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A method is presented for performing crystalline Hartree-Fock calculations with a wave-function basis
consisting of Gaussian lobe functions. The most important concepts involve (i) the utilization of crystal
symmetry in characterizing the first-order density matrix, and in selective computation and efficient storage
of the one- and two-electron integrals; (ii) the introduction of a charge-conserving approximation for some of
the less important three- and four-center integrals over contracted Gaussian basis functions; and (iii) the
imposition of monopole and dipole compensation for the most important neglected two-electron Coulomb
integrals. The method is applied to diamond, and calculational results are given for various sets of
parameters. The best results include a Hartree—Fock cohesive energy of 0.38 Ry/atom, a virial coefficient
(—2T/V) of 1.0005 for a lattice constant of 3.56 A, a direct band gap at I" of 15 eV, and an indirect band
gap from T to A of 13.7 eV. The (111) Fourier transform of the charge density is 3.29 electrons per

crystallographic unit cell.

I. INTRODUCTION

The purpose of this paper is to present computa-
tional techniques for performing crystalline
ground-state calculations in which the correct
Hartree—Fock (HF) exchange operator is employed,
and to illustrate the method by applying it to dia-
mond and presenting calculated charge density
Fourier transforms, uncorrelated energy bands,
cohesive energies, virial coefficients, and pv
products for various sets of calculational param-
eters.

The well-known alternative to performing a HF
crystalline calculation is to utilize the formalism
of Hohenberg, Kohn, and Sham.! This formalism
establishes the existence of a ground-state Hamil-
tonian which is a functional only of the charge den-
sity n(¥). The sum over filled states of squared
eigenfunctions of this operator gives the fully cor-
related charge density. Well-known homogeneous
electron-gas approximations to this operator in-
clude the Kohn-Sham- Gaspar? and the Slater® ex-
change-correlation operators, generalized by
Slater and co-workers* to the X, operator. These
exchange-correlation operators are all proportional
to n(r) to the one-third power. Hedin and Lund-

qvist® have determined a more complicated density-
dependent exchange-correlation operator for the
homogeneous free-electron gas. However, when
these various operators are used to calculate
crystalline charge densities, systematic discrep-
ancies between calculation and experiment are ob-
served, Three different self-consistent-field (SCF)
calculational models, the orthogonalized plane
wave (OPW), the augmented plane wave (APW), and
the mixed-basis plane-wave Gaussian (PWG) have
all yielded similar results,® These discrepancies
suggest that either more complicated homogeneous
electron-gas functions of #(¥) are necessary, or
that inhomogeneous terms involving the gradient
operator must be included., Herman and co-work-
ers’ have developed the form of some of these
terms and have done atomic calculations with them.
Ma and Brueckner® have performed many-body
electron-gas calculations to establish the magnitude
of the terms. They express strong doubts, how-
ever, about the convergence of any simple power-
series expansion. Moreover, the formalism is
much more complicated to work with in crystals
than is the HF formalism presented here,

Similar difficulties arise in finding an excitation
Hamiltonian,
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whose eigenvalues E, give excitation energies. The
simplest of these operators is Slater’s energy-in-
dependent exchange potential. 8 However, Slater-
exchange eigenvalues do not match experimental
excitation energies in semiconductors when rela-
tivistic effects are considered® and the comparison
is even poorer in insulators, ! Liberman’s ener-
gy-dependent excitation Hamiltonian!! does give
eigenvalues close to those obtained from HF cal-
culations for atoms. One important by-product
from crystalline HF calculations is that one will
be able to compare the HF eigenvalues with Liber-
man-exchange eigenvalues. If the Liberman-ex-
change eigenvalues do match the HF eigenvalues in
a crystal, a Liberman or some kind of a screened
Liberman energy-dependent local operator would
show great promise in calculating energy bands
for crystals for which a HF calculation is too ex-
pensive,

Crystalline HF calculations have been reported
by many authors. Most calculations use free-atom
HF wave functions to construct a crystal potential'®
and are consequently not self-consistent. Kunz!®
reported the first of several' self-consistent
crystalline HF calculations. He employs the lo-
calized orbital formalism of Adams and Gilbert, '°
which was introduced in order to economically
calculate the first-order density matrix. Kunz
and co-workers then use this self-consistent charge
density along with Kunz’s mixed-basis formalism?!®
to obtain crystalline HF energy bands. Electron
correlation is then introduced by either the Mott-
Littleton method, " or by the screened-exchange—
plus—Coulomb- hole!® method. The resulting cor-
related bands closely match experiment for the
insulators which they have calculated.!® Kunz®
has formulated yet another method for applying
correlation corrections to energy bands based upon
Toyozawa’s electronic polaron.?' Early results
seem very promising.

We present here a local-basis-function (LBF)
method?? which is very straightforward and should
be applicable to a large variety of crystals. Crys-
tal symmetry is fully utilized and an integral ap-
proximation procedure speeds up the computation
of the less important two-electron integrals over
contracted Gaussians. Monopole and dipole cor-
rections help compensate for zeroed integrals.

One convenient feature of such a HF calculation
is that the HF first-order density matrix p(¥, ¥'),
and hence the related charge density p(¥, ¥ ), and
the momentum distribution p(K, k), are stationary
to first-order under correlation corrections, 23
Furthermore, various well-investigated and well-
understood techniques have been developed and ap-
plied to atoms and molecules to improve upon the
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HF formalism, i. e., to include correlation. Exam-
ples are projected HF?* and configuration interaction
(CI®® methods. After the HF computational tech-
niques are well mastered, it should be very in-
teresting to apply them in modified form to the
problem of electron correlation in crystals,

II. CRYSTALLINE HF FORMALISM
A. Contracted Gaussian Lobe Function Basis

In the LBF method, spatially localized basis
functions centered at different locations in the
atom, molecule, or crystal are used as the expan-
sion set for the wave functions, We distinguish
between LBF and linear combination of atomic
orbitals (LCAO) in that we do not wish to imply
that atomic functions are used as the expansion
set for the wave functions. In addition, the posi-
tions of the LBF’s are arbitrary, which means
that we can put functions in the bonding region if
we wish, Finally, the basis functions employed
are local in character, unlike plane waves, for
example. In a crystal, long-range functions are
not needed owing to the periodicity of the lattice.

In this calculation we use only s and p LBF’s,
For s-symmetry LBF’s, we use contracted?® sets
of primitive Gaussian functions centered on the
various atom locations:

@) =T Agem 1)

For LBF’s of p symmetry, we employ Gaussian
lobe functions, originally proposed by Pruess?’
and later developed independently by Whitten, 28
Such functions have been successfully employed in
a variety of ab initio HF calculations on mole-
cules,®

The lobe functions of p symmetry are constructed
as the difference of two contracted Gaussian lobes,
centered a distance ﬁa from the origin of the p
function. The displacement is designed to repro-
duce the angular dependence of an atomic p func-
tion:

PF)=1 Al FRar _ e ®R] (2)
[+
where
|&,|=c/Va, 0.0055C50.1. @3)

Atomic studies have established the lobe displace-
ment range given in Eq. (3). A series of SCF
calculations on the argon atom were performed,
allowing C to vary over the range indicated in Eq.
(3). The resulting total energies were stable to
0.001 a,u. The value 0,09 is employed for C in
this work.

Tables are available of optimized Gaussian fits to
atomic HF wave functions, including contracted as
well as fully uncontracted functions.?' The short-
range (large a) groups may, in general, be carried
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over for use in crystal calculations. The inter-
mediate-range groups (those with appreciable over-
lap with neighboring sites) should be fully uncon-
tracted to allow for maximal distortion from atomic
character. The long-range groups, which in the
atom are necessary to fit the exponential tail of the
wave function, may be discarded for the crystal be-
cause of the existence of the intermediate range
functions on neighboring sites,

B. Crystal Symmetry and p(v",7¥')

Diamond has two atoms in the unit cell, The
atom at (0, 0, 0) will be designated type 1, while the
atom at (i, 1, 1) will be designated type 2. The
coordinates are with respect to the diamond basis
vectors

=2a(3+K), T=3a(i+K), T=}a(i+]). @)
Twenty-four rotation-reflection operators transform
each atom into an equivalent atom. The inversion
about the point T = (4, %, §) interchanges atoms of
type 1 with atoms of type 2.% In the remainder of
this paper, the set {X} will include all of the rota-
tion-reflection and inversion operators, The sym-
metry discussion which follows will be couched in
terms of diamond, but the ideas are applicable to
other geometries as well.

As is well known, only the first-order density
matrix

p(;‘, F'): f‘I,(;y FZ, ey Fn)‘I,?(F" FZ: ceey rn)
xd()...dE,) (5)

is needed in the HF formalism, Thus, we will
limit our discussion of symmetry to the first-order
density matrix. Should one want to extend this pro-
cedure beyond the HF formalism, then of course
the symmetry properties of the second-order den-
sity matrix should be considered.

Given a set of LBF’s {¢(% - &,)}, the first-order
density matrix can be expanded, using products of
LBF’s as a basis:

p(E, F)= 2 Phoo@-R)es@'-R,).  (6)
(adaB)
We assume that the LBF’s are real functions, For
closed-shell ground states (semiconductors and in-
sulators), the first-order density matrix has full
crystal symmetry. Consequently,

p(¥, ¥')=p{’, T)=p(XT, XT')

-

=p(T-F, T-7')
=p@+A, ¥'+K), (7)
where & is a translation which leaves the crystal
invariant,
Now we know that operating on any product of two
functions
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ki
¢a(i?" R’a)d)s(i'." ﬁb) y
with all of the symmetry operators of the crystal
will produce a set of product functions. By taking

all possible values of o and B on each site and by
taking different values for lﬁa- fl’,,l , we can gen-
erate distinct product sets containing all possible
product pairs for lﬁa— ﬁbl less than a given value.
Now we note several things. First, we only need
to acquire information about one member of each
product set, since information about all other
members may then be generated by using crystal-
symmetry operators. Second, the symmetry re-
quirements (7) mean that the P2% in Eq. (6) will be
the same (exclusive of sign) for all the pairs of
functions of s and p character in one product set,
Thus, Eq. (6) may be rewritten

P, F)=2 P, L ¢F-R)psF - &),

1 (adaB)E 1 (8)
where I runs over the different product sets which
we call symmetry sets, and where (abap) labels
the different product pairs of a symmetry set, This
notation will be used throughout the paper with the
addition that p or v will occasionally be used to
denote the labels (abap). It should be noted that the
P, do not have complete variational freedom since
p must be idempotent and must satisfy the normal-
ization condition

[, T)d*»=2NZ. (9)

Table I lists the members of the first six sym-
metry sets. These sets include all of the one-cen-

TABLE I. First six symmetry sets for diamond sym-
metry. The s stands for an LBF of s symmetry, while
%, ¥, and z are p~symmetry LBF’s. The second atom’s
coordinates are (0, 0, 0), (%, %, D, (3, -1, -9, (-1,
%, — %), and (-4, —4%, 2 relative to the basis vectors
given in Eq. (4). The first atom is at (0, 0, 0).

Set Atom {uv}
1 1 xXx +yy +22
2 1 ss
3 2 xx +yy +z22
3 xx +yy +22
4 xx +yy +22
5 xx +yy +22
4 2 Xy +yx +x2 +2x +yz +2y
3 —Xy —yx —x2 —2x +yz +2y
4 —Xy —yx +x2 +2x —y2 — 2y
5 XY +YX — 2% — X2 —YZ —2Y
5 2 XS —Ssx+ys —sy+zs—sz
3 XS —Sx —YySs+8y —2z2s +sz
4 —XS +SX +ys —sy —2s +sz
5 —x5+8x —ys+sy+zs —sz
6 2 ss
3 ss
4 ss
5 ss
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TABLE II. Representative members of the diamond
symmetry sets for the first six shells of atoms. The s
stands for an s-symmetry LBF, while x, y, and z are
p-symmetry LBF’s. The coordinates are relative to the
basis vectors given in Eq. (4).

Shell Atom {uv}

1 (0, 0, 0) sS, xx

2 (3, 7, 2 SS, SX, XX, Xy

3 (3, 3, 0 ss, sx, Sz
XX, 22, XY, XZ

4 (% z, -3 ss, sx, Sy
X%y VY, XY, V2

5 (1, o, 0 sS, SX, Sy
XX, YV, Xy Y2

6 3 %9 ss, sx, sz

XX, 22, XY, X2

ter and nearest-neighbor two-center contributions
to the first-order density matrix. As can be seen,
the symmetry analysis reduces 68 coefficients to 6.
Table II gives a representative member of each
symmetry set for the first six shells®® of atoms.
The total number of symmetry-independent coeffi-
cients can be found by multiplying the number of
symmetry-independent s-s LBF products by
$N,(N,+1), the s-p products by N,N,, etc., where
there are Ny (N,) separate LBF’s of s(p) character,

For example, good calculations can be performed
over the first six shells of atoms in diamond with
four LBF’s of s character and three LBF’s of p
character. Consequently, 270 symmetry-indepen-
dent coefficients characterize the first-order den-
sity matrix. We shall see later that only 270 one-
electron integrals of each type need be done, and
that all of the two-electron integrals can be col-
lected in an array dimensioned 270 by 270.

C. Hamiltonian and Overlap Matrices

In order to determine the symmetry-independent
coefficients of the first-order density matrix, we
use the method of Roothan,3* For each LBF
¢, (F-R,), where ¢, is a contracted set of Gaus-
sian lobe functions [Egs. (1) and (2)], we construct
a Bloch function

2L@)= 1/ VM D e'FRag F-R],), (10)

where % labels the Brillouin zone point and where N
is the number of unit cells in the crystal. Separate
Bloch functions are needed for each of the two
atoms in the unit cell, The one-electron wave func-
tions ¥¥ are then expanded in terms of the Bloch
functions

VEF)=20 Ck 4 (), (11)

where 7 is the band index. The coefficients C?, are
adjusted in the usual manner to minimize the total

energy. One obtains the following Hemiltonian and
overlap matrices, the total matrices being block
diagonal in %:

BE xﬁacﬁa=€5§viscﬁa, (12)
Vo= [ oM F)BEEF)dF)
=2 Ugs(®,, B,)eiE FaRp) 13)
b

Uuﬁ(ﬁay R.b)= f ¢a(F" ﬁa)(bg(F— ﬁb)d(F) ’ (14)

:}Co’fB =Z> HGB(R.M 1.ib)e,li.('ﬁb:ﬁa) ’ (15)
b

Haﬁ(ﬁa) -R.b)':j d(F1)¢2(Fl - ﬁd)

Z -
X[— Vi— ZZC> FflTR‘;T +§ da(r,)

><<2 p(F,, Tp)_ oGy, Tp) P12>:]

"2 712

x ¢a(F; - By).. (16)

Equations (13) and (15) need only be summed over
atoms b, not over atoms a, owing to translational
symmetry, Note that the sum over b is over all
atoms of type 1 or of type 2, depending on whether
the Bloch function ®%, is for atom type 1 or type 2.
In Eq. (16), the sum over c is over all atoms and
P,, is the permutation operator which interchanges
7, with 7,. Matrix elements where the atom at R,
is of type 2 can easily be obtained from those where
the atom at R, is of type 1 by application of the in-
version operator about (5, 3, ).

The matrix eigenvalue problem [Eq. (12)] is then
most conveniently solved by performing a Choleski
decomposition® on each positive definite overlap
matrix U*,

U=LL',
Ly=0

where L is a lower triangular matrix, After this
decomposition is performed, a single-matrix diag-
onalization yields the desired eigenvalues and ei-
genvectors:

[LHLM[LTC]=A[LC] . (18)

o a7
for i<j |

In Egs. (14) and (16), one can see that we have in-
tegrals which involve LBF product pairs just as in
p(¥, T'). Therefore, we should be able to use the
same decomposition into symmetry sets to reduce
the number of integrals which need be done., All of
the operators in the Hamiltonian, as well as in the
overlap matrix (the unit operator) have full crystal-
line symmetry. Therefore, none of the one-elec-
tron operators can change the symmetry of the
function it operates on. Thus all of the one-elec-
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tron integrals may be classified into the same sym-
metry sets as p(¥, ¥’). Only a single one-electron
integral of each type for each different symmetry
set need be done. The two-electron integrals in
Eq. (16) involve an LBF pair multiplying p(¥, ¥’).
Thus, if K symmetry-independent coefficients
(symmetry sets) characterize p(¥, ') in Eq. (6),
then all of the two-electron integrals can be stored
in a K by K array. The two-electron part of Eq.
(16) is summed over R,, « and Bfor R, fixed (to be
zero usually) to give the array [using the notation of
Eq. (8)]

A,—~ D

N batrer (caroe s

x f () )0 uF - Fy)

2~ Pyy)
712

X(osa- 0ulF- )

x¢ar;-Ry). (19)

Element A, is thus proportional to the total Cou-
lomb-plus-exchange integral of all members (trans-
lated, rotated, and inverted) of symmetry set I with
all members (translated, rotated, and inverted) of
symmetry set J. The constant of proportionality is
the reciprocal of the number of cells in the crystal,
At this point we can see that the symmetry of Eq.
(19) guarantees the symmetry of the array, so that

AI.I‘:AJ'I .

In practice, the centers for the atoms a, b, ¢, and
d are chosen such that they all are within M shells
of each other and atom « is taken at zero. The two-
electron integral contribution in Eq. (16) is now
given by

(1/W)22 P, A,;,, (20)
J

where W, is the number of members of symmetry
set I for fixed R,. Here we again stress the fact
that in evaluating Eq. (19), a single member of
symmetry set I, say p, can be chosen and the in-
tegral for that member can be multiplied by the
number of members of I with R, at zero. In addi-
tion, one can use the set of symmetry operations
{X} which leave p invariant, for a further reduc-
tion. The members of symmetry set J can be de-
composed into subsets which transform into each
other under the operations {X}. Only integrals
between p and one member of each subset need be
calculated. All of the rest within each subset are
equal. Finally, one has the permutational sym-
metry that the Coulomb integral for (abaB: cdyd)
is equal to the exchange integral for (acay : bdB5)
and (ada6: bcBy). All of these considerations,
when used together, greatly reduce the number of

| =3

one- and two-electron integrals which must be
calculated.

D. Charge Density Average over the Brillouin Zone

In order to construct a new first-order density
matrix from the SCF results, one in principle
needs an integral over the occupied HF eigenfunc-
tions in the first Frillouin zone®:

PG, F')= [ dk) 2 VE)EE). (21)

’ ntilled

In practice, one replaces the Brillouin-zone inte-
gral by a weighted sum over a numerical mesh in
an irreducible sector of the Brillouin zone:
o, T)=2 W, 2 WEWIE). (22)
k n tilled
A natural weight to use for a given mesh point is
one proportional to that volume of the first Brillouin
zone which is closer to that mesh point than to any
other mesh point. If a regular mesh is used, the
weights are easy to determine, Table III gives
zone-point coordinates in terms of the reciprocal
crystal lattice, together with the nearest-volume
weights. The generalization to finer meshes should
be obvious.

It will be noted that only a part of the first
Brillouin zone is represented in Table III. For
example, the point (3, 0, 0) occurs, but not (0, %,
0)or (- 3, 0, 0). The zone-point weights are ad-
justed accordingly. In order to correctly project
the correct crystal symmetry into p(¥, ¥’) from
these unsymmetrical zone samplings, one must
again use the symmetry ideas discussed previous-

TABLE III. Brillouin-zone meshes and relative
weightings. The Cartesian coordinates multiply 27/qa,
where ¢ is the diamond lattice constant.

10 point Weight 6-19 points Weight
(0, 0, 0) 1 (0, 0, 0) 1
1, o0, 0) 3 1, o, 0) 3
3, 0, 0 6 G, 3 % 4
3, 3, 0) 12 1, 3, 0 6
G, 3, 3 8 3, 0, 0) 6
(3,0, 0 6 3, 3, 0 12
(3, 3, 0 24 3, 2, 0 12 32
(3, 3, 3 24 @A, 1, 0) 12
& 3 0 12 4 1,0 24
a, 3 0 12 () 24
108 4, 30 24
% % 3 24
4, 0,0 6
G, 3, 9 24
4, 3, 9 24
4, 2, 0 24
3, %, D 8
(4, 4, 0) 12
(3, 0, 0) 6
256
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ly. That is, one must average over the coefficients
of LBF products belonging to a single symmetry
set (with proper ~attention to sign) to get the correct
common coefficient of the set.

We can illustrate this point with a simple exam-
ple. Consider the symmetry set consisting of

(xx +yy +22),

where atoms a and b are identical, x stands for an
LBF of p, symmetry, etc. If one calculates the
contribution to this part of the first-order density
matrix from the zone point (1, 0, 0), it will have
the structure

A(ex)+ B(yy +22). (23)

Similarly, the zone points (0, 1, 0) and (0, 0, 1)
will contribute, respectively,

A(yy)+ Blxx +22) (24)
and
A(zz)+ Blxx +yy). (25)

Averaging over these three zone points gives a
total contribution of

$(A+2B)(xx +yy +22), (26)

which we could have obtained more simply by
averaging over the coefficients of xx, yy, and 2z
for any one of the zone points. For a closed-shell
system, averaging over symmetry-connected
Brillouin zone points is completely equivalent to
averaging over the individual symmetry-connected
coefficients of one representative point,

E. Two-Electron Integral Approximation

Another computational simplification that we
have employed is the approximation of some of the
less important two-electron integrals involving
sets of contracted Gaussians. The corelike LBF’s
are usually contracted sets of Gaussians with
coefficients chosen to help simulate the wave func-
tion behavior in the vicinity of the nucleus. Each
two-electron integral over four LBF’s thus in-
volves many integrals over individual Gaussians.
If each basis function consists of m; Gaussians,
mymymam, Coulomb integrals over individual
Gaussian products must be done for each Coulomb
integral over four basis functions.

We can, however, view each two-electron in-
tegral as representing the Coulomb interaction
between two charge distributions:

I,= f [n, (-fl)nv(;fz)/ﬁa]d(i) d(t,) . @7
For a contracted Gaussian lobe function basis,
n, (%) is given by
nu(F)= o - Ro)ps(¥ - Ry)
mimg

- Z} Cle-ai(F-ﬁl)z, (28)
i=1

where we use the fact that the product of two
Gaussians about different centers is again a Gaus-
sian about some third center. The approximation
is to replace the sum over m;m, Gaussians by a
single Gaussian

- -6(2=R,)2
n,(F)= De™®*Fa" (29)
such that the total charge of #,(¥) is correct:

Qo= D(W/5)3/2=£T.‘/ Q;,

(30)
Qi=Cy(n/ a2,
the center of charge is correct:
Qaﬁa=l? Qiﬁi ’ (31)

and § is adjusted for a best least-squares fit to
1y (F):

S(5) :I< De-ﬁ(i’:ﬁd)z - C,e’“‘(?'ﬁ”a)%d(f) . (32)
i

ds(s)
76_=0‘ (33)

When p-symmetry LBF’s are involved, each
lobe-lobe pair in ni(F ) is treated independently;
that is, two separate fits are made for s-p and
four separate fits for p-p LBF pairs. This pro-
cedure maintains the predominant dipole character
of the s-pcharge density and the essential quad-
rupole character of the p-p charge density.

When all of the four-center integrals in ethylene
were approximated in this fashion, the resulting
total energy and one-electron eigenvalues changed
less than 0.001 Ry, as compared to doing all of
the integrals correctly. The same results were
obtained for a fictitious C, molecule with the four
C atoms in their nearest-neighbor diamond con-
figuration, When all of the ethylene three-center
integrals were approximated, the total energy and
eigenvalues changed by several eV, Some of the
three-center integrals must consequently be done
properly.

F. Monopole and Dipole Charge Balance Corrections

In principle, nuclear and two-electron integrals
should be done over all the atoms in the crystal.
In fact, there is complete cancellation between
nuclear and two-electron Coulomb integrals at
large distances from the two atoms belonging to the
symmetry set of electron one [Egs. (14) and (16)].
In practice, we specify at the beginning the number
of shells of atoms M that we wish to consider.
All symmetry sets, taking one atom at the origin
and the second within the M shells, are determined.
The integral approximation least-squares fits are
made for this group of LBF pairs. All one-elec-
tron integrals are calculated for LBF pairs con-
tained in these symmetry sets and are zeroed for
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all other LBF pairs. For two-electron integrals,
we include all contributions for which all four
atom locations are within M shells of each other.

Although the above prescription is the natural
one to use in conjunction with our method of utiliz-
ing symmetry sets and of handling the integral ap-
proximations, it does introduce numerical diffi-
culties. If the third atom is just inside the Mth
shell boundary of the first or second atom, the
two-electron Coulomb integrals will be zeroed for
all fourth atoms just outside the same Mth shell
boundary. Substantial amounts of charge and dipole
moment are associated with these atom pairs in
p(¥, ¥')[Eq. (6)]. If the nuclear charge of each
atom is taken to be Z (6 for diamond) in the elec-
tron-nuclear integral [Eq. (16)], we find that we
have lost charge balance between the electron-
nuclear and the electron-electron Coulomb inte-
grals. The electron eigenvalues sink and the crys-
tal charge density distorts because of the neglected
electron-charge distribution, We shall see this ef-
fect illustrated in Sec. III.

In order to minimize the effects of these compu-
tational boundaries we find that we must reduce
the nuclear charge on each atom by the amount of
the electronic charge we effectively ignore in the
Coulomb integrals. From Eq. (6), we have that
the charge density n(¥) is

n(¥)=-p(F, T)
== P, 2
I

(adaB)ET

bo(F-R)0s(F-R,y). (34)

We now recall Eq. (9), which relates the nuclear
charge to P,:

Z=2,P,W,0,, (35)
I

0;= [¢a@-R,)ps(F- R)dF), (abap)e I (36)

where W, is the number of members in symmetry
set I for which R, is at zero, and where we have
used the fact that all of the integrals for members
of a symmetry set are the same, exclusive of
sign., However, when we impose the M-shell
boundary on Eq. (19), we limit the (cdy56) sum to
be over just those members of symmetry set J for
which both atoms ¢ and d are within M shells of a
and b, for each choice of (@baB). We then use Eq.
(20) to get the Hamiltonian matrix element for the
electron-electron interaction. Focusing on the
Coulomb part, we find that it can be written

j%(ﬁ)(z P, T wfa—ﬁcm@z—ﬁn)

7 (cave)E 7
limited
X Pg(Ty - ﬁb)d(a)d(i?z) , (37)

where the limited (cdy8) sum has just the M-shell
limitation discussed above. The point is that the
quantity in large parentheses is no longer the full
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electronic charge density. Instead of Eq. (35), we
now have

2N
P, 2 0,=2.23, (38)
7 llml;tsd =1

where ¢ labels the atom position. The Z§ are
determined by accumulating a charge $0, on site
¢ and on site d, while v goes through its limited
values for each J. The Z ' are thus different for
each choice of (abaB).

When we accumulate the nuclear charge asso-
ciated with the distributed electronic charge for
symmetry set member (cdys) in Eq. (37), we end
up with predominantly positive charge close to the
computational boundaries and with the negative
electronic charge systematically further from the
boundaries., We introduce so-called dipole cor-
rections to compensate for this artificial bias. We
do this in the following way: From Eq. (37) the ex-
tended electronic charge associated with (cdy6) is

- ¢7(F_ ﬁc)¢5(-f—ﬁd)) (39)
while the associated nuclear charge is
7=% [6,F - Ro)go(F - R d() (40)

on atom ¢ and also on atom d. This charge dis-
tribution can be very roughly approximated by the
charge distribution consisting of charges ¢ on ¢
and on d, and two charges of — ¢ at 5(R,+R,). This
distribution then consists of two finite dipoles of
strength

3q®,-R,), (41)

one associated with ¢ and one of opposite direction
associated with d. To eliminate the bias in charge
distribution owing to our artificial computational
boundary, we then associate point dipoles at ¢ and
at d of equal strength and opposite direction to
these. If all possible crystal rotations of d about
¢ are included within the computational boundaries,
the dipoles at ¢ will add to zero because of the
properties of the cubic point group (this procedure
will thus not work for all crystal point groups).
However, the accumulated dipole moments on
atoms near a computational boundary will not add
to zero, but will simulate the neglected electronic
distributions, and will thus help to remove the
bias of positive charge at the boundary.

Monopole and dipole corrections are thus applied
every time one performs a two-electron integral
[Eq. (87)]. With every such two-electron integral
that is calculated, we also calculate a one-electron
integral over (abap) for the potential due to point
nuclear charges on ¢ and d of strength ¢, and we
also do a one-electron integral for the potential
due to the compensating point dipoles on ¢ and d.
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G. Working Equations

We are finally in a position to write down a set
of equations which we can program for a digital

computer, The Hamiltonian matrix for the SCF is
given by

H= TI+V£1-e1+ Vet Vﬁl-dp’ (42)

= [dF)¢aE - R)(= v2)95F - By, (43)

Vi-e1= (1/W1)ZJ: P;A;, (44)

Vie= f Ao, (F-R,) §,P, 30,

2 2 -> -
XicaEeJ<lf—§cf * l'f—ﬁﬂ')gbﬂ(r_Rb) ’
limited (45)

Vel-dp f d(..) ¢a(r R )EPJ ZOJ

Ry T .
(crhme.r( r—ﬁ . |'f_§d|s')¢a(r—Rb),

limited
(46)
ﬁcd = ﬁC - Rd .

For the calculation of the total energy per atom,
the dipole term is viewed as another electron term
as its purpose is to compensate for missing elec-
tron bonds. The total energy per atom is thus

&= E WP 4 3V 1+ Vi + 2V

+ 2V + Vi), (47)

where the last terms are

Vie= 301 2P, 30y

2 2
> (W wtw
Xearres \IRg— c|+l .—Ryl -

limited

Vi-ap= 30; ZJ>P ;30

Ry R, Ry R,
x(cdg:le.)‘ (’Ra_ﬁc|3+] b cl3

limited

Ry R Ry R |
R Rarhl)
The above procedure may seem complicated,

but it is necessary for numerical integrity. The
procedure smooths the transition across the com-
putational boundary between doing and zeroing in-
tegrals for atoms ¢ and d. It allows one to ignore
many integrals without having to worry about loss
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of charge ordipole balance, It is necessary in this
formalism because of the coulomb interaction,

III. COMPUTATIONS

In discussing the computational results, we shall
first present the relevant experimental informa-
tion on diamond, along with our guesses as to the
effects of correlation on each quantity. Subtract-
ing out the estimated correlation effects, we then
get our best estimates for good HF results. Next,
we discuss the results of various parameter stud-
ies to determine optimal choices of the param-
eters: choice of basis, Brillouin-zone averaging,
approximating three-center and zeroing four-cen-
ter integrals. Finally we present results for the
best choices of these parameters.

A. Experimental Information of Diamond

The available experimental information which is
relevant for this work is presented in column 1 of
Table IV. After estimating the size of the correla-
tion corrections, our best guesses at reasonable
HF results are given in column 2. We shall now
discuss the entries to these columns in some de-
tail. These discussions will provide a reference
from which to view the actual computational re-
sults,

The experimental width® of the valence bands
corresponds to the I'ys ,— Iy, energy difference.
The experimental width%” of the p-like valence
bands should very roughly correspond to the I';s,
- X, , energy difference., We obtain the correspond-
ing entries in column 2 by using the fact that the
HF bands are approximately 50% wider than ex-
periment,

The direct band gap at I" is 0. 54 Ry, while the
indirect gap from Iy, at (0, 0, 0) to A, near
(0.75, 0, 0) is around 0. 40 Ry.%® The bottom con-
duction band thus dips in going from I along (x,

0, 0) to a minimum somewhere between (0. 5, 0, 0)
and (0.75, 0, 0) and then rises again to the X point
(1.0, 0, 0). To monitor this shape, Table V con-
tains results for the bottom conduction band for
three intermediate zone points between I' and X,
Kunz and co-workers'® find in alkali halides that
correlation corrections raise the valence band by
roughly 2 eV and lower the conduction bands by 2
eV, giving a net narrowing of the band gap of
roughly 4 eV. Correlation corrections are ex-
pected to be larger in a covalent material such as
diamond. Thus we estimate that the correlation
corrections will narrow the diamond HF band gaps
by somewhat more—say 4-8 eV.

The first-order density matrix is stationary
through first order under correlation corrections.
We consequently expect only small changes in the
Fourier transforms of the charge density from the
experimental values,?®
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TABLE V. Contracted Gaussian LBF exponents (in

a.u.) and coefficients. The coefficients multiply normal-

ized individual s or p Gaussians.
for the two 1p LBF’s used in this work. The 3s-2p
Gaussian exponents are taken as 1.0 unless otherwise

specified, while the outer 4s-3p Gaussian exponents are

Parameters are given

varied.
LBF a C
1s 16371.074 0.00022939
2439.1239 0.001 77527
545.1677 0.009464 79
151. 0038 0.039627 65
47,803 99 0.131291
16.43566 0.320556 34
2s 5.949118 0.7252186
2. 215878 0.3104604
1p (D 40, 79042 0.004 096 98
9.503463 0.027584 77
2.940 836 0.106 354 35
1p (O) 24.178 81 0.04081133
5.7634925 0.233709 81
1.7994821 0.815896 7

The diamond experimental binding energy of 7.6
eV/atom is well known.”® The free-atom correla-
tion energy has been calculated to be 0. 316 Ry for
the atomic configuration 3P;.*! One would expect
an increase in correlation energy in going from
the atom to the crystal. Inthe C, molecule, the
correlation energy is 0.415 Ry/atom,*? an increase
of 0.1 Ry/atom over the atomic correlation energy.
This gives us very roughly the correlation correction
forone C-C bond, sothatfor the four diamondbonds
we could expect an increase in correlation energy
of from 0, 2 to 0.4 Ry/atom over the atomic cor-
relation energy. Subtracting out this correlation
enhancement, we arrive at an estimated range of

from 0. 16 to 0. 36 Ry/atom for the crystalline HF
binding or cohesive energy. Adding this to the HF

energy for the atom of 75. 375 Ry,* we get the esti-
mated total energy per atom given in Table IV,

A good measure of the quality of a HF calculation
is the degree to which the virial theorem

-2(T)YAVv)=1.0 (50)

is satisfied for the experimental lattice constant.
Because the electrons and nuclei comprise a sys-
tem in equilibrium, the virial theorem for the
combined system should be satisfied. The expec-
tation value of the potential energy ( V) can easily
be calculated. The expectation value of the kinetic
energy {( T') is that of the electrons alone when the
nuclear masses are assumed infinite, The virial
theorem should thus be satisfied at the equilibrium
lattice constant, and the pv (pressure-volume)
product

po=3(T)+ ¥ V), (51)

which reflects the nonequilibrium forces on the
nuclei,® should also vanish there. Since the equi-
librium lattice constant is stationary to first order
under correlation corrections, we can expect a
good HF calculation to give a virial ratio close to
1.0 and a pv product close to 0.0 when the total
electronic energy is minimized at the experimen-
tal lattice constant, In all of these calculations,
we use a lattice constant of 3.56 A.

B. Study of Computational Parameters

The LBF basis set parameters were chosen
from the unpublished tables of Huzinaga,® who
compiled an extensive collection of optimized
atomic basis sets for both Gaussian and Slater
LBF’s, Our choices for the 1s, 2s, and 1p LBF’s
consist of sets of 6, 2, and 3 contracted Gaussians,
respectively. Here 1p refers to the first p LBF
rather than to principle quantum number 1, The
coefficients and exponents are given in Table V.
The coefficients for normalized spherical harmon-
ic Gaussians can be directly used as coefficients
for normalized Gaussian lobe functions, Individ-
ual Gaussians were chosen for the 3s, 4s, 2p, and
3p LBF’s in order to allow maximal variational
freedom in the bonding region. The 3s and 2p
Gaussian exponents are fixed at 1.0 for most of the
calculations to maintain approximate even-temper-
edness for the exponents. The 4s and 3p Gaussian
exponents are varied in the range from 0. 36 to
0. 45, but are kept equal to each other to aid them
in joining together to make an s-p bonding wave
function

The number of shells of atoms over which inte-
grals are performed and over which symmetry
sets are constructed depends upon the Gaussian
basis chosen., Loose Gaussians overlap consider-
ably, requiring one to use more shells of atoms
than is necessary with tighter Gaussians. A con-
venient way of determining the required number of
shells of atoms is to calculate the determinant of
the Bloch-functionoverlap matrix for each of 19
Brillouin zone points for increasing numbers of
shells. The more nearly converged the determi-
nants are, the more reliable are the calculational
results. For example, for our choice of basis, the
overlap determinants for four shells (29 atoms)
are converged to within 10% of the fully converged
determinants for outer s and p exponents of 0. 40;
to within 25% for an outer exponent of 0, 36; and
several determinants are negative for an exponent
of 0.32. When six shells (47 atoms) are included,
the Bloch-functionoverlap determinants are con-
verged to within 0. 5%, 2%, and 5%, respectively,
for the same series of exponents. In the first cal-
culations, we use four shells in order in inexpen-
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sive study computational questions. We then use
six shells for the calculations which follow.

We find that between five and ten SCF iterations
at 19 zone points are necessary to converge the
eigenvalues to 0. 002 Ry. Initially, however, we
use six iterations at six zone points to get the SCF
started. We find that it is quite helpful to update
the first-order density matrix coefficients after
each zone point is calculated, rather than at the
end of each full iteration. This has the effect of
speeding up convergence by reducing the oscilla-
tions in the coefficients which would otherwise oc-
cur,

We have studied the dependence of the calcula-
tional results upon the number of Brillouin zone
points over which the first-order density matrix
coefficients are averaged. We have done SCF cal-
culations for 6, 10, 19, and 28 symmetry-indepen-
dent zone points in {5 of the first Brillouin zone,
The eigenvalues for six zone points differ around
0. 02 Ry from those for 28 zone points. However,
the eigenvalues for 19 zone points and those for 28
zone points agree to within 0, 003 Ry. The charge-
density Fourier coefficients vary in the third deci-
mal place from 6 to 28 zone points, Consequently,
for the results reported in this paper, we have al-
ways averaged the first-order density matrix co-
efficients over 19 Brillouin zone points,

Next, let us consider the importance of mono-
pole and dipole corrections. Results for which
both monopole and dipole corrections are ignored
are given in column 3 of Table IV. The full nu-
clear charge was used for all nuclei within four
shells of both atoms ¢ and b in the electron-nu-
clear integrals, The resulting electron eigenval-
ues are 5 Ry too low because of this uncompen-
sated nuclear charge, The direct band gap is 2
Ry too wide, the valence band is much too wide,
and the charge density is extremely warped. The
results are completely unacceptable,

Monopole corrections have been applied in col-
umn 4 of Table IV, Note that the charge density is
greatly improved and that the band gap now has a
reasonable value, However, the eigenvalue cor-
responding to the top of the valence band has ap-
parently overshot, since it is now positive. This
is physically unreasonable as it implies a negative
work function, Moreover, although we do not il-
lustrate it in the tables, when the outer Gaussians
are made progressively looser, the band gap gets
continuously smaller, almost reaching the experi-
mental value for an outer Gaussian exponent of
0. 32.

The dipole corrections, applied in column 5 of
Table IV, compensate for the imbalance noted
above. We can no longer decrease the band gap
by decreasing the exponent of the outermost Gauss-
ians. The top valence band is now at a negative

absolute energy (relative to infinity). The bottom
conduction band from I' to X has leveled off some-
what, although its minimum is still incorrectly at
I', Thus the dipole corrections, while much
smaller than the monopole corrections, are still
very significant, and cannot be ignored. However,
they are so much smaller than the monopole cor-
rections that higher-order corrections can safely
be ignored. They are sufficiently large, however,
that more care should be exercised in calculating
them. Our prescription in this paper is a casual
one, in that we assume all of the distributed elec-
tron charge to be concentrated halfway between the
two atoms of the associated symmetry set. This
clearly gives an overestimate of the dipole mo-
ments.

Two parameters determine the way in which we
treat three- and four-center integrals. The shell
of the center which is furthest from the atom at
zero is found and compared to the three- or the
four-center parameter. The three-center param-
eter gives the shell beyond which three-center in-
tegrals are approximated., The four-center param-
eter gives the shell within which four-center inte-
grals are approximated rather than zeroed. We
never zero three-center integrals (within the shells
of atoms specified) and never do any four-center
integrals exactly, However, we do not recommend
the above method for deciding how the three- and
four-center integrals are to be calculated and, in
fact, we intend to abandon it. It is not a symme-
tric criterion in terms of the four atoms compris-
ing the two symmetry sets, focusing as it does on
the atom at zero. Furthermore, a good criterion
would not always treat all s and p functions alike,
We now feel that the decision to approximate three-
center or to zero four-center integrals should de-
pend on the looseness of the functions as well as on
the relative location of their centers. We intend
to address this problem in the near future, How-
ever, let us now consider the results as we have
calculated them with this criterion,

Columns 6 and 7 of Table IV demonstrate the un-
importance of the four-center integrals, In column
6, all of the four-center integrals are zeroed. In
column 7, the four-center integrals are approxi-
mated when all four centers are within three sheils
of the atom at zero. We see that the charge den-
sity is unaffected. The valence bands also show
only small changes, while slightly larger differ-
ences occur in the conduction band, We conclude
that the four-center integrals can be safely ap-
proximated, and that the outer shell four-center in-
tegrals can be safely zeroed. Dipole and monopole
corrections should, in fact, help compensate for
the loss of these integrals.

The importance of the three-center integrals is
illustrated in columns 8 and 9 of Table IV, When
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three-center integrals involving atoms in the third
shell are done correctly rather than approximate-
ly, the band gap changes 0.3 Ry to a more rea-
sonable value, and the conduction band from I to
X obtains the correct dip. The changes in the re-
sults from exactly calculating integrals through
two shells compared with those in which integrals
are calculated exactly through three shells are suf-
ficiently large that we cannot dismiss the possibil-
ity that parts of the fourth shell are also important.
However a better method for determining which in-
tegrals can be approximated must be developed be-
fore this investigation will be economically feasi-
ble.

The statements regarding the effects of three-
and four-center integrals in the preceding two para-
graphs may seem unduly strong since the effect
on the results in the two cases is about the same,
However, we contend that zeroing all four-center
integrals over the inner three shells is a much
more drastic step than computing three-center
integrals involving atoms in the third shell exact-
ly rather than approximately. Thus we feel justi-
fied in calling one effect small and the other large.

C. HF Diamond Results

In this section we present results for the best
sets of computational parameters, as determined
from Secs, IIIA and IIIB. Integrals are calculated
over six shells of atoms (47 atoms). All four-cen-
ter integrals are approximated, while three-center
integrals are calculated exactly through the third
shell., The first-order density matrix coefficients
are averaged over 19 zone points,

The outer 4s-3p Gaussian exponent is varied in
columns 9 through 11 of Table IV from 0. 36 to
0.45. The total energy per atom is lowest at 0. 36,
and the virial theorem is closest to being satisfied.
However, the (111) Fourier coefficient of the charge
density has moved slightly below the experimental
value, crossing at 0.40. The dip in the conduction
band from I'" to X also gets increasingly better as
the outer Gaussians get looser. When we {fit the
total energy versus the 4s-3p Gaussian exponent
to a parabola, we find that the predicted exponent
for which the total energy is a minimum is 0, 317,
In column 12, we present results for 0,317, We
caution the reader, however, that the determinants
of the overlap matrices are not well converged
here, being off by as much as 10% at the X point,
We consequently do not consider these results as
being as reliable as the others.

In column 13 of Table IV, variational freedom
has been given to the low-density region of the
crystal in a different way. The basis now contains
the second 1p LBF contracted Gaussian set given
in Table V, Gaussians with exponents of 0. 65 and
0. 40 are used for the 3s-2p and the 4s-3p LBF’s,

respectively., The reason for using the second 1p
LBF rather than the first is to maintain approxi-
mate even-temperedness inthe Gaussian exponents.
The total energy and virial are not quite as good as
we obtained with the (1, 0. 36) exponents, but are
better than with the (1, 0.40) exponents, The
charge density matches the (1, 0. 36) results. The
valence and low conduction band energies match the
(1, 0.317) column closely. There seems to be an
over-all uncertainty in the valence and low conduc-
tion band energies of about 0. 05 Ry from run to
run, Several of the higher conduction bands (not
shown in the table) come down as much as 1 Ry
from the (1, x) expenent set to (0. 65, 0.40). For
example, the second nondegenerate conduction
band at I' moves from 4, 44 Ry at (1, 0. 317) to
3.38 Ry at (0. 65, 0.40). The extra variational
freedom in the low-density region has much more
effect on the conduction bands than on the ground-
state results,

We see from the table that more variational
freedom is still called for in the interstitial re-
gions. Neither the (1, 0. 317) nor the (0. 65, 0. 40)
supplied enough variational freedom to produce a
minimum in the total energy. (Extrapolating the
0. 40, 0.36, and 0. 317 results predicts a still
lower total energy for an outer exponent less than
0.317.) However, using looser Gaussians would
require more than six shells of atoms., It would
probably be more efficient to introduce LBF’s cen-
tered away from atom sites in the bonding region,

The over-all results are quite good, although
they are surely not the definitive last word on the
HF band structure of diamond. The ground-state
results vary little when the Gaussian exponents are
varied, The closeness of the virial coefficient to
1.0 and the smallness of the pv product at the ex-
perimental lattice constant are reassurance that the
computational model has integrity. The band gap
is reasonable. The dip in the bottom conduction
band from I'" to X is less than experiment, but the
shape is correct, and the detailed effects of corre-
lation are unknown, The HF binding energy is rea-
sonable, but is on the high side, The charge den-
sities are fairly good, although the (111) charge
density seems low. The total widths of the valence
bands are about 50% enhanced, as they should be.

IV. CONCLUSIONS

Good crystalline HF calculations are a necessary
step towards highly refined crystal calculations on
ground-state and excited-state properties. We
have developed a HF formalism which utilizes
crystalline symmetry to store integrals economi-
cally, and which reduces the number of integrals
which must be done to a minimum, We described
an approximation procedure for two-electron inte-
grals which works well for four-center integrals,
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but which must be applied with caution to three-
center integrals., We have demonstrated that a
good HF calculation can be done on diamond if we
neglect one- and two-electron integrals over atoms
separated by more than six shells, Monopole and
dipole compensation make the zeroing of these in-
tegrals unimportant, Qur best results on diamond
agree well with our expectations.

Work must still be done to better treat the dipole
compensation, and to develop better criteria for ap-
proximating and zeroing two-electron integrals. A
by-product of this work will hopefully be an economi-
cal treatment of multicenter integrals involving
core LBF’s. This would allow reasonable HF cal-
culations to be done further down in the periodic
table. Additionally, it seems that interstitial
LBF’s should be included in the basis to increase
the variational freedom in the bonding region.

We have done all of the integrals which are
necessary for a correlated crystalline calculation.
However, we have thrown away information by
storing them according to the symmetry sets of the
first-order density matrix. If these same inte-
grals are stored according to the symmetry sets

[BN]

of the second-order density matrix, correlated
crystalline calculations involving perhaps CI meth-
ods should be feasible,
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The drift mobility of excess holes has been investigated in undoped NiO crystals using a transient
technique with electron-beam excitation. Specimens with low-impurity content were grown epitaxially from

the gas phase. At room temperature ., lies between 20 and 50 cm? V="' sec

~1, and its temperature

dependence shows that scattering by optical modes predominates. The results lead to a phonon energy of
0.055 eV, a polaron effective mass of 1.5m,, and a coupling constant of 1.6.

In spite of a great deal of work during the last
two decades, the detailed nature of the electronic
transport properties of NiO and of other transition
metal oxides, is by no means clear. Most of the
interpretable transport data on NiO have been ob-
tained from dc conductivity and thermoelectric
power measurements on Li-doped and undoped
crystals'’? and ceramic specimens.® In the exhaus-
tion range of the Li acceptors (~ 1200 K), a hole
drift mobility u, of about 0.4 cm?V "!sec™! has been
deduced by several authors, whereas room-tem-
perature determinations have led to values between
0.5 and 5 cm®?V "'sec™. The form of the tempera-
ture dependence of p, is not well established and
depends largely on the assumptions made concern-
ing the temperature dependence of the density of
states. A detailed analysis of available transport
data, and of the Hall mobility problem, has recent-
ly been carried out by Bosman and van Daal.* It
led to the conclusion that the transport of free holes
in NiO takes place in a relatively wide band and is
describable on the basis of the large-polaron mod-
el. This is also in general agreement with the dis-
cussion of Adler and Feinleib.®

In the present state of the subject it appeared of
some interest to provide independent transport re-
sults by an essentially different experimental meth-

od. Transient drift-mobility techniques are a very
direct approach, which have been widely used in
transport studies on molecular crystals and liquids
and on amorphous solids.® Two previous attempts
have been made to determine the drift mobility of
photogenerated holes in NiO.?'® A value of about
0.3 cm?V "' sec™ was obtained at room tempera-
ture, which must be regarded as a lower limit;
however, in the absence of any measurements on
the temperature dependence of u,, no further con-
clusions could be drawn.

The present work was stimulated by the fact that
NiO crystals of considerably improved purity had
become available. The crystals were produced by
epitaxial deposition from the gas phase and further
details are given in the paper by Lubezky and Tann-
hauser.® Analysis by emission spectroscopy
showed that in the specimens used here the total
metal impurities lay below 50 ppm (by weight).
Neutron-activation analysis indicated a bromine
content of 25 ppm or less.

In the following experiments an electron-beam
technique was used® in which excess carriers were
generated within a few um of the specimen’s top
electrode by a 45-keV electron pulse of 15-nsec
duration. Holes were extracted from this region
by a synchronized field pulse, and their transit



