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and has the value 0,282, This justifies the exclu-
sion of the interactions of the third nearest neigh-
bors of the second (nonequivalent) type, viz. ,
those of the P atoms. In view of the smallness of
the magnitude of the out-of-plane bending constant
k(=0.078) of the I atoms, the out-of-plane bending
constant " of the N atoms is not taken into ac-
count, SOE constants and the experimental limit-
ing frequencies are to be used to fix the second-
order parameters. In the case of titanium the ex-
perimental dispersion relations are not available,
while the same are present for zirconium.® The
lattice dynamics, TOE constants, and thermal
expansion of zirconium have been worked out by
Menon and Rao'? and the second-order parameters
of zirconium have been used as a guideline in fit-
ting up the nine second-order parameters for
titanium, Another point that may be noted here is
that the third-order parameters 7 and x of the N
and K atoms, respectively, have also been included
to get a better agreement with the experimental
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results on thermal expansion and the pressure
derivatives of the SOE constants of these two
metals. In titanium we notice anisotropy even in
the basal plane as Cy;; and Cyy, differ from each
other considerably. For the time being the dis-
crepancy between ¥, calculated from the hydro-
static pressure derivatives of the SOE constants of
titanium and 74(ay) calculated from the thermal-
expansion data appears to be unresolved. The pho-
non-dispersion relations are essentially similar to
those in zirconium.®
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Correlation factors are calculated for vacancy motion over various anisotropic lattices. The calculations
exploit the relationship between diffusion and generalized random walks over related lattices, and thus
involve the Green’s functions for these lattices. Tables of the Green’s functions for anisotropic cubic lattices

are given.

I. INTRODUCTION

Correlation factors were introduced into con-
siderations of diffusion mechanisms by Bardeen
and Herring' in 1952 as the ratio of the diffusion
coefficient of a species to the diffusion coefficient

of that species computed on the assumption of ran-
domly oriented jump vectors. In general, the cor-
relation factors so defined are less than unity, for
successive jumps of a diffusing particle tend to be
in opposite directions, as is obvious where dif-
fusion is via a vacancy mechanism, In passing,
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it may be remarked that it is surprising that cor-
relation factors were not introduced earlier since,
in a sense, they are the result of an effect con-
verse to the “persistence of velocity, ” which was
known in the kinetic theory of gases from the time
of Maxwell.?

Recently, much effort, both experimental and
theoretical, has been expended in determining cor-
relation factors for various types of diffusion in
different classes of crystals. The object of these
investigations is twofold: If the diffusion mech-
anism is known, comparison of measured and cal-

culated values of the correlation factor enables one

to deduce values for certain atomic parameters;
if the diffusion mechanism is not known, an ac-
curate measurement of the correlation factor may
make it possible to decide between two alternative
mechanisms. These matters, together with other
pertinent information about diffusion mechanisms,
have been reviewed by Manning® and are not dis-
cussed further here.

A general formula for the correlation factor has
been given by Howard®:

f=1+2b-T(I-T)*-d, (1.1)

where f is the correlation factor, b is a row-ma-
trix giving the fractions of jumps of various types,
T is a square matrix made up of elements that are
related to the probabilities of succession of jumps
of various types (these matrix elements will be
discussed below), I is the unit matrix, anddisa
column matrix giving the projections of the jump
lengths on a chosen axis. This formula is derived
subject to the usual restrictions of the random-
walk formulation, These do not appear to be seri-
ous in most cases of physical interest. In Eq.

(1. 1) the factors b and d are easily evaluated by
inspection, but the determination of the elements
of the matrix T is often a difficult task. It is pre-
cisely this point that we wish to discuss in this
paper. Most of the previous calculations of cor-
relation factors have been carried out for various
lattices for which the matrix T is simply a number
(i. e., the average value of the cosine of the angle
between successive jumps) and we illustrate our
method by considering these relatively simple
cases first,

II. PLANAR LATTICES

Consider the triangular lattice of Fig. 1, which
depicts the situation existing immediately after
the tracer has jumped from the site marked O,
which is now occupied by the vacancy. The sites
are labeled as neighbors to the vacancy site.
There is obviously only one type of jump in this
lattice (the one just described) and Eq. (1.1) re-
duces to

f=1+t)/(1-1¢), (2.1)

FIG. 1. Vacancy motion in the triangular lattice.

where ¢ is the lone matrix element. In Fig. 1, the
direction along which diffusion is measured is
designated by x, and the line perpendicular to x

by A-A. The quantity ¢ is then given by the prod-
uct of the probability that the tracer will jump to

a nearest-neighbor site and the expectation that
the vacancy will be at that site multiplied by a pro-
jection of that jump on x. Note that if we choose
0=30°, the jumps to sites 1 and 2 (near the A’s)
are perpendicular to x¥, and hence have zero pro-
jections, and we can write

t=3[-F0O)-F1)+F((2)+F(3)], (2.2)

where %is the probability of jumping to any given
nearest neighbor and F (k) is the expectation that
the vacancy is at site 2. Furthermore, the pro-
jections of the jumps are of equal magnitude.

Although it is convenient to choose 6= 30°, it is
not necessary to do so. For an arbitrary 6,

t~3{- F(0)cos6- F(1)[sin(30° - 6)+ cos(60° - 6)]
+F(2)[cos(60° — )+ sin(30° - 8)]+ F(3) cos6}

sin(30° - 6) + cos(60° — 9))
cosé

~%[~N®—Fﬂ%

+F(2)< c0s(60° - 0)+ sin(30° - 6) >+F(3)]

cosé

=4[~ F(0)-F(1)+F(2)+F(3)], (2.3)

so that the same expression is obtained if all pro-
jections are defined relative to that of F(0), which
we normalize to unity. This independence of angle
occurs whenever diffusion is isotropic and may oe
used as a test for isotropy.

It now remains to calculate the expectation val-
ues. These are calculated on the basis of the
vacancy making a random walk, with only nearest-
neighbor jumps, over the given lattice. It has
been pointed out® that (physically) the walk can be
considered to be random only if the atomic array
relaxes to its equilbrium configuration in a time
short compared to the time between jumps. In the
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following it is assumed that this condition is met.
For a few simple lattices, there exist analytical
solutions for such random walks, which we shall
exploit. For more complicated lattices, the dif-
fevence equations describing the walk must be
solved by some approximate scheme. In the case
of two-dimensional lattices, such as we are now
considering, it can be shown® that the expectation
values in Eq. (2. 3) all become infinite for a lat-

tice of infinite extent. This difficulty may be over-

come by defining, for a finite lattice, the quan-
tities

G(k)=F(0)-F(), (2.4)
which remain finite as the boundaries of the lattice

recede to infinity. In terms of these quantities,
t for the triangular lattice is

t=+[G(1)-G(2)-G(3)]. (2.5)

These quantities have been evaluated’ analytically
and it is found that

t=5[1- (63 /m-2)- (8- 12V3 /)]

=V3/m- £=-0.28200445...

and (2.6)

f=(m+6V3)/(11m-6v3)=0. 56005706, .. .
These values agree to five figures with those given
by Compaan and Haven® and with the exact values
determined combinatorially by Schoen and Lowen.®

For the simple quadratic lattice it is easily
shown that

t=5[-F(0)+F(3)]=-1G(3)
=-3(4-8/m)=-0.36338023...

and 2.7)

f=1/(mr-1)=0.46694219... ,

where the exact value of G(3) is taken from
McCrea and Whipple.'° Again, these values agree
with those previously reported. 8°

The situation in the honeycomb lattice is illus-
trated in Fig. 2, from which it is easily seen that

t=%[-F(0)+F(2)]. (2.8)

This lattice-is so open that F(2) may be written as
a function of F(0) [F(2)= F(0)- %] immediately
from the difference equations, so that

t=— ’ f':

Similar considerations apply to the diamond lattice
where it is easy to show

t=3[-F(0)+F(2)],
F(2)=F(0)-%, (2.9)
t=—3, f=3.

In fact, this may be extended to » dimensions if

[
ol

I3

FIG. 2. Vacancy motion in the honeycomb lattice.

2z, the number of nearest neighbors, can be de-
termined, for obviously

f=&-2)z.

For example, if =4 the most open lattice is that
formed by placing a point in the center of a pen-
tahedron and its neighbors at the five corners;
hence, z2=5, and f= ¥. Incidentally, the formula
f=1-2/z is often used to estimate f, and we see
this is equivalent to replacing the given lattice
(fcc, say) with the most open lattice having the
same number of nearest neighbors.

III. CUBIC LATTICES

In considering diffusion in cubic lattices it is
possible to use the simple relation (2.1) because
all jumps are of the same type. For the simple
cubic (sc) lattice, it is easy to see that

t=4[-F(0)+F(4)] . (3.1)
The expectation values are found by solving the
difference equation
F,v,w)=0,0,0u0+ 5 [Fu - 1,0, w)+Flu+1,0v,w)

+F,v-1,w)+F,v+1,w)
+F@,v,w-1)+Fu,v,w+1)], (3.2)

where the vacancy has been placed at the origin
(0,0,0) and #,v, and w are the ordinary Cartesian
coordinates. McCrea and Whipple!® have shown
that (3. 2), for an infinite lattice, is satisfied by
the integral

Fu,v,w)= ?32— j

T T “lwly
cosua cosvfe
I dadp B
0o Jo

sinhy
(3.3)

-if

cosa + cosPB+coshy=3 .

It is thus only necessary to identify F(4) with
F(2,0,0) [or F(0,2,0) or F(0, 0, 2)] in order to use
their results in (3. 1).
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Unfortunately, only F(0, 0, 0) can be evaluated
exactly. The other integrals must be approxi-
mated numerically. These have been tabulated to
six-figure accuracy by Maradudin et al., * from
whom it is found

t=%(-1.516 386+ 0. 257 336)=—0. 209 842 ,
f=0.653109 .

These values agree to the accuracy of their cal-
culations with those given previously. '

The body-centered cubic (bcc) lattice is some-
what more difficult to visualize, and the situation
immediately after a tracer-vacancy exchange is
shown, in projection, in Fig. 3. The circles in-
dicate those neighbors to the vacancy that lie in
the even planes (0, £2, +4, ...) and the squares
those neighbors that lie inodd planes (+1, +3,...);
the first number identifies the neighbor in the
nearest plane, the second number that in the next
nearest plane, For example, the vacancy has four
third neighbors (only one is shown) in its plane and
eight third neighbors (four are shown) in the sec-
ond planes above and below its plane. From Fig.
3 it is seen that

t=3[-F(0)-F(2)+F(3)+F(5)], (3.4)

where an analysis similar to that of McCrea and
Whipple shows that the expectation values may be
written in the form

"(" cosuacosvBe *"dadp
0 cosa cosBsinhy

s

F(u,'l), w)= _12_ J
™ Jo
(3. 5)
with
coshy = (cosa cosp)™!
or

T =lwly
Flu, v, )= ?1_ J' j cosua cosvBe " dadp
o "0

(1- cos2a cos?B)1”2

Of the integrals in (3. 4), only F(0)=F(0, 0, 0) is
known., This has been evaluated by Watson'? to be

FIG. 3. Vacancy motion in the bcec lattice.

F(0,0,0)=(4/1)K*1/V2)= (4/13K §,

where K(x) is the complete elliptic integral of the
first kind. By exceedingly good luck, however,
it is possible to reduce (3. 4) to one integral that
can be evaluated. The procedure is as follows:
The difference equations for F(0) and F(1) yield

F(5)="7F(0)- 8 - 3F(2) - 3F(3) ,
so that
t=3[-8+6F(0)- 4F(2) - 2F(3)] . (3.6)

The analytical forms for F(2)[F(2, 0, 0)] and
F(3)[F(2, 2, 0)] may be converted to

i 2 (" (" c08% o dadp
F(2)=-F(0)+ ?J'o J‘o (1 —cos®acos2p)’® ’

F(3)= F(0) - —fg—j j
0 o
4 T T
5]
and

1/ 8 LA
t—§<—8+8F(0)—?—j0£

T T
==1+ -—1%2— j J- (1 -cos®acos?f)2dadp. (3.7)
o Yo

cos®a dadp
(1 = cos®a cos®p

172

cos?a cos?BdadpB
(1 -cos®acos?g)’? ’

cos®a cos?B dadB >
(1 =cos®a cos?p)t?

The integral, in its final form, has been evaluated
by Kaplan® as

S S (1 - cos®acos®p) 2 da dg = 2KG +7/2K}
(3.8)
whence
t==-1+(2/7%)KE - L K3?=-0.15794742. ..
and
£=0.72719414 ,

The value of ¢ agrees with that given by Schoen and
Lowen.” The two forms are connected by the Le-
gendre relation.* These results, together with
some additional integrals by Kaplan'® and the dif-
ference equations for the bcc lattice, make possible
the exact evaluation of many of the expectation
values (Green’s functions) for the bece lattice. The
details are given in Appendix A.

In considering the fcc lattice it would appear to
be wise to choose the direction of diffusion in such
a way that the plane perpendicular to that direction
contains as many nearest neighbors of the tracer
as possible, i.e., is a closest-packed plane. The
lattice projected on this plane is shown in Fig. 4,
where the direction of diffusion is out of the paper.
Again the circles represent sites in planes equiv-
alent to that containing the vacancy (say, a planes);
the squares represent sites in planes (say, b
planes), one above and two below the chosen plane.
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FIG. 4. Vacancy motion in the fcc lattice.

The triangles represent sites in planes ( ¢ planes),
one below and two above the vacancy plane. The
numbers near the sites represent neighbors to the
vacancy occupying those sites. Two of the pos-
sible sites for the tracer are shown. It is easily
verified that these yield the same expression for

t, namely,

t=4 [-F(0)-2F(1)+2F(3)+F(4)] . (3.9)

Solving the difference equation, which may be
written by inspection of Fig. 4, by the method of
McCrea and Whipple yields expectation values
given by

3 ("(" cosuacosvBe ™'"dadp
F(u’ v, w)= _7_;2- ’
00

(cosa +cosp) sinhy

(3.10)
with
coshy = (3 —cosacosp)/(cosa +cosp) .

These may be written in the form
3
F(u7 v, w)= _1_7_2_

« T cosua cosvBe " dadp
b ), [ 3 —cosacosp)® - (cosa+cosg)Zf? °

Of the integrals in (3.9), only F(3) contains the ex-
ponential term, and it may be eliminated by the
difference equations, so that

t= {5 [-3F(0)+4F(1) - 2F(2)+ F(4)] . (3.11)

Of these expectation values, F(0) and F(1) are
known:

F(0)=F(0,0,0)=1,3446611830...
and
F(I)EF(I, 1,0)=F(0)-1=0.3446611830...

from the difference equation for F(0). The other
two integrals,

F(2)=F(2,0,0)= -7;23—

1
(" cos2a dadp
xJ; L [8 -cosacosp)® - (cosa +cosp)Zf? ’
F(4)=F(2,2,0)= _1%_
cos2acos2B dadB

T T
on J; [(8 —cosacosp)? - (cosa +cosp)?[7Z ?
were evaluated by a computer program utilizing
Gaussian quadrature (16 and 24 points) to be

F(2)=0, 2299360607 ,
F(4)=0,170 8893539 .,

[This precision was not sought; it was given with
the program, which computed F(0) and F(1) to ten-
figure accuracy, so it is assumed that F(2) and
F(4) are equally accurate, | Substituting in (3.11)
yields

t=~0.1226800660, f=0.7814514220 .

The value of f given by Compaan and Haven®
(0.78146) is in excellent agreement.

IV. ANISOTROPIC LATTICES

The simplest extension of the method to aniso-
tropic lattices is to the primitive tetragonal lat-
tice, which is equivalent to a sc lattice with a
probability of movement v, in the xy, e.g., plane
and probability of movement v, perpendicular to
that plane. This case was considered by Mullen!®
in his pioneering work on anisotropic lattices. It
is, however, not much more difficult to consider
the primitive orthorhombic lattice, which we view
as equivalent to a sc lattice with probability of
movement v, along the x axis, v, along the y axis,
and v, along the ¢ axis. Letting

1 1 1
v,= —{—mmm— V:—.__—“'_.
27 2\ 1+p+v /)’ P 2\1+pu+v }?

v
Ye=o\1+ p+v )

the solution to the random walk of the vacancy may
be written as

1
Flu, v, w)= Tary

m
o7 cosua cosvBe " dadp
o Jo v sinhy

4.1)
with

cosa+pcosB+vcoshy=1+pu+v,
It is evident that the #'s are given by

. _ =G(2,0,0)
ta—-Va[—F(O,O,0)+F(2’0’0)]'“m’
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- uG(0,2,0) Ll
b=V [— F(Ov 0, 0) +F(0, 29 0)] = 'T(m::’_v)_ ) B33
“.2) 3?3 4 (2) 4
_ _ —VG(O’O,Z) 2l0¥2 2072
tc_Vc[ F(O, 0, 01)+F(09 0- 2)]“ 2(1+[L+U) ’ O O 0O
531, 53 53155 %3375
and Eq. (2.1) applies in all three cases. o ° o o
The evaluation of these, and related integrals, 350032 2,02, 350032 624062
is discussed in Appendix B, where Table III gives
the integrals for selected values for u and v. Use 5415, 515, 5,

of this table, and Eqs. (4.2) and (2.1), allows the

construction of Table I, which gives the correlation 3(133 4C2> "

factors as functions of 4 and v. The values cor- zoe e

responding to u (or v)=1 are those for the primi- FIG. 5. Vacancy motion in the body-centered-tetragonal
tive tetragonal lattice. Comparison with the val- lattice.

ues given by Mullen'® indicates that his results are

accurate to about 1%.

The difference equations resulting from a gen- of atoms in even planes and the squares those of
eralization of a random walk on the fcc lattice in atoms in odd planes. The neighbors occupying such
which the probability of movement in the xy plane sites are indicated in the figure.
is v,, in the xz plane is v,, and in the yz plane The solution to the difference equation for this
is v, can also be solved by an extension of the walk is
method of McCrea and Whipple. The complete ex- 1420 (" (" cosuacosvBe ™ dadp
tension given above does not appear to correspond F(u, v, w)= TI I v(cosa +cosp) sinhy  ’
to a lattice representing any physical array of 0o @.3)
atoms, but there appears to be enough interest in . :

, . X with
the Green’s functions of such a lattice to warrant cosa cosB+ v(cosa +cosp)coshy=1+2v
the presentation of the values of some of the func- ’
tions of this generalized lattice. These are given where v=v,/v,. The evaluation of these integrals
in Appendix C. is discussed in Appendix C. They are the integrals

If we specialize the case above to that in which listed along the diagonals (u=v) of Table IV.
v,=V,, the body-centered tetragonal (bct) lattice Now, inspection of Fig. 5 shows that there are
is obtained. In Fig., 5 the lattice is shown projected  two types of jumps, one in the plane occurring with
onto this plane. The circles represent the sites probability v, and one out of the plane with proba-

TABLE 1. Correlation factors for primitive orthorhombic lattice.
. 0.25 0.50 0.75 1.00 1,33+ 2.00 4.00
A
0.25 0.41405 0.47813 0.522 06 0.555 23 0.589 36 0,63778 0.716 69
0.50 0.53226 0.569 99 0.59880 0.62870 0.67155 0.74227
0.75 0.60363 0.62947 0.656 44 0.69534 0.76017
1.00 0.65311 0.67787 0.71373 0.77397
1.33°°° Sal,v) =f, 0, 0 0.700 36 0.73310 0.78850
2.00 0.76140 0.80978
4.00 0.846 55
o
0.25 0.77397 0.80978 0.83140 0.846 55 0.861 29 0.88096 0.91055
0.50 0.67155 0.71373 0.741 23 0.76140 0.781 69 0.80978 0.85407
0.75 0.60439 0.648 06 0.67787 0.700 36 0.723 53 0.756 43 0.81015
1.00 0.555 23 0.59880 0.62947 0.65311 0.67787 0.71373 0.77397
1.33¢°° 0.505 98 0.548 53 0.579 38 0.60363 0.629 47 0.667 69 0.73385
2.00 0.43830 0.47813 0.50808 0.53226 0.558 64 0.598 80 0.67155
4.00 0.33304 0.36608 0.39218 0.41405 0.438175 0.47813 0.55523
fe

fc(ﬂ, V) =f v, W
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bility v,. For diffusion along the ¢ axis only a
type-2 jump is required and we have

12
L T [~ F(0) - 2F(1y) - F(2)

+F(2,)+2F(3,) +F(4;)] (4.4)
and

fe=(+t)/(1-1,) . (4.5)

For diffusion in the a plane the situation is more
complex, however, for here both types of jumps
are involved. By inspection, it can be seen that

b= gErgy - FO )],

o1 1 1
lia= 21+2) [-4X3F(1,) +4X3F (3y) ]

= T].V-pi;)— [—F(11)+ A3,)],
) (4.6)
ta= g gy 1~ 2F (L) +2F(3y)]
- _Z_(TJ%TJ)_ [-F(L)+FB)]=v?t,,

taa= oy |- FO)+ F(20) - F2) + Fl&y)]
The value of £, could then be obtained by using Eq.
(1. 1) (assuming the values of the integrals were
known). However, to facilitate comparison with
the results of Mullen,'® we make use of the fact
that ¢, and ¢, are associated with position 1; and
Iy and f,, with position 1, and define®

fa=erfi (Lg) +caful(ly) , 4.7)

where the ¢’s are the fractions of jumps of types
1 and 2, respectively, and

(L +113) (A = £5) + 115(2 + 23y)
(1 = 211) (1 = t55) = 1oty

fa(10)=

(4.8)
(1 +155) (1 = t13) + 8512+ 45)
(1= 213) (U —#22) — tyaty »

The fraction of jumps which are of type 1 is given
by

fa(ll) =

4y, 1
4v,+8v, 1+2v
and those of type 2 by
8v, _ 2y
4v,+8y,  1+2v °

The integrals involved in the #;; are expressed
in terms of F(u, v, w) as follows:

F(O)EF(Oy 0, 0)’ F(lo)EF(ly 1’ 0)’ F(ll)EF(l’ 07 1) ’
F(ZO)EF(Z: 0’ 0)’ F(ZZ)EF(Z, 0’ 2)’ F(31)'=—F(2’ 17 1) ’

F(3,)=F(1,1,2), F(4))=F(2,2,0), F(4,)=F(2,0,2).

These can be read from Table IV in Appendix C
and the values of f,(1,), f£,(11), f,, and f, for some
values of v are listed in Table II. f,(1,) and £,(1,)
are more accurately defined versions of Mullen’ s
far and fg, and inspection shows that our results
disagree in the third significant figure, again in-
dicating that Mullen’s results are good to about 1%.

V. SUMMARY

It has been shown that correlation factors may
be calculated simply and with great accuracy for
those lattices for which an analytical solution
exists for the expectation that a random walker
will visit a given site of the lattice. These solu-
tions can be generalized to encompass anisotropic
walks and the correlation factors can be computed
as functions of the probabilities of motion in vari-
ous directions. The expectations of visits in these
cases are related to the Green’s functions for the
lattices and some of the Green’s functions for the
“anisotropic” cubic lattices have been computed
from the integral solutions.
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APPENDIX A: GREEN’S FUNCTIONS FOR bcc LATTICE

Here we give a brief exposition of the method
used to find exact values for the Green’s functions
for the bece lattice. The exposition makes use of
certain integrals evaluated by Kaplan®® and the dif-
ference equations relating the various functions.
The work below should be self-explanatory.

The integrals given by Kaplan are equivalent to

fo" fo” dadp(l - cos®a cos?p)” 2= 4K%1/2)
=4K;, (A1)

foﬂ fo’r dadp(l - cos®a cos?p)*?

=2KZ+ 1KY, (A2)
foﬂ f(;r dadpcos®a(l - costa cos?p)t/?

=2K5+7°(2K3)™ ,  (A3)
fov fo’r dadBcos® o (1 - cos®a cos?p)t/?

=3K3+ (2K, (A4)
f(;r fo" dadBcos®a cos?(1 — cos®a cos?p)/?

=2K§ - (2K))™,  (A5)
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TABLE II. Correlation factors for bet lattice.

v 0.25 0.50 0.75 1.00 1,33¢° - 2.00 4,00
fallp) 0.65723 0.720 34 0.75705 0.78145 0.80385 0.83124 0.86584
fa(1y) 0.85685 0.81564 0.79452 0.78145 0.77063 0.75763 0.74333
fa 0.72377 0.76799 0.77953 0.78145 0.779 69 0.77235 0.75694
fe 0.85078 0.81309 0.79358 0.78145 0.77233 0.75873 0.74443

Jy JiT dadBcos®a cos?B(1 ~ cos®a cos?p)M/
=4K:.  (A6)

The Green’s functions, for w=0, are given by

1
F(u, v, 0)= —=
|

w T
XI j dadBcosua cosvp(l - cos®a cos?p)t’?,
o Jo (A7)

The relations among (A7) and the various integrals
(A1)-(A6) are obvious'?:

F(0)=F(0,0,0)=1"%(Al)=47"2 K2=1. 393 203 930,

F(1)~F(1,1,1)=F(0) -1=47"%K% ~1=0. 393 203 930,

F(2)~ F(2,0,0)=271"2(A3) - 772(A1)= K;%=0.290 901 228 ,

F(3)~ F(2,2,0)=47"2(A5) -47%(A3) + m3(A1) = 4772 K2 - 4K;°=0. 229599016 ,
F(4)~F(3,1,1)=2F(2) - F(1)=1 -472 K2+ 2K;?= 0. 188 598 527 ,

F(5)~ F(2,2,2)=8F(1) - F(0) -3F(2) - 3F(3) = 1672 K2 + 9K;2 —8 =0, 190 926 774 ,
F(7)~F(3,8,1)=4F(3) - F(1) - 2F(4) = 2072 K& - 20K;? - 1=0. 147995080 ,

F1(10)~ F(3, 3, 3)=8F(5) - F(1) - 3F(4) - 3F(7)="167"2 K2+ 126 K;° — 63 =0, 124429444 .

The other Green’s functions depend on

F(6)~ F(4,0,0)
1 T T
=— f j dadBcosda(l - cosa cos?p)t/?,
0Jo
which may be written as
8 T T
F(B)= ?J’ I dadBcosa(l - cos?a cos?p) /2
o “o

- 877%(A3)+ (A1) .

By an extension of the method used by Kaplan, it
may be shown that

T T
J 5 dadBcosta(l — cos®a cos?p)t/?
o Jo

=¥ K3+ °(2K5)™" . (A8)
Therefore,
F(6)~ F(4,0,0)=87"%(A8) - 877%A3) + (A1)
=4(3m)2K2=0.154 800437 ,
Fy(10)~ F(5,1,1)=2F(6) - F(4)
=44(37)2 K& - 2K;? -1=0.121 002346 .

The Green’s function

r

T T
F(8)~ F(4,2,0)= 71? J J' dadBcosda cos2B
0 0

x(1 — cos?a cos?p) /2
may be written in terms of known integrals, (Al)—
(A8) and

T T
I f dadBcos*a cos?p(1 - cos®a cos®p) 2= LKE,
o Jo

(A9)
which results from the identity

cos*a cos?B(1 - cos®a cos?B) 2= cosla

x[(1 - cos®acos?B) /2~ (1 - cosa cos?p)}’?] .
Thus,

F(8)~ F(4, 2, 0)=167"%(A9) - 877%(A8) - 1677%(A5)
+10773(A3) - 77%(Al)
=9Ky% - 64(3m) 2 K2=0.141304 070,
F(9)~F(4,2,2)=8F(4) - F(2) - 2F(3) - F(5)
—F(6) - 2F(8)
=16 —~380(37)2 K% — 4K;%=0. 130 353606 .

This gives all the Green’s functions through the
first ten neighbor shells, and we do not continue
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except to remark that F(12) and F(15) are given by
the difference equations as

F(12)~ F(5, 3, 1)=4F(8) - F(4) — F(7) - F5(10)

=1 -444(37)2 K&+ 56K;2=0,107 620325 ,
F(15)~ F(5, 3, 3)=8F(9) — F(4) — 2F(7) - F1(10)
- F,(10) - 2F(12)
=191 - 3204(37)"2 K2 - 230K;%= 0. 097 567 724 ,

All of these values agree with those found indepen-
dently by Joyce.16

APPENDIX B: GREEN’S FUNCTIONS FOR GENERALIZED
sc LATTICE

It is shown in the text that the Green’s functions
for this lattice may be written in the integral form

Flu, v, w)= lrp+y
m
« (T dadBcosua cosyBe'"V
J; _L [A+p+v—cosa-pcosp)t~* 172
(B1)
where the exponential term is defined by the auxil-
iary relation above. If one attempts a numerical
evaluation of the integral as it stands, one obtains
only three-figure accuracy —even when using Gaus-
sian quadrature with 24 points over the B interval
and 32 points over the « interval. On the other
hand, the related integral

G(u, v, w)=F(0, 0, 0) — F(u, v, w)

is given to eight-figure accuracy by this simple
procedure. Because the difference integrals
G(u, v, w) were needed to calculate the correlation

1-3

factors, they were evaluated by the procedure
above.

In order to obtain the Green’s functions from the
related integrals it is necessary to obtain F(0, 0, 0)
to comparable accuracy. After applying some
transformations that exploit the equivalence of the
variables « and S, it is found that this function may
be written as

1 T
F(0,0,0)= —:Tguj da
0
o
xJ' dB{[(1+p+v-cosa~pucosp)® -2 12
0

+[(1+p+v-pcosa -cosp)® -2 ]2, (B2)

The Gaussian procedure applied to this formula ap-
parently gives ten-figure accuracy—as judged by
the fact that it reproduces Watson’s value'? for
p=v=1 to that many figures.

The Green’s functions for the generalized simple
cubic lattice for positions through the fourth neigh-
bor shell are given in Table III, Each part of the
table required about 20 sec of computation on the
IBM360-75 to evaluate the 49 integrals.

APPENDIX C: GREEN’S FUNCTIONS FOR GENERALIZED
fce LATTICE

We consider a random walk to nearest neighbors
on the fcc lattice of infinite extent with probability
of movement in the xy plane given by v,, that in
the xz plane by v,, and that in the yz plane by v,,
where we must have

4y, +4v,+4v,=1. (Cc1)

The difference equation defining this walk is

F(u, v, w)=0,00,0000+ Vo [Flu =1, v=1, w)+Fu -1, v+1, w)+ Flu+1,v-1, w)

+Fu+l, v+, w)]+v, [Fu-1, v, w-1)+"( -1, v, w+1)

+Fu+1, v, w=-1)+Fu+1, v, w+1)]+v, [Flu, v-1, w-1)
+F@, v-1, w+1)+Fu, v+1, w-1)+F(u, v+1, w+1)]. (C2)

The method of McCrea and Whipple'® may be ap-
plied to show that the solution of the difference
equation is given by

1
F (u; () w)= —=

T
(" cosua cospBe*"
XJO L dodp (4v, cosa +4v, cosp) sinhy

with (€3)

4v,cosa cosp+4v,cosacoshy +4v,cosfcoshy=1 .,

Writing
Vo /Ve= 1, Vo /V=V, (c4)

r

and using (C1), we may show that (C3)is equivalent
to

1
Flu, v, w)= thry
7
T T ~lwly
y dadp cosua cosvB e : ,
A (ucosa + v cosp) sinhy
(C5)
with

cosa cosfB+ u cosacoshy +vcosBcoshy =1+ pu+p .

For w=0, this integral may be written in the form
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TABLE III. Green’s functions for the generalized sc lattice.

N 0.25 0.50 0.75 1.00 1.83¢- 2,00 4.00

F(0,0,0)
0.25 1.77944426 1.67509740  1.66174752  1.67900191  1.72128845  1.83144802  2.17817095
0.50 1.57512036  1.55482225  1.56248129  1.59165757  1.67509740  1.95652311
0.75 1.52583186  1.52492603  1.54340867  1.60797008  1.84591934
1.00 1.51638606  1.52583186  1.57512036  1.77944426
1,33+~ F(0,0,0)=F%(0,0,0) 1.52492603  1.55723233  1.72540781
2.00 1.56248129  1,67509740
4.00 1.67900191

F(,0,0)
0.25 0.91490775 0.78345484  0.73561638  0.71622868  0.70966545  0.72337453  0.81429434
0.50 0.66460480  0.61751958  0.59548926  0.58356368  0.58492372  0.64056111
0.75 0.56841978  0.54368261  0.52789847  0,52170539  0.55791136
1.00 0.51638606  0.49743992  0.48563592  0.50851727
1.33+- F4(1,0,0)=F%(1,0,0) 0.47490847  0.45719443  0.46701733
2.00 0.43044943  0.42201495
4.00 0.38118775

F(0,1,0)
0.25 0.50851729 0.42201497  0.39265867  0.38118776  0.37742555  0.38529236  0.43601603
0.50 0.58492372 0.48563593  0.44780087  0.43044944  0.42114898  0.42201496  0.463 22904
0.75 0.65295199 0.54257341  0.49743992  0.47490847  0.46060984  0.45496132  0.48687594
1.00 0.71622868 0.59548926  0.54368261  0.51638606  0,49743992  0.48563593  0.50851727
1.33:++  0.79544875 0.66166871  0.60161566  0.56841977  0.54368262  0.52412312  0.53539062
2.00 0.94125423 0.78345485  0.70848072  0.66460481  0.62932408  0.59548926  0.58492372
4.00 1.31552479 1.09717536  0.98524197  0.91490776  0.85334450  0,78345485  0,71622869

F0,0,1)

F£0,0,1)=F%(0.1,0)

F(1,1,0)
0.25 0.42895949 0.34951612  0.32289064  0.31244699  0.30879940  0,31502854  0.35715335
0.50 0.45285151 0.36460803  0.33175235  0.31676453  0.30855942  0.30834063  0.33890829
0.75 0.47571622 0.37997955  0.34209718  0.32345205  0,31158033  0.30620001  0.32769850
1.00 0.49786223 0.39521024  0.35294235  0.33114861  0.31614073  0.30637879  0.32030525
1.83+++  0.52631884 0.41505541  0.36757516  0.34209718  0.32345205  0.30865520  0.31402479
2.00 0.57977864 0.45285151  0.39633884  0.36460803  0.33987251  0.31676453  0.308340 63
4.00 0.71850207 0.55267910  0.47494317  0.42895949  0,39065640  0.34951612  0.31244699

F(1,0,1)

FE(1,0,1) =F2(1,1,0)

F(0,1,1)
0.25 0.32030525 0.30834063  0.30815202  0.31244699  0.32121421  0.34249258  0.40829417
0.50 0.30637879  0.31034994  0.31676453  0,32701994  0.34951612  0.41587468
0.75 0.31614072  0.32345205  0.33425653  0.35697732  0.42261346
1.00 0.33114860  0.34209718  0.36460803  0.42895949
1.3+ F%0,1,1)=F2(0,1,1) 0.35294235  0.37485929  0.43710457
2.00 0.39521023  0.45285151
4.00 0.49786223

F@,1,1)
0.25 0.30061002 0.28219457  0,27749431  0.27812285  0.28272800  0.29707413  0.34711068
0.50 0.26976276  0.26637021  0.26687100  0.27051140  0,28219457  0.32453052
0.75 0.26274839  0.26253979  0.26499833  0.27422696  0.31033211
1.00 0.26147013  0.26274839  0.26976276  0.30061002
1.33% %+ F&(1,1,1)=FY%1,1,1) 0.26253979  0.26692267  0.29181103
2.00 0.26687100  0.28219457
4.00 0.27812285
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TABLE III. (Continued).
pi 0.25 0.50 0.75 1.00 1.33¢e- 2.00 4.00
F(2,0,0)
0.25 0.53631950 0.43938498 0.40569832 0.392079 21 0.38689979 0.393 85762 0.44532649
0.50 0.354 08280 0.322294 20 0.30778001 0.29982942 0.299 621 96 0.32930790
0.75 0.28997547 0.274 26558 0.26439431 0.26016501 0.278968 30
1.00 0.257 33590 0.24589371 0.238777 36 0.25047667
1.33°¢ F{,‘(2,0,0)=F‘f(2,0,0) 0.23265848 0.222548 89 0.22749459
2.00 0.207 896 80 0.20362064
4.00 0.18322597
F(©,2,0)
0.25 0.25047668 0.203620 69 0.188753 88 0.183 226 04 0.18165963 0.186043 83 0.21186528
0.50 0.29962195 0.23877735 0.217 32640 0.207 896 80 0.20302019 0.203 620 67 0.224 88825
0,75 0.34665182 0.27353948 0.245893 69 0.23265847 0.22447928 0.221 23079 0,23777246
1.00 0.39207921 0.30778000 0.27426556 0,257 33584 0.24589370 0.238777 36 0.250476 68
1.33° 0.45064185 0.35258637 0.31166241 0.289 975 46 0.274 26556 0.262007 27 0.26713850
2.00 0.56222645 0.43938499 0.38476078 0.35408279 0.33015379 0.307 178000 0.299621 96
4.00 0.86479383 0.68040095 0.590699 71 0.536319 53 0.49011852 0.43938499 0.39207922
F©0,0,2)
F¥(0,0,2)=F2(0,2,0)
l+u+v T T this form yielded only three-place accuracy, and
F(u, v,0)= —Z j’ J dadB the modification used in Appendix B (to write the
0 7o integral over B from 0 to « and to interchange «
and B in the integrand) increased the accuracy to
x cosua czosvﬁ S only four places.
[Q+p+v-cosacosp) - (ucosa+vcosp)’] By examining the detailed behavior over the in-
(Cce) tegrand over the region of integration it is seen
Attempts to evaluate numerically the integral in that (C6) may be written in the form
J
l+p+v /2 « 1+ (-1)*"]cosua cosy
Fu, v, w)= —F5—— da dag L )z ] ZNI7Z B
7 (T11 — T12)
0 ]
[1+(-1)**]cosuBcosva [(=1)*+ (= 1)°] cosua cosvp
- RN ) 172
(ThH - T3.)" (T3 - T32)'
[(=1)*+(-~1)’]cosuBcosva > )
(Th - Te) " ’

where
Ty3=1+p+v-cosacosB,
Typ= ucCOSa+VCOSB,
Tyo= pcosp+vcosa,
Ts1;=1+pu+v+cosacosp,
Ty2=pcosa —vcosg,
T4o= pcosf—-vcosa .

A numerical evaluation of (C7) using the Gaussian
quadrature scheme described earlier apparently

yields ten-place accuracy.

The Green’s functions that involve even values
of w are given to comparable accuracy by the same
stratagem, but those involving odd values of w are
given to only three or four figures. The difficulty
is apparently concerned with the peculiar behavior
of the auxiliary condition of (C5) over the range of
integration. The accuracy of the computation may
be improved (to six figures) by careful handling of
the difficult regions, but a much easier procedure
is to change an integral involving an odd value of
w to one involving an even value of w by transform-
ing the coordinates. Thus,
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TABLE IV, Green’s functions for the generalized fcc lattice.

pix 0.25 0.50 0.75 1.00 1.330 ¢+ 2.00 4.00
0.25 1.14329251 1.37851393  1.36723881  1.36641753  1.37309916  1.39698779  1.47882097
0.50 1.35911945  1.35252152  1.35263503  1.35840041  1.37851393  1.45042424
0.75 1.34682399  1.34634629  1.35044393  1.36661062  1.42930999
1.00 1.34466118  1.34682399  1.35911945  1.41329251
1.38¢ -+ F¥(0,0,0)=F2(0,0,0) 1.34634629  1.35376793  1.39755214
2.00 1.35263503  1.37851393
4.00 1.36641753

F(1,1,0)
0.25 0.46126319 0.41596242  0.39041547  0.37405966  0.35972294  0.34338299  0.32555415
0.50 0.38952166  0.37265873  0.36103634  0.35027548  0,33731443  0,32230526
0.75 0.36048151  0.35167118  0.34319166  0.33254458  0.31961329
1.00 0.34466118  0.33771897  0.32871724  0,31735114
1.33¢ F¥(1,1,0)=F%(1,1,0) 0.33214660  0.32468081  0.31485181
2.00 0.31902979  0.31111894
4.00 0.30528041

F(,0,1)
0.25 0.31735114 0.31111894  0.30750857  0.30528041  0.30350659  0.30197776  0.30208687
0.50 0.33731443 0.32871724  0.32301291  0,31902979  0.31536197  0.31111894  0,30715200
0.75 0.35624666 0.34534431  0.33771897  0.33214660  0.32676300  0,32003833  0.31225357
1.00 0.37405966 0.36103634  0.35167118  0.34466118  0.33771897  0.32871724  0.31735114
1.33--+  0.39617993 0.38063352  0.36920364  0.36048151  0,35167118  0.33990894  0.32409955
2.00 0.43566645 0.41596242  0.40110863  0.38952166  0.37755082  0.36103634  0.33731443
4.00 0.52818359 0.50036302  0,47868224  0.46126319  0.44271142  0.41596242  0.374 05966

FO,1,1)

F¥0,1,1)=F2@,0,1)

F(2,0,0)
0.25 0.29531983 0.25886160  0.23815323  0.22469809  0.21264817  0.19834802  0.18098353
0.50 0.27335336 0.25023021  0.23506228  0.22430228  0.21400244  0,20089459  0.18355235
0.75 0.26702839 0.24884886  0.23598630  0.22638974  0.21682420  0.20409753  0,18627125
1.00 0.26741030 0.25111405  0.23912905  0.22993605  0.22055527  0.20773198  0.18909354
1.33++  0.27282016 0.25708424  0.24523838  0.23598630  0,22638974  0.21306404 0.19296331
2.00 0.29026086 0.27335336  0.26044117  0.25023021  0.23950832  0,22430228  0.20089459
4.00 0.34954563 0.32690392  0.30936270  0.29531983  0.28039311  0.25886160  0.224 69809

F(,2,0)

F£0,2,0)=FZ(2,0,0)

F(0,0,2)
0.25 0.18909354 0.20089459  0.21288746  0.22469809  0.23993263  0.26837685  0.33963021
0.50 0.20773138  0.21576107  0.22430228  0.23593499  0,25886160 0,320 07766
0.75 0.22055527  0.22638974  0.23500927  0.25327016  0.30587428
1.00 0.22993605  0.23598630  0,25023021  0.29531983
1.33+0+ F%(0,0,2)=F2(0,0,2) 0.23912905  0.24878482 0,28517443
2.00 0.25111405 0.27335336
4.00 0.26741030

F(2,1,1)
0.25 0.21879260 0.20439368  0.19551340  0.18947608  0.18390534  0.17713100 0,16880491
0.50 0.21567506 0.20432317  0.19667547  0.19117509  0.18587078  0.17910444 0,17026471
0.75 0.21543061 0.20551824  0.19848642  0.19324394  0.18803495  0,18115985 0.17175621
1.00 0.21642230 0.20728739  0.20058686  0.19546671  0.19026914  0.18323235 0.17325531
1.33+++  0,21857611 0.21001459  0.20354497  0.19848642  0,19324394  0.18596279  0.17524137
2.00 0.22370440 0.21567506  0.20938572  0.20432317  0.19893145  0,19117509 0.17910444
4.00 0.23748468 0.23005181  0.22393207  0.21879260  0.21308542  0,20439368  0.18947608

F(@,2,1)
F:@,2,1)=FY2,1,1)
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TABLE IV. (Continued).
T 0.25 0.50 0.75 1.00 1.33 2.00 4.00
F(@1,1,2)
0.25 0.17325531 0.17910444 0.18452638 0.189 476 08 0.19540116 0.205 361 66 0.22579406
0.50 0.18323235 0.18730108 0.19117509 0.19597872 0.204 393 68 0.22271502
0.75 0.19026914 0.193 243 94 0.19708603 0.204 130 46 0.22045621
1.00 0.195466 71 0.19848642 0.204 32317 0.21879260
1,33 ¢ Fi(1,1,2)=F2(1,1,2) 0.200586 86 0.20503294 0.21724726
2.00 0.207 287 39 0.21567506
4.00 0.21642230
F@,2,0)
0.25 0.22750323 0.203 36000 0.19061459 0.18283778 0.176 30636 0.169 25479 0.162224 40
0.50 0.190512 61 0.18267946 0.177 466 22 0.172793 20 0.167 397 21 0.16157694
0.75 0.17740239 0.173 67831 0.17017817 0.165 920 26 0.16101885
1.00 0.170 889 34 0.16817173 0.164 72514 0.16053462
1.33%¢0 F$(2,2,0)=F)(2,2,0) 0.16614370 0.163 45584 0.15998334
2.00 0.161 66482 0.15912798
4.00 0.15770918
F@2,0,2)
0.25 0.16053462 0.15912798 0.15826319 0.15770918 0.157 25349 0.156 836 90 0.15676951
0.50 0.16739721 0.164 72514 0.16292886 0.161 66482 0.16049391 0.15912798 0.157798 24
0.75 0.17501064 0.170970 86 0.16817173 0.16614370 0.164 20165 0.16180532  0.15907667
1.00 0.18283778 0.177 466 22 0.17367831 0.170889 34 0.16817173 0.16472514  0.16053462
1,33 0.19324691 0.186209 77 0.18116777 0.177402 39 0.17367831 0.16884782  0.16267806
2.00 0.21333810 0.203 360 00 0.19606223 0.190512 61 0.18492061 0.17746622  0.16739721
4.00 0.26626296 0.24973381 0.23725703 0.227 503 23 0.21739413 0.20336000  0.,18283778

F0,2,2)
FY0,2,2)=F2(2,0,2)

F(2,1,1)-F(1,1,2) with p—pu/v, v-1/v.
(C8)

The values listed in Table IV were obtained by
using such transformations.

The Green’s functions for the generalized fcc
lattice for positions through the fourth neighbor
shell are given in Table IV. Each part of the table
(49 integrals) required about 40 sec of computation
on the IBM360-75 computer,

*Based on work performed under the auspices of the U. S.
Atomic Energy Commission.
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