
PHYSICAL REVIE W B VOLUME 7, NUMBER 1 JANUARY 1973

Work Functions for Positrons in Metals*

C. H. Hodges and M. J. Stott
Queen's University, Eingston, Ontario, Canada

(Received 19 June 1972)

Positron work functions have been calculated for a number of simple metals and the noble metals. Three
separate contributions were estimated: the positron zero-point energy and the positron-electron correlation
energy, which together constitute the internal positron chemical potential, and the contribution from the
surface-dipole layer. The effect of the ionic lattice was included in the zero-point energy and the
surface-dipole barrier. The correlation energy was calculated taking into account the nonlinear response of
the electron system to the positron. Of all the metals considered only Au and Cu were calculated to have
negative work functions. Positronium work functions were also calculated and in all cases they are smaller

than the corresponding positron work function and are negative for several metals.

I. INTRODUCTION

There has recently been considerable interest'
in the possibility of positrons having negative work
functions for some metals. A negative work func-
tion would imply that work has to be done on the
positron in fetching it from infinity into the metal
or, alternatively, that positrons will leave the
metal with a minimum kinetic energy which has
the magnitude of the work function. Experiments
have been reported that indicate that positrons&
thermalized in a moderator coated with -200-A
Au, leave the Au surface with a distribution that
peaks at an energy between 0. 75 and 2. 90 eV. This
low- energy emission of positrons was taken to be
evidence for a negative positron work function in
Au. Theoretical estimates of positron work func-
tions have been made by Tong for the uniform-
positive-background or jellium model of a metal.
We present here calculations of the positron work
function, for a number of simple metals and the
noble metals, which take into account the effect of
the ionic lattice. Our results, in general, differ
considerably from those of Tong.

The positron work function P~, by analogy with
the electron case, ' can be separated into two

terms,

&n=-D- &o

where D is the potential barrier against electron
escape due to the surface-dipole layer, which acts
to expel the positron because of its opposite
charge. The second term, p,~, is strictly a bulk

property; it is the positron chemical potential in
the interior of the metal. We have measured p.~
from the electrostatic potential at the radius of
the Wigner-Seitz sphere; if the ions are smeared
out in a uniform positive-charge background, as
in the jellium model, then our procedure is equiva-
lent to measuring p.~ from the mean electrostatic
potential.

Our estimates of D for the simple metals are
taken from the work of Heine and Hodges, in
which they derive the dipole-layer contribution to
the electron work function from calculated internal
Fermi levels and experimental work functions.
Their estimates take account of the electron-ion
interaction. Tong took his estimates of D from
the first-principles calculations of Lang and Kohn

based on the jellium model; his values differ sub-
stantially from the results we have adopted, es-
pecially for the metals with large attractive pseudo-
potentials. We have slightly modified the proce-
dure of Heine and Hodges in the case of the noble
metals to take account of the d bands.

We have split up the internal chemical potential
into two parts and calculated each part separately.
The first contribution arises from the positron-
ion interaction. The positron is strongly repelled
from the ions and in some cases the lowest single-
particle state lies several electron volts above the
electrostatic potential in the interstitial region-
this energy has been termed the positron zero-
point energy and we denote it by Eo. We have used
the Wigner-Seitz approximation to estimate Eo for
some simple metals and the noble metals; in other
cases we have used results from an earlier paper
of Hodges. This contribution does not appear in
calculations based on the jellium model. The sec-
ond contribution to p~ is the positron- electron
correlation energy, E„„. We define this as the
difference between the ground-state energy of the
metal and positron and the ground-state energy
calculated in the Hartree approximation. For this
contribution, including the ionic lattice in the cal-
culation is prohibitively difficult, and, in common
with all other attempts to calculate this quantity,
we find it necessary here to use the jellium model.
Apart from raising the positron energy by Eo, the
strong ion-positron repulsion still leaves the posi-
tron energy band remarkably fr ee- electron-like
and we feel that use of the jellium approximation
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for this problem ought not to be very much worse
than its use for the electron-electron correlation
energy in a simple metal. We calculate the posi-
tron-electron correlation energy for a uniform
electron gas using a method that takes into account
the nonlinear response of the electron system to
the positron. The method breaks down for low
electron densities, but we extrapolate our curve
to the low-density limit guided by the positron-
annihilation-rate-vs-density curves obtained from
experiment and from the nonlinear-response
theory used here. In his calculations Tong ob-
tained estimates of the correlation energy from
the linear response of the electron gas to the posi-
tron using a static effective interaction between the
electron and positron.

No attention has previously been paid to the work
function for positronium for metals. Using a sim-
ple argument we are able to conclude that in all the
cases we have considered the positronium work
function is less than the positron work function.

In Secs. II-IV we discuss, in turn, the zero-
point energy, the positron- electron corr elation
energy, and the surface-dipole contribution, and
in Sec. V we discuss the work functions for bare
positrons and positronium.

II. POSITRON ZERO-POINT ENERGY

The positron zero-point energy arising from the
positron-ion interaction has been calculated pre-
viously by Berko and Plaskett for Cu and Al using
the Wigner-Seitz approximation and numerically
integrating the Schrodinger equation. Hodges

performed calculations for a variety of metals
also using the Wigner-Seitz approximation, but
using a variational method with an analytic trial
wave function. We have calculated the positron
zero-point energy Eo in the Wigner-Seitz approxi-
mation by numerical integration of the Schrodinger
equation for the cases of Li, Na, Mg, Al, In, Pb,
Cu, Ag, and Au. The results are given in column
3 of Table I and in all cases the zero of energy
was taken to be the electrostatic potential at the
Wigner-Seitz cell radius. Apart from the noble
metals, the Hartree potentials used in our calcu-
lations above were constructed from the charge
density due to the ions and uniformly distributed
valence electrons. There is excellent agreement
with Hodges's results' in all cases except Li. The
disagreement in this case is due to a poor trial
wave function in the variational calculation.
[Hodges's trial wave function vanished at the cen-
ter of the cell. This is not strictly valid but, ex-
cept for Li, it is a good approximation in all the
cases we have considered because g(0)/g(r„s)
(0.02, where x» is the radius of the Wigner-Seitz
sphere; for Li, however, g(0)ig(r»)=0. 15. ] We
have adopted Hodges's values for Eo in the cases
of K, Rb, Cs, Zn, Cd, Hg, Ga, Tl, and Sn.

The potentials for the noble metals were con-
structed in a similar manner except that the outer-
most d-electron distribution was renormalized"
so that 10 d electrons were within the Wigner-
Seitz sphere.

The calculations indicate that the zero-point
energy for the noble metals is considerably great-

TABLE I. Positron zero-point energy Eo, the positron-electron correlation energy E~, and the dipole-layer con-
tribution D. The last two columns list the estimated values for the positron work function fII)& and the positronium work
unction ~ps'

Li
Na
K
Rb
Cs

Mg
Zn
Cd
Hg
Al

Ga
In
Tl
Sn
Pb

Cu

Ag
Au

(a.u. )

3.26
3.93
4.86
5.20
5.63

2. 65
2.30
2. 59
2. 66
2. 07

2. 19
2.41
2.48
2. 21
2.30

2.67
3.01
3.01

Eo (Ry)

0.13
0.13
0.10
0.09
0.08

0.23
0.34
0.32
0 ~ 31
0.35

0.33
0.31
0.30
0.34
0.32

0.31
0.31
0.34

E~~~ (Ry)

—0.54
—0, 52
—0.51
—0.51
—0.51

—0.58
—0.62
—0.59
—0.58
—0. 65

—0.63
—0.60
—0.59
—0.63
—0. 62

—0. 58
—0.55
—0.55

D (Ry)

0.09
0.05
0.02
0.01

—0.00

0.15
0.21
0.14
0.06
0.25

0.15
0.10
0.03
0.09
0.02

0.34
0.22
0.33

4'p = @corr Eo
'(Ry)

'

+0.32
+0.34
+0.38
+0.40
+0.42

+0.20
+0.07
+0.13
+0.21
+0.05

+0.15
+0.19
+0.26
+0.20
+0.28

—0.07
+0.02
—0.12

&ys=4e+0p —o 5

(Ry)

+0.05
+0.04
+0.06
+0.06
+0.08

—0.03
-0.11
-0.06
+0.04
—0. 14

—0.02
-0.02
~ 0.04
+0.02
+0.07

—0.23
—0.19
—0.24
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er than that for the alkali metals. The positron
is repelled from the ions but is not completely
confined to the interstitial regions because of the
ensuing unfavorable increase in kinetic energy.
However, penetration of the positron into the rather
diffuse outer d shell of the noble metals exposes
it to a much larger repulsive potential than is ex-
perienced in the alkali metals. For similar rea-
sons a decrease in atomic volume and an increase
in valency both lead to a larger zero-point energy
in the simple metals.

In the case of aluminum a slightly modified
plane-wave expansion has been used to calculate
the zero-point energy taking into account the full
lattice symmetry. There is very good agreement
between this and the result of the Wigner-Seitz
calculation (the two differ by only -0.01 Ry), and

this gives us confidence in our simple Wigner-
Seitz calculations.

III. CORRELATION ENERGY

Estimates of the correlation energy of a positron
in an electron gas have been made by Bergersen, '

Tong, and Bergersen and Carbotte. ' Berger sen
studied the low- electron- density r egion, perform-
ing a variational calculation using a model Hamil-
tonian. As expected on physical grounds, the
positron-electron binding energy (the negative of
the correlation energy) approaches the binding
energy of free positronium, 0. 5 Ry, as the elec-
tron density is decreased. However, we feel that
the method fails in the metallic range of electron
density and at higher density because it accounts
only for the interaction between the positron and
one privileged electron. The calculations of Tong
and Bergersen and Carbotte are based on the linear
response of the electron system to the positron.
Tong assumed a static effective interaction be-
tween the positron and an electron, whereas Ber-
gersen and Carbotte used the full wave-number-
and frequency- dependent random-phase- approxi-
mation (RPA) dielectric function in constructing
their effective interaction. The results of Berger-
sen and Carbotte are therefore asymptotically
correct in the high-density limit and should be
reasonable for r, 1 a. u. However, for lower
densities we feel that the positron-electron inter-
action is strong and must be treated beyond linear
response. We present a method for calculating
the positron-electron binding energy that gives the
correct behavior for high densities but also treats
the positron and the electron as strongly interac-
ting particles.

Consider a system consisting of N electrons and
one additional particle, an impurity particle, with
the electron mass and charge Ze. The Z depen-
dence of the total Hamiltonian is contained in the
interaction term

—Ze'fdr fdr '[p'(r)p (r ') -p'p ]
H( t- Ir —r~ )

dEO(Z) —e p fdr [g' (r, Z)-1]
4Z r (3)

where g' (r, Z) is the static-partial-pair distribu-
tion function giving the distribution of electrons
around the impurity particle for a given charge
Z. ' Integrating (3) with respect to Z from 0 to 1,
we have for E„„the positron-electron correlation
energy,

E,.„=E,(1)—E, (O)

and, finally, in terms of g',
„1 pao

E„„=—, dZ d~r(g' (v, Z)-1]. (4)
s 0

We see a close relation between the form of the
electron polarization cloud around charged im-
purity particles and the positron correlation ener-
gy. We have calculated the g' (r, Z) following the
method of Sjolander and Stott. The integral eq'ua-

tion
W) W W)

y' (q, Z)= f(q)+ f(q)l s -ia y (q —q', Z),

was solved numerically for y' (q, Z) and, using
the relation

g' (r, Z)-1= 2, y' (q, Z)e "',
g' (v, Z) was calculated for values of Z between
0 and 1. In the integral equation (5), f(q) is just
the leading term in a series expansion of y' (q, Z)
in powers of Z. It would therefore be the result
obtained for y' in a perturbation calculation taken
to first order in the positron-electron interaction.
Explicitly, we have

f(q) =, ' denim —1 X|1(q, ~)
Zh l" 1

7Tpp sq, (d

(&)
where s(q, ~) is the frequency- and wave-number-
dependent dielectric function for the electron gas

where p (r), p are the electron-density operator
and mean electron density, respectively, and
similarly p'(r), p' relate to the impurity. The
second term arises from the uniform charge back-
ground that we have included to ensure total charge
neutrality. If Eo(Z) is the ground-state energy of
the system then from Feynman's theorem

dEO(Z) —e fdr fdr '[(Ol p'(r)p (r ')l0) —p'p ]
cfZ lr-- r)j

(2)

where IO) is the ground state. Simplifying (2) we
have
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which we take from Singwi et al. and yt(q, e) is
the free-particle response function for the odd

particle given by

(S)
(u+ (8'q'/2m) ill

g being a positive infinitesimal.
The correlation energy has been calculated for

a number of values of x, using (4) and the y' (q, Z)
obtained from the integral equation. Similar cal-
culations have been performed with y' (q, Z) =f(q)
taking account only of the linear response of the
electron system to the positron. The results are
illustrated in Fig. 1. We have plotted positron-
electron binding energy against x, where x, is an
electron-density parameter defined by
p = [3(4',)] . Our linear-response andnonlinear-
response results are plotted. The results from
linear response are almost equivalent to those of
Bergersen and Carbotte', where the latter authors
used the RPA dielectric function we used the im-

proved dielectric function of Singwi et al. ' The
results of Tong are also included for comparison.

Linear and nonlinear responses give similar re-
sults for small x„ the positron-electron binding
energy being large due to the piling up of electrons
around the positron in the region of large attractive
potential. The binding energies calculated by
Tong are very much smaller than even the linear-
response results. Bergersen and Carbotte' have
shown that this discrepancy has arisen because the
static effective positron- electron interaction
adopted by Tong results in the omission of the
large plasmon contribution to the positron- electron
binding energy.

For values of x, somewhat larger than 1 a. u. ,
linear response gives too small a value for the
binding energy, which falls below the positronium
binding energy of 0. 5 Ry. It is clear how this has
happened. From a comparison of the positron-
annihilation rate X calculated from linear-
response theory and the experimental results '
illustrated in Fig. 2, sinceg' (x=0)~A. , we see
that linear-response theory underestimates the
electron density at the position of the positron.

1.0

05

0 I
4

FIG. 1. Positron-electron binding energy (= -E«~) plotted against x~ for linear and nonlinear response within the
jellium model. The dashed curve is the extrapolation to the low-density limit. The points () are the results of Tong
(Ref. 2).
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Now charge is conserved so that

fdr Lg' (r)- ij = —,'(4m', ),
and we conclude that linear response underesti-
mates the electron density in the region of large
attractive potential near the positron and hence
underestimates the binding energy.

The binding energy calculated from nonlinear
response lies above and close to G. 5 Ry over most
of the metallic-density region. However, it 'in-

creases rapidly beyond x, = 5 a. u. ; this behavior
is unphysical and is remarkably similar to the
behavior of the positron-annihilation rates in the
same region of electron density calculated using
the integral equation (5). It is clear that for these
larger values of r, the electron density near to the
positron is overestimated by the theory of Sjoland-
er and Stott and this results in an overestimate
of the potential energy contribution to the positron
binding energy. We have discarded the values of
the binding energy for r, &3. 5 a. u. calculated from
the nonlinear-response theory and instead, influ-
enced strongly by the similarity between the bind-
ing-energy curve and the positron-annihilation-
rate curve both calculated from the integral equa-
tion (5), we have sketched in the binding energy
for x, & 3. 5 a. u. , by comparison with the experi-
mental annihilation rates, as an asymptote from
above to 0. 5 Ry.

In column 4 of Table I are values of the correla-
tion energy appropriate to the mean valence elec-
tron density of the metals listed. The simple
metals, apart from those with the highest electron

densities, namely, Zn, Al, Ga, Sn, and Pb, are in
a region of r, where we believe the correlation
energy is slowly varying and our extrapolation
procedure for ~, &3. 5 a. u. should lead to little
error. Those metals with high electron densities
are in a region of x, where the method of calcu-
lating g' (r) beyond linear response leads to good
values for the annihilation rate, and we are confi-
dent that this implies good correlation energies.

We have neglected completely lattice effects and
effects due to core electrons, since we do not at
present see a convenient way of incorporating them
into our theory for the correlation energy. A
rough estimate of the effect of positron-core-
electron correlation may be obtained for the simple
metals by comparing the core to conduction-eIec-
tron annihilation rates. The arguments used
above to explain the close correspondence between
the conduction- electron-positron annihilation rate
and binding energy in Figs. 1 and 2 would also sug-
gest that the core-to-conduction correlation ener-
gies ought to scale very roughly as the core-to-
conduction annihilation rates (strictly speaking,
the enhanced parts of these annihilation rates). An
estimate of the core annihilation rate may be ob-
tained from Fig. 2 as the difference between the
experimental points and the theoretical curves
representing the conduction-electron contribution
to the annihilation rate.

We have least confidence in our results for the
noble metals since positron- core- electron correla-
tions must be important in these cases. It is clear
from the bell-like shape of the angular-correlation

4»

A.

10 Sec

FIG. 2. Positron annihila-
tion rate g plotted against ~~

for linear and nonlinear re-
sponse taken from Sjolander
and Stott Q,ef. 8). The ex-
perimental points are taken
from Weisberg and Berko
(Ref. 15).
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curves' and the size of the annihilation rate that
the positron penetrates far into the d shell and does
not sample the s electron only. Our estimates of
the positron-electron correlation energy for the
noble metals are based on one free electron per
atom and therefore should give upper limits for
the correlation energy.

IV. SURFACE CONTRIBUTION

In this section we shall discuss estimates of the
surface-dipole barrier contribution D to the posi-
tron work function. In his calculation of positron
work functions, Tong has used values of D calcu-
lated by Lang and Kohns for the uniform-positive-
background, or jellium model. However, as
Heine and Hodges' have shown, for simple metals
other than the alkalis and alkaline earths the sur-
face-dipole-layer potential may be considerably
different from the value calculated in the jellium
model. This is because the pseudopotential of
these elements is considerably more attractive
than the jellium potential, and the electron Fermi
level, or internal chemical potential p.„becomes
more negative than that for jellium. This reduces
the tendency of the electrons to "spill over" into
the vacuum and thus reduces the magnitude of the
dipole barrier D. In fact, the change in D almost
cancels the change in p,„leaving the electron
work function relatively insensitive to the strength
of the electron pseudopotential, a result which is
also borne out by the work of Lang and Kohn. Since
the value of D is much more sensitive to the elec-
tron pseudopotential than is the electron work
function, we have for the purposes of the present
calculation used the values of D given by Heine
and Hodges, where the strength of the pseudopo-
tential is taken into account through the experi-
mental metallic cohesive energies used in their
calculations. These values of D, given in Table I,
column 5, are probably accurate to within 0.05 Ry.

Estimation of D for the noble metals is com-
plicated by the effects of s-d hybridization. We
have modified the method of Heine and Hodges
for these elements as follows.

First, we calculate the value of the internal
Fermi level p, in the absence of s-d hybridization
by using the cohesive energies calculated by Wat-
son and Ehrenreich" for renormalized noble atoms
in which the s-d interaction has not yet been
"switched on. " At this stage we take the effective
mass ratio m*/m = 1 and the valence Z= 1. For
gold, which was not tr eated by Watson and Ehr en-
reich, we have simply corrected the experimental
cohesive energy by a guess at the hybridization
energy, which we take to be the same as for Cu,
i. e. , 2. 25 eV/atom. The results are presented
in column 4 of Table II. The values of p., are
fairly large and negative, as we might expect for

TABLE II. For the noble metals —the electron work
function Q~, the cohesive energy U, and internal Fermi
level p~ in the absence of s-d interaction; the band
broadening & and the internal Fermi level pe. and dipole
barrier D taking hybridization into account.

Cu
Ag
Au

Q, (Ry) & (By) p, (&y) ~ (By) p, (By)

0.34 0. 07 —0. 11 0.11 0. 00
0. 29 0.09 —0. 22 0. 15 —0. 07
0.38 0.11 —0.33 0. 28 —0. 05

0.34
0.22
0;33

metals which are relatively electronegative and
attract electrons strongly.

On switching on the s-d hybridization interac-
tion, the conduction band broadens in energy con-
siderably over the free-electron width. Since the
bottom of the conduction band I', does not hybrid-
ize, the effect is to raise the Fermi level by the
amount of band broadening due to s-d hybridiza-
tion. We have estimated the amount of band
broadening from the band-structure calculations
of Ballinger and Marshall" for Cu and Ag and
Christensen and Seraphin' for Au (see column 5,
Table H). The new values of the Fermi level (p,,*)
are given in column 6 of Table II. In column 2 of
this table we list the experimental electron work
function P, for the noble metals quoted by Lang
and Kohn' which we use to calculate the dipole-
moment barrier D=P, +g,*. The values of D
taking into account s-d interaction are given in
column V. They seem surprisingly large for these
electronegative metals (compare, for example,
the values of D for Hg, Tl, and Pb). A large con-
tribution to D in the noble metals probably comes
from the d band which contains 10 times the num-
ber of electrons in the s-p band. However, we
should caution against placing too much confidence
in these results for the noble metals, especially
in view of our guess at the hybridization energy of
gold and the fact that bandwidths vary considerably
between differ ent band-structur e calculations. Our
values of D are probably only accurate to within
0. 1 Hy or so for these metals.

V. DISCUSSION

Our estimates of the positron work function are
listed in column 6 of Table I. The positron-elec-
tron correlations tend to bind the positron to the
metal, whereas the positron-ion interaction and
the surface-dipole layer both tend to squeeze the
positron out of the metal. We have obtained posi-
tive work functions for the positron for all the
simple metals we have considered. The smallest
work functions are those for Al and Zn, and in
these cases we do not have complete confidence in
the sign of P~. However, our greatest source of
error will be the neglect of positron-core-electron
correlation, and this should tend to further increase
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the magnitude of E„„,that is, increase our esti-
mate of Q~. The variation of P~ from metal to
metal can easily be understood. Polyvalent metals
with high valence-electron density, e. g. , Zn, Al,
and In, generally have smaller P~ because of the
large zero-point energy and dipole-layer poten-
tial; a more negative correlation energy balances
this to some extent. Exceptions to this rough rule
are Pb, Sn, and Tl; in these cases the electron
pseudopotential is strongly attractive, leading to
a reduced dipole-layer potential, and consequently

P~ is large.
The noble metals all appear to have smaller

positron work functions than any of the simple
metals we have considered. The large Eo and

large D both contribute to this. The d bands in the
noble metals appear to give rise to an effective
valence larger than unity as far as Q~ is con-
cerned. The errors are large in the case of the
noble metals; however, we feel fairly confident
that gold has a negative work function. We are
unable to conclude the sign of &f&~ with any confi-
dence for Cu or Ag.

In the case of gold the three contributions to the
positron work function are approximately of the
same magnitude and the negative work function
results from considerable cancellation between
these different contributions. In view of this we
feel that it would be misleading to attribute the
negative work function for gold to any one mecha-
nism.

So far we have been concerned with the positron
work function, that is, the work needed to strip
the positron of its electron polarization cloud and

take it far from the metal. We have concluded that
this process is probably energetically unfavorable
for all metals except Au. We have seen that the
positron-electron binding energy is roughly 0. 5

Ry: This large energy prompts us to ask whether
it is necessary to strip the positron of its polariza-
tion cloud in order to take it from the metal. The
polarization cloud may be dragged along as the
positron is taken from the metal, and if it consists
of one electron only we will have removed the con-

stituents of a positronium atom. What are the en-
ergetics of such a process or, in other words, what
is the work function for positronium'P To take a
bare positron from the metal requires an amount
of work P~; to take out an electron requires, in
addition, the electron work function P,. However,
on forming positronium we recover 0. 5 Ry, the
positronium binding energy. Denoting the posi-
tronium work function by P„we have

0„=/@+ A, —0. 5 Ry.

None of the metals considered here has an elec-
tron work function as large as 0. 5 Ry, and so it
requires less work to remove positronium from
these metals than just the bare positron. In column
7 of Table I we have listed values for P„; the
values of P, are those quoted by Heine and Hodges, 6

and, for the noble metals, by Lang and Kohn. ' Now
for emission of positronium we estimate that in
addition to the noble metals several of the simple
metals have negative work functions. The posi-
tronium work functions are all small in magnitude
compared with the Eo and, consequently, there is
uncertainty in cases such as Mg, In, Ga, and Sn,
and we hesitate to conclude the sign of P„for these
metals.

Finally, we mention one effect of a negative
positronium work function related to defects in
metals. It is clear that if there is a negative posi-
tronium work function for a particular metal, as
seems likely for Al, to take one example, then it
will be energetically favorable for positronium to
be formed in voids in the material. The limiting
value of the binding energy of positronium to the
void as the magnitude of the void increases is
simply the negative of the positronium work func-
tion.
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