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A three-dimensional multiphonon first-principles theory of the desorption of adatoms from crystal
surfaces via interaction with phonons is presented. A central quantity in the theory is the time- and
position-dependent displacement-displacement correlation function of the lattice. Explicit expressions are

derived for the desorption rate from localized states at low temperatures. Calculations are performed for a
Debye substrate and Morse-like interaction between the adatom and substrate atoms. Angular and energy
distributions, and temperature dependence, of the single-phonon rate are investigated. Under typical
conditions, it is found that the angular distribution deviates strongly from the cos0 distribution, and that the
energy distribution peaks strongly for final adatom energies near zero. At low temperatures the rate is
proportional to e P o, a dependence'similar to classical theory.

I. INTRODUCTION

Extensive studies have been made of the adsorp-
tion and desorption of atoms on solid surfaces,
both experimentally and theoretically. However,
in most of the past works, the processes of ad-
sorption and desorption were considered only from
a thermodynamic and phenomenological point of

view. While these statistical methods may often
yield a satisfactory explanation of global quantities
such as adsorption isotherm and entropy change,
they are unable to provide a detailed understand-
ing of the microscopic mechanisms involved. The
existing quantum theory of these processes is based
on a series of papers by I.ennard-Jones, Devon-
shire and Strachan (LJDS), in which they described
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the interaction of atoms and molecules with vibra-
tional modes of the solid. Although the general ap-
proach is correct, the LJDS theory nevertheless
has some serious shortcomings. Its major defect
is that it is essentially a one-dimensional theory:
The interaction of a gas atom with only a single
solid-surface atom is considered, and the motion
of the adatom and the substrate atoms parallel to
the surface is either neglected or assumed to be
unchanged. These assumptions lead to some seri-
ous difficulties. It is known, 3 e. g., that the LJDS
model overestimates the transition probabilities
and yields abnormally small values of adsorption
probability. It is also clear that the model cannot
supply a correct prediction of the angular distribu-
tion of desorbed or scattered atoms.

To resolve these difficulties, we introduce in
this paper a fully three-dimensional formulation of
the problem of the desorption process, pictured as
a transition from a bound state to a continuum
state. A principal purpose of this work is to in-
vestigate how the results of LJDS are qualitatively
changed when more realistic interactions and
three-dimensional motion are incorporated into the
model. Also, in the work of LJDS, the vibrational
modes of the substrate are described in a relative-
ly unfamiliar classical picture. We have recast
the description into a much more concise form in
terms of phonons and the displacement-displace-
ment correlation function, similar to that employed
in neutron-diffraction4 theory.

Although considerable attention has been given to
the effects of surfaces and adatoms on the elec-
tronic and vibrational energy levels of the substrate
and adatoms as well, it is apparent that very few
first-principles quantum treatments of dynamical
processes at surfaces have been advanced. Re-
cently, however, there have been some efforts in
this direction, notably in connection with the
chemisorption of hydrogen on metals by Suhl et
al. , ' and in the molecular-beam scattering problem
by Bagchi, and by Beeby. In addition to the spe-
cific goal of formulating a three-dimensional mul-
tiphonon-quantum theory of desorption, it is the
purpose of the present work to illustrate in gen-
eral fashion, via the desorption problem, how the
dynamics of interaction processes at solid sur-
faces may be formulated. Also, we wish to con-
sider in some detail the practical problems that
one encounters, such as those arising from the
loss of translational invariance at the surface,
from the necessity of considering boundary condi-
tions, and from the necessity of differentiating be-
tween free-particle states and those bound to the
crystal. Preliminary reports of certain aspects
of the present work have been made previously.

A general formulation of the theory will be pre-
sented in Sec. II. In the remainder of the paper,

we specialize to the case of localized desorption
at low temperatures. The corresponding transition
rate is calculated in Secs. III—V, and a discussion
given in Sec. VI. In the following paper, hence-
forth referred to as II, numerical results for mod-
el systems are presented that demonstrate that the
theory provides a practical way of calculating the
total desorption rate, angular distributions, and
energy distributions.

a, -=p'/2m. + V'(r),
I"

a, -=Z ' +Z e(R,.),2ms ~m

(2. 2)

H, -=Z [v(r - R,, ) - v(r -R', )j,
l

where

V (r) =-Z v(r —R', ) .
l.

FIG. l. Adsorption sites above a crystal surface: site
A directly above a substrate atom and site B directly
above a surface-cell center.

II. HAMILTONIAN AND DESORPTION RATE

A. Hamiltonian and Energy Levels

The Hamiltonian for the adatom interacting with
the crystal is taken as

2 Q 2

e= ~ +Z ' +Z C(R,„)+Z v(r-R, ),2m ) 2ma
(2. 1)

where p, r, and m, are the momentum, position,
and mass of the adatom, respectively, and where
P, , R&, and m, are the analogous quantities for the
Ith lattice atom; R, „=R~ -R„; v(r —R, ) and
C (R,„)are the interaction potentials between the
adatom and lattice atom R, , and between lattice
atoms at R, and R, respectively. For simplicity,
we have written H for just a single substrate mass
species m„ the extension to a multiatomic sub-
strate will be self-evident. In what follows, we
adopt the convention that the z axis points in the
direction normal to the crystal surface (see Fig. 1).

We break up H into an unperturbed part Hp=—Hj
+H~, and a perturbation term H3.

H=Hg+H2+H3=Hp+H3 p
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(R',} is the equilibrium substrate lattice configura-
tion in the absence of the adatom. H, describes
motion of the adatom in the field V of the static
substrate, H~ is the unperturbed substrate Ham-
iltonian, and H3 is the effective adatom-substrate
interaction. The above choice for the unperturbed
part of H is most appropriate when the lattice dis-
tortion induced by the adatom in its vicinity is min-
imal. Physisorbtion of rare-gas atoms on a solid
surface is the sort of physical system that the the-
ory is expected to describe best.

The potential V has been computed numerically
in various places, for a variety of substrate con-
figurations and interactions v. In general, the po-
tential in the vicinity of the surface is character-
ized by three-dimensional minima ("wells" ) at var-
ious symmetry sites above the substrate, where
adatoms have large probabilities of being found,
and which thus constitute "adsorption sites." In
the simplest case, there exists just a single stable
adsorption site above any unit cell of the substrate.
In general, however, a multiplicity of such sites
may exist, either stable or metastable. In either
instance, the spectrum of H& consists of a set of
"bound states, " in which the adatom is constrained
to motion along the surface, and a continuum of
free states corresponding asymptotically (i.e., at
large distances from the surface) to desorbed adat-
oms. The two-dimensional periodicity of the crysta.
surface implies that the adsorbed spectrum may be
characterized by the combination of two-dimension-
al quasi-momentum g and a band index n. We note
that the energies of desorbed and adsorbed adatoms
may be equal, which leads to degeneracy in the en-
ergy spectrum of Hz. Desorbed atoms are con-
veniently characterized by their asymptotic mo-
mentum k, which, in principle, is directly mea-
surable by the experimentalist.

Figure 2(a) illustrates a narrow band of states of
H, of energy E(q), and a free state E(k) in the con-
tinuum. The oscillatory potential of height 2Up

represents the periodic potential along the surface
plane. Generally, 2UO is much smaller than the
"binding energy" Eo (energy difference between the
lowest state and bottom of the continuum). In Fig.
2(b) the effective potential V (z) [defined as the av-
erage of V (r) over the surface plane] is illus-
trated; as indicated, the adatom is adsorbed at a
distance zo above the substrate.

The lowest order eigenstates of H~ are the pho-
nons, or undamped normal modes of vibration of
the lattice. In general, H~ also includes higher-
order (anharmonic) terms, ' which shift and damp
the phonons, and which may be important for cer-
tain materials, and/or at sufficiently high tempera-
tures. In the present treatment, we are concerned
principally with the harmonic (undamped phonon)
poltlon of H2.

ENERGY

E(4) FREE-STATE
REGION

0
Y (z=a)=O

BOUND-STATE
2 Uo REGION

Energy

z

Q V—
I (b)

FIG. 2. (a) Schematic diagram indicating energy levels
of an adatom while bound and free. The periodic variation
of the potential (at z=zo) in an arbitrary direction along
the xy plane is indicated along the horizontal in the figure.
(b) Schematic of V (e), the xy averaged potential, vs z.

B. Transition Rates

The probability per unit time for transition of an
adatom from a state (a, q) to a free state k may be
expressed as '

where P '= k~T, T is t-he temperature,

~(~, g;k)= ~E(., g) ~.a')2m. , (2. 4)

(i, c;) and (f, az) represent the initial and final lat-
tice states and energies, and & is the scattering
operator

q (E) = H~ + H~ 8 (E)Ha,

g(E)-=(E-H+i~) '. (2. 5)

To lowest order in H3, only the first term in V' con-
tributes, and one obtains the Fermi' s "Golden-rule"
expression (dropping the o. for notational simplici-
ty)

R(q, k)

2m Lye ~'& l(i, ply l f) k) I'6(cg —cy —co(j, k))
h Z»

e-"
(2. 6)

Pne similarly defines the rate R(Z) from p to all
possible free states k, and the rate R(k) to k from
all possible g's, as

R(o, q; k)

2m Z~ye "&1 (i; n; jib'(e, +E(a, g))if;k)I'
X,e "&

&& 5 (e; —a~ —(u(n, g; k)), (2. 3)
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xem[- 1~(n, k) t -~, (q, q; P) + q Ci (t; P) q ],
(2. 10)

where

v",= f d r e "'v(r),

f;(k, g) =—f d r e"' P-„(r) (t „(r) t

~; (q, q'; e) -=-.' &((q ~ u, )'+(q' ~ -,)'»,
(2. 11)

C), (t; P) = ((uq (t) u, (0))) .
Here the Q's are eigenfunctions of Hi; u~(t) = R&(t)
—H& is the displacement of lattice atom j from
equilibrium, where B,(t) is R~ in the Heisenberg
representation, i.e. ,

R(t) -=e'"()' B,e '"i' .

We have employed the notation

((A» -=Tre ~"&A/Tre ~"t .

(2. 12)

(2. 13)

Physically, W is a Debye-Wailer-like exponent
characterizing the mean-square lattice displace-
ment, and C, , is the time- and position-dependent

R(q)=FR(, k), R(k)=~"'
k n

(2. 7)
Note that a thermal average over the adsorbed
states is required in computing R(k). Finally, one
has the rate R of desorption from all states g to all
k,

R=ZR(k) . (2. 8)
k

One may obtain a compact representation for the
transition rate R„,(i})from a state q to all possible
final states by employing the "optical theorem, "
which yields in the present case

»e '"'& n ~ &(E'(n)) ~ n&
tot } T -PH~

(2. 9)
where the prime indicates that in taking the trace
over the ith configuration of II2, we employ the
total system energy E =—E(q)+ e((i)). In computing
the desorption rate R(il} one must incorporate a
restriction to just free final states k of H~. As
discussed in Appendix A, this leads to the appear-
ance of additional terms in the expansion for R as
compared to R&„, as well as to restrictions on the
sums over states which appear.

We now specialize to the case of harmonic H~.
Employing the Van Hove formalism, it is shown
in Appendix A that the following expression for the
"Golden-rule" rate is obtained:

R(il, k)=ti Z exp[i(q ~ R', —q ~ R~o)]
l Jqq'

xv;v, f; (tk, )f;t(k, t) f dt"

R(~) Q +(n)
fl 2

where

(I() = Z exp[i(qi ~ R 1 + ~ ~ ~ + q ~ R )]
1~ ay3y n ~ ~ yll

xf; (nri)f,",bi~ )" f",„b.-in);, "v~

dt& ~ ~ ~ dt„& exp it& ~ gy& +it, ~ gy& + ~ ~ ~

a (tO

+attn-1 (d(}Yn-1)] ~(qit l2t '' 't qnt tlt 4t ' ''t tn-1) t

where

hr')= Eb) --E4')

(2. 14)

and a is the functional of C given explicitly by Eq.
(A21). An abbreviated notation 1, 2, 3, . . . , has
been employed above in place of i„ia, i3, .. . . The
prime indicates that in the sum over y, we must
restrict each y,. in turn to just free final states,
while summing unrestricted over the remaining

y s, as detailed in Appendix A. We note that the
y'3' term is just the "Golden-rule" rate of Eq.
(2. 10).

An important advantage of the above formulation
is the clear separation of the input to the computa-
tion into three distinct categories: (a) the adatom
properties, appearing in just f», , through the wave
functions P„-and Q-„; (b) the lattice properties,
specified entirely through C andy'; and (c) the lat-
tice-adatom interaction, specified entirely by v;.
In principle, of course, these three properties are
strongly interdependent. For example, the sum of
v s determines the Vo, which yields the (t)'s and
thus f;; Vo itself depends on the substrate config-
uration, information which is employed in calculat-
ing C and~. Although such self-consistency is a
highly desirable goal in a complete theory, in
practice, obtaining V, C, ~, and f from a single
first-principles model represents a formidable
task. Also, one often has more complete or
reliable information regarding certain proper-
ties than others. For these reasons, treating the
lattice, adatom, and their interaction separately
becomes advisable, and sometimes indispensible,
in carryigg out actual computations.

We may incorporate the two-dimensional period-
icity on the surface by breaking up q= (Q, q, ),
where Q is a two-dimensional vector, and noting

displacement-displacement correlation tensor of
the lattice. We note that both W and C differ from
their bulk counterparts because of the lack of trans-
lational invariance in the z direction.

One may obtain similar results for the full rate
R(i}), in the form of an expansion in powers of v,
as detailed in Appendix A:
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that"

Z expi(q ~ R —q ~ R, )-N
&z~g ~g~l&

Q, g~x~-R), G

g(@@a' -gag&)0 0

x e'~'~~ ~~'~gj -Q' —G), (2. »)
where R, —= (Xo, z, ), 6 is the Kronecker symbol,
and 6 is a reciprocal-lattice vector. The terms
with G40 are referred to as Umklapp terms. In
the present paper we concern ourselves principally
with just the 0 = 0 term, although a brief discussion
of the relative importance of the Umklapp terms is
given in Sec. VI.

III. LOCALIZED DESORPTION AND WKB METHOD FOR
DESORPTION STATES

More generally, one may also pursue a qualitative
treatment of a multiband system by employing an
appropriate "average" energy band.

It is useful to expand P"„, in the present case, in
a set of highly localized Wannier functions ' 8',
which we take to be peaked above each lattice site
l, at a distance zo above the surface, and at a posi-
tion X, within the surface cell. Then (N, is the
number of surface atoms)

y-(r)=(1/vN, ) Z e*"' ~ W(X-X, -X„z),

f", (q k) = (1/v' N, ) Q e'"'"&

x d r W(X —X, -X„z)8""gf(r)

A. Desorption from Localized Initial States

%e consider an adatom to be in a localized state
when (a) the adatom wave function is strongly lo-
calized about adsorption sites (e. g. , the effective
adatom vibrational distance is much less than the
lattice constant), (b) 2UO«EO, and (c) 7 & 2Uo.
The better these conditions are realized, the more
"localized" the adsorption; the adatom is then re-
stricted to a few narrow bands near the well bot-
tom, such as pictured in Fig. 2(b). One indication
of the existence of such localized states is the tem-
perature dependence of experimentally measured
specific heats in various adsorption systems. Such
observations indicate that one may distinguish be-
tween "localized" and "mobile" adsorption. ' The
treatment of localized desorption is of special in-
terest in the present context, for it allows a num-
ber of significant simplifications toward the ex-
plicit computation of the desorption rate. In what
follows, it is convenient to restrict ourselves to
temperatures so low that just the lowest adatom
band in the well has a non-negligible occupancy.

=(I/&N, )e' '" Z exp[i(g+Q+K„) X, ]

x dr W(X-X, -X„z)

x exp[i(Q+K ~ ) ' (X X~ X )+ q, &] pf(&), (3. 1)
where we have assumed the form

and where we have, as is done henceforth, dropped
zero superscripts on the lattice-site vectors. Em-
ploying

Ze' ' ~= Z &(S-G)N, ,
G

one obtains

(3.2)

f",(g k) = v N, Q g(q+ Q —G) f~(k) e
' ~ o '"c

(3. 3)
where

f= Jd r W(r) e"'-g"„(r) .
The average over a narrow band involves

N, g;;M."„& '"' &(g+Q+Kii —G)&(g+Q +Kli —G )8„. Z"" e "O'B;";
~ „e-8&(g) R'

(3.4)

where gz ———(Q+K~~) [with G and G having been
chosen such that (Q+K„) lies in the first Brillouin
zone] and R, is the rate R(qk), but now correspond-
ing to a single level, with wave function W(r) in-
stead of y„-(r)

B. WKB Final-State Wave Function

In principle, g;(r) is a cortinuum eigenfunction
of the adatom Hamiltonian H, with asymptotic mo-
mentum k. However, the full three-dimensional
potential V, for any realistic system, is not ex-
pressible in closed analytic form. Even if it were,
the calculation of the wave functions in the presence

of such a nonspherically symmetric three-dimen-
sional potential wouM constitute a formidable task.
Thus, an approximate procedure for dealing with
P"„ is a practical necessity.

The crudest approximation would be to replace
pf, with just a free wave. However, it is clear that
the adatom wave function is strongly distorted from
its asymptotic free wave form as it emerges from
the potential well in the vicinity of the surface.
Since this is the region of overlap with the poten-
tial p, it is essential to account for this distortion
in computing the relevant transition matrix ele-
ments.
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For this purpose we adopt an approach inter-
mediate to the free wave and full eigenstate ex-
tremes, by (a) neglecting diffraction (periodic) ef-
fects in the plane in computing @-„and (b) treating
the motion in z within the WKB method. ~~

Procedure (b) is most accurate when the well
bottom occurs many wavelengths past the turning
point, and when the potential varies sufficiently
slowly compared to a wavelength in the regions of
interest. For almost all cases, however, the %KB
picture should supply at least a qualitatively ap-
propriate description of the final-state wave func-
tion. Incorporating (a) and (b), one has10 for
y- (k= 1)

p„.(z) = [c/(k(g))'~'] sin[ J dz' k(g')+-,'n],
(3. 5)

where A, is the surface area, a is the WKB turning
point (see Fig. 3), c is a normalization factor, and

k(z) =- [2m. ( —&'(g)+ &,)]"', E, = k,'/2m. .
(3.6)

k is thus the effective wave vector of the desorbed
particle. In the above we have assumed that the
atom is restricted from diffusing into the solid, so
that the potential barrier becomes infinite near the
surface. The explicit form for pf(z) as a function
of z depends in detail on the shape of the potential
v'(g).

If the potential V0 is sufficiently deep and/or
narrow, then one has

y-„= (cj~k,) sin[ J"dz' k(z')+ k, (z —z0)+ —,'z],
(3.7)

with

c=(2/I )"'(2m. Z,)"', 5,=- [2m. (i0+S,)j"',
where I. is the dimension of the normalization
volume in the z direction and Eo:Eo UQ+ fp ls the
xy-averaged well-depth energy of a particle mov-
ing in the potential V0(g).

To obtain f; for the above model, one may apply
the arguments of Sec. IIIA, with the result that f
takes the form (unit normalization volume)

——'e ' 'M M* —'e ' 'M M*, ) . (3.11)

This result constitutes a convenient starting point
for calculations of the desorption rate R.

IV. DESORPTION RATE FOR MODEL SYSTEM

A. Substrate-Lattice Properties

The lattice properties are built into the rate R
through 'vv, , and C„(t). Since

~j2'tv»= q C»(0) ~ q+q ~ C»(0) ~ q

just the single function C»(t) specifies the lattice
properties uniquely. Of course, the nature of the
lattice configuration also enters the rate through
the sums over sites.

For a single mass species, we may express
u (f) as10, 13

(4. 1)

u1(f) =Z (k/2v m, )"'

&& [B(m, l) e '"¹'a„+B*(m, l) e'"¹'a'], (4. 2)

where a'„are creation-annihilation operators for
the mth phonon mode, &u„ its frequency, and B(m, l)
a complex vector. The composite index m stands
for (k, n), where n is a branch index. For bulk
phonons, for example,

(m l) e12 %3 g (k r3)+-1/2 (4 3)

where 4 is a unit polarization vector. C takes the
form

C»(t) = Z (8/2mzv ) [(n + 1) e ""'B(m, j)B¹(m,l)

V

—e ' IM, M" —e ' oM M¹), (3.10)

employing an abbreviated notation. Since the rate
is invariant under (q, q - -q, q ), we may employ
for ff* the form

f;f, -~Z, (Z, +E,)-"'(M,M¹'

f = (c/2i~k, ) (e' 'M, —e ' 'M )
where

E,= i j k, dz+ 4z, —

(3.8) —E(k)

M, = J dr W(r) exp(i[@ ~ r+K„~X„+k,(g —g0)]),
(3.9)

M =M, (kg —kg) .
Dropping the bar over f, we note that the rate in-
volves

f",f; =(c2/4k, )(M.M¹ +M M¹

I

= 'oI
I~Q~
I

FIG. 3. Schematic of the WKB wave function describing
a desorbed adatom.
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(4. 5)

+n„e'"-'5*(m, I)i(m, l)] . (4. 4)

In cubic crystals the tensor C may be chosen di-
agonal. With C&-=C„„=C„ and C3-=C„, one has

~p p

q ~ C ~ q =q, q, C, +~ ~ C, .

quency, and temperature, respectively.
In the development to follow, we require the

Fourier transform of Cs, namely (&u&0),

p (r, &u) = (2w) f dt e '"' Cso (r, t)

Periodicity in the surface plane implies

Cjj=C (Xjl t~l I zj) 1 Cjj —C (zj) (4. 8)

= r 4n(&u) (kor) sin(kor(o) e (1 —oj),
(4. 11)

p(- oj) = e'"p(oj) .

@—E/E

r r/ao q

t t~D

C- C/~,

(4. 10)

where E» ~» and T~ are the Debye energy, fre-

For the purposes of the present treatment, we
consider appropriately simplified models for Q.
The simplest possible phonon model, the Einstein
model, sets all Q) = Q)p a constant. However,
this model is unrealistic in that phonon dispersion
is entirely suppressed, so that energy transfer
over a continuous range is impossible. The sim-
plest model incorporating dispersion is the Debye
model, 'o in which oj(k, n) = v, k, where v, is a
constant. We consider a single-branch isotropic
Debye model, with C„„=C»=C„=C, so that

q ~ C ~ q=q ~ q C, (4. t)

In actually computing C, we are at liberty to con-
sider either bulk, surface, or mixed phonons, or
any combination thereof. Vfith respect to bulk and
mixed phonons, one must give special attention to
the boundary conditions at the surface. These are
expressed as requirements on linear combinations
of the u's and their derivatives at the surface, cor-
responding to conditions such as free or stressed
surfaces, which enable the determination of the
8's. Following the analogy of a string with a free
end, where the derivative of the displacement van-
ishes, we here take cosine waves for the J3's,
B= cos(k -Rj). Considering that for the pure bulk
case B= e&"'"&, we find

Cs =
o [C s (Xjj, z, —zj) + C s (X„,z, + zj)], (4. 8)

where C~ is the pure-bulk correlation function.
Following Appendix 8, one has for the isotropic
Debye model

Cs (r, t) = (I/4o) r,' f'
d k oj '(k) e' "o"' "'f'"

0

+ 2 cos[k, PY. r -~(k)t] (c'""' —1)-', (4. 9)

in which ko= kv ao= (Go )', where kjj is the Debye
wave vector, ao the lattice parameter, and r4= 3/
(2m, ). In (4. 9), we have a.dopted a convenient set
of dimensionless variables which are employed
henceforth in this paper. %'e define dimensionless
variables m, r, E, T, C, and t as

m —mE, aook -', r- r/r, ,

For a surface-state Debye model, with cop= ~0
+v„k, one obtains (oj&0)

p'(X, &u) = —', r 4 on(&u) (1 —ohio/&u) Jo [kos o (&u —ojo) X]

Initial-state suave function. As demonstrated in
Sec. IIIA, for localized desorption we require just
the Wannier function for the adatom to compute f.
The potential near the bottom of the well may be
assumed to be nearly harmonic. This being the
case, the Wannipr function is well represented by

W(r) =- A e~ (- [-,' (x'+ q')/r', ] —[-.'(s —s,)'/r', ]),
(4. 13)

the lowest harmonic-oscillator wave function,
where A is a normalization factor,

A=(2o) "4r "' (4. 14)

and we have assumed an azimuthally symmetric po-
tential in the plane about the adsorption site. In
this approach z~ and r3 characterize the curvature
of the potential near its minimum. In a more gen-
eral treatment, higher-order variations in the po-
tential, and mixing due to the periodic properties
of the surface, would be accounted for.

Final state ujave fun-ction. We adopt the local-
ization approximation to the %KB function, as spe-
cified in Eg. (3.7). In this approach the maximum
well depth E0 and adsorption height z0 are the prin-
cipal quantities describing the distorted wave in the
desorption process.

Interaction Potential v. In a variety of physisorb-
tion systems, the Lennard- Jones 6-12 interaction
potential vLJ is appropriate. Unfortunately, thi
potential is difficult to handle analytically in ex-
plicit computations. For example, it cannot be
straightforwardly Fourier transformed. For this
reason, we adopt the following Morse-like potential
for v.'

v(r) = I"o(exp[- 4(r'- ro)/rf]
-exp[- -,' (r' —r o)/r ~]], (4. 16)

which is especially convenient for actual computa-
tions. As may be seen from Fig. 4, v(r) may be

&& e(ohio+ o —(u) e(oj —ohio), (4. 12)

as detailed in Appendix B, where J0 is the Bessel
function, o = v„k„/v, k, , and k„=2Wjj.

B. Adatom Wave Functions and Interaction Potential
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where

'(R, +E,) ' 2exp(-2y2r32 —2~ r }
(4. 18)

g„2 211(& %1/2 4 vr2 6 8 r r0/2r 1

In obtaining the above we employed the following
transforms:

W(q) =8(2Z) rz~r~ exp(-iq, ze —q, r3 —q r2),

I

2
r/r

FIG. 4. Potential v/vp vs r/rp Curves 1-5 illustrate
the Morse-like potential v corresponding to values of r&/
rp = 0 ~ 2, 0 ~ 3, 0 ~ 4 0 ~ 5 and 0 ~ 6 ~ xespectively. The dotted
line indicates the Lennard- Jones potential vL&.

U=vsvse f

ofay'

Uso+ Uos t

where

U„=h(exp[- r32 (q, + q', )+izp(q, —q,')

. (4. 16)

2r,'(q, +q,') k, —r', (q'+ q") -2r2'K„~ (Q+Q')])

&&(exp(- r1(q'+q"))+ V e e(x-pr2t(q'+ q ))

—I'.[exp(- r'(q'+ 2q"))+ (q= q')]] (4 17)

U„=exp[2i(E, —K, zp}] U„(k,- —i'3,}+c.c. ,

chosen so as to simulate the hard-core or long-
range properties of v1,5 (r). Note that V„5 contains
just a single independent range parameter, cor-
responding to our r0, while v contains the addition-
al parameter r, .

Although we employ the v(r) of Eq. (4. 15) in cal-
culating the desorption matrix elements, we never-
theless employ parameters for V, the sum of
v(r -R,)'s, appropriate to a sum of v„p's. In so
doing, we are treating the adatom binding on a dif-
ferent footing than the adatom-lattice interaction.
Such a procedure, which is here motivated by ex-
pediency, is best justified where the rate turns out
to be a relatively insensitive function of the shape
of v. We shall find that for the present model, the
rate is relatively insensitive to variations in the
shape parameter r„as compared to variations in
other parameters in the model. This point is dis-
cussed further in Paper II.

C. Desorption Rate for Model System

In this section we derive an explicit expression
for the desorption rate, employing the lattice, ad-
atom, and interaction models specified above.

Employing the results of Sec. IIIB, one finds,
after some algebra,

Ir —25/2 e-r)I prf
0

(4. 19)

The abbreviations os and no refer to terms which
are, respectively, oscillatory and nonoscillatory
with respect to the energy variable.

To compute the 6= 0 (nonumklapp) rate Rs, we
need

By direct integration one obtains

(S„),.= I Z I ((s,')), (4. 21)

where I is the following functional of 1":

1((sg/)=( $)3 C2 () [sts2 —4C, &(t)]"'

x exp(-,' [(s,')'+ (s,')'] [s,' —C„(t)] '

+ 4 [S1(S5) + S2 (S4) + S4 S5 Cpi(f)] [S1S2—~4 C11(f)]

(4. 22)
where the s''s are listed in Table I. The quantity
2r 42= C«(0) is the mean-square displacement of lat-
tice atom / from equilibrium. Thus the rate involves
the five characteristic lengths r, (i = 0, 1, . . . , 4).
characterizes the equilibrium distance between an
isolated surface atom and an adatom, r, the shape
and range of the potential v, r, and r, the range of
vibration of the localized adatom about its adsorp-
tion site, along the surface plane and normal to the
surface, respectively, and r4 the lattice vibrational
range. To obtain F„one simply employs k,- —k,
in (4. 22).

We have displayed forms appropriate to 6 = 0, the
non-umklapp term in the rate. For G0, addition-
al terms proportional to 5 appear in the s&'s. Al-
though these may be obtained directly in a fashion
analogous to the above, for simplicity we omit
treating these terms explicitly. Rather, we dis-
cuss the principal features of these terms in Sec.
VI.

The rate R(k) follows as

8,&
= J dq, dq,'d Qexp((q, q,'+ q }C, &(t} —iq, z1+iq,'z,

—i Q (X, —X,) ——,
'

[(q,'+ q') C„(0)

+(q,"+q') C„(0)]jU(Q=Q') . (4. 20}
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R(k) = "' —i| dt e '"-'"" Z ~„[C„(t)].
(4. 23)

Thus, to compute R(k) explicitly in the present
model, there remains just a sum over sites and a
single Fourier transform over t. Computation of
R and dR/dA involve additional integrations over k.

It is convenient to define various rates to be em-
ployed in the following discussion, through the rela-
tions

R = J d k R(k) = J d y d (cos8) dk k R(k)

= f dI/I d(cos8)R(8, ip) = f d(cos8)dkk R(k, 8)

= f d(cos8) R(8) . (4. 24)

Note that we have above absorbed a factor of (2l/) 3

into R(k), as compared to our previous definition.
It should also be noted, that despite the abbreviated
notation, the various rates under the integral signs
actually represent differential rates, with respect
to angles and k. For example, R(8, p) is a short-
hand for dR/dQ, the transition rate per unit solid
angle .

V. MULTIPHONON EXPANSION

A. Convolution Expansion

The final form for R(k) involves the Fourier
transform of F(t), which, in even the simplest
cases, turns out to be a rather complicated func-
tional of C(t). This suggests the expansion of F(t)
in a small parameter. Since C is itself propor-
tional to the small parameter Co —= rn, ' - 10 -10 4,

an expansion in powers of C is appropriate. The
result is a convolution-type expansion'8 taking the
form (pl 0 0)

dte '"' F[C(t)]=Z —, p„(pp)
1,.„, " 1 8" S(C)

2r i n~ " 8C"

(5. 1)
where

TABLE I~ Coefficients s& ~

P

p„(p/) =— dt e '"' C"(t) .
2 7T J,.„)

An important property of the p's is (p = p, )

p„„(id)= f p„((u') p(p/ —(p') did . (5. 2)

Thus the p' s may be computed recursively, which
is especially advantageous for computer calcula-
tions. Also, for the Debye model, each p„ is re-
stricted to just the range + n D in &, which greatly
facilitates numerical computation. p(p/) for bulk
and surface isotropic Debye models were specified
in Eqs. (4. 11) and (4. 12).

Physically, p„ is the z -phonon contribution to the
rate, involving n real or virtual phonons. This
may be seen, in that a factor v Cp accompanies each
creation or annihilation operator in the Hamiltonian.
Since R involves the square of H3, a term in R
proportional to Qo involves exactly n. phonon inter-
actions. Actually, e

- » does include a set of pho-
non interactions to infinite order. These, however,
are independent of t, and hence do not cor respond
to dynamical interactions.

Since Co «1, the single -phonon contribution,
when energetically allowed (p/c & Ep), dominates the
rate. For this reason, we give special attention
to the single -phonon rate in Sec. V B.

B. Single-Phonon Rate

To obtain the single-phonon contribution to R(k)
we note that

BC C=p i=1 S3 (Sl S2)

(s,')'+ (s,')' (s,')' (s', )'
+

4 + i4 S3 si s2

The nonoscillatory portion of the single -phonon rate
R(k) takes the form

R' '(")=Rp" ~ fi(+i VI P, E)
~,R„,z, ,z., r +

2xx (ap+ al k, —a ', X„Kg+a3& II+ a4 kg)

Vp

—Vp

—Vp

r2 + r2 +r2
1 3 4

2r +r +r

ri + r3 +r42 2 2

2r2+r2+r

ri+r3+r42 2 2

+r +r
+r +r

r2 +r +rj 3 4

2 (r' +r' + r')

2 (2r& + r2+ r4)

3r~ + 2r2 + 2r4

3ri2 + 2r22 + 2r24

where

@exp(-d p+d', kg d 2Xi/' Kll+d3IfII+d4kg)i

sin[kp r i; E(k)]
2

!

//'

S4 = 2rskz+2(Zy Zp)

! s, 24 32k. t(z=, zp)--
i s6= 4r2k„—2ixg .2 2

s &
= 4r2 k„-2iy &;

2 2

Eg(k) siI

E E (k) i( i i)l/2

4'» —[X»+ (z, +z/) ], Rp —~i/&dlI 4'4kpkp
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21 X)g zg z)
s' (sa() 4 s s(a

a, = ,'i r, (—z,—z, )/s, s, , a a
= 4ir, /(s, }2 2 i 2

where

Z3X+l(~(XSAM)))+(&o
&o) (~ )

a,'= 4r', /(s,')', 4/ c
Q4 = f'3/ S) S2 )

(5. 6} 2t i. ( t q(4m~ E()) 2(2m, E())t g t [

d o
= —[(X(; /s' ) + (-,' z

& /si) + (' z ( /sa) ]

d~i ——i [(z; /sl) —(z( /sa)] ra,

da=4iralsa, do = (4ra/so() —2ra ~

d4= [(I/sq)+(1/sa}]ra —2ra, z, =z, —zp .

We have displayed only the nonoscillatory portion
of the rate above; it being clear how the oscilla-
tory terms may be included in a perfectly analo-
gous fashion.

We note that R(~) (k) is not azimuthally symmet-
ric, since K„~X» involves the angle in the plane.
For most purposes, one is interested in the rate
integrated over all angles in the plane, which be-
comes

R' '(k, 8)=J d(t) R (k 8 p)
~W

= 2~R"'
Xl j,zl, z~, +

f[(+, I), P, E)

x [cTp(d a X(g k sin8)(ap + a) k, + aa k sin 8+ a4 k, )

—aa X„ksin8 J, (d a X» k sin8)]

xexp(d p+d', k, +d ok'sin 8+d 4ka), (5. 7)
Ay

where we may express k2= 2m, EO+k2cos2g, and

d a= —4r a/sa, aa= —4ra/(sa) (5. 8)

We note that R(8), the rate per unit solid angle in-
tegrated over y and k, is proportional to the product
of cosg with a general function of cosa. Thus the
angular distribution is not a cosg distribution, '
and the computation of the total rate R'~' involves
a nontrivial integration over cos6.

In the limits Eo yEp land/or ka -rpa ~ 1, where k„
satisfies k„/2m, = E apn expansion in the expres-
sion for R'" of k, in powers of k, /2m, Ep, is jus-
tified. Keeping terms to O(k, ), one finds, after
some algebra,

CO ms'

S3 KSg S2] 'PB~ P

x exp[- dp+ zkp r(y Ep p((Ep

+ d i (2m, Eo)'t + d 4» 2mo Eo]

a,' —t ', (4m, E()}
'

( aa(X„

t', =d,'+ —,'d', (2m, E,) '~'+ik()r'„(2m, )
'

—Pn(2m. ) ', (5. 10)

t a
= ao+ a& (2m, Ep) + a4 2m, Ep,

g', -=d a'+ ikp r'„(2m, )
' —pn(2m. )

' .
The integral in E(l. (5. 9) is easily evaluated, and
yields the result

(2g') 'em[ —l (d a)'X(g/g 4]

x gi+ —
( ( a Ca+2 ' . (5. 11)(da)'X» ( aa

84 84 284

Thus, for the present case, the total rate is re-
duced to a sum over sites, sets i, and the index n
(the summation index in the expansion of the Bose-
Einstein function). For pEp» 1, only n= 1 is im-
portant. Likewise, since the factor e 0 indicates
an exponential decay with increasing sites, after
some finite number of sites, the series over sites
converges very rapidly. The above results are
especially convenient for numerical computations
for the limits discussed above, as well as for ex-
amining the dependences of R on various system
parameters.

VI. DISCUSSION

A. General Properties of Desorption Rate

An inspection of the multiphonon rate of Eqs.
(4. 16)-(4.23) and the single-phonon rate of E(l.
(5. 5) reveals various general features of the angu-
lar and energy distributions in desorption, and the
dependence of desorption on temperature and on
material parameters. In this section we point out
the principal conclusions, while in Paper II we
carry out detailed numerical computations illus-
trating these properties, and provide further dis-
cussion.

The exponential decrease of the rate with in-
creasing k is evident from, for example, Eq.
(5.7). Thus the energy distribution of desorbed
adatoms peaks strongly near E„-0. Physically,
this is a reflection of the fact that the effective well
is deeper for desorption to states of higher energy.

The multiphonon rate of E(ls. (5. 1) and (5. 2) re-
veals that as the energy increases to where n pho-
nons are required to conserve energy, the rate de-
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creases by co '. Thus multiphonon contributions to
the rate decrease very rapidly at low temperatures.
so that the lowest-order process allowed by energy
conservation dominates the rate.

The angular distribution is observed, in general,
to deviate from the cos8 distribution. The devia-
tion is strongest when xa/r~ differs substantially
from unity. When x2& r~, as is generally the case,
the distribution peaks strongly in the forward
direction, while the distribution flattens out for

A weak azimuthal dependence, reflecting
the particular structure of the substrate in the vi-
cinity of the adatom, is also evident.

At very low temperatures only the lowest-order
term in the Bose-Einstein expansion in Eq. (5. 9)
need be kept, and the dependence of the rate on
temperature is of the form e ~, which is the clas-
sical form. ~~ At higher temperatures (but 7 & Eo),
contributions from the higher terms of the expan-
sion lead to deviations from the exponential law.
'%le note that the total rate follows a thermal be-
havior analogous to the energy distribution, since
the latter is a strongly peaked function of energy.

As to sensitivity on material parameters, we note
that the rate depends exponentially on the ~; and Eo.
It turns out that for typical values of the x, , the
dependence on xz and x~ is dominant; typically,
xo- 1 for physisorbtion and the dependence on x, is
relatively weak. These sensitivities may be under-
stood physically in terms of the transfer of energy
to a particle with a rapidly decaying wave function,
such that the particle is "kicked out" of its well.
The depth of the effective well, and the character
of the initial state are indeed expected to play a
crucial role in determining the desorption rate.
Naturally, the rate is also proportional to the
square of the interaction strength Vo.

Inspection of the sum over sites in Eq. (5. 5)
shows that for typical parameters, many layers of
substrate atoms need to be included to obtain con-
vergence. This is partly a consequence of the os-
cillating magnitude and sign of the contributions by
site. The oscillating character implies that the
detailed geometrical structure of the substrate has
a weak influence on desorption (if the other materi-
al parameters remained fixed). Actual examples
illustrating these properties are considered in Pa-
per II.

B. Umklapp Contributions

Vfe have not considered umklapp terms explicitly
in the present work. These terms are given by Eq.
(4. 17) with Q -Q=G40. We now briefly discuss
the relative contribution made by these terms to
the rate.

From Eq. (4. IV) one observes that each of the
terms making up U„-, (i.e., U for Q = Q +6) is
smaller than the corresponding one in Uo by ap-

proximately a factor of exp(- n~', G~), where n=1 or
2 (we have assumed that K, rz«1 and r~2«~~~,
which is generally the case). When Vo» 1, as is
also usually the case, the n = 2 terms (which are
proportional to Vo~) are the important ones, and an
over-all decrease with G as exp(-2x', G') obtains.
In addition, s6 and s~ are changed to ss+2CG„and
s~+2CG, , and the oscillatory factors exp(iG X, )
and exp(i4r,'K„~ G) appear. This combination of
exponentially decreasing and oscillatory factors is
expected to lead to rapid convergence of the sum
over Q's in the rate. One may obtain an uppg~
estimate of the effect of Q40 terms by ignoring
the oscillatory factors; whence one finds

R/R(G=0)= $=-Z 8 '"~ (6. 1)

For a simple-cubic substrate, for example, $(~,
= 1):— 1.00, while $ (x, = ~m ') = l.6. The general charac
teristics of the thermal and energy dependence of
the Q&0 terms can be observed to be similar to the
Q= 0 term, although the K Q factors in the Q 0 0
terms vrill influence the non-normal desorption.

In summary, the umklapp contributions to B may
be computed in close analogy to the Q=O rate com-
puted here. The full rate may be as much as sev-
eral times larger than the Q=O rate, for typical
parameters. Energy and temperature dependences
remain qualitatively similar, although differing in
detail, depending on the values of parameters in-
volved.

C. Multistep Processes

The contribution of multistep processes is given
by the terms higher than second order in Hs in the
Born series. The rigorous evaluation of the rela-
tive contribution of these terms is a difficult task,
as indicated by the complications involved in com-
putting just the "Golden-rule" term in the previous
sections. %e here content ourselves with present-
ing speculative arguments regarding the relative
size of the multistep contributions.

Because the function C(t) is appreciable only
for values of t- I/~D, the natural variable for
scaling all times, temperatures, and energies is
&u&, as has been specified in Eq. (4. 10)~ Each
succeeding term in the series for B then involves
an additional power of vo/&ov . Thus, for vo/~v «1,
the leading terms to all orders of multiphonon pro-
cesses are contained in just the lowest-order term
in the Born series. This argument is, of course,
not rigorous, because the contribution of the multi-
ple time integrals differ for different terms in the
series, although it is expected that with the present
scaling scheme the latter are, in fact, all of the
same order of magnitude.

It should be noted that for a dense series of lev-
els, where phonon-induced transitions between ad-
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joining levels are equally or more probable than de-
sorption, a thermodynamic treatment, as opposed
to dynamical, may be the only one appropriate.
However, as mentioned previously, when consid-
ering transitions from an isolated band of closely
spaced levels, it still may be useful to think of de-
gorption from a characteristic "average" level de-
scribing the thermalized band.

D. Limitations of Model

We briefly discuss limitations associated with
the general formalism when dealing with real sur-
faces, and associated with the use of simplified
phonon spectra even for the case of idealized sur-
faces.

For surfaces that are rough on an atomic scale,
desorption is no longer limited to symmetry sites
p,ssociated with a perfect substrate lattice. In gen-
eral, sites at "singular points, " such as edges, are
characterized by lower binding energies (and thus
larger probabilities of desorption) than sites on flat
portions of the surface. The contribution to de-
sorption from such sites must therefore be ac-
counted for when roughness is present. Another ef-
fect, present even when roughness is absent, is the
gelaxation of surface atoms, which leads, for ex-
ample, to different lattice spacings and force con-
stants than in the bulk, with relaxation effects fall-
ing off slowly into the bulk. Relaxation may be
accounted for within the present formalism by em
ploying the relaxed lattice configuration, and its
pssociated parameters in computing the potential
V and the phonon spectrum of the substrate and
in carrying out the sum over sites in the rate.

In this paper we have considered the use of sim-
plified bulk and surface Debye models in calculat-
ing desorption. Real crystals, of course, are
characterized by complex phonon spectra and fre-
quency distributions which account for bulk, sur-
face, and mixed modes, and which may, in general,
depart substantially from those given by simplified
models. It is clear that the structure present in
realistic distributions will be reflected in the de-
tails of the energy and angular distributions in de-
sorption. Thus accurate computations for realistic
systems requires incorporation of such structure
in the calculation of C. However, regarding total
rates and prefactors (where integrations over en-
ergy and angles have been carried out), one ex-
pects only weak dependence on details of the pho-
non spectrum, and results obtained employing ap-
propriate simplified models should be accurate to
an order of magnitude. Use of such models in com-
puting bulk thermodynamic functions has, of
course, long been a familiar procedure. The use
of realistic phonon spectra, and relative contribu-
tions of surface and bulk modes in desorption, will
be discussed further in Paper II.

VII. CONCLUDING REMARKS

The authors thank John Beeby, Walter Kohn,
Herb Shore, and Harry Suhl for useful discussions.

APPENDIX A: DERIVATION OF TRANSITION RATES

We here derive the expressions for the transition
rate presented in Sec. II 8.

"Golden-rule" rate. The system described in
Sec. II is characterized by the lowest-order tran-
sition rate

ft(q, k)

(2))/5) g,z e 'd
I (i, q I H lf,Sk) I 5(e, —eq —~(qk))

. e-ge ~

(Al)
where q and k are eigenstates of H„and i and f of
II~. I.et us take

&i ~ l&3 If, k)

i
I Jr dry"„(r)d. (r)

x ( ( R~) —vv(rr —Rv)]} f )

where

v", = f dre "'v(r),

f;=1 dr(t)i'(r)e"'y;(r) .
Employing (A2) and the representation

(A2)

(A3)

(A4)

We have presented a three-dimensional multi-
phonon-quantum theory of phonon-induced desorp-
tion. We have here applied the theory to the par-
ticular case of desorption from localized states at
low temperatures. We believe that the theory
should also be useful in treating a wide variety of
related problems, such as desorption from mobile
states, the thermodynamics of physisorbtion sys-
tems, and the transition from localized to mobile
adsorption.

A major obstacle in carrying out calculations of
the desorption rate remains the lack of informa-
tion regarding the fundamental material parameters
entering the computation. It is our hope that future
experimental investigation of adsorption systems
will become more strongly directed toward the de-
termination of these fundamental parameters. It
is only then that a truly comprehensive and mean-
ingful comparison between basic theory and experi-
ment can be effected.

ACKNOWLEDGMENTS
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one obtains
-1

R(q, l)=~a Z e "( 2 e "tv;v,*-. f;f;*.
if qq'ti

T wQ ««0I ( Q t(u''Rt O'Rt)

qq'lg

&&fle' '-e 'li&

where

df ~ i&() &)t -iq ~g(t) $ eiq u~(0)

(A5)

Q
R) = R) +u)

(A6)A(t) e(H2t A (H2t

((A)& = Tre "2A/Tre 2"2,

and where we have employed the relations

Rates Rtut()l) and R()j): exPansion in Pott)et's of
H3. We now outline the derivation of an expansion
in H3, to all orders, of the exact expression for the
transition rate from a state g to all possible final
states R„t(q). For this purpose, one can directly
take advantage of the optical theorem. ' lt turns
out that the desorption rate R in which transitions
are restricted to free final states, does not take
the simplified form arising from the optical theo-
rem, which depends on the accessibility of all final
states for its derivation. ' However, it can be
demonstrated by direct expansion of the Born series
that R is, in fact, easily obtained through straight-
forward modifications of the R„, expansion. Be-
cause the demonstration is direct but lengthy, it
will not be included here. We here present the
derivation for R&„, which involves all the neces-
sary manipulations in deriving the form of the
terms in R as well, and follow these directly by
stating the results for R.

The optical theorem yields for the present case

R. (n) = -2e 'lm««lH29(E (~))H31~&&&

e"t'[z& = e'+'[ z&, etc. , (Av)
B(E)= (E -H+-ie) '. (A11)

and the closure property /& If& (fl = 1 in obtaining
the last line. Glauber's theorem" states that for
harmonic H2

(( e-tu ut (t ) etu ut (0) »
= exp[-w, t (q, q')+q ~ C»(t) ~ q'], (A8)

The prime indicates that in taking the trace over
the ith configuration of H2, we employ the total
system energy E = E(q)+ e((i)) in b. To obtain an
expansion of R in powers of H3, we employ

g(E) = g, (E)+H, g, (E)H,

where

't(' =-l(((q u)'+(q' u)')),

C„=-&(u,(t) u, (0))& .
One then has the final form for {d00:

(A9)

+H2 g(&(E) H2 g()(E) H2+ ~ ~ ~

Then (I)=1)

(A12)

R(jli7)=a ' Z exp[i(q 5, 't —q ~ R;)]v,"v;.f;f;.
qq'tg

x
~

dt exp[i&ad(tl l(,)t —u')» (q, q~) + q ~ C» (t) q ] .
(A10)

Note that the only terms that survive in the "Gold-
en-rule" rate are those arising from the "dynamic
term" v(r —R, ).

The above technique may be extended directly to
obtain similar, although more complicated, expres
sions for higher-order contributions to the rate.

g +(n)
tl=2

where
y(2) = -21m((()j~H2g, H2~tt&&&,

cp' '—= —21m((()l ~H2g()H2 g()H ~)l&)&, etc.

Employing Eq. (A'7) and the representation

(x+ie) '= — e""""'dt1

Q

y(") may be manipulated into the form

(A13)

(A14)

(A15)

y(") = -2Im
12 223 ~ ~ ~ ~ ~ ll

goo
0 W M 0 0 1 tlexp[i(qq Rq+q2 ~ R2+ ~ ~ ~ +q„~R )]v v ~ ~ v (i) "„dt,dt ~ ~ ~ dt

qll fl-1
0

)(,'((((q~ (etude'ug 1) age'r(ettj(E'( )-Hg Hu2j (etu2'u2 1) eiu2 r e(t2(E (u)-Hg H2j ett„g(E'(u)-H~ H2j-

The quantity in braces may be manipulated into the form

x (e""'""—1)e""'In» & ) . (A16)
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~1~2 ~n-1

x exp(it1 [ E(r/) —E(y1)] + ita [E(31) —E(ya) ] + ~ ~ ~ + it„1[E(3l)—E(y„1)]]

x«&exp[iq, ~ u, (t, + ta+ ~ ~ ~ + t„,)] —1)(exp[i qa ~ ua(ta+ ta+ ~ ~ '+ t -1)]—I] ' ' (e""'""—1)» (A17)

where we have inserted unit operators appropriate
to H„1= g „l y & ( y l, in obtaining the above form.
A generalized Glauber theorem, given in Ref. 22,
shows that

(( 'n1'"1 e1na'na. . .e'nn'"n)&

C (ij) =((u(i)u(j))&, (A18)

where we have abbreviated the notation in an obvi-
ous fashion. In order to extend the time integra-
tions to +, we employ the fact that R is invariant
under k- —k and that

= exp[——, q1 ~ C(11) ~ q1 —~ ~ ~ ——,
'

q„~ C (nn) ~ q„

—q, ~ C (12) ~ q, - q1 ~ C (13) ~ qa —~ ~ ~

—q„1 ~ C(n —1, n) ~ q„],

vt =v„qy C„(t)= C*„.(- t), f (q, k) =f*( q,——k).
(A19)

Combining the various relations given above with
the various definitions introduced here, one finally
has

(n) ~ 0 0Z exp[i(q, ~ R1+ ~ ~ ~ +q„~ R„)]v,"~ ~ v; f,"(3ly1) ~ ~ f; (y„1')
12 22 ~ ~ ~ 2 ff

X dt, ~ ~ ~ dt„,eXP[- it, &u(y, 1I) —it, ~(ya 3l) —~ ~ ~ —it„,~(yn, q)] @(q, ~ ~ ~ q„; t, ~ ~ t„,), (A20)

where

~(q1 "q.;t1 t. 1)=(em[-%(q1)-~a(qa) —"-~.(q.)-q1 C»(t1) qa —q1 ~ C13(t1+t2) q

—
qn 1 ~ C„1„(t„1)~ q„]]'+(—I)"(exp[-vva(qa) —'+3(q3) —~ ~ ~ -%„(q„)—qa ~ Caa(ta) ~ qa —~ ~ ~

-q„1 ~ C„1„(t„1)~ q„]+[all other permutations involving (n —1)q's] j+ ~ ~ ~

+ ( I )n-1(e-%1(a1) + -Wa na) + -%n(%n)], ( I )n( I) (A21)

where

m1 (q( ) = 3 qi C11(0) ~ q1

~(12) = E(1) —E(2) .
The last two braces in 8 never contribute to the
rate, as these are independent of the t„. All other
braces except the first lead to 6 functions in the
sums over states which simplify their contributions
to the rate. One observes that the higher-order
y'""s rapidly increase in complexity. The prolif-
eration of terms for large n is a result of the sub-
traction of the v(r —R, ) term in Ha. In the ab-
sence of this term just the first bracket in g would

remain. It appears that no simplified theorem of
the form of Eq. (A18) exists for factors of the sort
e" " —1. It should be noted, however, that all of
the terms arising from the 1's involve at least a
single transition between adatom states in which
no phonons are exchanged. It is expected that the
probability for such processes is small, if the

eigenstates of H, are indeed stationary. For the
special case where degeneracy between adsorbed
states and free states may be neglected, it is easy
to see that these terms which carry 5 functions
between energy states of H, are indeed negligible.

To obtain the desorption rate R, one must sum
each y'"' (n —1) times, with the following prescrip-
tion: Each y,. in turn must be restricted to free
final states, while the remaining y; are summed
over unrestricted. For y'2', for example, one has
just the single term with y, restricted to free final
states. For y'3' there are two terms: one with yq

restricted to free final states and one with y2 so
restricted. It can be seen that the restriction to
free final states adds considerable complexity to
the higher-order contributions.

APPENDIX B: ISOTROPIC DEBYE MODEL

In this appendix we derive expressions for the
correlation function C(r, t) for an isotropic Debye
model. Consider bulk modes with dispersion v(k)
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= v, k. The corresponding correlation function C~
is given by~~

Co, (r, f) =Z - [(n(k)+1)e'&" "'""'
2Nm, v(k)

1 3
dt dy dxx(e' o*'"' "

=4~ 2m, J

x [1+n(x)]+ e "p"'"' "n(x)j e '"'

A2

2 rnswD

(k)
-i(k r-s&(k&f)]

1

= (3/2m, ) (k, r) ') dx(6((u+x) [1+n(x)]

+ 6((u —x) n(x)}sin(ko xr) . (B4)
'

x exp
~

ik aoX ~ ——iW Xl)
ao

2cos [kv ap x ~ (r/ap) —~q x&]
hgcvax (Bl)

Then for w & 0,

pp ((u) = ~p m, n((u) (kor) sin(ko a&r) e(1 —a)),

p( ~) =-e'"p(~),
(B6)

CO/(do (d, P&D P, - (B2)

tmz - f, r/a o
- r, ka o

- k .

where ko = &uv /v, and the integration is carried out
over a unit sphere. We now switch to dimension-
less variables:

Cp/ao-Cp, m, Ev ao/k - m, ,

where 9 is the Heaviside function.
A surface mode isotropic Debye model may be

similarly constructed. Here the dispersion is tak-
en as ~(K) = ~p+ v„K. Then the correlation func-
tion C, (X, f) may be written, employing relations
analogous to the bulk case, as

1 dK
C, (X, i) = - e~{i[K.X- &(K)f]]2'pms I'd K)

Noting that ko-=kv ap=(6p P)'~P for the bulk case,
one has

Co(r, f) = —,
' (4~m, )-'~t

2cos(ko x ~ r —xt)

The Fourier transform of C~ follows as

Pp(r, Pd)-=—I dte '"'Cp(r, f)2r

2cos(i [K ~ X —po(K)t]]
(B6)

eg a)(R) 1

in dimensional units. After some algebra, one ob-
tains for p, the following expression, in the previ-
ously defined dimensionless units (~ & 0):

p, (X, (u) = m, on((u) J() [k„o((u —(uo) X ] (1 —(uo/(u)

xe((do+ o' (u) e((d Mp) (B7)

where ko =kp ao=2~m o—= v ko /v ko a d ~o is a
Bessel function.
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