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A nonlinear stress-strain relation has been observed in copper whiskers with [100], [110], and [111]
orientations using a sensitive apparatus for tensile-stress measurement. The nonlinearity was considered to be
due to the lattice anharmonicity of the crystal. The nonlinearity constants of the specimens, which represent
the amount of the deviation from linear elasticity, have been found to depend apparently on their yield
stresses. Whiskers with low yield stresses showed large values of the nonlinearity constants. It was assumed
that there was some kind of defects on the specimen surfaces and that the stress concentrations near the
defects produced by the external forces lowered the yield stresses and increased the apparent nonlinearity
constants. A simple analysis based on this assumption was enough to explain the experimental results, and
the true nonlinearity constants which should be possessed by crystals without defects have been evaluated.
The values of the true nonlinearity constants thus determined experimentally for three crystal orientations
were consistent with the theoretical values from higher-order elasticity theory.

1. INTRODUCTION

The lattice vibrations of ¢rystals are naturally
anharmonic and some of the thermal, mechanical,

and acoustic properties of solids are influenced
markedly or are determined entirely by the lattice
anharmonicity. -4 A continuum or elastic approxi-
mation can be adopted for treating the crystal an-
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harmonicity when the dispersive nature of the lat-
tice vibration is not essential. The finite-elastic-
ity theory developed by Murnaghan® and the thermo-
elastic finite-deformation theory formulated by
Thurston® and Wallace® are conveniently used in
the treatment of anharmonicity. These theories
predict that the stress-strain relations of solids
deviate from linearity and the magnitudes of the
deviation depend on the higher-order elastic con-
stants, which are a measure of the anharmonicity
of the crystals in the elastic approximation. It
would be interesting if we could directly observe
the nonlinear stress-strain relation of crystals,
because not only could one then most directly as-
certain the adaptability of the finite-elasticity
theory to the real solids but one could also obtain
the information about the higher-order elastic
constants of the materials.

When typical single crystals of pure metals are
deformed, plastic flow easily occurs before enough
stress is applied for observing the elastic non-
linearity. The only possible way to observe elas-
tic nonlinearity may be to use whisker crystals, as
Seeger and Buck suggested, " because whiskers
have an extremely high yield strength, possibly
owing to the structural perfection. 8= Although
nonlinear behavior has sometimes been observed
in tensile stress-strain tests of metallic and non-
metallic whiskers, *~'* it was not related to the
nonlinear elasticity of the materials. Powell and
Skove!® first attempted to measure the elastic non-
linearity in copper, silver, and iron whiskers for
the purpose of determining the third-order elastic
constants. They used a rather indirect method to
determine the nonlinearity, applying a low-fre-
quency, uniaxial, oscillatory force superposed
upon the steady tensile force. Their results on
the magnitude of the nonlinearity were, however,
scattered from specimen to specimen beyond the
experimental error. More direct experiments on
the elastic behavior of whiskers is desirable.

The present investigation was aimed to directly
observe the nonlinear stress-strain relations of
noble-metal whiskers using a sensitive tensile-
stress apparatus, and to compare the results with
the predictions of higher-order elasticity theory.
Gold whiskers were excluded because specimens
long enough for the tensile experiment were dif-
ficult to grow. Difficulties were also experienced
in the case of silver whiskers, as straight speci-
mens with uniform diameters could be grown very
rarely. Only the results on copper whiskers with
[100], [110], and [111] axial orientations will be
described in the present paper.

II. EXPERIMENTAL PROCEDURE
A. Apparatus

A sensitive apparatus should be used for the

present purpose to record the stress-strain curves
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of whiskers in their elastic region. For example,
for metal whiskers having yield stresses of the
order of 100 kg/mm? of a few u in diameter and
1 mm in length, the maximum load and elongation
in the tensile experiment is around a few g and
10-% cm, respectively. The tensile apparatus
adopted is a variant of an analytical balance with
the specimen attached to one arm and a solenoid-
magnet system to the other arm for loading the
specimen. Each end of the specimen is glued to
the upper mounting rod suspended from the arm
and to the lower fixed mounting rod. The loading
system can apply forces ranging from a few mg to
a few g by changing the current in the solenoid.
Slow and smooth loading is realized by driving the
moving edge of a variable resistor in the current-
supply circuit using a motor and gear box. The
voltage across a standard resistor in the circuit
is fed to the Y axis of an X-Y recorder. As the
specimen is elongated, a mirror attached to the
end of the balance arm is rotated. The amount of
the rotation is detected with an optical lever which
converts the rotation into a change of output volt-
age electro-optically. This voltage is fed to the
X axis of the recorder after being amplified by a
DC amplifier. The load-elongation curve of the
specimen is traced automatically. A slow elonga-
tion rate of 1075~ 107%/sec was always used in the
present experiment.

The design of the optical lever is essentially
the same as that described by Jones and Richards.!®
Using a lamp and lens system, the image of a
glass grating is superposed onto a second grating
after reflection by the rotating mirror. When the
mirror is rotated, the image on the grating is
moved in the direction perpendicular to the bars
of the gratings. The first grating is composed of
dark and transparent bars with equal widths, while
the second grating is the same as the first except
that it is divided by a central dark bar which is
just twice the width of the usual ones. When the
right half of the second grating passes light from
the first grating, the left half stops the light. The
situation is reversed when the mirror is rotated
by some amount and the image of the first grating
is shifted just one bar length. The right and left
halves of the light beam are separated after pass-
ing through the second grating, and each is pro-
jected upon a photomultiplier. The photocurrents
in the two photomultipliers increase and decrease
exactly out of phase as the mirror is rotated. The
difference between the currents is proportional to
the rotation angle of the mirror and therefore to
the specimen elongation. Using gratings with 20
dark bars per cm, the maximum measurable val-
ue of the specimen elongation is about 70 in the
present case.

The reliability of the load measurement is a few
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mg, which is mostly determined by the sensitivity
of the balance. Thermal disturbances of the air in
the light beams of the optical system are the main
limit to the reliability of the elongation measure-
ment, which is estimated to be about 0.05u under
typical conditions. A full description of the ap-
paratus appears in a separate paper. 7

B. Specimen Preparation and Manipulation

Copper-whisker specimens were grown using
the reduction method developed by Brenner. '8
Satisfactory result was obtained by hydrogen re-
duction of a 1:1 mixture of Cul and CuBr at 600 °C.
The reaction time was 2-3 h and the flow rate of
hydrogen was about 100 cm®/min. The lengths
and diameters of the grown whiskers were 0.2-5
cm and 1-20 u, respectively. Both chemical and
atomic-absorption spectroscopy of the specimen
material showed that the impurities contained
were 0. 020-at.% Fe and0.0005-at.% Ag. Whiskers
of a few mm in length and about 3-4 u in diameter
with straight and uniform shapes and with good
surface condition were chosen for the tensile ex-
periments after inspection with a microscope.

Extreme care was taken to manipulate the speci-
men whiskers, because improper handling easily
caused plastic deformation and produced surface
slip traces. A refined technique using a special
manipulator was adopted to set the specimen in
the testing position. 7 The specimen was glued to
the upper mounting rod with diphenyl carbazide,
and to the lower rod with aron-alpha (alpha-cyano-
acrylate). After mounting the specimen, the gage
length was measured with a telescope. The diam-
eter of the specimen was determined after the
tensile test had been done. The portion of the
specimen within the adhesive agent was cut with
a razor blade, and the cross-sectional area was
measured from photomicrographs (x1500— % 3000).
The square root of the measured area was employed
as the “diameter” of the specimen. The crystal
orientations of the whiskers were determined by
the rotating-crystal x-ray method. Almost all
whiskers had [100], [110], or [111] axial orienta-
tions.

III. RESULTS AND ANALYSIS

A. Experimental Results

A typical example of recorded stress-strain
curves of whiskers with different orientations is
shown in Fig. 1, where P is the apparent stress
defined as the applied load divided by the cross-
sectional area of the undeformed specimen, and
€ is the usual strain equal to the specimen elonga-
tion divided by the gage length. Deviations from
linear relationship between stress and strain can
be seen in these curves. The dashed lines are
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those having slopes with the apparent Young’s
moduli of the specimens. These stress-strain
curves were used to analyze the nonlinear elastic-
ity of the specimens. In the typical experiment the
load was increased until the specimen yielded and
fractured. When the load was decreased before
yielding, very slight differences were sometimes
seen in the increasing-load and decreasing-load
curves ([110] specimen), which might be due to
the mechanical hysteresis of the apparatus. It
seemed, however, that no permanent strain re-
mained after the load was diminished, and the de-
formation of the specimen was considered to be
elastic. The anomaly sometimes observed at low
stress level ([111] specimen) might be due to the
misalignment of the specimen setting and this part
of the curve was omitted in the analysis.

The nonlinearity between strain and stress is
conveniently expressed as follows”;

€=P/E+6(P/E)?. (1)

In the limit of infinitesimal deformation, stress
is proportional to strain and their ratio E is the
apparent Young’s modulus. The quantity 6§ is
called the nonlinearity constant, which represents
the nonlinear elasticity of the specimen. In Fig.
2, as an example, €/P is plotted against P using
the stress-strain data of Fig. 1, and reasonably
linear relationships hold between the two quantities.
Experimental values of Young’s modulus E,,,, and
nonlinearity constant §,,,; can be determined from
least-squares fits to the data. The values for
various specimens are compiled in Table I, to-
gether with the diameter and gage length of the
specimens. The maximum stress where yield of
the specimen occurs, P_,,, is also indicated in
the table. The reliability of the measured values
of Young’s modulus and nonlinearity constant is
mostly limited by the accuracy of the specimen

200
150
NE 4
£
> 100 -
-
o o
50 —
0
0 0.5 1.0 1.5 2.0
€ (%)
FIG. 1. Typical stress P vs strain € curves of copper

whiskers with different orientations.
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FIG. 2. Plots of €/P against P for the stress-strain
relations of Fig. 1.

diameter measurement, which is around 10% or
better in typical cases.

B. Nonlinear Elasticity

The nonlinearity constant 6 appearing in the
stress-strain relation of Eq. (1) can be calculated
theoretically using higher-order elasticity theory.
In finite deformation of materials, the Lagrangian
strain tensor 7;;, defined as

47 2\8a; 8a
1

=B, By | Buy Bup) @)
2\da; da; da; da;

is conveniently used to represent the deformed
state, where a; and x; are the coordinates of a
material point before and after the deformation
and #;=x; —a; is the displacement. Summation
over repeated indices is always implied. The
stress component ¢;; is defined as the force ap-
plied per unit area of the deformed material, and
the Lagrangian strain derivative of the energy
density of the material is not equal to the stress
when the deformation is finite because the strain
is defined referred to the coordinates of the un-
deformed state. It is more profitable to use the
thermodynamic tension ¢;; defined as

dW: tijdnij ) (3)

where dW is the work done per unit volume of un-
deformed material. The relation

(88 (o).

then follows directly from the definition, where F
and U are the Helmholtz free energy and the in-

ternal energy of unit mass of material, respective-
ly, po is its density before deformation, and 7 and
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S indicate, respectively, the isothermal and adia-
batic conditions. The isothermal and adiabatic
elastic stiffness constants of nth order are defined
as

"F
T =
Cisrimnes. po(_—————_—aﬂﬁaﬂu&ﬂmn° . )T ’
(5)

9"U
s _ o v .
Cliittmness=Po (3"7i1977k1371mn° X ')s .

The free energy and the internal energy of strained
material are each expanded as a power series of
strain, with the elastic constants as coefficients:

1
PoF(my;, T) = poF (0, T) + 5T € 3 Mes

1
+ §T C:il}klmnnijnklnmn"" M)

(6)
1
pPoU (7, S) =poU (0, S) + a7 CHeiMiiMer

1
+37 ijkzmnnijnkt"?mn'*" te

It can be shown, through a thermodynamic argu-
ment, that the relation between the usual stress
0z and the thermodynamic tension ¢;; is®

da; da
Li3=Jog a:‘ Ei' s (7)

where J is the Jacobian determinant

8(xy, x5 %3)
8(ay, az, as)

®)

The nonlinear force-deformation relation can be
derived from Eq. (7) when the material is strained
with special mode of deformation. In such a case,
the x;’s are expressed with a;’s, and the right-
hand side of the equation can be represented as a
function of u;, a; and the applied force. On the: '
other hand,t;; is related to 7;; and C,;;... using
Egs. (4) and (6), while 7,; can be expressed using
u; and a;, as Eq. (2) shows.

In the case of a long specimen with uniform

TABLE I. Summary of experimental results.

Eexpt
Diameter Length 104 Prax
Specimen Number (1) (mm) Sempt  (kg/mm?) (kg/ mm?)

[100] 1 4.9 0.95 —6.5 0.616 71
2 4.7 1.07 =—2.2 0.667 143

3 4.0 1.10 -14.2 0.565 38

4 4.5 1.20 -8.2 0.393 65

5 3.6 0.97 —4.5 0.598 177

[110] 1 3.4 0.84 9.2 0.991 162
2 2.8 0.72 12.7 0.936 91

3 3.3 0.58 18.0 1.036 60

[111] 1 3.2 1.35 10.2 1.442 102
2 3.2 1.25 4,7 1.508 174

3 3.9 1.20 10.1 1.257 104

4 2.5 0.97 4.5 1.372 162
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cross section deformed homogeneously along its
axis, the nonlinear stress-strain relation is easily
expressed in the form of Eq. (1), and the nonlin-
earity constant  can be represented as a function
of second- and third-order elastic constants. For
a specimen with axis of [100] direction, Young’s
modulus E and the nonlinearity constant 6 are

E=cy— 2,0, v=cp/(cii+cyy) ,

6-—§+ 1
2 cyley+cpp)-2c

?z {%[20121/2 -(cn +C1a)]c111

+[(2‘712"' Cn)vz +2011V+C1z]c112

=[le1y+€1p)v%+201,01C 551 - (9)

Similar expressions are also obtained for the [110]
and [111] directions, and they are the same as
those described by Seeger and Buck, 7 except that
the thermodynamically-defined elastic constants!®
[Eq. (5)] are used in the present case instead of
Birch’s constants.?® The nonlinearity constant &
for the [100] direction contains a linear combina-
tion of three third-order elastic constants C;,,

C 115 and Cip, while that for the [110] direction
includes five constants C,;;, Cy;5, C 3, C144, and

C g and that for the [111] direction includes all
six constants.

The nonlinearity constant 6 can be calculated
using the experimental values of third-order elas-
tic constants. It must be noticed that the observa-
tion of the nonlinear stress-strain relations is
usually done under isothermal conditions and the
isothermal elastic constants should be used for
the calculation. Third-order elastic constants
are usually determined by acoustic measurements,
and the values obtained are of mixed type,

8(0%U/8m;;9m,,)

_ \9°U/0M;;0Mky)s

C%klmn_po( ’ (10)
8Mmn r

because they are derived from the dependence of
ultrasonic velocity on hydrostatic and uniaxial
stress. ®2! The isothermal third-order elastic
constants can be derived from the mixed constants
through the following relations??:

T M o -1
Ciirtmn = Cijaimn™ = T(PgrCy)
s H s u
X[ @250 € 17 Cr1pamn+ C51C Hrsmn)

S S
+cijrscklpq(arsﬁgqmn+ akqﬁrsmn)] ’ (11)

¥ =Cy/Cp= 14+ TC 0450, (0Cy)™"

T
B (2222} _ o7 (B_SM_
L4 anmn r tumn 8T t:

where C; and C, are the specific heat under the
condition of constant thermodynamic tension or

TABLE II. Calculated values of Young’s modulus and
nonlinearity constant.

Direction E (10! kg/mm?) Oy o
[100] 0.678 —4.51 —2.00
[110] 1.325 10.57 7.23
[111] 1,941 3.76 2.68

constant strain, a;; is the thermal-expansion co-
efficient, and s,,, is the elastic compliance con-
stant. The relation between the isothermal and
adiabatic second-order elastic constants is also
to be noted:

S S S -1
Chim = C = = T Ops@pCirCripgPyCy)™ - (12)

The adiabatic second-order constants are directly
determined from sound velocity measurements.

The values of Young’s modulus E and the non-
linearity constant § were calculated for three dif-
ferent specimen orientations using the second-2
and third-order?®:2 elastic constants of copper.
The results are shown in Table II, where ; and
811 represent the values obtained by using the
third-order constants due to Hiki and Granato,
and Salama and Alers, respectively. The adopted
values of the temperature derivatives of elastic
compliance, which are required to convert the
mixed elastic constants into isothermal ones, are
those measured by Overton and Gaffney. %°

C. Interpretation of Results

It is seen from Table I that even for specimens
of the same orientation, the experimental values
of nonlinearity constant 8.4 and Young’s modulus
E .t vary greatly from specimen to specimen.
These quantities represent the second- and third-
order elasticity of crystals and should not be orig-
inally so structure sensitive. The measured
values of Young’s modulus of the whiskers were
always smaller than the values calculated from the
elastic constants of bulk crystals, and this ten-
dency has also been reported by other authors, !*
In the present experiment, the lowering of the ap-
parent Young’s modulus is considered to be due
to the deformation of the adhesive agent used to
glue the specimen. The aim of the present ex-
periment is to measure the nonlinearity constant,
so that the inaccuracy in Young’s modulus mea-
surement is disregarded. The measured values
of the nonlinearity constant are widely spread
among specimens with the same orientation, and
the situation is the same as the data by Powell
and Skove. '® They assumed that the third-order
elastic constants were sensitive to the impurity
concentration, and that the variation of the values
of nonlinearity constant was due to the scatter of
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the purities of whiskers used. However, the
third-order constants of noble metals may not be
much influenced by impurities, because the val-
ues are mainly determined by the closed-shell
repulsive forces between the ion cores in the crys-
tal owing to the large d-shell overlaps.?® It is
also difficult toassume thatthe purities of whiskers
vary much from specimen to specimen when they
are grown under the same condition from the same
materials.

Although at first sight the nonlinearity values
seem to scatter at random, it was found that con-
siderable regularity exists when the values of §
were plotted against P_,,, the maximum stress
where the yield of the specimen occurred. These
plots are shown in Fig. 3, and it can be seen that
specimens with low yield stresses have noticeably
higher values of the nonlinearity constant. It is
tentatively assumed that for specimens with low
yield stresses there is some kind of “defect” in
the specimen, or on the surfaces of the specimen,
which lowers the yield stress and also increases
the apparent value of the nonlinearity constant.

. The defects may produce concentration of stresses
when the external force is applied to the specimen
and yield occurs at low levels of external stress,
while the apparently large nonlinearity constant
may be observed because the real stress in the
specimen is higher than that predicted from the
external force. A simple argument and an anal-
ysis of the experimental data will be presented
with this idea.

When a force is applied to a whisker crystal,
the total stress P in the specimen is assumed to
be

expt

P=B+P,, (13)

where P, is the externally applied stress which is
uniform throughout the specimen, and P; is the
internal stress caused from the concentration of
stress near the defects. As the external stress
is increased the internal stress also increases,

T T T T T T T T
| o ool n
20 \A a [110]
\ a 1]
=57 o \ 1
x A
%] \
10 - L -
o \
5r o—=— ]
o
0 1 | 1 1 L 1 1 1
0 50 100 150 200

Pmax (kg/mm?2)

FIG. 3. Experimental nonlinearity constants 6ept
plotted against yield stresses Ppy,, for three specimen
orientations.

and its amount depends on the position in the speci-
men. Because the diameters of the whisker speci-
mens are extremely small compared with their
lengths, the variation of the internal stress along
the radial direction of the specimen may be ne-
glected compared with that along the specimen
axis. It is assumed that the internal stress varies
with position in the specimen as

P,=P,ksin2rx/x , (14)

where x is the distance along specimen axis, A is
the “wavelength” of the stress, and k is a constant.
This assumption means that the varying internal
stress is approximated by the first term of its
Fourier components, and A has the meaning of the
average spacing between the defects. By inserting
Egs. (13) and (14) into Eq. (1), we obtain

€(x)=(P,/E) (1 +ksin2mx/)

+6(P,/E)% (1 + 2k sin2mx/\ + k2sin?2mx/0) .

After averaging the strain along the specimen
length, one obtains

€=P,/E+5(P,/E)? (1 +1F? (15)

as the relation between the external stress and the
strain of the specimen. Thus, the experimentally
obtained value of the nonlinearity constant can be
expressed as

6emt=6(1+%kz) ’ (16)

where § is the true value of the constant of the
material. On the other hand, the specimen is as-
sumed to yield when the total stress P is increased
to an “ideal” yield stress P, which is a quantity
proper to the material and the specimen orienta-
tion. From Egs. (13) and (14),

Py=Pa+EPoay (17)

and P_,, is the observed value of the yield stress
of the specimen. By eliminating the constant &
from Eqs. (16) and (17), one arrives at the relation

5exnt 2%[(P0/Pma.x)2 - Z(PO/Pmax)+ 3]5 . (18)

The most probable values of the true nonlinearity
constant § and the ideal yield stress P, of the
crystals can be evaluated using the sets of values
of P o and Oy measured for several specimens
of the same orientation.

A computer calculation was carried out to obtain
the values of § and P, for each orientation of the
crystal. By choosing a value of P, the constant
5 is determined for each specimen from Eq. (18)
with the experimental values of 8., and P,,,.

The sum of the square of A= — §,,, for all speci-
mens with the same orientation, A2 is computed.
A set of values of § and P, for which ZAZ% has min-
imum value is chosen as being most probable. An
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example of how the values of 5 and ZA? vary with
P, can be seen in Fig. 4. The most probable val-
ues of § and P, obtained are tabulated in Table III
for three crystal orientations. The probable er-
rors in §’s are reduced from the corresponding
TA? values. By using these § and P, values to-
gether with Eq. (18), the values of §,4¢ are recal-
culated as a function of P,,,; and the curvesin Fig,.
3 show the results. In spite of the simplifying as-
sumptions adopted, the variation of 8.y, with P,

~seems to be rather well represented by the relation

of Eq. (18). It is also seen that the computed val-
ues of § are close to the theoretical nonlinearity
constant §; in Table II.

IV. DISCUSSION

The nonlinearity observed in the stress-strain
relation of whiskers is considered to really orig-
inate from the anharmonicity of the crystal. The
possibilities of deviation from linearity arising
from instrumental origins were ruled out after
careful checks of the apparatus. If crystal
dislocations were present in the specimen, they
could move and produce extra strain when stress
is applied. Such dislocation movement will, how-
ever, usually produce permanent strain when the
stress is diminished. No such permanent strain
was observed in the present case. Furthermore,
direct observations by x-ray diffraction topog-
raphy?®?7 and electron microscopy?® show that in
almost all cases there is no dislocation in copper
whiskers produced by hydrogen reduction. The
nonlinearity constants determined from the stress-
strain curves were at first sight incredibly scat-
tered from specimen to specimen. A systematic
relation was found to exist between the measured
nonlinearity constants and the observed yield
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FIG. 4. Procedure for determining the most probable
values of 6 and P,.

TABLE III. True nonlinearity constants and ideal yield
stresses derived from experiments,

Direction 6 Py (kg/mm?)
[100] —4,3£0.5 123
[110] 10.0+0.5 138
[111] 3.5+0.1 306

stress of the specimens, and analysis was made
on the basis of a simple model to explain the re-
lation. The explanation seems to be consistent,
but further discussion should be given concerning
the adopted model and the results of the analysis.
Some kind of “defects” which lower the yield
stresses and increase the apparent nonlinearity
constants were assumed to exist in whisker crys-
tals. The nature of the defects is such as to pro-
duce extra stress only when a force is applied to
the specimen. Dislocations and point defects
which have permanent stress fields around them-
selves are excluded. Surface defects such as
growth steps, which can often be observed in
metal whiskers, 1 are most likely the defects as-
sumed in the present case. Brenner?® found that
the smaller the specimen diameters of metal
whiskers, the higher their yield stresses. This
fact is usually explained through an argument such
that the yield stresses of whiskers are mainly
determined by surface defects because the abun-
dance of the defects is proportional to the surface
area of the specimens. The stress concentration
around the defects is considered to induce the
generation of dislocations, and once dislocations
are generated they can propagate throughout the
crystal and yielding occurs. Transmission elec-
tron microscopy®’'® and x-ray topography®? also
show that the first traces of plastic deformation
start near the surface defects or surface irregu-
larities. In the present experiment, it might be
desirable to show the existence of defects on the
surfaces of whiskers which have low yield stress
and high nonlinearity constant values. These trials
were abandoned because of technical difficulties.
In the present analysis, it is assumed that yield-
ing occurs when the sum of the external stress and
the stress caused from the defects is increased up
to the “ideal” yield stress P, somewhere in the
specimen. The stress P is interpreted as the
stress enough to generate crystal dislocations.
The values of the “ideal” yield strain, P,/E, are
0.018, 0.010, and 0.016 for [100], [110], and
[111] whiskers. The theoretical maximum strain
to destroy the perfect crystal can be evaluated as
+-3% through a simple argument.®® The Py/E val-
ues are smaller than these values, which suggest
that dislocations can be produced before the
stresses reach the values sufficient for breaking
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the bonds between atoms in the crystal. The gen-
eration of dislocations may be a statistical process,
and the ideal yield stress P, determined for a set
of several specimens has only the meaning of the
average stress for the generating process. It is
thus not unreasonable that some of the specimens
have yield stresses P_,, larger than P, (in the
case of [100] and [110]). Finally, it is noticed

that the computed values of the “true” nonlinearity
constant §, which are considered to be those of
crystals without defect, are not inconsistent with
the theoretical values from higher-order elastic-
ity theory. The apparent agreement between the
values of § and the theoretical values §; calculated
by using the third-order elastic constants deter-
mined by Hiki and Granato, however, should not
be so strongly emphasized, because several as-
sumptions are adopted in the course of the analysis

of the data, and also because it seems that in the
present experiment there are not enough data on
specimens with high yield stress.

In conclusion, the direct measurement of non-
linearity in the elasticity of whiskers is possible,
and the accurate measurement may be carried out
for determining the third-order elastic constants,
or at least their combinations, when enough care
is taken with regard to the fact that specimens
with low yield stress are not adequate for that pur-
pose.
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