of n thermal phonons
is given by (IA „I ). One finds that

(~A ~2) (-) ( Ln( +n)3 t -r(1+2 ) (46 )

The energy-gain and energy-loss cross sections be-
come equal when n» 1, and ( IA „ I )- 0 as n - 0.

A number of properties of the cross section have
been discussed by Lucas and Sunjic. ' For com-
pleteness, we recall these results.

The intensities (IA„I ) for general temperatures
satisfy a sum rule

Thus, as the electron-phonon coupling strength
is increased, the intensity IO of the specular beam
falls, and the fraction of the electrons in the in-
elastic beams increases in such a manner that the

total fraction of electrons reflected i"' just LAOI',

the specular reflection coefficient in the absence
of electron-phonon coupling.

In the presence of electron-phonon coupling, the
coefficient for specular reflection is reduced, and
becomes

Io = iROI I (02I'f n(1+ n)]' ) 8 (48)

IV. INELASTIC SCATTERING OF A LOW-ENERGY
ELECTRON BY A COHERENTLY GENERATED SURFACE

OPTICAL WAVE

InSec. III, we discussed the form of the scatter-
ing cross section for the case where the electron
scatters from thermally excited surface phonons.
In this section, we compare the results of Sec.
III with the cross section for scattering of an elec-
tron beam from a surface optical phonon generated
by an external source. For the case of Fuchs-
Kliewer modes on the surface of an ionic crystal,
at least, in principle, such a wave may be generated
by placing a periodic grating structure on the sur-
face, and irradiating the structure with infrared
radiation. The presence of surface roughness will
also lead to coupling between an external source
and the surface wave.

Suppose that a coherent surface wave vector with
wave vector Q, ~

is generated on the surface. Our
derivation of Sec. II, which treats the potential
set up by the wave in a classical manner, may be
used to obtain the wave function of the outgoing
electron. In fact, the wave function has just the
form exhibited in Eq. (31):

g, (r, t)=Aoexp[iko r —iE' 't —i8(r, t)], (50)

where in the expression for 8(r, t) we keep only
the contribution from the single Fourier component

From the discussion of the second-order correc-
tions to the wave function in Sec. II, we see that the
elastically scattered electrons do not emerge only
in the specular direction, but are distributed over
angular range centered on the specular direction.
While we have not explicitly studied the angular dis-
tribution of the elastics, it is clear from the nature
of the second-order corrections to the wave func-
tion and our previous discussion of the angular
distribution of the electrons scattered by one-
phonon processes that the elastically scattered
electrons are spread over the angle ps= hv, /2E' ',
the same angle that describes the angular width
of the inelastic beam. '

Lucas and Sunjic' also point our that the mean
number (n) of phonons excited by the electron is
independent of temperature, and is given simply by

(n)= I',
where I' is the parameter that enters Eq. (45), and
defined in Eq. (44).
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Q„associated with the driven wave. From Eq.
(22), we take 6(r, t) to have the form

The intensity of the nth Bragg beam is then

I„=I „= IR I'1~.[2 lr(@)1]1' . (54)
2' Q„t!(r, t) = yaqa, ( ~ . q)a

x[6(Q„)e' 'e ("&'y c c ] (51a)

= y(Q„)e' 'e '""+y*(Q„)e' 'e""' (51b)

where, as in Sec. III,

2~i Qii&(Qii)r(@)= yaqa, („~. q)a.
The physical content of the wave function in Eq.

(50) may be appreciated by expanding the factor
of e '"""in a power series in y(Q„). One has

y, (r, t) =Rpexp[ikp ~ r —iE ' t]

+Rp Zi
(

exp[i(kp+nQ) r -i(E' '+n(d, )t]nf

+Rp Q, " exp[ (kp-ng) ~ r —i(E -n(p, )t].
r*(Qii)" - . - (p)

(52)
The electron is thus Bragg reflected from the

periodic disturbance on the surface, and the scat-
tered wave displays an array of discreet Bragg
peaks at the positions k, = kp+nQ. Recall that

1
Q= Q„+ —(V„Q„—(p, ) z .

J.

The Bragg scattering is inelastic, in the sense
that the nth-order beam emerges with its frequency
shifted up or down by the amount n~, . The elec-
tron is, in effect, Bragg reflected from a moving
grating, and the frequency shift is a Doppler shift.

The form in Eq. (52) allows one to calculate the
intensity of the nth-order Bragg beam. This must
be done with some care, since the various beams
interfere coherently, i. e. , the intensity of the nth-
order beam is not simply IRp I'ly(g„) la"/(n!)a, as
one would get by directly squaring the coefficients
in Eq. (52) of the terms proportional to e'&Z&+~n~ t

The intensity of the nth-order beam is given by
the quantity IROI'IA„I, where IA„I' is the ampli-
tude discussed in Sec. III. To calculate IA„I, we
may use Eq. (39) directly for the quantity A.„:

t P,r/ca)

A s fnco tdge S
277 yQ

p('[y(a )
'""+r*(a ) '""]], (53)

where y(Q„) is to be treated as a classical ampli-
tude. The statistical averaging procedure that
entered into the discussion of this section is omitted
here, since y(Q„) is a classical variable, with well-
defined amplitude and phase. It is straightforward
to show that

~.= (')"~.[2lr(Q„) I] .

Notice that the intensity of the wave shifted in
frequency away from E' '/h by the frequency n(d,
is quite different for the two cases considered
here —the case where the electron scatters from
the coherently excited wave, and from thermal
phonons. The physical origin of the difference is
clear. As the electron approaches the crystal for
the case in which a surface wave has been generated
in a coherent fashion, as it multiply scatters from
the potential associated with the wave (to use a
language suggested by the discussion in Sec. II),
it carries with it information about the well-defined
phase present in the wave. In a multiple-scattering
process associated with a given order, the various
possible scattering paths contribute coherently to
the amplitude of the outgoing wave. On the other
hand, when the electron undergoes a sequence of
scatterings produced by thermally excited surface
waves, crudely speaking the electron sees a dif-
ferent phonon at each scattering event, and the
phase coherence between the various scatterings
is not present. In our classical treatment, this
feature of the multiple-scattering theory enters the
mathematics in the statistical averaging procedure
which precedes Eq. (41). The phase coherence
betweensuccessive scatterings inagivenorder is
wiped out whenthe phase variable y is averaged over.

When the electron scatters from the coherently
driven wave, the total reflected intensity given by

wpc

is just equal to the intensity IRo I associated with
the rigid crystal. This is ensured by the well-
known Bessel-function sum rule

Iz,(x) I'+ 2Q Iz„(x)I'=1.
1

When the wave is excited, the intensity of the
specular beam is reduced to the value

fp= IRoI'l~p[2r(@)]I'

and the remaining portion is distributed over the
inelastically scattered beams. As we saw in Sec.
III, the same sum rule obtains for the scattering
from thermal phonons.

We conclude with two final comments. The re-
sults displayed in this section depend explicitly on
the wave nature of the electron, and cannot be
produced by the semiclassical theory of Lucas and

Sunj ic, which treats the electron as a point,
classical particle. Finally, there is a close for-
mal analogy between the theory of low-energy
electron scattering from a coherently generated
surface-optical-phonon wave, and the theory of
microwave-induced steps in Josephson junctions. '
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Using thermodynamic double-time Green's-function methods and Kubo formalism, theoret-
ical expressions are obtained for the dielectric susceptibility and infrared-absorption coeffj.—
cient of a Bravais crystal containing randomly distributed substitutional impurities. Mass
changes as well as force-constant changes between the impurity atoms and the host-lattice
atoms are explicitly included. It is found that these expressions contain sorn. e nondiagonal
contributions in addition to the usual diagonal contributions. For phonons of small half-width,
the linear absorption coefficient is proportional to the half-width, which in turn varies as the
square of the sum of the mass and force-constant changes. Contributions due to localized
modes are also obtained.

I. INTRODUCTION

It is well known that the introduction of defects
into crystals greatly modifies their optical and
dynamical properties. '2 Such modifications are
largest in the vicinity of the defects. Comprehen-
sive literature is available discussing the dynam-
ics of crystal lattices with defects, both theoreti-
cally and experimentally. The Mbssbauer effect
from the impurity has been used to investigate the
mean-square amplitude and energy of the defect

atom. However, these properties are not very
sensitive to details of the spectrum because they
involve averages over all the perturbed modes.
Another method, based on the measurement of op-
tical absorption by one-phonon processes, appears
to present a much simpler method to study the
motion of defects because of the direct link between
the absorption line shape and the structure of the
phonon spectrum of the impure crystal. Such im-
purity absorption is known to occur in covalent
crystals such as .diamond where, by symmetry,


