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Simple Compressibility Relation for Solids
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Isothermal compression data derived from shock-wave and static-compression measurements on metals
exhibit a nearly precise linear relation between the logarithm of the bulk modulus and the specific volume

up to volume changes of 40%. As a result, solid isotherms can be accurately fitted or extrapolated in this
range by means of two parameter functions of either a Birch or a modified Tait form.

I. INTRODUCTION

The isothermal compression curve of metallic
solids can be represented in a strikingly simple
manner up to specific volume changes of 40% or
up to pressures of nearly twice the normal bulk
modulus. The observation is based on a more
detailed treatment of static-compression measure-
ments of some very soft metals (the alkalis) and
isotherms calculated from shock Hugoniot data on
a wide variety of metals.

The simple behavior of the isotherms of metals
is evident when the logarithm of the isothermal
bulk modulus B is plotted against volume changes
b, V/Vo as shown in Fig. 1~ The use of volume as
the abscissa rather than pressure was suggested
by the simple linear dependence previously found
for the melting temperature. Compared with the
pressure Pr(V) the log of the isothermal bulk
modulus Br(V), which can be calculated from shock
data with virtually the same accuracy as the pres-
sure, is a more appropriate quantity to fit because
of its relatively small variation over the large
range of shock compression data. For this reason
it is easier to recognize the advantages of a partic-
ular method of fitting compression data. Further-
more, a good fit to the volume dependence of the
bulk modulus will correspond to an even better fit
to the pressure along an isotherm (isothermal
pressure). Thus, the nearly linear relation ob-
served in Fig. 1between log~o B and a V/Vo shows
clearly that an extremely accurate two-parameter
fit to isothermal pressures is possible, over a range
of 40% in volume changes.
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FIG. 1. Isothermal bulk modulus Bz vs volume change
of metals as calculated from shock-wave and static-com-
pression data (see text).

The information for Fig. 1 was indirectly ob-
tained from experimental data by special methods
in both the cases of static- and dynamic-compres-
sion data. These methods are described in Sec. II.
Various accurate ways of fitting the curves of Fig.
1 and comparisons with previous methods are made
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in Sec. III. Finally, the applicability of this be-
havior to other types of solids is discussed in Sec.
IV.

II. DETERMINATION OF ISOTHERMAL BULK MODULUS,
FROM COMPRESSION DATA

The bulk of the data exhibited in Fig. 1 is de-
rived from shock-velocity measurements which re-
mains the only method of obtaining compressions
in normal solids of 30% or more. These data have
previously been shown to be in excellent agreement
with static-compression data. Figure 1 contains
nearly all the available shock-wave results3 for
metals. In order to reduce the clutter of the
graph, a few metals have been left out: Au, Ni,
and Cr which are in the Fe group and Re which lies
in the W group. Metals for which there is little or
no data are pure Al, Mn, Ga, Tc, Ru, and Os plus
some heavy elements. Shock data for a number of
metals (Na, K, Rb, Hg, Te) lie entirely in the
liquid phase, and are not included. In addition a
number of metals, in particular the rare earths,
the alkaline earths, and first transition elements
below Ca and Se, exhibit phase changes at rela-
tively low compressions. Their data have not
been included because the range of compression
in the low-pressure phases are too small to be of
use here. Three metals having low-pressure

phase transitions, Zr, Ti., and Hf, are included.
The 0-deg isotherms plotted in Fig. 1 are de-

rived from shock-velocity data by standard meth-
ods. Shock-velocity measurements on solids can
nearly always be accurately fit by a linear rela-
tion between shock velocity U, and material veloc-
ity U~; that is U, =C+SU~. The pressure and
modulus along the Hugoniot, PH and B~, are then

BD X
Ps = poUs UI =

(1 )a
X y 9

0

dP„(1—x)(l+ sz)
d V (1 —sx) (2)

where po and Bo are the normal density and bulk
modulus of the solid. Assuming that the solid
obeys a Mie-Gruneisen equation of state and fur-
ther that Gruneisen's y is related in one of several
plausible ways to the shape of the 0-deg isotherm
P~(V), the Hugoniot P„(V) then determines the
0-deg isotherm. Using standard theories, values
of B~(V) were calculated for Mg as a typical ex-
ample and compared with B„(V)as shown in Fig.
2. Nominal error bars in the experimental de-
termination of B„(V)are also drawn to show that
the differences between B~ and BH become signif-
icant beyond 20%%up compression. Thetheoryfor y(V)
most often chosen to derive equation-of-state
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properties from shock data is that of Dugdale-
MacDonald (DM) and this was used for the calcula-
tions of Fig. 1. Figure 2 shows however that
each of the theories for y gives a straight line over
a large range of n, V/Vo with a relatively small
variation in slopes (- 10/0) between theories.

In the cases of the very soft alkali metals, direct
static isothermal compression measurements are
available and are to be preferred. The reason is
that, except for Li, the alkali-metal shock data
points are in the liquid phase and cannot be used
to derive an equation of state for the solid. For
this reason, we show results from static measure-
ments for the alkali metals in Fig. 1 and reduced
results from shock measurements for the remain-
ing metals.

Room-temperature measurement of compression
for the alkali metals have been reported by Vaidya
et al. 6 Volumes were determined relative to gold
from piston displacement measurements. Details
of the technique are reported in Ref. 2 and 5.
Bulk-modulus values were determined from the
original piston displacement data by graphical
techniques. Except for the relatively small com-
pression of gold, no equation of state or other
functional form enters the data reduction scheme.
This is a unique feature of these bulk-modulus val-
ues.

The 5-kbar-spaced data of Vaidya et a/. were
plotted, run by run, on a large scale. Graphing
accuracy was typically better than +0. 05% of the
volume change at 45 kbar (about +0. 0002 in
n. V/Vo). Smooth curves were drawn through these
points with the aid of a large-radius flexible .

spline. Volumes were read off at 1-kbar intervals.
The bulk modulus was then calculated from
B= —(V/Vo)[aP/(n. V/V, )], where V/V, is the mean
volume in the interval. ~I' was taken at 1-, 3-,
and 5-kbar intervals in search of smooth values of
B. Pressure intervals were moved in 1-kbar steps
over the 45-kbar range.

Relevant curvatures were sufficiently small that
no systematic trend was found in the bulk modulus
values as the pressure interval was increased
from 1 to 5 kbar.

Straight lines of the form

lnB= lnB, + (n V/V, )

were fit by least squares to each of the original
runs over an appropriate volume range. Lithium
was fit to a compression of 0. 15, rubidium to 0.34,
and sodium and potassium over the full range of
the data. One representative data set is shown
with the fit line for each material in Fig. 3.
Weighted averages of the slopes and intercepts
were calculated for each material. . The weighting
factor was the inverse square of the standard de-
viations in each least-squares fit. The average

A simple linear representation, like (1), of the
data on Fig. 1 does not lead to a completely satis-
factory formula for the isotherms. That is, the
formula

V
T B nkvd/vo (f )dV

cannot be integrated to obtain Pz(V) in terms of
simple functions. However, a slight modification
of Eg. (3),

(4)

can be derived from the standard Tait equation
(5)6 ~
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FIG. 3. Room-temperature isothermal bulk modulus
vs volume change of the alkali metals from static-com-
pression data-representative examples.

intercepts give Li;80= 117.4+ 0.9; Na: 80=59.9
+0, 5p K; B0=31 0+0 2~ and Rb' B0=24 9+0 3
Scatter of the Bo values gives an uncertainty of
about 1/o in each case. Agreement with the values
found by a modified Murnahan equation fit to the
original data are excellent, ' within 1 kbar in every
case. This accord lends strong credence to the
validity of the straight-line fit over the selected
volume ranges.

The average slopes are Li: a = 3.62+ 0.02;
Na: ~=4, 06+ 0.07; K: ~=3.93+ 0.02; and Rb:

=4. 12+ 0.04. These values are remarkably
similar. Except for Li they lie nearly within their
mutual uncertainties.

These average straight lines are shown in Fig.
1 for comparison with the 0-deg isothermal data
reduced from the shock Hugoniots.

III. MATHEMATICAL FITS
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o.aV/V, =in[1+ o.(Z -Z, )/B, ],
a=I + -'—(e""'o-1)B

Q

for an isotherm starting at pressure PQ with an
initial bulk modulus of Bo. A plot of Eq. (4), how-
ever, shows lnB~ to be increasing somewhat less
than linearly at the higher compressions where the
shock isotherms increases more quickly than a
linear rate. Moreover, at still higher compres-
sions Eq. (4) is qualitatively unrealistic since it
predicts that B~ goes through a maximum and de-
creases to zero at infinite compression. However,
a further modification of the Tait equation (5) i~
satisfactory in these regards:

Q Q nb V/VQ

a+1 V

The bulk modulus derived from (6),

0/ NEv/Fo (T )a+1

(6)

&, = -'Bo n'"(n'" —1) [1 —-' (4 —Bo')(n'" —1)],

B ~

B~= BQ

B Br[1 o5+BO (q —1)],

Birch (8)

Murnaghan (M)

Keane (K,)

where r/= Vo/V. There are extensions of each of
these equations involving additional parameters
which could be used to fit the isothermal data with
greater precision but the additional parameters
can never be measured with sufficient accuracy at
low pressures to be useful in extrapolations. The
Keane formula discussed by Anderson~ is actually
a three-parameter equation of which the above
K& equation is a special case corresponding to an
ideal-gas behavior at infinite compression.

The superiority of both the modified Tait and
Birch fits to the Mg isotherm is evident. The two-
parameter Murnaghan equation is actually a much
better fit to the uncorrected Hugoni, ot, B„(V), a

is seen in Fig. (2b) to accurately represent the DM
curve to b V/Vo- 0.4. This means that the simple
expression (6) for the isothermal pressure will fit
shock calculations to very high accuracy.

For comparison Fig. (2b) also shows calculations
for a number of other two-parameter formulas
commonly used to represent high-pressure com-
pression data. In order to compare the accuracies
with which various formulas can be extrapolated
to high pressure, all functions are started with the
same initial values and slopes appropriate to Mg.
The various functions are~

fact that has been noted on previous occasions and
mistakenly thought to justify its use for extrapolat-
ing isotkexms to high pressure. The differences
between the Birch and modified T& fit to the Mg
isotherm are also seen to be within the uncertain-
ties of the experimental data and the thermal cor-
rections to the Hugoniot. This is also true for all
the other metals shown in Fig. 1. Although it is
therefore not possible to detect a strong preference
for either of these forms in the experimental data,
the modified Tait, Eqs. (6) and (I) are the simpler
functions.

On the other hand the Birch equation is derived
systematically from the theory of finite strain in
which the pressure is expanded in powers of an
Eulerian-strain variable x=- (V,/V)'/' —1. It was
long ago recognized that coefficient of the second
power of x was generally small for metals. The
excellence of the bulk-modulus fits reported here
indicates that the coefficient of the x term is also
small and confirms the indication that the Eulerian-
strain expansion for the pressure has a large ra-
dius of convergence.

IV. APPLICATIONS

The nearly linear dependence of the log of the
bulk modulus on volume appears to be as universal
in metals as the linear velocity relations found in
the shock-wave data. It is interesting to speculate
on, the possibility that lnB~ is linear in volume for
a single phase of any solid. In the case of metals
the linear volume dependence is apparently the re-
sult of a linear shock-velocity relation combined
with thermal corrections represented by a Grun-
eisen y~ which decreases with volume. The meth-
od used here for calculating y and its volume de-
pendence is well based in theory and is in approxi-
mate agreement with experimental data on met-
als. However, for polyatomic solids both this
theory and experimental data are inadequate.
Nevertheless, for more complicated solids, the
decrease of y~ with compression may be expected
according to the following more qualitative argu-
ments.

The intermolecular forces which govern the
compressibility of a solid and also its thermal
pressure are believed in all cases to be composed
of weak long-range attractive forces plus short-
range repulsive forces. It is readily shown that
for a simple power-law intermolecular potential
z", yo= ~~(n+2). However when a second attrac-
tive potential is added to the repulsive power law,
it effectively cuts off the repulsion at a finite ra-
dius. The effect is the same as increasing the
exponent ~ or y~ above the value characteristic of
the repulsive part of the potential. Therefore as
one compresses the solid, the effect of the attrac-
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tive potential is reduced and y~ will decrease.
This behavior seems to be characteristic of all
metals. Thus to the extent that such force models
are realistic for more complicated polyatomic
solids, one may expect a similar type of behavior
in their y~. However in the latter materials a
quantitative estimate of the decrease is difficult.

There are two practical limitations to the use of
these two-parameter fits for extrapolating low-
pressure data on more complicated solids. The
first is the frequent appearance of high-pressure

phase transitions in polyatomic solids such as
minerals which will limit the range of densities of
a single solid phase by an unknown amount. The
second is the necessity of accurately measuring
the two parameters at low pressure. Unfortunate-
ly, ultrasonic measurements of B~ do not always
agree among themselves or with shock-:wave data.
There remains, therefore, a strong need to im-
prove the accuracy of ultrasonic measurements of
B~ in order to obtain reliable extrapolations of
solid-compression data.
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Energy Commission.
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The simplest successful approximation scheme for the calculation of scattering due to non-
magnetic impurities in metals, due to Blatt, has been applied to the cases of impurities in the
polyvalent hosts Be, Mg, Zn, Cd, Al, In, Sn, and Pb, extending our previous work which was
restricted to zinc. The results of this extended study are compared with available residual-
resistivity data and, in the case of Cd, with some new experimental data. A new well-marked
regularity has emerged from this extended study. If Z and Zo denote the Periodic Table
column numbers of impurity and host, respectively, it is found that for Z&ZO the model works
very well, while for Z &Zo very little agreement with experiment is obtained. An interpreta-
tion of this behavior is proposed which offers a physical understanding of the a priori unex-
pected validity of the simple model for impurity scattering in metals.

INTRODUCTION

In a previous publication' it was shown how the
original Blatt model2 of impurity scattering in
monovalent noble-metal alloys could be extended
to provide an interpretation of the residual re-
sistivity of impurities in the divalent metal zinc.
Because of metallurgical difficulties encountered
in previous work' on zinc alloys, the experi-
mental portion of Ref. 1 was restricted to im-

purities which displayed a- l-at. %%uOsolubility .
However, it was subsequently brought to our at-
tention that very reliable data also existed for
both Sn and In as impurities in zinc, even though
the maximum solubility of these solutes is cer-
tainly very much less than l at. %%up . Thepresent
work was begun when calculation showed that, for
these solutes, the Blatt model failed completely,
despite the success encountered in Ref. 1 for the
solutes Cu, Ag, Au, Cd, Hg, and Al. The distinc-


