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Experiments have been carried out to determine the effect of lattice dislocations in pure
copper single crystals on the de Haas-van Alphen (dHvA) scattering (Dingle) temperature X.
The measurements were made on copper samples of measured dislocation density under stringent
experimental conditions, including a magnetic field homogeneity of better than 2 ppm and an
orientation of the sample symmetry direction along the field to within 0.05 . The results for
the [111]neck and belly orbits in copper showed a linear dependence of X on the dislocation
density D over the range D=0. 5&&10~ to 7x10~ cm, with slopes given by X„/D=0.32&&10 '
K cm and X&//D =0.08 X10 K cm . Two approaches have been suggested to explain the results:
(i) The scattering temperature is inversely proportional to the electron relaxation time and is
therefore a direct measure of electron scattering from dislocations; (ii) X is due to phase can-
cellation in the dHvA signal from orbits moving within the spatially varying elastic strain field
of the dislocation array. The experimental results are discussed in terms of these two points
of view.

I. INTRODUCTION

In a letter' (referred to later as TH), we
reported preliminary results showing how a con-
trolled array of lattice dislocations affects the am-
plitude of the de Haas-van Alphen (dHvA) effect,
as measured by the Dingle scattering "tempera-
ture" X. We present those results more extensive-
ly here, including more data and a more reliable
estimate of the uncertainty in the measured X and

the dislocation density D, and of background effects
in X. Dislocations which affect the residual resis-
tance ratio (RRR) very little have a major effect
on X, and the density of dislocations introduced in
crystal growth or by handling may be sufficient to
obscure the results, for example, of an impurity-
scattering study. A collection of techniques de-
veloped in this experiment for the reliable mea-
surement of the dHvA scattering temperature, in-
cluding methods for characterizing dislocation
density and crystalline substructure, has been
published separately.

After the TH letter appeared, Coleridge and
Watts (CW) published the results of a similar
study. Watts analyzed how such results may be
related to phase-smearing effects on a microscop-
ic scale, due to the spatially varying dislocation
strain field and to the sensitivity of the Fermi sur-
face (FS) to strain. It was shown4 that the Watts
theory could be adjusted to fit the TH results well,
fitting the CW results (with rather less data and
some inhomogeneity of D) rather less well. The
parameters coming from the fit were in plausible
agreement with what would be estimated from the
existing data on FS sensitivity to homogeneous
elastic strain. '

Viewed simply as scattering, the TH results give
a scattering rate in X of the order of 104 times

that obtained from dislocation resistivity. This
suggests that most dislocation scattering is by
small angles, since X measures I andau level
width or true lifetime, unweighted by scattering
angle as in resistivity. The X values vary with
orbit, largest at the neck and smallest on the belly,
withX„/X, -4. ln order to decide whether these
results are useful input to the old and unsolved
problem of electron scattering by lattice disloca-
tions, it is essential to test the Watts phase-
smearing explanation. This explanation predicts
that X will vary with magnetic field as I/B, owing
to the assumption of a Gaussian strain distribu-
tion. It also predicts that X will vary with dislo-
cation density as D~~2, owing essentially to the
variation of a scaling parameter (orbit size/dis-
location spacing). Neither of these predictions
has had a clear test. Since the TH data cover a
large number (- 30) of samples with stringent con-
trol of sample characterization, they should aid in
assessing the current status of the problem.

II. EXPERIMENTAL

A variety of experimental techniques were de-
veloped for this study which are important in any
application of the dHvA effect to the study of scat-
tering. Since these techniques are described else-
where, this section will merely list relevant fea-
tures. The magnetic field was produced by a 55-
kG supercondue ting solenoid. The homogeneity
was trimmed to 2 parts in 10 over the sample,
eliminating that source of phase-smearing error.
The samples were immersed in liquid helium,
typically at l. 2 K, measured by He vapor pres-
sure, and controlled to better than 0. 02 K. The
samples were oriented during the experiment so
that the field was along the [ill] direction within
0. 05', minimizing that source of phase-smearing
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error. Measurements were made using the field-
modulation technique and second-harmonic de-
tection, and the modulation field amplitude was
controlled to vary as II . The modulation ampli-
tude H was adjusted to peak the amplitude Z2(2m

xFH /H3) of the dHvA signal under study. Thus,
the quantity recorded was very nearly the first
harmonic of the dHvA amplitude, eliminating pos-
sible errors due to differing field dependence of
harmonic amplitudes. In addition, data were re-
corded only at field values below which magnetic
interaction effects were absent, as determined by
a separate measurement of the d M/dH waveform
under small-modulation conditions. The modula-
tion frequency (100 Hz) was chosen low enough that
the modulation field completely penetrated the sam-
ples (determined by a separate experiment), elim-
inating possible errors in amplitude due to the field
dependence of ths skin depth. The scattering tem-
perature X was determined from the field depen-
dence of amplitudes A(H):

in[A(H) sinh(KT/H)H' ]=const —KX/H,

K=(2m'
m, ue, /em)m*/m, .

Samples were acid cut (to minimize cutting
damage and consequent amplitude errors in X)
from commercial crystals' whose residual re-
sistance ratio (after oxygen annealing" ) was
typically 2500, giving a residual impurity
X&&0. 05 K, as estimated from separate measure-
ments on dirtier samples. 2 Substructure and dis-
location density were characterized by surface
etching and metallography, ' with occasional
checks that the surface was indicative of the bulk.
Samples were selected from regions where the
subgrain size was larger than the sample size,
minimizing possible phase- smearing errors from
this source. Dislocations were introduced by a
double-bending technique, giving an array of edge
dislocations whose Burgers vector b was [101]
and whose density was varied by varying the bend
radius. The axis of the bar was cut 7' from [011],
ensuring single slip. Bars with evidence of cross
slip or dislocation clumping were rejected, since
in that case the amplitude would be determined
predominately by the more-dislocation-free re-
gions. The bending technique, though advantageous
in creating a well-defined dislocation array, is a
potentiaj. source of phase-smearing error if the
crystal orientation then varies within the sample.
Double bending removes this problem on a macro-
scopic scale, since the bar ends up straight.
Nature provides a check that this is true also on
a microscopic scale since the belly-orbit ampli-
tude is most sensitive to bending [(d Ii /dg ) is
large], yet is relatively insensitive to dislocations.
The neck orbit had X values at least four times

larger, yet was insensitive to bending. Therefore,
any failure to achieve a straight sample showed
up, as an irreproducible increase in X, . A suf-
ficient check on the delicacy of other aspects of
sample handling is the observation that in samples
with low D and high purity the measured X was
essentially zero.

III. RESULTS

The principal results of the experiment are
shown in Fig. 1, a plot of the dHvA scattering
temperature X as a function of dislocation density
D for [111]neck and belly orbits in copper. The
numerical results are listed in Table I, which in-
cludes RRR and dislocation density for each sam-
ple, as well as the magnetic field range and the
root-mean-square deviation (RMSD) of the ampli-
tude data from a straight line used to calculate X.

Most samples listed in the table were taken
from a crystal labeled 812, of initial dislocation
density 4& 10' cm ~ and RRR 2500. Samples 1 and
2 in Table I, however, represent X measurements
made on very-low-D samples from a Czochralski
crystal. These measurements, made early in the
experiments, were used to demonstrate that copper
crystals of sufficient purity (RRR& 4000) and per-
fection (D& 10' cm ) have essentially zero scatter-
ing temperatures; that is, X= 0. 05+ 0. 05 K. This
substantiates the work of Phillips and Gold, ~ who
found similar results in very pure and carefully
prepared single crystals of lead, but did not direct-
ly characterize the actual state of perfection of the
samples. In addition to setting a lower limit to D
for the later experiments, these tests confirmed
that the sample-preparation techniques were suf-
ficiently gentle.

The data of CW, also shown in Fig. 1, appear
to fall below our results, especially for the neck
orbit (where the results are most reliable). This
may reflect a difference in the orientation of the
dislocation array. In our samples, the bending
geometry ensures single slip and an array of edge
dislocations whose Burgers vector b lies along
[101]. The dislocation lines would ideally lie along
an average direction of [121], which is 19' from
the magnetic field direction during the X measure-
ment. The electron orbits are thus situated so as
to suffer maximum disturbance from the plane
strain field of the dislocation array. In the CW
experiment, by contrast, the dislocations were in-
troduced by uniaxial compression or by spark
erosion, and neither ensures single slip. The
electron orbits would then sample a strain field
whose plane may vary randomly. This would give
a lower average scattering, as suggested both by
classical (H = 0) dislocation scattering calculations'
and by Pippard's phase-coherence arguments. ~4

However, a quantitative estimate of this difference
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WATTS FIT AT 5,5 IO c~ (P=I) —————7 -2

2.5- NECK BFLLY

8 I 2 C R YSTAL ~ 0

FIG. 1. Neck (closed circle,
closed triangle) and belly (open cir-
cle, open triangle) dHvA scattering
temperatures in copper as a function
of sample dislocation density. The
straight lines are least-squares fit
to the X results. The scale on the
right for the electron relaxation time,
calculated from X=5/2gk7, is dis-
placed upward because of the back-
ground scattering for these samples
discussed in the text. The curves are
fits to the Watts theory (Ref. 5),
selected in this example to pass
through the data at D= 5.5 x 107 cm
The uncertainty in the dislocation
density of each sample is given in
Table I; the uncertainty in X is less
than 0.1 K. A preliminary version
of this figure covering a narrower
range of D and with less precision in
the X values was published earlier
(Ref. 1). Also shown (closed square,
open square) are data from Ref. 4.
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due to dislocation orientation would not be reliable
at present, since any nonrandomness in the dislo-
cation density (as noted by CW for their high-D
sample) would also lower the average X measured.

In Fig. 1 the lines are a straight-line least-
squares fit with slopes X„/D = 0. 32x 10 ~ K cm~ and

Xt, /D=0. 08x10 7 K cm . Both lines intersect the
X axis at about 0. 18 K. A fit to the data leaving

out the three lowest-D samples (30, 31, and 32)
gave the same slopes and intercepts within 3% for
the neck and 10% for the belly. The nonzero inter-
cepts and the X measurements on low-D samples
all suggest that a background X should be associ-
ated with the measurements on the samples from
crystal 812. On the other hand, 0. 18 K is some-
what higher than the impurity background in sam-

DIL

(cm-')
Field range

OG)
Xb
(K)

Field range
OG)

RMSD
(%)

X„
(K)Sample

7 x10'
7 x 104
4x10
4x10~
4x 3.0~

5x10
Gx106
5 x10'
5 x lo'

2-3 x 107
2-3 x10
2-3 x10'
2-3 x10'
2-3 x 10

4x10~
5-6 x 10~

7 x ].07

5-6 x 10'
5-6 x 1Q

11
2b

30
31
32
18
19
20
21
33
34
35
39
40
36
37
38

23d

12 32
12-26
16-32
15-25
15-21
18-38
14-40
15-37
15-37
23-42
20-38
20-35
18-37
21-39
24-37
28-43
34-47
33-41
33-44

4300
4300
2500
2500
2500
2500
2500
2500
2500
2500
2500
2500
2500
2500
2500
2500
2500
5750
5750

0.05
—0.01

0.24
0.15
0 ~ 22
0.36
0.33
0.29
0.35

.0.80
1.05
0.98
1.11
1.14
l.34
1.99
2.42
1.93
2. 12

1.6
1.0
0.1
2.1
1.3
1.7

25. 5
1.4
2.7
2.1
2.7
1.6

12.6
2.7
7.0
2.2
1.9
3.1
2.7

2.0
0.5
1.0
2.4
1.2
0.6
1.3
1.4
0.7
0.6
0.6
0.7
2. 5
2.5
0.7
1.3
0.6
0.2
0.6

0.00
0.02
0.21
0.16
0.04
0.20

c
0.19
0.28
0.34
0.60
0.37

0.44
c

0.59
0.72
Q. 60
0.74

28-40
24-38
26-32
24-32
23-32
25-41
22-40
23-35
25-37
26-35
28-38
26-35
28-38
33-43
30-37
35-46
37-44
35-43
35-43

~Measurement of Xb was invalid since RMSD is greater
than 4%, as discussed in Ref. 2.

~From blind-baffle crystal.

Uncertainty in D is about +10% unless otherwise in-
dicated.

From Czochralski crystal.

TABLE I. dHvA scattering-temperature results. The samples were prepared from crystal 812 except as noted.
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5 = a' —a = (2v —Q ) r —&f&r = 2r 8,
l. e. )

(2)

If 5 is larger than X/2, the contribution of this or-
bit to the dHvA amplitude will be out of phase.
Thus a scattering angle of 8 = v5/nA =w/2n = I/n
may be catastrophic as measured by the dHvA ~.
At 30 kG, for example, phase coherence will be
destroyed by scattering through angles greater
than 0. 08 for neck orbits and 0. 003' for belly
orbits. A similar calculation for scattering out of
the plane of the orbit gives a critical angle for
elastic scattering into the adjacent Landau level
which varies as

ples of RRR 2500, estimated to be less than 0. 05 K.
In providing a scale for the electron relaxation
time on the right in Fig. 1, we have assumed that
the measured background is real, and have set the
bottom of the ~ scale at 0. 18 K. The 7' scale is
based on the assumption that the formula X= I/2n
xkT' applies to the present case of X due to dislo-
cntions, a point which will be examined further in
Sec. IV. The electron-relaxation-time anisotropy
associated with [111]neck and belly electron orbits
on the Fermi surface of copper can be estimated
from the slopes of the lines in Fig. 1, giving

X„/Xt;. =mt, /r„~ 4 .
IV. DISCUSSroN

The most striking result of the experiment is the
large effect on the dHvA X produced by a disloca-
tion array which would affect the resistivity very
little. For example, for 0=10~ cm

~„=8.6x10 '2 sec (this work),

7,, =1.5x10 "sec (this work),

7 „,= 4. 0 x10-8 sec (Ref. 8).

This is indicative of the important role played by
small-angle scattering events on the (phase-co-
herent) Landau level, whereas resistivity is sen-
sitive only to large-angle (current-destroying)
events. The scattering angle required to destroy
Landau level phase memory is approximately I/n,
where n is the quantum number F/H. Although
this result is well known, "no derivation appears
to have been published, and it is instructive to con-
sider the following geometrical example, illus-
trated in Fig. 2. In a magnetic field an electron
with quantum number n pursues an orbit of radius
r where 2gy=gA and A is the de Broglie wave-
length. Suppose that the electron begins an orbit
at 0. If at point 5 the electron is deflected through
a small angle 9 into a new orbit g', then when the
electron arrives back at 0, the total path will be
longer than nA by

0,

a'4 I

FIG. 2. Small-angle scattering and dephasing with a
simple circular-orbit model.

zu=(Dv7) ', (5)

where D is dislocation density, v is electron ve-
locity, and ~ is determined from the dHvA X mea-
surement. Using published values of v,

' one ob-
tains scattering widths zo of 4. 5x10 and 5. 6&10
A for neck and belly orbits, respectively. ' There
is thus a factor-of-10 difference in the range of the
dislocation strain field seen by electrons on these
two portions of the Fermi surface. The direction
of this anisotropy follows the pattern observed by
Koch and Doezemn, '8 in surface-state scattering by
/honors, and we note that it is possible to describe
the dislocation strain field as a linear combination
of phonons. The direction of the anisotropy also
follows that observed for the response of FS cross
section to a homogeneous elastic strain field.
These experimental results are similar in showing
the neck electrons most tightly coupled to the lattice,
and hence to disturbances in lattice periodicity.

The connection between the response of the FS to
a homogeneous strain and the effect of lattice dis-
locations on the dHvA amplitude has been made by
Watts' in a phase-smearing calculation using a
simple model. There are two regimes, depending
on the ratio of orbit size ~ to dislocation spacing
d. For r/d « I, the strain is essentially constant
within an orbit, but each orbit samples a different

(4)

so that except for unusually narrow extrema, scat-
tering in the plane will dominate, since yg+& yg

(g & 10~ for the orbits under consideration). Adopt-
ing this notion of a scattering event for the pres-
ent, a rough estimate of the scattering cross sec-
tion follows from a semiclassical argument. In
this experiment the dislocations formed a nearly
parallel array, with the electron path nearly per-
pendicular to this "forest" of line defects. The
geometry is that of a two-dimensional scattering
problem, with the notion of a scattering "width"
replacing "cross section. " An expression for this
width zo follows from classical scattering theory:
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strain, which when averaged over the crystal gives
a reduction in dHvA amplitude due to phase smear-
ing. In this regime, what one operationally defines
as X varies linearly with D, but because of the
assumption of a Gaussian strain distribution, also
shows a variation with magnetic field as 1/8. For
r/d» 1, however, the strain varies within individ-
ual orbits, and Watts computes the deyhasing
assuming a Gaussian form for the strain correla-
tion function. In this regime, X varies as D' 3

and displays little dependence on B. In fitting
their data and also those of TH to this theory, CW4

extract parameters measuring the sensitivity of
various orbits to strain which are in plausible
agreement with available data from homogeneously
strained samples. However, the values of these
parameters (and hence the self-consistency of the
theory) are sensitive to the form of the assumed
strain distribution, and it is of interest to see to
what extent the present data are consistent with
the Watts assumptions. The complete form of the
Watts expression [Ref. 5(b), Eq. (10)], whichhasthe
features mentioned above in appropriate regimes,
has been fit to the X(D) data, as shown by the
curves on Fig. 1. The parameters which result
are shown in Table II. The root-mean-square
deviation of the data is somewhat greater for the
Watts function than for a simple straight-line fit,

8
E
I-
E

7

N+
z

4
H (10 G )

FIG. 3. Search for field dependence in the scattering
temperature of the neck orbit. The example chosen
covers the widest field range used in this experiment.
The data points have been fitted both to a straight line
(solid line) and to the Watts theory (dashed curve). The
results are compared in Table II.

H, kG A

50 40

20

F RAGE
LOC.
GING

$ xiO cN
7 -2

0 cm

FIG. 4. Relative sizes of dislocation spacing and
orbits. In this example, the dislocation density D is
10 cm and the orbits are sketched for values of mag-
netic field appropriate to this experiment.

r

and there is no clear evidence for the turnover in
X at high D. The CW data did show such a turn-
over at high D which was greater than the Watts
theory, but was ascribed by CW to inhomogeneity
in the dislocation array. This is confirmed by the
present data, from samples selected for uniform
D. The Watts expression has also been fitted to
the amplitude as a function of I/H to look for field
dependence of X, as shown in Fig. 3. The Watts
theory predicts a departure from linearity some-
what greater than that observed, but the discrep-
ancy is only slightly larger (Table II) than the sta-
tistical uncertainty. ' Thus, the validity of Watts's
Gaussian strain distribution remains without a
critical test.

We feel that the phase-smearing notions de-
scribed by Watts and Coleridge describe the phys-
ical origin of the effect of lattice dislocations on
the dHvA effect, and, rather than replacing scat-
tering as an explanation for the observations, sup-
ply an intuitive approach to describe such small-
angle scattering. Although the original scattering
calculation of Dingle~0 has been more rigorously
rederived, even recent calculations appear ap-
propriate only for memory-destroying (large-angle)
and not diffusive (small-angle) collisions. The
results of dHvA experiments may go beyond this
present limitation of the theory to characterize
experimentally the Landau level line shape. This
is a more fundamental quantity, since the Dingle
temperature X is meaningful only when the line
shape is Lorentzian. Two such conclusions follow
for the case of lattice-dislocation scattering.

(i) The distinction between phase smearing and
small-angle scattering is not clear cut. In reso-
nance experiments such as ESR, by contrast, the
line shape is used to extract scattering informa-
tion, and the distinction is made between homoge-
neous broadening (lifetime of states on atoms) and
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inhomogeneous broadening (different resonance en-
ergy on different atoms due to inhomogeneous en-
vironment). Such a distinction is appropriate in
the case of Landau levels only in the limit when
the orbit size is small compared to both the defect
range and spacing. This limit is not achieved in
the present experiments, as shown in Fig. 4. Be-
cause the dislocation strain Geld is long range
(1/r), dephasing occurs nritkin individual orbits.
There appears to be no qualitative difference be-
tween this point of view and the notion of small-
angle scattering. The principal uncertainty in the
Watts dephasing calculation appears to be the as-
sumption of a Gaussian distribution for the strain
correlation function seen by an electron within an
orbit. This corresponds to a random-phase ap-
proximation, yet the strain field sampled by elec-
trons in neck orbits appears far from random,
following a well-defined (1/r) form.

(ii) The magnitude of X due to a given line-.
broadening event depends not only on the linewidth,

I QO X AS A MAP OF LINESHAPE

IJJ
C5

CL

O

HIGH FIELD

I&H (arbitrary units)

LOW FIELD

FIG. 5. Field dependence of the Landau-quantum-
oscillation amplitude for two examples of Landau level line
shape, the usual Lorentzian (simple scattering) and the
Gaussian (random distribution of dephasing). The curves
cross when the linewidth equals the Landau level spacing.
The scattering temperature X, measured as the slope, is
equal in the two cases only at one point, shown as the
dashed line. A non-Lorentzian line shape should show up
as a departure from linearity, which in practice may be ob-
scured by the finite range of H covered in most experiments.

TABLE II. Orbit parameters and summary of
scattering-temperature results.

Parameter Neck
Orbit

Belly

de Broglie wavelength (A)
"Racetrack" width (A)
0~bit diameter (H=3x10' G) (A)
Average dislocation spacing (D =10' cm ) (A)

[X/D) (10-' Kcm ), linear fit
Scattering 'Nvidth" from X (A)

55
300

12 x 103
30 x10

0.32
45 x10

10.5
300

60 x10~
3Q x].03

0.08
5. 6 x10"

X vs D, RMSD (K)
linear fit to Fig. 1
Watts-theory fit to Fig. 1

0.04 0.01
0.06-0. 09 0.02

Dephasing parameter p,

Watts-theory fit to Fig. 1
Ref. 4 results

11—16
15-19

0. 8—1, 2

0.9-1.3

X vs 1/H, RMSD (percent)
linear fit to Fig. 3
Watts-theory fit to Fig. 3

0.6
1.3

where y& is the left-hand side of Eq. (1). This form is
chosen since the absolute error in the ln term of Eq. (1)
is dominated by the f~actional uncertainty in measuring
A, as discussed in Ref. 2. For purposes of comparison,
the same definition of RMSD was used for the Watts fit
shown in Fig. 3.

p, = 1 for a free-electron gas. The range of parameters
shown covers a range of assumptions in the Watts theory
(correlation length/dislocation spacing; array correlated/
uncorrelated). The present values are lower than those
in Ref. 4 principally because of the nonzero impurity
background X&, which was included in the fit.

Here the RMSD is evaluated for the linear fit to the
function defined in Eq. (1). The values quoted in percent
here and in Table I are calculated from the root-mean-
square deviation equal to

but also upon the form of the broadening function.
An example is shown in Fig. 5, comparing Lorent-
zian and Gaussian line broadening. The curves
cross when the Landau level spacing equals the
linewidth, a result which is independent of line
shape. This follows because the quantity measured
in a Landau quantum oscillation (LQO) experiment is
essentially the Fourier transform of the Landau
level spectrum. If the line shape is Gaussian,
what one measures as X (the slope of Fig. 5) de-
pends on the magnetic field, and equals the
Lorentzian sonly at H= 2HO, where Ho is the
crossing field in Fig. 5. Thus, in extracting from
X parameters characterizing the coupling of orbit
to scattering center, the results are sensitive to
the correct choice of line shape. The examples
selected in Fig. 5 are the appropriate limiting
cases for the dislocation-scattering problem, but
the existing data. (e.g. , Fig. 3) do not cover a
wide enough field range to distinguish between
them. Such an experiment is now in progress. ~

Alternatively, a measure of the Landau level line
shape may be extracted from the relative ampli-
tudes of the dHvA harmonics. This approach is of
special value in cases such as the magnetic-im-
purity problem, where energy dependence of the
relaxation time has as a consequence a strong
field dependence in X and a strong departure from
Lorentzian line shape. Such an experiment is now

in progress, using on-line computer waveform
analysis to extract X.~
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