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Electronic Structure of Calcium as a Function of the Lattice Constant
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Energy bands, Fermi surfaces, and densities of states of calcium as a function of lattice
constant have been calculated self-consistently by the augmented-plane-wave method. A com-
parison is made with other band calculations and photoemission and de Haas-van Alphen ex-
periments. The calculation showed that calcium changes from a normal metal to a semimetal
and back to a normal metal with decreasing lattice constant in agreement with high-pressure
experiments.

I. INTRODUCTION

In an earlier communication, ~ which is here called
I, it was shown on the basis of a self-consistent
augmented-plane-wave (APW) energy band c-alcula-
tion that calcium changes from a metal to a semi-
metal and back to a metal as a function of decreas-
ing lattice constant, in good agreement with high-
pressure experiments. In this paper we report
in greater detail the energy bands, Fermi surface,
and density of states of Ca as a function of lattice
constant. Subsequent to I there have appeared sev-
eral other calculations of the energy bands of Ca
at normal lattice spacing and a comparison will be
made to these results. In addition, comparison
will be made to very recent photoemission results.

II. DETAILS OF CALCULATION

Since the APW method has been the subject of
several reviews" ' it will not be treated in great
detail here. The initial one-electron potentials
were constructed from solutions to Poisson's equa-
tion with charge densities (4s configuration) ob-
tained by a superposition to fifth neighbors of the
Herman-Skillman' free-atom charge densities us-
ing the I.owdin n expansion. ' Subsequent potentials
were constructed from the calculated conduction-
electron-band (4s) charge density, plus the core.
In addition, at reduced lattice constant it was nec-
essary to include the calculated 3p core bands in
the self-consistency cycle. For example, for a
reduced lattice constant a/ao= 0.9 (where ao
= 5. 5844 A") it was observed that retaining the
Herman-Skillman 3P charge densities yielded ei-
genvalues differing by - 0.02 Ry from the present
result. Another indication of the need for inclu-

sion of the 3P bands in the self-consistency cycle
is the pressure broadening of these bands; at nor-
mal pressure the 3p width (I'~~ —Lz) is 0. 014 Ry,
while at a/ao= 0. 7 this width has increased to
about 0. 35 Ry (see Fig. 1 of I). A somewhat sur-
prising result is that the separation between the
top of the 3p bands and the bottom of the conduction
band I'»(3p)-I', (4s), decreases by less than 15%
between a/ao = 1 and a/a = 0. 7.

The charge densities were calculatedon aweight-
ed mesh of six points (I', 6, X, Z, W, L) in ~~ of the
Brillouin zone. Six points were judged to be suf-
ficient since it was noted that halving the Brillouin-
zone mesh gave results which differed by only- 0. 004 Ry from the results of the large mesh.

At normal lattice spacing the energy bands were
calculated with two approximations to the exchange
potential, full Slater (o.= 1) exchange, '7 and the
Gaspar-Kohn —Sham'8 (GKS, o. = —,') exchange.
major effect of exchange is to modify the band
widths while leaving the band ordering relatively
unchanged. This is a well-known effect in transi-
tion metals. ~ Two values for the occupied-conduc-
tion-band width obtained from soft-x-ray measure-
ments have been reported, 0.22 (Ref. 19) and 0. 5
Ry. Since the occupied band width was found to
be 0. 15 and 0. 3 Ry for Slater and GKS exchange, re-
spectively, the GKS form of the exchange potential,
which gives a width bracketed by the two x-ray ex-
periments, was used for the reduced-lattice-spac-
ing calculations.

The convergence of selected energy levels, mea-
sured from I'„ for a/go= 0. 9 is shown in Fig. 1.
It can be seen that the convergence error is less
than the one introduced by sampling the charge den-
sity at only six points. Slower convergence was
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components of the band state charge. These results
for six symmetry states as well as the total charge
outside the muffin-tin, are given in the Appendix.
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A. Band Structure at Normal Lattice Spacing'.
Comparison with Experiment

The energy bands of calcium at normal lattice
spacing are shown in Figs. 2 and 3. In addition to
the earlier mentioned soft-x-ray experiments, re-
cent photoemission measurements by Kress and
Lapeyre' also probe relevant band widths. If we
take Ez-E(Xt) to be a measure of the occupied a-
like states, then

E~ —E(Xt) = 0.035 Ry
=0.48 eV,

2 5 4 5
NUMBER OF ITERATIONS

FIG. 1. Convergence of selected AP% energy bands of
Ca for a reduced lattice spacing of a/ap =0.9.

observed as the lattice constant was reduced. For
example, at normal lattice constant, convergent
results differed from first-iteration results by- 0. 01. Ry while for a reduced lattice constant of
0. 7 the differences were - 0. 07 Ry.

For both normal and reduced lattice spacings we
have also carried out a radial integration of the
self-consistent charge densities inside the muffin-
tin sphere in order to obtain the angular momentum

which can be compared with the value of approxi-
mately 0. 5 eV determined from photoemission.
(Kress and Lapeyre estimated their energy reso-
lution to be 0. 2 eV. ) Moreover, taking E(X,)
—E(X,) to be a measure of the total width of the d

band, we find

E(Xs) —E(Xt) = 0.469 Ry
=6.4 eV,

which is also in good agreement with their mea-
sured width of 6 eV.

B. Band Structure at Normal Lattice Spacing:
Comparison vvith Other Calculations

In Table I we compare the results of the present
calculation at normal lattice spacing with the re-
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suits of other recent calculations. It is useful to
divide these calculations into three groups: Group 1

contains the present work and that of Dreesen and
Pyensons and Ross and Johnson; group 2 contains
the calculation of Vasvari et al. ' and Chatterjee
and Chakraborti; and group 3 is the calculation of

,
Altmann et al. and Chatterjee and Chakraborti.

The three calculations of group 1 are all self-

consistent. Dreesen and Pyenson have used the
Korringa-Kohn-Rostoker (KKR) method, where-
as Ross and Johnson have used the APW method.
The major difference among these calculations is
the treatment of exchange; Dreesen and Pyenson
have used the energy-dependent Liberman ' ex-
change, whereas Ross and Johnson have used the
exchange factor n = 0. 716 found by Kmetko' to be

TABLE I. Comparison of various energy-band calculations for Ca at normal lattice spacing.

State

I'g(s)

r,', (d)

Xg(s, d)

X4 (p)

XB(d)

&&(s,P)

Eg(s,P)

E3(ij, d)

W,'(p, d)

W)(p, d)

L2(P)

Present
work
Q=—3

0.0

0.5300

0.2612

0.3730

0.3733

0.2975

0.3498

0.3716

0.3102

0.3687

0.5117

0.2353

0.2778

0.2960

0.0

0.4819

0.2532

0.3701

0.3496

0.2885

0.3336

0.3625

0.3003

0.3548

0.2284

0.2761

0.2918

SC
APW"

~ =0.716

0.0

0.2494

0.3363

0.2848

0.3240

0.2952

0.3460

0.2231

0.2766

Pseudo-
potential'

0.0

0.9047

0.2966

0.3586

0.4791

0.3362

0.3939

0.3793

0.3638

0.3958

0.5433

0.2448

0.2621

0.3386

OPW~

0.0

0.7621

0.2846

0.3681

0.4715

0.3409

0.4094

0.3561

0.3302

0.3433

0.2846

0.2675

0.331

Cellular
n =0.4

0.0

0.600

0.308

0.374

0.397

0.321

0.395

0.248

0.293

0.308

Quantum
defect

0.0

0.5246

0.2548

0.3714

0.3769

0.2842

0.3547

0.3704

0.2965

0.3675

0.5188

0.2457

0.2572

0.31

aReference 5. Reference 7. 'Reference 21. ~Reference 6. eReference 9. fReference 8.
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optimum for the Ca atom. It should be pointed out
that although n = 0. 716 has been found to be opti-
mum for the free atom there is no assurance that
this is the best value for solid Ca. From the ei-
genvalues E in Table I, it can be seen that, as ex-
pected, "the following inequality is satisfied:

E(APW, n = g) &E(APW, n =0.718).

The KKR values fall between the two APW calcula-
tions except for the state L,. The differences in
these calculations can be attributed to the different
exchange potentials used. (We also note that
Dreesen and I'yenson show a crossing of the two
lowest bands between E and L which is forbidden
by symmetry. )

%e have associated into group 2 the orthogonal-
ized-plane-wave (OPW) calculation of Chatterjee
and Chakraborti and the non-local-model-potential
calculation of Vasvari and Heine. Both these meth-
ods treat d-like bands poorly compared to the KKR
and APW approaches (see for example the I'3, and
X~ states, Table I). The poor treatment of the d-
like states can be understood from the pseudopoten-
tial approximation, since there is no d orthogona-
lization term (i.e. , no occupied d core states) to
subtract from the core potential. This lack of can-
cellation greatly decreases the convergence rate
of these methods for d-like bands. However, for
the s - and P-like states there is gene rally qualitative
agreement between the calculations of this group
and those of group 1.

The calculations of group 3, the cellular method
of Altmann et al. , and the quantum-defect method
of Chatterjee and Chakraborti use techniques which
have proved successful for the monovalent metals
but have not had great success outside this family
of elemerits. Altmann et a/. have chosen the unusu-
a/ value of n = 0.4 for the exchange multiplier.
Indeed their calculation yields metallic behavior
only for 0. 2& &&0. 75. Their exchange factor
a = 0.4 was chosen in an ad hoc manner by max-
imizing the energy differences

~=E(Ag) -E(L2),

~W = E(W,') —Z(I.,').
The values ~= 0. 015 Ry and hW = 0. 028 Ry found

by Altmann et al. are comparable to the present
work (Table I). However, for equivalent treatments
of exchange the results of Altmann et al. are in dis-
agreement with the calculations of groups 1 and 2.
The quantum-defect method calculation gives re-
sults which are in good agreement with ours. How-

ever, this may not be significant since the details
of the treatment of exchange have not been specified.
In addition, because symmetry was not considered,
the crossing between 8'and L was not found. The
occurrence of this crossing is important because
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FIG. 4. Variation of the Fermi energy and the energy
bands at several symmetry points with lattice constant.
For each lattice constant the zero of energy is taken to
be the corresponding muffin-tin constant.

it shows that calcium will become a semimetal and
not a semiconductor at reduced la)tice spacings.

C. Band Structure at Reduced Lattice Spacing

The energy bands of Ca for reduced lattice con-
stants of 0. 9, 0. 8, and 0. 7 are given in the Appen-
dix; however, the important features are sum-
marizedin Figs. 4 and 5. At normal lattice spacing
hW is positive and since there is an overlap of the
first and second band, Ca has normal metallic be-
havior. From Fig. 4 we note that this overlap
vanishes at a/ao = 0.93 (P - 50 kbar), where

z, = z(w,') = z(I.,').
Between a/ao = 0.93 and a/ao = 0. 8, except for an
accidental degeneracy along the line L - 8', there
is no overlap of the first and second bands, and
hence Ca will show semimetallic behavior. At a
reduced lattice spacing of 0. 8 (P-400 kbar) the
d-like state X~ crosses the Fermi energy (Fig. 4)
and there is a return to the metallic state. Thus
calcium transforms from a metallic to a semi-
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FIG. 5. Variation with lattice
constant of the two lowest energy
bands along the 8'-I--K sym-
metry directions.
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metallic and back to a metallic system as a func-
tion of pressure in agreement with high-pressure
and shock-wave experiments, as shown in I.
This is an example of an electronic transition.

In ytterbium, whose band structure is similar to
Ca, the accidental degeneracy along L to W is re-
moved by spin-orbit coupling ' and as expected pres-
sure- induced metal- semiconductor transitions have
been observed.

It is possible to calculate the number of d elec-
trons inside the muffin tin as a function of lattice
constant from the Q„'s presented in Table III. In

I, a sharp increase of the number of d electrons

v, OIO

QwQ

was found at a/ao = —,', in agreement with the shock-
wave experiments of Bakanov and Qudoladov. 3'

IV. FERMI SURFACE AT NORMAL AND REDUCED
LATTICE SPACING

In Fig. 6 we show selected cross sections of the
Fermi surface obtained by graphical interpolation
of the APW results. This surface can be divided
into three parts.

(a) Holes in the first band centered at or near K
and U [Figs. 6(a) and 6(b)]which are very sensitive
to the exact position of the Fermi level. In fact,
from our calculation these pieces are actually (110)
arms connecting the holes at W discussed below,
but only minor changes in the potential would be re-
quired to break this connection.

(b) First-band holes centered at W [Fig. 6(c)].
(c) Second-band electron pockets centered at l.

[Fig. 6(d)].
This surface is similar to those obtained from

several other calculations. The main differences

2'

2'
I

(b) (d)

FIG. 6. Cross sections of the Fermi surface of Ca at
normal lattice constant.

W

FIG. 7. Two lowest energy bands of Ca at normal
lattice constant along the S'-I -E directions. The solid
lines are the APW bands while the dashed lines are the
four-OPW bands.
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U

(a) (b)

FIG. 8. Cross sections of the Fermi surface of Ca at a
reduced lattice spacing of a/a0=0, 7.

seem to result from the uncertainty in the position
of the Fermi level. Chatterjee and Chakrabortie
found holes at K(U) and electrons at l. and just
missed having holes at W. (In the quantum-defect
calculation' holes at W were found. )

Pasvari chose his Fermi energy to obtain a
"best fit" to de Haas-van Alphen (dHvA) measure-
ments and obtained a "dismembered nearly-free-
electron molester" with hole pockets at 8" and elec-
tron pockets at L. Altmann et a/. ' have pointed
out that Vasvari' s surface did not seem to have the
required equality of hole and electron volumes.
Moreover, Altmann et al. obtained qualitatively the
same Fermi surface as we did and suggested that
such a surface, including the first-band connected
hole regions, could satisfactorily explain the dHvA
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FIG. 9. Variation of the density of states of Ca with lattice constant.
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TABLE II. Experimental and calculated Fermi surface at normal lattice spacing.

Orbit
nomenclature Direction

Area [Units of (27I/a) ]

Calculated
APW Cellular Experimental

dHyA, period"
(10-' G-'}

P(
V2

P3

0

p

9.10]
5.00]
[1.10]

near [100]
Q.10]
h, 11]
511]
boo]
500]

0.009
0.12
0.15

0.05
0.41
0.72
0.32
0.77

0.020

0.13
0.11
0.49
0.66
0.37
0.86

0.0246
0.0975
0.132

3.05 (y)
0.77(n)
0.57(P)

Altmann et al. (Ref. 9). Condon and Marcus (Ref. 28), The Greek letters refer to labeling of the periods in the text.

results.
Condon and Marcus 8 found three dominant dHvA

periods, P = 0. 77 & 10 G ~, P~= 0. 57 && 107 G
and P„= 3. 05 && 10 ' G ' in their work on calcium
(see Table II). Unfortunately, since they worked
with polycrystalline samples, it is not possible to
be certain of the crystal directions corresponding
to their dHvA measurements. In spite of this,
Condon and Marcus found it plausible to associate
P and P„with (110) directions and Pz with orien-
tations near (100). In Table II our calculated ex-
tremal cross sections are compared with the dHvA
data and with the values calculated by Altmann
gt al. For this comparison, we have assumed that
Pz actually corresponds to (100) orientations.

The orbit nomenclature, except for vz, is shown
in Fig. 6. The r orbits result from a (110) first-
band cross section containing K(orU), whereas the

v orbits are obtained from the holes at W. In par-
ticular, if the coordinates at W are (—,', 0, 1), then

vi and v2 correspond to cross sections containing
W and perpendicular to the [100] and [011]direc-
tions, respectively.

We have assumed that P„results from f, P from
v~, and Pz from v2. There is rather good agree-
ment with dHvA periods for the vi and v~ orbits,
but the calculated g cross section is more than

a factor of 2 too small. This discrepancy is probably
not significant, since small changes in the potential
could appreciably increase this small area.

1

0.9

SELF CONSISTENT BANDS FOR Ca a=0.9ao
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0.7
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0.5 $

a=OA 2—
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2

FIG. 10. Energy bands of Ca
for a/ao=0. 9 along the 5'-I'-K-L
symmetry directions.
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SELF CONSTITENT BANDS FOR Ca a = 0.9ao
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FIG. 11. Energy bands of
Ca for a/a0=0. 9 along the
I'-X-S"-L-1 symmetry direc-
tions.
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Altmann 0f gl. have assumed instead that the P~
period results from the electron pockets at L, that
is a &,-type orbit. However, from our calculations,
even with allowance for slight modifications of the
potential, it does not appear to be possible to ob-
tain a A., cross-sectional area that is large enough
and still retain the agreement with dHvA data for
the g and v, orbits. The other cross sections in
Table II, ), 2, 8, $, and q are of much larger area
and probably could not have been observed in the
samples used by Condon and Marcus. Verification

of the details of any calculated Fermi surface will
require dHvA measurements on single crystals.

In order to exhibit the limitations of an interpo-
lation model which neglects the d-band contribution,
we have determined two Fourier components of a
local pseudopotential, V„, and V2oo These Fourier
coefficients have been obtained as parameters from
a fit to the APW bands near the Fermi surface. The
method used in fitting was the four-OPW pseudopo-
tential interpolation scheme which proved success-
ful for aluminum. The two parameters, V&&z

SELF CONSISTENT BANDS FOR Ca a=0.8ao
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0.9 1
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FIG. 12. Energy bands of Ca
for a/a0= 0.8 along the 8'-I'-K-L
symmetry directions.
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SELF CONSISTENT BANDS FOR Ca 0=0.8ao
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FIG. 13. Energy bands
of Ca for a/ap=0. 8 along
the I. -X-8'-L-I' symmetxy
directions.

0.4

0.3

and V~«, were obtained from the three APW eigen-
values nearest the Fermi energy corresponding
to the symmetries K&, L„and X,. By minimizing
the squares of the differences between the four-
OPW energies and the APW energies, the values

0 21Ry and Vapp= —0. 098 Ry were obtained
We note that these values do not agree with the pre-
dictions of the Heine- Abarenkov modelpotential, "'"
since both V», and Vppp are negative and the magni-
tude of V2pp is greater than that of V»~.

In Fig. 7, E(k) curves determined by both the
APW and four-OPW methods are compared. It is
obvious that the two calculations are not similar

even near the Fermi energy. For example, the
two lowest four-OPW bands between L and %' do
not cross, in contradiction to the APW bands. With
the four-OPW bands, calcium could become a semi-
conductor at high pressures. In addition, the band
ordering at Vis changed since the lowest four-OPW
levelis TV~ rather than 8'2. Sincewe have also tried
other combinations of V», and Vgpp without success,
we must conclude that a simple local interpolation
approach which ignores the effects of the d bands
is not applicable to calcium even in describing only
the Fermi surface. An attempt was also made to
use the composite interpolation scheme of Hodges
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FIG 14 Energy bands of Ca
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TABLE III. l character of band-state charge of Ca for

State a/ap Q«t Q~

Xi(080)

g (444)

1.0
0.9
0.8
0.7

1.0
0.9
0.8
0.7

1.0
0.9
0.8
0.7

1.0
0.9
0.8
0.7

0.305 0.695
0.324 0.676
0.352 0.648
0.375 0.624

0.309 0.499
0.326 0.467
0.348 0.412
0.622 0.033

0.314 0.158
0.305 0.114
0.316 0.085
0.326 0.065

0.307 0.334
0.317 0.298
0.328 0.255
0.308 0.211

0.165 0.027 0
0.164 0.042 0
0.160 0.079 0
0.084 0.147 0

0 0.526 0
0 0.580 0
0 0.597 0
0 0 606 0

0.276 0.081 0.002
0.273 0.108 0.026
0.267 0.145 0.004
0.251 0.222 0.005

L, (444) 1.O

0.9
0.8
0.7

0.218 0.416 0
0.216 0.335 0
0.220 0.268 0
0.218 0.210 0

0.368 0
0.447 0
0.511 0
0.570 0

L~ (444) 1.0 0.374 0 0.611 0.015

e (48o) o.9
0.8

0.318 0
0.321 0

0.126 0.543 0.012
0.110 0.554 0.013

X3(080) 0.7 0.174 0 0 0.822 0

and Ehrenreich to fit the APW results, but the
hybridization parameters B~ and 83 appeared to be
unphysical. This approach merits further study.
On the other hand, Vasvari, ' using a nonlocal model
potential, obtained both the crossing between W and

L and the same ordering of the bands at W as we
found with the APW method.

We have also determined the APW Fermi surface
at a reduced lattice spacing of a/ao= 0. 7 (Fig. 8).
In this case there are only two pieces of Fermi
surface; electron pockets at X and hole pockets
near K. The changes in the Fermi surface occur
because X3 drops below E~ while W2 and L2 rise
above E~ as the lattice constant decreases. Be-
cause it is unlikely that there will be experiments
probing the details of the Fermi surface at such
reduced lattice spacings, we are not presenting
additional details of the changes of Fermi surface
with pressure in this report.

V. DENSITY OF STATES AT NORMAL AND REDUCED
LATTICE SPACING

The electron density of states of Ca N(E) at nor-
mal and reduced lattice spacing was calculated by
interpolating the energy-band results to 48000
points in the zone using a Monte-Carlo method.
This is shown in Fig. 9.

The results clearly demonstrate metallic behav-
ior for a/ao= 1[N(Ez) =11.1 states atom Ry i].
However, for a/a0=0. 9 there is a "cusp" in the
density of states at the Fermi energy and N(E~)
is zero. This corresponds to a "zero-gap" semi-
conductor. At a/ao= 0. 8 a pronounced dip in the
density of states remains and the density of states
at the Fermi energy is still very small, while for
a/ao= 0. 7 there is again metallic behavior and

N(E~) = 12 states atom i
Ry '.

From the density of states at the Fermi energy
we calculated the temperature coefficient of the
electronic specific heat 7 at normal lattice spac-
ing and found a value of 1.94 mJ 'K mole '. This
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is to be compared with an experimental value of
2. 9 mJ K mole . If we attribute that discrep-
ancy to the electron-phonon interactions, this
would correspond to an enhancement factor of l. 5.
A model-potential calculation, 36 which did not di-
rectly treat d bands, gave an enhancement factor
of only 1.28 for Ca.

It should also be pointed out that Williams and
Davies have calculated y as a function of exchange
factor n; however, they ignored the electron-pho-
non enhancement which we have found to be fairly
large.
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APPENDIX

The self-consistent energy bands of calcium for
reduced lattice spacings of 0. 9, 0. 8, and 0. 7 are
given in Figs. 10 and 11, 12 and 13, and 14 and
15, respectively.

The E character of the band state charge of Ca
is given in Table III.
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