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and has the value 0. 282. This justifies the exclu-
sion of the interactions of the third nearest neigh-
bors of the second {nonequivalent) type, viz. ,
those of the P atoms. In view of the smallness of
the magnitude of the out-of-plane bending constant
g(= 0. 078) of the I atoms, the out-of-plane bending
constant tc' of the N atoms is not taken into ac-
count. SOE constants and the experimental limit-
ing frequencies are to be used to fix the second-
order parameters. In the case of titanium the ex-
perimental dispersion relations are not available,
while the same are present for zirconium. The
lattice dynamics, TOE constants, and thermal
expansion of zirconium have been worked out by
Menon and Rao and the second-order parameters
of zirconium have been used as a guideline in fit-
ting up the nine second-order parameters for
titanium. Another point that may be noted here is
that the third-order parameters g and y of the N
and K atoms, respectively, have also been included
to get a better agreement with the experimental

results on thermal expansion and the pressure
derivatives of the SOE constants of these two
metals. In titanium we notice anisotropy even in
the basal plane as C», and C», differ from each
other considerably. For the time being the dis-
crepancy between y~ calculated from the hydro-
static pressure derivatives of the SOE constants of
titanium and yH(n&) calculated from the thermal-
expansion data appears to be unresolved. The pho-
non-dispersion relations are essentially similar to
those in zirconium.
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Correlation factors are calculated for vacancy motion over various anisotropic lattices. The calculations
exploit the relationship between diffusion and generalized random walks over related lattices, and thus
involve the Green's functions for these lattices. Tables of the Green's functions for anisotropic cubic lattices
are given.

I. INTRODUCTION

Correlation factors were introduced into con-
siderations of diffusion mechanisms by Bardeen
and Herring in 1952 as the ratio of the diffusion
coefficient of a species to the diffusion coefficient

of that species computed on the assumption of ran-
domly oriented jump vectors. In general, the cor-
relation factors so defined are less than unity, for
successive jumps of a diffusing particle tend to be
in opposite directions, as is obvious where dif-
fusion is via a vacancy mechanism. In passing,
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f= (I+f)l(I —t), (2. 1)

it may be remarked that it is surprising that cor-
relation factors were not introduced earlier since,
in a sense, they are the result of an effect con-
verse to the "persistence of velocity, " which was
known in the kinetic theory of gases from the time
of Maxwell.

Recently, much effort, both experimental and
theoretical, has been expended in determining cor-
relation factors for various types of diffusion in
different classes of crystals. The object of these
investigations is twofold: If the diffusion mech-
anism is known, comparison of measured and cal-
culated values of the correlation factor enables one
to deduce values for certain atomic parameters;
if the diffusion mechanism is not known, an ac-
curate measurement of the correlation factor may
make it possible to decide between two alternative
mechanisms. These matters, together with other
pertinent information about diffusion mechanisms,
have been reviewed by Manning and are not dis-
cussed further here.

A general formula for the correlation factor has
been given by Howard4:

f=1+2b T(I- T) d,
where f is the correlation factor, b is a row-ma-
trix giving the fractions of jumps of various types,
T is a square matrix made up of elements that are
related to the probabilities of succession of jumps
of various types (these matrix elements will be
discussed below), I is the unit matrix, and d is a
column matrix giving the projections of the jurnp
lengths on a chosen axis. This formula is derived
subject to the usual restrictions of the random-
walk formulation. These do not appear to be seri-
ous in most cases of physical interest. In Eq.
(1. 1) the factors b and d are easily evaluated by
inspection, but the determination of the elements
of the matrix T is often a difficult task. It is pre-
cisely this point that we wish to discuss in this
paper. Most of the previous calculations of cor-
relation factors have been carried out for various
lattices for which the matrix T is simply a number
(i. e. , the average value of the cosine of the angle
between successive jumps) and we illustrate our
method by considering these relatively simple
cases first.

II. PLANAR LATTICES

Consider the triangular lattice of Fig. 1, which
depicts the situation existing immediately after
the tracer has jumped from the site marked 0,
which is now occupied by the vacancy. The sites
are labeled as neighbors to the vacancy site.
There is obviously only one type of jump in this
lattice (the one just described) and Eq. (1. 1) re-
duces to

FIG. 1. Vacancy moti. on in the triangular lattice.

f = ~8 [ —F(0) —F(1)+E(2)+F(3)],
where +~is the probability of jumping to any given
nearest neighbor and E(k) is the expectation that
the vacancy is at site k'. Furthermore, the pro-
jections of the jumps are of equal magnitude.

Although it is convenient to choose 8= 30', it is
not necessary to do so. For an arbitrary 8,

f -+6(- E(0)cos 8- E(l) [sin(30' —8)+ cos(60' —8)]

+E(2)[cos(60' —8)+ sin(30' —8)]+E(3) cos8].

(2. 2)

sin(30' —6) +

con�

(60' —6)
)cosa

cos(60' —6)+ sin(30' —6)

)cose

= 4 [-E(o) —E(1)+E(2)+E(3)], (2. 3)

so that the same expression is obtained if all pro-
jections are defined relative to that of F(0), which
we normalize to unity. This independence of angle
occurs whenever diffusion is isotropic and may oe
used as a test for isotropy.

It now remains to calculate the expectation val-
ues. These are calculated on the basis of the
vacancy making a random walk, with only nearest-
neighbor jumps, over the given lattice. It has
been pointed out' that (physically) the walk can be
considered to be random only if the atomic array
relaxes to its equilbrium configuration in a time
short compared to the time between jumps. In the

where t is the lone matrix element. In Fig. 1, the
direction along which diffusion is measured is
designated by x, and the line perpendicular to x
by A-A. The quantity t is then given by the prod
uct of the probability that the tracer will jump to
a nearest-neighbor site and the exPectation that
the vacancy will be at that site multiplied by a pro-
jection of that jump on x. Note that if we choose
8= 30', the jumps to sites 1 and 2 (near the A' s)
are perpendicular to x, and hence have zero pro-
jections, and we can write



652 G. L. MONTE T

following it is assumed that this condition is met.
For a few simple lattices, there exist analytical
solutions for such random walks, which we shall
exploit. For more complicated lattices, the dif
fexence equations describing the walk must be
solved by some approximate scheme. In the case
of two-dimensional lattices, such as we are now

considering, it can be shown that the expectation
values in Eq. (2. 3) all become infinite for a lat-
tice of infinite extent. This difficulty may be over-
come by defining, for a finite lattice, the quan-
tities

A

G(k) =E(0)—F(k), (2. 4) FIG. 2. Vacancy motion in the honeycomb lattice,

and

f =~[I- (6v 3 /m- 2) - (8 —12'/v)]
= l/3/m ——'= —0. 28200445. . .

(2 6)

f= (m+ 6V 3 )/(1 1m —6 V 3 ) = 0. 560 057 06. . .
These values agree to five figures with those given
by Compaan and Haven and with the exact values
determined combinatorially by Schoen and Lowen.

For the simple quadratic lattice it is easily
shown that

and

f= '[-F(o-)+F(3)]=—~G(3)

= —4 (4 —8/v)= —0. 36338023. . .

f= I/(v —1)= 0. 46694219. . . ,

(2. 7)

where the exact value of G(3) is taken from
McCrea and Whipple. ' Again, these values agree
with those previously reported. '

The situation in the honeycomb lattice is illus-
trated in Fig. 2, from which it is easily seen that

f = —,
'

[—E(0)+F(2)] . (2. 8)

This lattice is so open that E(2) may be written as
a function of E(0) [E(2)= E(0)—~ ] immediately
from the difference equations, so that

which remain finite as the boundaries of the lattice
recede to infinity. In terms of these quantities,
t for the triangular lattice is

f =
6 [G(1)—G(2) —G(3)] . (2. 5)

These quantities have been evaluated analytically
and it is found that

z, the number of nearest neighbors, can be de-
termined, for obviously

f= (& —2)/&

For example, if n = 4 the most open lattice is that
formed by placing a point in the center of a pen-
tahedron and its neighbors at the five corners;
hence, z= 5, and f= —,'. Incidentally, the formula
f= 1 —2/z is often used to estimate f, and we see
this is equivalent to replacing the given lattice
(fcc, say) with the most open lattice having the
same number of nearest neighbors.

III. CUBIC LATTICES

In considering diffusion in cubic lattices it is
possible to use the simple relation (2.1) because
all jumps are of the same type. For the simple
cubic (sc) lattice, it is easy to see that

f = 6 [-F(0)+E(4)]. (3 1)

The expectation values are found by solving the
difference equation

F(u, v, ul ) = 5„05„05 o+ 6 [E(u —1, v, zu) + E(u+ 1, v, ul )

+ E(u, v —1,ul ) + E(u, v + 1,m )

+E(u, v, w —1)+E(u, v, nr+ 1)], (3.2)

where the vacancy has been placed at the origin
(0, 0, 0) and u, v, and m are the ordinary Cartesian
coordinates. McCrea and Whipple' have shown
that (3.2), for an infinite lattice, is satisfied by
the integral

j.t= —y 3

Similar considerations apply to the diamond lattice
where it is easy to show

~W elf
E(u, v, w)= —~ I

i dndP
0 ~ 0

cosuo. cosvpe '"'"
sinhy

(3. 3)
f =-' [—F(o).F(2)],
F(2) = E(0) —3, (2 9)

cosa+ cosP+ coshy = 3 .

1
2 ~

In fact, this may be extended to n dimensions if

It is thus only necessary to identify E(4) with
F(2, 0, 0) [or E(0, 2, 0) or F(0, 0, 2)] in order to use
their results in (3. 1).
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Unfortunately, only E(0, 0, 0) can be evaluated
exactly. The other integrals must be approxi-
mated numerically. These have been tabulated to
six-figure accuracy by Maradudin et a/, ,

' from
whom it is found

t= 6 (- 1. 516386+0.257336)= —0. 209842,

f= 0. 653109 .
These values agree to the accuracy of their cal-

Bw9
culations with those given previously.

The body-centered cubic (bcc) lattice is some-
what more difficult to visualize, and the situation
immediately after a tracer-vacancy exchange is
shown, in projection, in Fig. 3. The circles in-
dicate those neighbors to the vacancy that lie in
the even planes (0, a 2, +4, . . . ) and the squares
those neighbors that lie in odd planes (a 1, a 3, . . . );
the first number identifies the neighbor in the
nearest plane, the second number that in the next
nearest plane. For example, the vacancy has four
third neighbors (only one is shown) in its plane and
eight third neighbors (four are shown) in the sec-
ond planes above and below its plane. From Fig.
3 it is seen that

t = 8 [- 8+ 6E(0) —4F(2) —2F(3)] .
The analytical forms for E(2) [E(2, 0, 0)] and
F(3)[E(2, 2, 0)] may be converted to

(3.6)

w
' (1 —cos'n cos~P)'"y0 ~0

4
w' „1 (1 —cos'n cos'P)'"

and

4 "' "' cos ncos PdndP
w'

l (1 —cos'n cos'p)'/' '

E(0, 0, 0) = (4/w') E '(1/v 2 )-=(4/w )K II,

where K(x) is the complete elliptic integral of the
first kind. By exceedingly good luck, however,
it is possible to reduce (3.4) to one integral that
can be evaluated. The procedure is as follows:
The difference equations for E(0) and E(1) yield

E(5)= VE(0) —8 —3F(2) —3E(3),
so that

t = 8 [-F(0) —E(2)+F(3)+E(5)], (3.4)
8

+
w~ „(1—costa cos~p)'/~

1
E(u, u, ao) =

0 0

cosua cosvpe ' '"dadp
(1—cos n cos p) /

Of the integrals in (3. 4), only F(0)=E(0, 0, 0) is
known. This has been evaluated by Watson'~ to be

A

FIG. 3. Vacancy motion in the bcc lattice.

where an analysis similar to that of McCrea and
Whipple shows that the expectation values may be
written in the form

E (gg, g, gg ) = 1 I"' " cosuacosvpe ' I "dadp
w' cosa cosP sinhy

(3. 5)
with

coshy= (cosa cosP)
or

= —1+, (1 —costa cos P)'/ dndP . (3.V)
&0 QQ

The integral, in its final form, has been evaluated
by Kaplan'~ as

f; j'(1 —cos'n cos'p)'/'dn dp = 2K&+w/2EO,

(3.8)
whence

t= —1+(2/w )Ão —
~ Eo = -0.15794742. . .

f=0.72719414 .
The value of t agrees with that given by Schoen and
Lowen. The two forms are connected by the Le-
gendre relation. ' These results, together with
some additional integrals by Kaplan and the dif-
ference equations for the bcc lattice, make possible
the exact evaluation of many of the expectation
values (Green's functions) for the bcc lattice. The
details are given in Appendix A.

In considering the fcc lattice it would appear to
be wise to choose the direction of diffusion in such
a way that the plane perpendicular to that direction
contains as many nearest neighbors of the tracer
as possible, i.e. , is a closest-packed plane. The
lattice projected on this plane is shown in Fig. 4,
where the direction of diffusion is out of the paper.
Again the circles represent sites in planes equiv-
alent to that containing the vacancy (say, a planes);
the squares represent sites in planes (say, 5
planes), one above and two below the chosen plane.
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0
I

0
I

I,3

0o

0

0
I

0
3

0
3

0
5,3

0
4

cos2n dndP
[(3 —cosncosP) —(cosu+cosP) ] i

E(4) —= F(2, 2, 0) =

cos2n cos2 p dud p
[(3 —cosu cosP) —(cosn+ cosP) ]'@

I,3 3,5 were evaluated by a computer program utilizing
Gaussian quadrature (16 and 24 points) to be

0
I

0
I

0
3

FIG. 4. Vacancy motion in the fcc lattice.

The triangles represent sites in planes ( c planes),
one below and two above the vacancy plane. The
numbers near the sites represent neighbors to the
vacancy occupying those sites. Two of the pos-
sible sites for the tracer are shown. It is easily
verif. '.ed that these yield the same expression for
t, namely,

F(2) = 0, 229 9360607,

E(4) = 0. 1708893539 .
[This precision was not sought; it was given with
the program, which computed F(0) and F(1) to ten-
figure accuracy, so it is assumed that E(2) and
E(4) are equally accurate. ] Substituting in (3. 11)
yields

t= —0. 1226800660, f=0.7814514220 .
The value off given by Compaan and Havens

(0. 781 46) is in excellent agreement.

t= f'-, [-E(O) —2E(1)+2F(3)+E(4)]. (3.9) IV. ANISOTROPIC LATTICES

These may

F(u, v, u)=

Xi

&Q QQ

be written in the form
3
7T2

cosun cosvPe "dndP
[ (3 —cosncosp) —(cosn+cosp) ]'i

Of the integrals in (3.9), only F(3) contains the ex-
ponential term, and it may be eliminated by the
difference equations, so that

t= gg [-3E(0)+4F(1)—2F(2)+E(4)] . (3.11)

Of these expectation values, E(0) and F(1) are
known:

Solving the difference equation, which may be
written by inspection of Fig. 4, by the method of
McCrea and Whipple yields expectation values
given by

3 ' "' cosuncosvPe ' '"dndP
P„„(cosn+cos p) si»y

(3. lo)
with

coshy= (3 —coen cosP)/(coen+ cosP) .

The simplest extension of the method to aniso-
tropic lattices is to the primitive tetragonal lat-
tice, which is equivalent to a sc lattice with a
probability of movement v, in the gy, e.g. , plane
and probability of movement v, perpendicular to
that plane. This case was considered by Mullen~'
in his pioneering work on anisotropic lattices. It
is, however, not much more difficult to consider
the primitive orthorhombic lattice, which we view
as equivalent to a sc lattice with probability of
movement v, along the x axis, v, along the y axis,
and v, along the c axis. Letting

Lt 1 1
V~ =

R ( 1+II+I 2 1+++v )

the solution to the random walk of the vacancy may
be written as

1+ p, +v
E(u, v, w)=

E(O) =E(O, O, O) =1.344661 183O. . .
and

with

&Q +Q

cosuu cosvpe '" dudp
v slnly

(4. 1)

E(1)=—E(1, 1, 0) =E(0) —1=0.3446611830.. .
from the difference equation for F(0). The other
two integrals,

E(2) = E(2, 0, 0) = 3

cosn+ u cosP+ v coshy= 1+ tL+ v .
It is evident that the t's are given by

t, = v, [-E(0, 0, 0) + F(2, 0, 0)]= -c(2, 0, 0)
2 1+++v
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tt, = vt, [ E-(0, 0, 0}+E(0,2, 0}j=
(2 1+ p, +v

(4. 2)

t, = v,[-E(O, O, O, )+E(O, O. 2)) =
2 1+ jl+v

0
S'il(Pp

CI
735l 3173

0
4p204p

0
735I BI73

and Eg. (2. 1) applies in all three cases.
The evaluation of these, and related integrals,

is discussed in Appendix B, where Table III gives
the integrals for selected values for p, and v. Use
of this table, and Egs. (4. 2) and (2. 1), allows the
construction of Table I, which gives the correlation
factors as functions of p and v. The values cor-
responding to p, (or v) = 1 are those for the primi-
tive tetragonal lattice. Comparison with the val-
ues given by Mullen" indicates thai his results are
accurate to about 1%.

The difference equations resulting from a gen-
eralization of a random walk on the fcc lattice in
which the probability of movement in the xy plane
is v„ in the xz plane is v„and in the yz plane
is v, can also be solved by an extension of the
method of McCrea and %hippie. The complete ex-
tension given above does not appear to correspond
to a lattice representing any physical array of
atoms, but there appears to be enough interest in
the Green's functions of such a lattice to warrant
the presentation of the values of some of the func-
tions of this generalized lattice. These are given
in Appendix C.

If we specialize the case above to that in which
v, = v„ the body-centered tetragonal (bct) lattice
is obtained. In Fig. 5 the lattice is shown projected
onto this plane. The circles represent the sites

0
lo&a

Oo

2pQ 2p
0

diplo&a
0

6p4O6p

3II II 3
0

53ll II53
CI

73~l~l73

0
Bplp5p

0
4~204'

FIG. 5. Vacancy motion in the body-centered-tetragonal
lattice.

of atoms in even planes and the squares those of
atoms in odd planes. The neighbors occupying such
sites are indicated in the figure.

The solution to the difference equation for this
walk is

E(u, n, co =
1+2v " "' cosun cosvpe ' '" dndp

m'
~ v(cosn+cosP) sinhy

(4. 3)
with

coen cosP+ v(coen+ cosP)coshy = 1+2v,

where v—= v, /v, . The evaluation of these integrals
is discussed in Appendix C. They are the integrals
listed along the diagonals (p, = v) of Table IV.

Now, inspection of Fig. 5 shows that there are
two types of jumps, one in the plane occurring with
probability v, and one out of the plane with proba-

TABLE I. Correlation factors for primitive orthorhombic lattice.

0.25 0.50 0.75

fa

1.00 ] 330 ~ ~ 2. 00 4.00

0. 25
0.50
0.75
1.00

33 ~ ~ ~

2.00
4.00

0.414 05 0.478 13
0.532 26

0.522 06
0.569 99
0.603 63

f,(p, v) =f, (v, p)

0.555 23
0.598 80
0.62947
0.653 11

0.589 36
0.628 70
0.656 44
0.677 87
0.700 36

0.637 78
0.671 55
0.69534
0.71373
0.733 10
0.761 40

0.71669
0.742 27
0.760 17
0.773 97
0.788 50
0.809 78
0.846 55

0.25
0.50
0.75
1.00
1 ~ 33'''
2. 00
4.00

0.773 97
0.671 55
0.60439
0.555 23
0.505 98
0.438 30
0.333 04

0.809 78
0.713 73
0.648 06
0.598 80
0.548 53
0.478 13
0.36608

0.83140
0.741 23
0.677 87
0.629 47
0.579 38
0.508 08
0.392 18

fc

0.846 55
0.761 40
0.700 36
0.653 11
0.603 63
0.532 26
0.41405

0.861 29
0.781 69
0.723 53
0.677 87
0.629 47
0.558 64
0.438 75

0.880 96
0.809 78
0.756 43
0.71373
0.667 69
0.598 80
0.478 13

0.910 55
0.854 07
0.81015
0.773 97
0.733 85
0.671 55
0.555 23

fc&, v) =fa(v, p)
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bility v, . For diffusion along the c axis only a
type-2 jump is required and we have

f, = [-E(0) —2E(1,) —E(2,)

+E(2,)+2F(32)+F(42)] (4. 4)

f = (I+t,)i(1 —t, ) ~ (4. 5)

For diffusion in the a plane the situation is more
complex, however, for here both types of jumps
are involved. By inspection, it can be seen that

[-E(0)+E(4,)],1

fla= 4(1 )
[-4x-2'F(l, )+4x-2'F (3l) ]

=
2(1,2,-) [-E(ll)+ F(32)],

1
fal 4 1 2

[-2E(ll) + 2E(3l)]
(4. 8)

1

)
[ E(11)+ F(3l)]= ~ '

&la y

taa=
2 [-E(0)+F(22) -E(22)+F(42)] .1

The value off. could then be obtained by using Eq.
(1.1) (assuming the values of the integrals were
known). However, to facilitate comparison with
the results of Mullen, ' we make use of the fact
that t~~ and tz~ are associated with position 10 and

t&& and tz& with position lz and define

(4. 7)

where the c's are the fractions of jumps of types
1 and 2, respectively, and

(1 )
(I+ ill)(I 42)+ f12(2+ f21)
(I ~11) (I 42) flafal

(4. 8)

(I )
(I+ 42) (I —~11)+41(2+ ala)

(I -4l) (1 -&22) -flafal

These can be read from Table IV in Appendix C
and the values of f,(1,), f,(ll), f„and f, for some
values of v are listed in Table IL f,(la) and f,(ll)
are more accurately defined versions of Mullen' s
f„„and fa„and inspection shows that our results
disagree in the third significant figure, again in-
dicating that Mullen's results are good to about 1%.

V. SUMMARY

It has been shown that correlation factors may
be calculated simply and with great accuracy for
those lattices for which an analytical solution
exists for the expectation that a random walker
mill visit a given site of the lattice. These solu-
tions can be generalized to encompass anisotropic
walks and the correlation factors can be computed
as functions of the probabilities of motion in vari-
ous directions. The expectations of visits in these
cases are related to the Qreen's functions for &he

lattices and some of the Qreen's functions for the
"anisotropic" cubic lattices have been computed
from the integral solutions.
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APPENDIX A: GREEN'S FUNCTIONS FOR bcc LATTICE

Here we give a brief exposition of the method
used to find exact values for the Qreen's functions
for the bcc lattice. The exposition makes use of
certain integrals evaluated by Kaplan'3 and the dif-
ference equations relating the various functions.
The work below should be self-explanatory.

The integrals given by Kaplan are equivalent to

f ' f ' dndp(1-cos'ncos'p) '"=4K2(I/2)

=—4Ka, (Al)

f ' J 'dndP(1 —cos'n cosaP)'ia
The fraction of jumps which are of type 1 is given
by

4v, 1
4v, +&v, 1+2v

and those of type 2 by

= 2K + n (2K )

f f dndPcos n(1 —cos ncos'P)

(A2)

&vc

4'+ Sv~

The integrals involved in the t„.are expressed
in terms of E(M, v, w) as follows:

E(0) =—E(0, 0, 0), F(la) —= F(l, 1, 0), E(ll) —= E(l, 0, 1),
F(22) =-E(2, 0, 0), E(22) =-E(2, 0, 2), E(3l) -=E(2, 1, 1),
E(32) =-E(l, 1, 2), E(4,) =F(2, 2, 0), E(4,) =-E(2, 0-, 2) .

= 2%2 + v (2Ka) (A3)

f f dndPcos ncos P(1 —cos ncos P)

= 2Ka —v (2Ka), (A5)

J f, dnd p cos' n (1 —cos'n cosa p)'ia

= —', Ka + 2 (2Ka), (A4)
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TABLE II. Gorrelation factors for bct lattice.

0.25

0.657 23
0.85685
0.723 77
0.85078

0.50

0.720 34
0. 81564
0.767 99
0.813 09

0.75

0.75705
0.79452
0.779 53
0.793 58

1.00

0.781 45
0.781 45
0.781 45
0.781 45

1 33~ . o

0.803 85
0.770 63
0.779 69
0.772 33

2. 00

0.831 24
0.757 63
0.772 35
0.758 73

4. 00

0.865 84
0.743 33
0.756 94
0.74443

f~ f; dndpcos'ncos'p(1 —cos'ncos p)' '

= 9 Ko ~

The Green's functions, fox xv =0, are given by

1
E(m, v, O)= 3

(A6)

x ~ dndPcosun cosvP(l —cos n cos P)
40 4O

(AV)

The relations among (A7) and the various integrals
(Al)-(A6) are obvious'3:

F(0) =—E(0, 0, 0) = w (Al) = 4w' Ko = 1.393 203 930,

F(l)- E(l, 1, 1) =F(0) —1=4w ~KO~ —1= 0, 393203 930,
F(2)-E(2, 0, 0) =2w (A3) —w 2(A1) =KO~=0. 290901228,

F(3)-E(2, 2, 0)=4w (A5) —4w 2(A3)+w ~(Al)=4w ~K02 4KO =0-. 229599016,

F(4) E(3, 1-, 1)= 2E(2) —F(1)= 1 —4w K2+o2K ow0, 188 598 527,
E(5)- F(2, 2, 2) = 8E(1) -E(0) —3E(2) —SF(3)=16w ~KO+9KO —8=0. 190926774,
E(7)- E(3, 3, 1) = 4F(3) —E(1)—2F(4) = 20w Ko —20KO —1 = 0. 14V 995080,
Fg(10) E(3, 3, 3) = 8E(5) —E(1) —3F(4) —3F(V) = 76w Ko+ 126 Ko —63 = 0. 124429444 .

The other Green's functions depend on

E(6)-E(4, 0, 0)

] t t
dndpcos4n(l —cos ncos p)

4Q4P

which may be written as

] t'g hg

E(8)-E(4, 2, 0) =
z dndPcos4ncos2P

4Q 4Q

x(1 —cos2ncos P)

may be written in terms of known integrals, (Al)-
(A8) and

8
E(6) =

2
~

dndP cos n(1 —cos n cos P)
"o 4o

4 p 4 Q

dndPcos ncos P(1 —cos ncos P) = 3KO,

(A9)

Sw-'(AS) + (Al) .
By an extension of the method used by Kaplan, it
may be shown that

~n' " a'

dndPcos4n(l —cosign cos P)
4Q 4Q

which results from the identity

cos ncos P(1 —cos ncos P) =cos n

x[(1 —cos acos P)
@ (1 —cos nco-s P)

~
i .

Thus)

E(8)- E(4, 2, 0) = 16w (A9) —Sw {AS)—16w 3{A5)

= 's' Ko'+ w'{2Ko) ~ .
Therefore,

E(6)- E(4, 0, 0) = 8w (A8) —Sw (AS) + (Al)

(AS) + 10w (AS) —w (Al)

= 9KO —64(3w) wKO= 0. 141 304 0VO,

E(9)-F(4, 2, 2) = 8E(4) —F(2) —2E(3) —F(5)
=4(Sw) K0=0. 15480043V,

Fg(10)- F(5, 1, 1)= 2F(6) -E(4)
= 44(3w) 2

Ko —2KO —1 = 0. 121 002 346 .
The Green's function

—F(6) —2F(8)

= 16 —380(Sw) Ko —4KO =0. 130353606 .
This gives all the Green's functions through the
first ten neighbor shells, and we do not continue
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except to remark that F(12) and E(15) are given by
the difference equations as

E(12)-E(5, 3, 1)=4F(8) —E(4) -E(7) —Eg(10)

= 1 —444 (3gg)
g

Kog + 56KO = 0. 107 620 325,

E(15)-E(5, 3, 3) = 8F(9) —E(4) —2E(7) —Eg (10)
—Fg(10) —2E(12)

= 191 —3204 (3gg)
g

Kog —230Kog ——0. 097 567 724 .
All of these values agree with those found indepen-
dently by Joyce.

APPENDIX B: GREEN'S FUNCTIONS FOR GENERALIZED
sc LATTICE

It is shown in the text that the Qreen's functions
for this lattice may be written in the integral form

F(u, v, go) =

dndP cosun cosvPe
x [(1+p. + v —cos n —

gg c os p) —v ]g&'g2 2
&0 ~Q

(»)
where the exponential term is defined by the auxil-
iary relation above. If one attempts a numerical
evaluation of the integral as it stands, one obtains
only three-figure accuracy —even when using Gaus-
sian quadrature with 24 points over the P interval
and 32 points over the a interval. On the other
hand, the related integral

G(u, v, go)=—F(0, 0, 0) -F(u, v, go)

factors, they were evaluated by the procedure
above.

In order to obtain the Green's functions from the
related integrals it is necessary to obtain F(0, 0, 0)
to comparable accuracy. After applying some
transformations that exploit the equivalence of the
variables n and P, it is found that this function may
be written as

F(0, 0, 0) =

dp ([(1+gg+ v —cosn —ggcosp) —v ]
'

+[(1+p+v —p, cosn —cosp) —v ] i ], (B2)

The Qaussian procedure applied to this formula ap-
parently gives ten-figure accuracy —as judged by
the fact that it reproduces Watson's value for
p. = v = 1 to that many figures.

The Green's functions for the generalized simple
cubic lattice for positions through the fourth neigh-
bor shell are given in Table III. Each part of the
table required about 20 sec of computation on the
IBM360-V5 to evaluate the 49 integrals.

APPENDIX C: GREEN'S FUNCTIONS FOR GENERALIZED
fcc LATTICE

We consider a random walk to nearest neighbors
on the fcc lattice of infinite extent with probability
of movement in the xy plane given by v„ that in
the xz plane by v~, and that in the yz plane by v„
where we must have

is given to eight-figure accuracy by this simple
procedure. Because the difference integrals
G(u, v, go) were needed to calculate the correlation

v +4v~+4vc= 1

The difference equation defining this walk is

(cl)

E(u, v, go) = 5„O5„05„0+v, [F(u —1, v —1, go)+E(u —1, v+1, go)+F(u+1, v —1, go)

+F(u+1, v+1, go)]+ vb [F(u —1, v, go —1)+ (u —1, v, go+1)

+F(u+1, v, go —1)+F(u+1, v, go+1)]+ vb[E(u, v —1, go —1)

+E(u, v —1, go+1)+F(u, v+1, go —1)+F(u, v+1, go+1)] . (C2)

The method of McCrea and Whipple may be ap-
plied to show that the solution of the difference
equation is given by

1
F(u& v& go) 2

7r

and using (Cl), we may show that(C3) is equivalent
to

1+ JLt, +V
F(u, v, go) =

with

cosun cosvpe '

dnd 7

(4 vb cos n+ 4 v, cos P) sinhy

(c3)

X
"0 "0

cosun cosvP edadP (pcosn+ v cos P) sinhy

(c5)
4v, coen cosP+4v, cosn coshy+4v, cosPcoshy= 1 . with

Writing

v, /v, =- p, v, /v, -=v, (c4)

coen cos P+ gg cosncoshy + v cosP coshy = 1+p+ v .
For a= 0, this integral may be written in the form



INTEGRAL METHODS IN THE CAI CULATION OF CORRELATION. . .
TABLE 1II. Green's functions for the generalized sc lpttice.
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0.25 0.50 0.75 1.00 1.33' '' 2. 00 4.00

0.25
0.50
0.75
1.00
1.33' '
2.00
4. 00

l.661 747 52
1.55482225
1.525 83186

E„'(0,o, 0) =E",(0, o, o)

1.779 444 26 1.675 097 40
l.575 120 36

z(0, o, o)

1.679 001 91
1.562 481 29
1.524 926 03
1.516 386 06

1.721 288 45
1.591 657 57
1.543 408 67
1.525 83186
1.524 926 03

1.831 448 02
1.675 097 40
1.607 970 08
1.575 120 36
l. 557 232 33
1.562 481 29

2. 178 17095
1.956 523 11
1.845 91934
1.779 444 26
1.725 407 81
1.675 097 40
1.679 001 91

0.25
Q. 50
0.75
1.00
1 ~ 33'' '
2.00
4.00

0.735 61638
0.617 51958
0.568 419 78

E~(1,o, o) =E"„(1,o, o)

0.914 907 75 0.783 454 84
0.664 604 80

EO. , O, O)

0.716 228 68
0.595 489 26
0.543 682 61
0.516 386 06

E(0, 1, 0)

0.709 665 45
0.583 563 68
0.527 898 47
0.497 439 92
0.474 908 47

0.723 374 53
0.584 923 72
0.521 705 39
Q. 485 635 92
0.457 19443
0.430 449 43

0.814 294 34
0.640 561 11
0.55791136
0.508 517 27
0.467 01733
Q. 422 014 95
0.38118775

0.25
0.50
0.75
1.00
1.33"
2.00
4. 00

0.508 517 29
0.584 923 72
0.652 951 99
0.716 228 68
0.795 448 75
0.941 254 23
1.315 524 79

0.422 014 97
0.485 635 93
0.542 573 41
0.595 489 26
0.661 668 71
0.783 454 85
1.097 175 36

0.392 658 67
0.447 800 87
0.497 439 92
0.543 682 61
0.601 61566
0.708 480 72
0.985 241 97

0.381 187 76
0.430 449 44
0.474 908 47
0.516 386 06
0.568 419 77
0.664 604 81
0.914 907 76

0.377 425 55
0.421 148 98
0.460 609 84
0.497 439 92
0.543 682 62
0.629 324 08
0.853 344 50

0.385 292 36
0.422 014 96
0.454 961 32
0.485 635 93
0.524 123 12
0.595 489 26
0.783 454 85

0.436 01603
0.463 22904
0.486 875 94
0.508 51727
0.535 390 62
0.584 923 72
0.716228 69

F(0, 0, 1)

E„"(0,o, 1) =E"„(o.1,o)

F(1,1, 0)

0.25
0.50
0.75
1.00
1 ~ 33
2. 00
4.00

0.428 959 49
0.452 851 51
0.475 716 22
0.497 862 23
0.526 318 84
0.579 778 64
0, 718 502 07

0.349 516 12
0.364 608 03
0.379 979 55
0.395 210 24
0.415 055 41
0.452 851 51
0.552 679 10

0.322 890 64
0.33175235
0.342 097 18
0.35294235
0.367 575 16
0.396 338 84
0.474 943 17

0.312 446 99
0.316 764 53
0.323 452 05
0.331148 61
0.342 097 18
0.364 608 03
0.428 959 49

0.308 79940
0.308 559 42
0.311580 33
0.31614073
0.323 452 05
0.339 872 51
0.390 65640

0.315028 54
0.308 340 63
0.306 200 01
0.306 378 79
0.308 655 20
0.316 764 53
0.349 516 12

0.357 15335
0.338 908 29
0. 327 698 50
0.320 305 25
0.314024 79
O. 308 34Q 63
0.312446 99

E(1,0, 1)

Ev '(1 ~ 0 ~ 1) Eg '(1 1 0

F(O, 1, 1)

0.25
0.50
0.75
1.00
1 ' 33'''
2. 00
4.00

0.25
0.50
0.75
1.00
] 33 ~ ~ ~

2. 00
4.00

O. 308 15202
0.310349 94
0.316140 72

E„'(0,1,1)=E,"(0,1,1)

0.300 610 02 0.282 1S4 57
0.26S 762 76

0.27749431
0.266 370 21
0.262 748 39

E~(1 1 1) =Ev„(1 1 1)

0.320 305 25 0.308 340 63
0.306 378 79

0.312446 99
0.316 764 53
0.323 452 05
0.331148 60

E(1,1, 1)

0.278 122 85
0.266 871 00
0.262 539 79
0.261 470 13

0.321 214 21
0.327 01994
0.334 256 53
0.34209718
0.352 942 35

0.282 728 00
0.270 51140
0.264 998 33
0.262 748 39
O. 262 539 79

0.342 492 58
0.349 516 12
0.356 977 32
0.364 608 03
0.374 859 29
0.395 210 23

0.297 074 13
0.282 194 57
0.274 226 96
0.269 762 76
0.266 922 67
0.266 871 00

0.408 29417
0.415 874 68
0.422 61346
0.428 959 49
0.437 104 57
0.452 851 51
O. 497 862 23

0.347 11068
0.324 530 52
Q. 31033211
0.300 610 02
0.29181103
0.282194 57
0.278122 85
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TABLE III. (Continued).

0.25 0.50 0.75 1.00

F(2, 0, 0)

1.33 " 2. 00 4.00

0.25
0.50
0.75
1.00

33~ 2 ~

2.00
4.00

0.405 698 32
0.322 294 20
0.289 975 47

Z~(2, 0, 0) =Z,"(2,0, 0)

0.536 31950 0.439 384 98
0.354 082 80

0.392 079 21
0.307 780.01
0.274 265 58
0.257 335 90

F(0, 2, 0)

0.386 899 79
0.299 829 42
0.26439431
0.245 893 71
0.23265848

0.393 857 62
0.299 621 96
0.260 165 01
0.238 777 36
0.222 548 89
0.207 896 80

0.445 32649
0.329 307 90
0.278 968 30
0.250 476 67
0.22749459
0.203 620 64
0.183 225 97

0.25
0.50
0.75
1.00

33 ~ ~ ~

2.00
4. 00

0.250 476 68
0.299 621 95
0.346.651 82
0.392 079 21
0.450 641 85
0.562 226 45
0.8 64 793 83

0.203 620 69
0.238 777 35
0.273 539 48
0.307 780 00
0.352 586 37
0.439 384 99
0.680 400 95

0.188 753 88
0.217 326 40
0.245 893 69
0.274265 56
0.311662 41
0.384760 78
0.590 699 71

0.183 226 04
0.207 896 80
0.232 658 47
0.257 335 84
0.289 975 46
0.354 082 79
0.536 319 53

0.181659 63
0.203 020 19
0.224479 28
0.245 89370
0.274 265 56
0.330 15379
0.490 11852

0.186 043 83
0.203 620 67
0.221 230 79
0, 238 777 36
0.262 007 27
0.307 780 00
0.439 384 99

0.211865 28
0.224 888 25
0.237 772 46
0.250 476 68
0.267138 50
0.299 621 96
0.392 079 22

F(0, 0, 2)

F„"(0,0, 2) =Z,"(0,2, 0)

&+~+ v
J'(u, v, 0)=

cosun cosvp
[(1+g+ v —cosn cos p)' —(/icosa+ v cos p)']'"

(C6)
Attempts to evaluate numerically the integral in

this form yielded only three-place accuracy, and
the modification used in Appendix B (to write the
integral over P from 0 to n and to interchange n
and P in the integrand) increased the accuracy to
:only four places.

By examining the detailed behavior over the in-
tegrand over the region of integration it is seen
that (C6) may be written in the form

E(u, v, 2v) =
1+ p, +v

r2
4 0 0

[1+(- 1)"'"] cosun cosv p
P (T2 T2 )1/2

[1+(-1)"'"]cosupcosvn
(T2 T2 )1/2

[(-1)"+ (- 1)"] cosun cosv p
(T2 T2 )1/8

[(-1)"+ (—1)"]cosuP cos vn
+ (T2 T2 )1/2 (C7)

31 42

where

Tgg=- 1+ p, + v —cosQ cosP q

T&2 —= p, cosa+ v cosP,

T22: u cosP+ v cosn
~

T81=—1 + /1 + v+ cosA cosp

T82=—p cosn —v cos p q

T48=—p, cos p —v cosA

A numerical evaluation of (C'l) using the Gaussian
quadrature scheme described earlier apparently

yieMs ten-place accuracy.
The Green's functions that involve epen values

of zv are given to comparable accuracy by the same
stratagem, but those involving odd values of zg are
given to only three or four figures. The difficulty
is apparently concerned with the peculiar behavior
of the auxiliary condition of (C5) over the range of
integration. The accuracy of the computation may
be improved (to six figures) by careful handling of
the difficult regions, but a much easier procedure
is to change an integral involving an odd value of
ze to one involving an even value of zv by transform-
ing the coordinates. Thus,
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TABLE IV. Green's functions for the generalized fcc lattice.

0.25 0.50 0.75 1.00 1.33' ' ~ 2.00 4.00

O. 25
0.50
0.75
1.00
1 33' ''
2.00
4.00

O. 25
0.50
0.75
1.00
] 330 ~ ~

2.OO

4.00

1.143 292 51 1.378 51393
1.359 11945

1.367 238 81
1.352 521 52
1.346 823 99

F„"(o,o, o) =F„"(0,o, o)

0.39041547
O. 372 658 73
0.360 481 51

F„'(1,1,O)=F,"(1,1,O)

O. 461 263 19 0.415 962 42
0.389 521 66

1.366 417 53
1.352 635 03
1.346 346 29
1.344 661 18

F(1,1, 0)

0.374 059 66
O. 361 036 34
0.351 671 18
0.344 661 18

F(1,O, 1)

1.373 09916
1.358 400 41
1.350 443 93
1.346 823 99
1.346 346 29

0.359 72294
0.350 27548
0.343 19166
0.337 718 97
0.332 146 60

1.396 987 79
1.378 513 93
1.366 610 62
1,359 11945
1.353 767 93
1.352 635 03

0.343 382 99
0.337 31443
o.332 544 58
0.328 717 24
0.324 680 81
O. 319 029 79

1.478 820 97
1.450 424 24
1.429 309 99
1.413292 51
1.397 552 14
l.378 51393
1.366417 53

0.325 55415
0 ~ 322305 26
0.31961329
0.31735114
0.314851 81
0.31111894
0.305 280 41

0.25
0.50
0.75
1.00

330 ~ ~

2.00
4.00

O. 317351 14
0.337 31443
0.356 246 66
0.374 059 66
0.396 179 93
0.435 666 45
O. 528 183 59

O. 31111894
0.328 717 24
O. 345 344 31
O. 361 036 34
0.380 633 52
0.415 962 42
0.500 363 02

0.307 508 57
0, 323 012 91
0.337 71897
O. 351671 18
O. 369 203 64
0.401 108 63
0.478 682 24

0.305 280 41
O. 319029 79
0.332 146 60
0.344 661 18
0.360 481 51
0.389 521 66
0.461 263 19

0.303 506 59
0.31536197
0.326 763 00
0.337 718 97
O. 351 671 18
0.377 550 82
0.442 71142

0.301 977 76
0.31111894
0.320 038 33
0.328 717 24
0.339 908 94
0, 361 036 34
0.415 962 42

0.302086 87
0.307 15200
0.312253 57
0.31V 35114
O. 324099 55
0.33731443
0.374059 66

F(0, 1,1)

Fvg(0 1 1) F~v(1 0 1)

F(2, o, o)

0.25
0.50
0.75
1.00
1.33
2.00
4.00

0.295 31983
0.273 353 36
0.267 028 39
0.267 410 30
0.272 820 16
0.290 260 86
0.349 545 63

0.258 861 60
0.250 230 21
0.248 848 86
0.251 11405
0.257 084 24
0.273 353 36
0.326 903 92

0.238 15323
0.235 062 28
0.235 986 30
0.239 12905
o. 245 23838
0.26044117
0.309 362 70

0.224 698 09
0.224 302 28
O. 226 389 74
0.229 936 05
0.235 986 30
0.250 230 21
0.295 31983

0.212 648 17
0.214 002 44
O. 216 824 20
0.220 555 27
0.226 389 74
0.239 508 32
O. 280 393 11

0.198348 02
0.200 894 59
0.204 097 53
0.207 731 98
0.213 064 04
0.224 302 28
0.258 861 60

0.180 983 53
O. 183 552 35
0.186271 25
0.189093 54
0.19296331
0.200 894 59
0.224 698 09

F(0, 2, 0)

F~(0, 2, o) =F,"(2,0, 0)

F(o, o, 2)

O. 25
O. 50
O. 75
1.00
1~ 33'
2.00
4.00

O. 212 88746
0.215 761 07
0.220 555 27

F~g(0 0 2) F~v(0 0 2)

0.189093 54 0.200 894 59
0.207 731 38

0.224 698 09
0.224 302 28
0.226 389 74
0.229 936 05

F(2, 1,1)

0.239 93263
0.235 93499
0.235 009 27
0.235 986 30
0.239 129 05

0.268 376 85
0.258 861 60
0.253 270 16
0.250 230 21
0.248 784 82
0.251 11405

0.339 630 21
0.320 077 66
0.305 874 28
0.295 31983
0.285 17443
0.273 353 36
0.267410 30

0.25
0.50
0.75
1.00

330 ~ ~

2.00
4.00

0.218 792 60
0.215 675 06
0.215 430 61
0.216 422 30
0.218 576 11
0.223 704 40
0.237 484 68

0.204 393 68
0.204 323 17
0.205 518 24
0.207 287 39
0.210 014 59
0.215 675 06
0.230 051 81

0.19551340
O. 196675 47
O. 19848642
0.200 58686
0.203 54497
0.209 385 72
O. 223 9320V

0.189476 08
O. 191175 09
0.193243 94
0.195466 71
0.198486 42
O. 204 323 17
0.218 792 60

0.183905 34
0.185870 78
0.188034 95
0.190269 14
0.193243 94
0.19893145
0.213 08542

0.17713100
0.179 10444
0.18115985
0.183 232 35
0.185 962 79
0.191175 09
0.204 393 68

0.16880491
0.17926471
0.171756 21
0.173255 31
0.175241 37
0.17910444
0.189476 08

F(1,2, 1)

F„"(j., 2, 1)=F~(2, 1,1)
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TABLE IV. (Contigggd).

0.25 0.50 0.75 1.00

Z(1, 1, 2)

1.33' ~ ' 2. 00 4.00

0.25
0.50
0.75
1.00
1~ 33
2.00
4.00

0.25
0.50
0.75
l.00
1 33'' '
2.00
4.00

0.18452638
0.18730108
0.190269 14

S„"(1,1,2) =Z,"(1,1,2)

0.227 503 23 0.203 360 00
0.190 512 61

0.19061459
0.182 679 46
0.177402 39

S~(2, 2, 0) =Z,"(2, 2, 0)

0.173 255 31 0.179 104 44
0.183 232 35

0.189 476 08
0.191175 09
0.193 243 94
0.195 466 71

S(2, 2, 0)

0.182 837 78
0.177 466 22
0.173 678 31
0.170 889 34

S(2, 0, 2)

0.195401 16
0.195 978 72
0.197086 03
0.19848642
0.200 586 86

0.17630636
0.172 793 20
0.170 178 17
0.168 17173
0.166143 70

0.205 361 66
0.204 393 68
0.204 130 46
0.204 323 17
0.205 032 94
0.207 287 39

0.169 254 79
0.167 397 21
0.165 920 26
0.164 725 14
0.163 455 84
0.161 664 82

0.225 79406
0.222 71502
0.22045621
0.218 792 60
0.217 247 26
0.215 675 06
0.216 422 30

0.162 22440
0.161576 94
0.161018 85
0.160 53462
0.159 983 34
0.159127 98
0.157709 18

0.25
0.50
0.75
1.00

33e ~ ~

2.00
4.00

0.160 534 62
0.167 397 21
0.175 010 64
0.182 837 78
0.193246 91
0.213 338 10
0.266 262 96

0.159 127 98
0.164 725 14
0.170 970 86
0.177 466 22
0.186 209 77
0.203 360 00
0.249 733 81

0.158 263 19
0.162 928 86
0.168 17173
0.173 678 31
0.18116777
0.196062 23
0.237 25703

0.157 709 18
0.161 664 82
0.166 143 70
0.170 889 34
0.177 402 39
0.190 512 61
0.227 503 23

0.157 253 49
0.160 493 91
0.164 201 65
0.168 17173
0.173 678 31
0.184 920 61
0.217 394 13

0.156 836 90
0.159 127 98
0.161805 32
0.164 725 14
0.168 847 82
0.177466 22
0.203 360 00

0.156769 51
0.157798 24
0.159076 67
0.160 534 62
0.162 678 06
0.16739721
0.182 837 78

S (0, 2, 2)

Z~(0, 2, 2) =E,"(2,0, 2)

E(2, 1, 1)-E(1, 1, 2) with p - p/v, v-1/v .
(ca)

The values listed in Table IV were obtained by
using such transformations.

The Green's functions for the generalized fcc
lattice for positions through the fourth neighbor
shell are given in Table IV. Each part of the table
(49 integrals) required about 40 sec of computation
on the IBM360-75 computer.

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.
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