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The energy and angular distributions of desorbed adatoms, and the temperature dependence and absolute
magnitude of the desorption rate, are studied numerically within a three-dimensional quantum treatment of
desorption. Model parameters appropriate to Ne adsorbed on Xe-covered graphite are employed. The
angular distribution is found to peak strongly in the forward direction, and the energy distribution peaks
strongly for final adatom energies near to zero. The temperature dependence of the rate is found to vary as

e ~PEo with a prefactor ~10° sec™.

I. INTRODUCTION

The desorption of adatoms from solid surfaces
has long been a subject of considerable interest,
both theoretically and experimentally.® In the
preceding paper (henceforth referred to as I), we
presented a three-dimensional multiphonon-quantum
theory of phonon-induced desorption. The results
of the formal theory were applied to obtain various
expressions for the desorption rate of adatoms from
localized states, for systems characterized by a
Morse-like interaction potential between the adatom
and the crystal atoms, and for a bulk Debye model
of the substrate.

In this paper we present various numerical com-
putations of the single-phonon rate as derived in
Sec. IV of I. A numerical computation of the
multiphonon rate, including up to three-phonon
processes, based on the multiphonon expression
givenin Eqgs. (4. 20)and (4. 23)of I, was presented
in Ref. 2. The essential features of the latter
computations are summarized in Sec. II. The
principal quantities of interest in the present paper
are the energy and angular distributions of
desorbed adatoms, and the temperature depen-
dence and absolute magnitude of the desorption
rate. The dependence of the rate on various sys-
tem parameters and on the substrate structure is
also considered. For simplicity, we here em-
ploy just the bulk-mode correlation function ap-
propriate to a free surface, Cy (see Sec. IV of I).
The extension to include surface modes involves
a straightforward, although more tedious, com-
putation which we do not undertake here.

In Sec. II we describe computations for model
parameters appropriate to Ne adsorbed on Xe-
covered graphite, % and present the results. In
Sec. III we summarize our conclusions, and make
contact with predictions based on the formal re-
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sults of the preceding paper. A comparison with
other theories and a discussion of the relation to
experiment are also given.

The notation employed here is that of the pre-
ceding paper, to which the reader should refer for
the detailed meanings of various symbols.

IL NUMERICAL COMPUTATIONS FOR MODEL SYSTEM

A. Description of Computations

In this section we present a description of the
computation of the single-phonon rate as derived
in Paper I. The rate takes the form

R(k, 0)=27R® 5 fi+,1,8,E)
'l,X”,zl,z],ﬁ

X[Jo(di X ksing) (af+alk,+akk?sin0 +a} k2)
—aiX,; ksindJy(d 1 X,; ksind)]
xexp(di+dif,+dik®sin20 +dik2), (2.1)
where
£ i=sinlkg §; ER®)] (%) (e®® - 1)
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where E is the final adatom momentum, @ is the
desorption angle (measured from the normal to
the surface), the J’s are Bessel functions, and
R{Y, s', and the a;’s and d,’s, are defined in de-
tail in Sec. V of I. The latter are functions of the
fundamental parameters 72, m;, and E,. 7,and
7, are the parameters of the interatomic Morse-
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like model potential v, where v= Vy(f2-f),
f=exp[ - 2(#*-7%)/7%); 7, and 7, are the vibration-
al ranges in the localized initial-state wave func-
tion P~exp[ —L1(x®+9?)/ri+(z —20)%/7%; m, and
mg are the adatom and substrate masses, respec-
tively; E, is the “binding energy” of the adatom
in its well; Eg=E,~ Uy+€, where 2U, is the later-
al variation in the adatom potential V%) and €,

is the energy of the adatom measured from the
well bottom (see Fig. 2 of I); and cq=7%/m wpad
is the multiphonon expansion parameter.

In a first-principles formulation, the specifica-
tion of v(¥), and the substrate configuration, en-
ables one to compute VO(F). Averaging V® over all
‘angles in the surface plane, one may then obtain
7y and 73 as (F=1)

-1 -
2 1. a1 82V0 2_ 1. -1 32VO 1
V2=2M, aX'Z 0 s V3=zM, 322 0

, (2.2)
where 0 indicates evaluation at the well minimum.
Likewise, Ey, E, and z, follow directly once V°
has been averaged over the plane. These param-
eters (plus those specifying v) determine fully the
adatom properties. In practice, the above pro-
cedure is limited by the availability of systems
for which the full complement of substrate and
adatom microscopic properties are known.

For the present computations we employ the re-
sults of a computation of V° for Ne adsorbed on
Xe-covered graphite (carbon black), as carried
out by Steele ef al.** This seems to be one
of the few physisorption systems where detailed
computations of V% and comparison with experi-
ment, has been pursued. However, the main in-
tent of the present computations is not to obtain
quantitatively accurate predictions for the partic-
ular system Ne-Xe-C. Rather, we employ the
available data for this system as a basis for choos-
ing qualitatively reasonable parameters with which
to pursue representative computations for low-
temperature physisorption systems.

Values of certain of the parameters employed
are listed in Table I. Some of the choices of the
parameters in the computations involve the fol-
lowing considerations.

(@) Compromises between theoretically pre-
dicted and experimentally observed values were
made when these were in conflict.

(b) Although the model employed in obtaining
v is the Lennard-Jones potential vy, we employ
the Morse-like potential » in computing the inter-
action matrix elements. In most of the computa-
tions, we employ for the additional range param-
eter 7, in v the value unity, although the hard core
disappears for this value. The presence of the
hard core should be less important for the present
model, where the assumptions of a highly localized
initial state, and deep well for the final state, are
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TABLE I. Ne-Xe-C pararmeters.

Xe substrate structure: simple cubic .

Xe lattice constant ¢;=4.31 A.

Adatom vibrational energy v =56 °K .
Vibrational range in plane, 7,/a,=6.2x 1072,
Vibrational range in z, 73/ag=2.8% 1072,
Adsorption distance z¢/ay=1.

Bulk-mode Debye temperature Tp =343 °K.
Phonon expansion parameter Cy=0.85x 1074,
Well depth energy E,=231°K.

Potential variation in plane 2Uy=100 °K.

built into the model. In support of the latter con-
tention, we will indeed find that the rate varies
comparatively slowly with »,, as 7, is varied from
unity down to values where v closely simulates
vyy (see Paper I). In a more detailed treatment,
one may consider two other possible criteria:

the shape of the total V° arising from »’s with
various 7,’s, as compared to that resulting from
vy,y; and the values of the curvatures at well bot-
tom for v as opposed to v;. As these various
criteria generally lead to different values of 7,
the use of v would appear to be most reliable when
the dependence of R on v, is weakest.

(c) The numerical results displayed in Ref. (3)
are not detailed enough to compute 7, and 753 ac-
curately. Rather we assume that the localization
of the adatom is greater in the z direction relative
to that in the plane. Correspondingly, we choose
to break up the available value of the adsorbed
state vibrational energy in the arbitrary propor-
tion of 5:2 in the z relative to the plane.

(d) The phonon model ought to include modes
appropriate for a coupled Xe-C substrate. Infor-
mation about these modes does not seem to be
available, but even if it were, it is unlikely that
the details could be adequately incorporated in a
simplified Debye model such as employed here.
For these reasons, we adopt the view that a small
number of Xe layers do not significantly affect the
bulk-mode correlation function Cg, so that a Debye
model for the graphite alone is appropriate.

As noted previously, the computation of the
rate involves a sum over discrete sites, which
accounts for the particular geometry of the sub-
strate in the vicinity of the adatom. The number
of sites necessary in the sum depends on the sys-
tem parameters, as may be observed directly
from Eq. (2.1). For the Ne-Xe-C system, it was
found that to obtain R to an accuracy of about 5%,
one needs to include sites suchthat 72=X2, + (z; £ 2,)?
~ 30—40. In general, this necessitates including
about twenty distinct (nonequivalent) sites in the
plane. One reason why so many sites need to be
considered, despite the exponentially decreasing
behavior evident from Eq. (2.1), is that the con-
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tributions from each site oscillate in sign, as may
be seen from the sin(r,...) factors. The compu-
tations presented here carry out the sum over
sufficient sites so as to achieve about 5% accuracy.
Examples of the site configurations for various
cases are illustrated in Fig. 1.

In the present computations of the rate, we do
not include the rapidly oscillating contributions
of Paper I, as these lead, in general, to a small
contribution to the total rate, and because such
oscillations are expected to be difficult to observe
experimentally. To obtain an estimate of the os-
cillation involved, let us consider the behavior for
a square well of width (zo—a). The factor e%¥¢
appearing in Eq. (4.17) of I for the rate then be-
comes e%i*#*"/t ' For E(k)<E,, where the rate
is largest, 2,~ (2m,Ey)*? [1+0.5E(k)/E,]. For
example, for Ey~0.5, a~a,~1, one has an oscil-
latory factor ~exp[2iVm,E(k)]; for Ne, Vm,~ 60 in
dimensionless units, corresponding to a period
~ 20 oscillations per unit energy; for an m, ap-
propriate to xenon the period ~50. In a more de-
tailed treatment, or when greater accuracy is re-
quired, it is straightforward to include these terms
in numerical computations in an exactly parallel
fashion to the nonoscillatory terms computed here.

Comparison with bulk computations. As demon-
strated in the present treatment, various differ-
ences arise between. the calculation of rates at
surfaces of solids, as opposed to those in the bulk.
These stem principally from the breaking of the
translational invariance at the crystal surface.
For example, while only single sums over ¢, and
z; would result in the bulk case, double sums,
over g, and ¢4, and z; and z;, remain in the sur-
face case. In constructing the correlation func-
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FIG. 1. Geometrical configurations describing sc
(100), sc (110), and bee (100) adsorption. (a) xy, ¥z, and
xz planes of sc (100). (b) sc (110) configuration. . (c) The
same for bee, indicating the alternating layers of atoms
comprising unit cells.

tion C, boundary conditions at the surface need be
accounted for. A calculational aspect peculiar to
problems such as desorption is the necessity for
summing over a discrete configuration of lattice
sites ﬁ, in computing R, instead of integrating
over ﬁ,. The influence of the specific nature of
the lattice configuration in surface problems is
well known in a wide variety of situations. More
than merely a single or few sites are required in
computing R, in general, although the sum does
converge rapidly when Iﬁ,l exceeds some finite
value.

The sum over sites and the time Fourier trans-
form can be carried out analytically for the Ein-
stein model. The former is a consquence of
functions in (R, R;) arising in C. The latter fol-
lows by equating transforms of the form [dtexp(iwt
+ae*'“%) to sums over Bessel functions. The
computational advantages of this model, however,
are offset by its artificiality. For this reason,
we have not here presented computations within
the Einstein model. In connection with problems
where the optical modes dominate the processes
of interest, such as may be the case in photode-
sorption, for example, computations within the
Einstein model may become appropriate.

B. Results

In this section computations of the single-phonon
rate of Eq. (2.1), illustrating various dependences,
are presented.

Figure 2 illustrates the rate R(k, 6 =0) (which
is the desorption rate per unit solid angle in the
forward direction, integrated over all angles in
the plane) as a function of the adatom’s final energy
E=£k%/2m,, for Ne-Xe-C. The effect of variations
in 7y, 74, 1f§, and 'rg, E,, and m,, are also illustrated.
The curves are truncated at the single-phonon cut-
off appropriate to the two values of E, employed
[for the energies above the cutoff Eq. (2.1) is,
of course, not applicable]. A general feature of
the results is the strong peak near E=0, corre-
sponding to an extremely narrow energy distribu-
tion of desorbed adatoms. For energies above
the peak, R is seen to be very nearly an exponen-
tially decreasing function of E. The fact that R
peaks at a value of E somewhat above E=0is a
consequence of the WKB wave function, which is
proportional to VE; for a free final state, for
example, the peak would occur exactly at E=0.

Figure 3 illustrates the rate for desorption in
the forward direction, R(6=0), as a function of
temperature. R is seen to follow a nearly expo-
nential law, RZRexp(-BE}), at low temperatures,
departing somewhat at higher temperatures, where
Bose-Einstein statistics become important. Note
that the effective adsorption energy E{ exceeds
E,, being close in value to the energy for which
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FIG. 2. ln of desorption rate in normal direction
R(, 6=0) vs final energy E/Ep. All curves are for

parameters listed in Table I with the following variations:

(1) ,=0.25; (2) ;=0.5; (3) no variation; @) 7,=0.75,
2p=0.75; (5) ¥3— 27 (6) Ey=0.75; (7) m —2m. Calcu-
lations are carried out for T/T,=0.25. See, also, the
footnote to Table II.

the product E(k)R(%) is maximal. For Ne-Xe-C
the prefactor Ry~ 10° sec™’. Values of R, and
To=Rj' corresponding to various values of the pa-
rameters are listed in Table II

Figure 4 illustrates the angular properties of
desorbed adatoms. Figure 4(a) shows that rate
R(0) peaks strongly in the normal direction com-
pared to the cosé distribution. Increasing 6 is
also associated with a sharper peak in the energy
distribution, as illustrated in Fig. 4(b). Temper-

o)

In R(8

i 1
2 4 6 8 10 12 14 6 18 20
T, /T

FIG. 3. In of total rate in forward direction, R(6=0)
vs inverse temperature Tp/7. Labels correspond to
those in Fig. 2.

TABLE II. Desorption rate prefactors, and lifetimes at

T=0.25TD-

Case Ry(sec™)) To(sec)  T[T/Tp=0.25](sec)
71=0.25 8.1x10° 1.2x10°¢ 7.2x10"
71=0.50 3.3x10° 3.0x10°¢ 1.8x10°3
71=1.0 7.3x 10  1.4x10°° 8.4%x107
r§=2v% 1.6x10* 8.6x10°° 5.2% 1072

—-— a
Mma IMmeT 3 gx 101 3.3x 1072 2.0x 10!
Mg = 2mMg
E,—0.75 5.5x10® 1.8x10-3 7.2
bee (100) 6.0x 10 1,7x10°° 1,0x 10

2Note that variations in m alone are not, strictly speak-

ing, physically reasonable. Since 7'%'3061%;1 [ef. Eq. (2.2)]

and since it is the combination 73,3m, that appears in the
crucial places in the rate, it is more appropriate to view
the present results as approximately appropriate to varia-
tions in the product ma'r%'3.

ature dependences are illustrated in Fig. 4(c).

As the peaks in Fig. 3(b) occur at nearly the same
E, the R vs T"! curves are nearly parallel. The
total rate for the parameters of Fig. 4 is approxi-
mately 0.8R(6=0) at 25 °K, corresponding to a
prefactor ~ R, the prefactor obtained from the
R(0=0) rate. The value of R, is seen to be con-
siderably smaller than the adatom vibrational
period p~l= 102,

The dependence of desorption on the substrate
structure is considered in Fig. 5, where the rate
for sc (100), sc (110), and bee (100) faces is illus-
trated (see also Fig. 1). The magnitude and shape
of the energy distribution is seen to indeed depend
on the substrate configuration, as would be ex-
pected. For example, a difference of about a
factor of 3 between the value of R, for sc (100) and
sc (110) is predicted. Differences in the energy
distribution are washed out in the temperature
dependence, as illustrated in Fig. 5(b).

Note that in our derivation of the desorption
rate of Sec. T A, we have suppressedvarious fac-
tors of volume and area for notational convenience.
A careful accounting of these factors shows that
the desorption rate is proportional to the factor
ai/a,, where a is the surface area per substrate
atom. In addition, the function C is proportional
to vo/ad, where v, is the volume per particle; also
adkp=6n2ad/vy. For the sc structure ad/a,=v,/a}
=1, leading to the results in Sec. IIA. To com-
pare bcc results to sc, we choose in the bcc case
to scale by 0. 8a, (rather than ay), which is very
close to the interatom separation, but leaves kg
unchanged. Thus 7Z~0.684r%, for example.

The effect of employing a smaller number of
sites in the sum in computing R (%) is illustrated
in Fig. 5(a). Oscillations that result in this in-
stance are smoothed out as more and more sites
are included.
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FIG. 5. Effect of substrate configuration on desorption
rate. (a) In R(k, 6=0) vs E/Ep, for three configurations.
The dotted line indicates results of the bee (100) compu-
tation when the number of sites included is half that in

the solid-line curve. (b) InR(6=0) vs Tp/T for various
configurations.

In R(K,8)

To obtain a picture of the multiphonon proper-
ties of the rate, we refer to the computations in
Ref. (2). These results indicate® that at the nth
phonon cutoff, the energy distribution suffers an
abrupt decrease of order C,, as expected from I.
These discontinuous drops in R reflect the abrupt
cutoff characterizing the Debye spectrum. For
a more realistic phonon spectrum, the decrease
would be expected to become continuous. It is
clear from these observations that at low tempera-
tures the lowest phonon process allowed by energy
conservation dominates the rate.® The multiphonon
formalism is most useful when only higher-order
) , . ) , . ) . phonon processes are allowed because of energy
2 4 6 8 10 12 14 16 18 20 conservation, or for high-temperature computa-

/T tions (not considered here) where the phonon pop-
ulation is proportional to T.

0.4

In R(8)

FIG. 4. Angular properties o the desorption rate.

(a) R(6)/R(0) vs desorption angle 6, for Table I parame~ IIL. DISCUSSION
ters, at T/Tp=0.25. (b) Energy distributions, in
R(k, 6) vs E(k)/Ep, at different desorption angles. In this section we summarize the general prop-

(c) Total rate vs Tp/T at different angles. erties of the desorption rate emerging from the
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present treatment and discuss the sensitivity on
various system parameters. Comparison with
one-dimensional surface calculations and a dis-
cussion of the relation between theory and experi-
ment is given.

A. General Properties of Desorption Rate

We briefly outline various general properties of
the desorption rate emerging from the analytical
and computed results of the present treatment.

At very low temperatures, the dependence of
R(k) and R on 8 is very nearly e ®%, where E=E(k)
for R(k) and E=E(R E, for R. The effective ad-
sorption energy E{ exceeds the well depth E;, as
discussed in Sec. IIB. At higher T, the Bose-
Einstein statistics describing the phonons lead to
deviation from the exponential law.

The energy distribution of desorbed atoms peaks
sharply at a value of final adatom energy E near
zero. The peak lies above, rather than at, zero
because of the proportionality of the distorted
final-state wave functionto VE . The rate decreases
nearly exponentially above the peak, as a result
of exponentially decreasing terms arising in the
factor qb(E—E) entering the transition matrix ele-
ment. Also, as the energy increases to where #
phonons are required to conserve energy, the rate
decreases by Ci~'. The decrease occurs abruptly
for the Debye model at each n-phonon cutoff, but
smooths out for more realistic phonon spectra.

The total rate is characterized by prefactors’
many orders of magnitude smaller than the vibra-
tional frequency of the adatom in its well, as op-
posed to the classical theory of Frenkel.® The
prefactor R, is found to be typically ~ 10° sec™! for
the Ne-Xe~C system. This result is consistent
with perturbation theory, which requires that
R (< adsorption binding energy.

The angular distribution peaks very sharply in
the forward direction as compared to a cosé dis-
tribution. The total rate over all desorption
angles 6 turns out to be of the same order of the
differential rate with respect to cosf. To com-
pute the angular distribution more accurately,
diffraction effects need to be included in computing
¢>(E), and the Umklapp terms included in obtaining
R(6).

B. Sensitivity of Rate on System Parameters

From Paper I one observes that the rate depends
via exponential factors on the binding energy E,,
and the ranges 7;. For typical values of the re-
maining parameters, the sensitivity on 72 and 1f§,
through di and d} of Eq. (2.1), for example, is
the strongest from among the »;’s. Typically
79~ 1 for physisorption systems, and the depen-
dence on 7, is relatively weak. The strong de-
pendence on 1’§ and 'r§ may result in strong angular
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variations in desorption, and departures from
cosé distributions such as illustrated in Fig. 4(a).
For 75> 7%, as is generally the case, the distri-
bution peaks strongly in the forward direction. In
order to obtain accurate theoretical predictions

of the magnitude, and energy and angular depen-
dence of the rate, one thus requires accurate in-
put values for 7% and 72

One may deduce from Eq. (2.1) that in general
one must sum over an extended number of sites
to obtain accurate results for R. The shape of
the energy distribution, for example, is extremely
sensitive to the number of sites included, as men-
tioned in Sec. II. The present results demonstrate
clearly the inadequacy of the approach of Lennard-
Jones, Devonshire, and Strachan (LJDS), ® where
only a single site is included in the sum.

A strong dependence of the rate on the adatom
mass is also evident, the rate decreasing rapidly
with increasing m, and all other parameters re-
maining fixed. However, it is clear that a change
in m, strongly influences the 7;’s and E,, so that
considering changes in m, alone may not be mean-
ingful.

As demonstrated in Sec. II, the rate does depend
on the substrate configuration, although relatively
weakly. This result is anticipated by noting the
oscillatory nature of the contributions by site to
the rate, which minimizes the effect of the de-
tailed distribution of the sites in the vicinity of the
adatom. Inthe present treatment, the desorption
rate depends only on the adsorption energy E,, but
is independent of adsorption position above the
substrate cell (see Sec. III of I).

As mentioned above in various connections, de-
tailed dependences on system parameters involve
the strong interdependence of the various param-
eters. For example, it is only partly meaningful
to characterize the dependence of R on v, as pro-
portional to v% since v, affects the size of V®and
thus 72, 7% and E,. These observations point
out the desirability for self-consistent computa-
tions following from a single microscopic model,
although such a computation is a formidable task.
Alternatively, one must rely on consistent experi
mental values for the parameters.

C. Differences between One and Three Dimensions

Goodman?® has remarked that one-dimensional
treatments of desorption yield abnormally large
rates because all energy transfers necessarily
lead to motion normal to the surface, while in the
three-dimensional case, motion in the surface
plane supplies an alternate sink to the energy trans-
fer. Two reasons for the smaller rate that emerge
clearly from the present treatment are the follow-
ing.

(a) The three-dimensional density of adatom
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states, which leads to [dk #? integrals in place of
the one-dimensional [dk. Since the differential
rate is strongly peaked about £~ 0, the total rate
is substantially decreased through the density of
states in the three-dimensional case.

(b) The well depth V2 is much larger in the
three-dimensional case than in the one dimensional,
generally by about a factor of 3-10, depending on
the geometrical configuration.!’ The transition
rate, however, is still proportional to only v, as
evidenced by the oscillation in sign of the contribu-
tions to the rate in the sum over sites. Since the
rate decreases rapidly with increasing E, the de-
crease in the ratio of v/ V,?, for the three-dimen-
sional case thus leads to a sharply diminished de-
sorption rate.

Inspectionof Strachan’s work, ® where only motion
perpendicular to the surface was considered, also
yields rates much smaller than the Frenkel theory.
A strict comparison with the present theory is dif-
ficult, but it appears that the present approach
does yield rates smaller than the LJDS theory.

D. Effects of Realistic Phonon Spectra

In Paper I various limitations of the present
model for real surfaces were noted. It was also
pointed out that the details of energy and angular
distributions are expected to depend on the details
of the phonon spectrum. We here emphasize that
a quantitatively accurate calculation of desorption
must account properly for surface modes. The
frequency distribution for various surface lattice
models can be, in fact, similar to the Debye case
(cf. Figs. 5and 6 of Ref. 12, for example). In
general, of course, the distribution is character-
ized by a variety of peaks, as demonstrated in,
e.g., Ref. 13. The distribution is also affected
in various ways by the presence of an absorbed
layer. '

In principle, the contributions of surface and
bulk modes to desorption are of the same order of
magnitude. Roughly speaking, each of the N atoms
in the bulk contributes 1/N to the mean-square
amplitude (u%) of a surface atom, and each of the
N surfaceatoms contributes 1/N,. It iswell known
that @2) for surface atoms is generally several
times larger than that for the bulk atoms. ¥ The
present model may easily be seen to follow an
analogous behavior, as a result of the boundary
conditions employed in computing C. Thus bulk
modes do account qualitatively for various aspects
of observed surface properties, although the con-
tribution of surface modes, being of the same or-
der of magnitude, needs to be included for quan-
titatively accurate results. We also note that the
contribution of surface modes to desorption de-
pends on the system energetics. Since the fre-
quency distribution of the surface modes generally

peaks at lower frequencies, whenever E, exceeds
the peak frequency, it is only the bulk modes that
contribute in lowest order to the rate. For the
parameters employed in Sec. II A, for example,
this is, in fact, most probably the case.

E. Relation to Experiment

We discuss briefly some possible experiments
to measure desorption lifetimes and velocity dis-
tributions. A detailed review of applicable ex-
perimental techniques may be found in Ref. (15),
for example.

One type of relevant experiment is the scattering
of molecular beams from solid surfaces.'!® A
pulse of molecules that are collimated and fre-
quency modulated to produce a beam is scattered
from a surface, and the energy, angular distribu-
tion, and phase of the reflected molecules mea-
sured. Those molecules that are adsorbed and
thermalized will desorb with incoherent phase,
and with a different angular distribution from the
directly scattered molecules. Thus, the desorp-
tion spectrum should be distinguishable from the
direct scattering. So far it appears that such
experiments have only been carried out for chemi-
sorption systems, such as'® H, beams on Ni, for
example. Similar experiments for physisorbtion
systems would necessitate low temperatures, con-
ditions under which it is difficult to obtain clean
surfaces. However, scattering from contaminated
surfaces can still be of interest and amenable to
theoretical interpretation as long as the impurity
layer is ordered or partially ordered—such as is
the case with an epitaxial layer of oxygen.

A second type of experiment relating to mea-
surement of 7, is the time-of-flight method. Re-
cently, Pollock et al.'” measured the diffusion
time for helium propagating down a Cu capillary
tube. The time of flight is related to the mean
free path of He, the sticking probability £ of He
on Cu, and the mean residence time on the tube
walls. A relation obtained by the authors of Ref.
(18) is

£7=(20) (7°/m,)v g%, (3.1)
where ¥ is the number of adsorption sites per unit
area. Applying this relation to the results of the
present paper, where 7y~ 10~ sec, yields an es-
timate for £~10-5-10"%, Since experimental data
applicable to the present case are not available,
there is no way of gauging the correctness of this
estimate. On the other hand, the classical-theory
estimate, which would yield 7,~ 10", leads to the
absurd result that £, which must lie between zero
and unity, is much greater than unity.

It is hoped that experiments of the variety dis-
cussed here will be carried out in the near future,
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so as to enable an extensive comparison between
theory and experiment for low-temperature desorp-
tion.
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The lattice dynamics, second- and third-order elastic constants, and the anisotropic
thermal expansion of hexagonal titanium are worked out using Keating’s approach., The ten

third-order elastic constants are calculated using five third-order parameters.

The ex-

perimental measurements on the pressure derivatives of the second-order elastic constants

in titanium are in good agreement with the calculated values.

The low- and high-temperature

limits ¥z and ¥y of the lattice thermal expansion are calculated and compared with those
obtained from the thermal-expansion data of titanium. The lattice dynamics of titanium is

found to be similar to that of zirconium.

I. INTRODUCTION

Titanium crystallizes in a hexagonal close-
packed structure at atmospheric pressure and low
temperatures with ¢/a=1,.5884. Titanium and
zirconium belong to group IV A and are exceptional-
ly similar in many physical and chemical proper-
ties, and both of them undergo phase transforma-
tions to the bcce structure at high temperatures.
Experimental dispersion relations in titanium are
not available in the literature. The second-order
elastic constants of titanium were experimentally
determined by Fisher and Renken' and their pres-
sure deri%};atives were recently reported by Fisher
and Manghnani, 2 Using Keating’s approach,® the

lattice dynamics and the expressions for the sec-
ond-order elastic (SOE) and third-order elastic
(TOE) constants of the hexagonal metals have been
worked out by Srinivasan and Rao*® and used suc-
cessfully to investigate the anharmonic properties
and anisotropic thermal expansion of magnesium,
zine, and beryllium. *® In this paper the lattice
dynamics, SOE and TOE constants, and tempera-
ture variation of the lattice thermal expansion of
hexagonal titanium have been calculated.

II. POTENTIAL ENERGY IN KEATING’S APPROACH

The basis vectors of the lattice are a,=D(3V3,
3, 0), 3,=D(0, 1, 0), and a;=D(0, 0, p), referred
to the Cartesian system of axes. Here D=a is the



