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Absence of Antiferromagnetic Ordering in Hubbard's Simple Decoupling Scheme
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The self-consistency criterion for the antiferromagnetic solution of a single-band Hubbard
model in Hubbard's simple decoupling scheme is, here, analyzed in detail as a function of the
number n (0&g&2) of electrons per site. It is shown that a self-consistent antiferromagnetic
solution exhibiting a first- or a second-order phase transition does not exist for any value of
n. For n =1 the only possible solution at any temperature is shown to be the one with zero sub-
lattice magnetization. These results are contrary to a claim by Arai.

I. INTRODUCTION

A great deal of effort has been expended in re-
cent years to obtain an antiferromagnetic solution
to the Hubbard model in Hubbard's simple decou-
pling scheme. ' Penn, Bari and Kaplan, and Hew-
son and Lindner4 have shown that for the case of
one electron per atomic site, the Hubbard insulator
does not exhibit antiferromagnetic order. Recent-
ly, Arai' has studied the properties of the antifer-
romagnetic solution in the said decoupling scheme
for arbitrary values of electron density. However,
Arai failed to investigate the self-consistency cri-
terion for a stable antiferromagnetic state, but

simply assumed that one exists, at least, for a
certain range of the density. It is the purpose of
this article to establish the failure of the simple
decoupling scheme of Hubbard to exhibit a stable
antiferromagnetic state for any value of the num-
ber of electrons per site (0&n& 2) and for all values
of the parameters involved in the model. This is
done by first demonstrating that for n= 1, the only
possible self-consistent solution for the sublattice
magnetization Z at an arbitrary T (including 1"= 0'K)
is zero, the trivial one. This result lays to rest
possible exceptions taken to the result established
in Refs. 2-4. For arbitrary n, the lack of an anti-
ferromagnetic solution is shown as follows: If a
nonzero & existed, we show that the system would
not exhibit either a first- or a second-order phase
transition. Since X must drop to zero at high tem-
peratures, we conclude that no self-consistent
antiferromagnetic solution leading to a first- or

second-order phase transition is possible. In the
concluding remarks we point out a possible case
that is not covered in our work.

(2)

where n is the number of electrons per site and

nX is the sublattice magnetization which should be
determined self-consistently. We restrict t,&'s

to nearest neighbors only and set t«= 0 without loss
of generality. For a simple cubic lattice we then
have
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~
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t,&
= —

~
t

~

for i and j nearest neighbors

=0 otherwise .
The solution to the Green's functions in this de-
coupling scheme can then be written in a matrix
form as follows:

II. CALCULATIONS

The Hubbard-model Hamiltonian is given by

H= Z tUC),C;, +UK n(,n), .

IBAD

Be

We consider the equations of motion for the double-
time Green's functions and follow Hubbard's de-
coupling scheme. ' We next break the translational
symmetry by considering two interlocking lattices
A and B and impose an antiferromagnetic solution
by defining

G'„„(k,(u) G~(k, (o)
[~ —5 (&)1[~—5 (&)] [~ —& (&)1[&—&4(~)]

~GBA &
+ BB k& +

( —U)[ -U(1-& '&)1 e [ —U(1-& '))1[ -U(1-& '&)]
X

e«[&o —U(1 —(n„'))][ar —U(1 —(nB'))] &u(&u —U)[(u —U(1 —(nB'))]
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where», z, 4(k) are the roots of the quartic equa-
tion

(d'(~ —U)'- e),[(d —U(1-~i')) [~ —U(1-ns')) = o .
(6)

From the structure of the Green's functions it
appears that the original "two bands" in the Hub-
bard truncation scheme are split further and one
has four bands. This interpretation would be
meaningful if a nonvanishing X exists. It can be
noticed that for a tight-binding band given by (3),
e), = —e~,o, where Q=(v/a)(1, 1, 1). It is obvious
from (6) that at k =-,'Q the solutions to (6) are &u = 0
and & = U, each occurring twice. This suggests
that antiferromagnetic ordering does not bring
about an additional gap in the excitation spectrum.
Thus one could suspect that antiferromagnetic or-
dering causes no gain in energy and, in fact, we
shall see that the paramagnetic state always wins
out.

To investigate the stability of the antiferromag-
netic solution, we must solve for X self-consis-
tently and for the chemical potential p. . The two
equations are obtained from

2 d(d 1
—,'g(l+ g) = —— Z

(half-zone)

x ImG'„„(k,u) + jO') ('7)

1
—.n(I —y) = ——2

k
(hal f -zone)

Eke 1
1+e'"

ximGss(k, v+iO') . (8)

After a straightforward manipulation one obtains
the self-consistency criterion in the following
form. Assuming that g &0 is a solution, one must
solve the following equation:

f(»i —w)»i(»i —U) f(»2 —u)»2(»2 U)

(»~-»~)(&i-4)(»i- &4) (.",—», ) (». —», )(». -&.)
(hal f -zone)

+ f(»s —g)»s(»s —U) f(»4 —p)», (g4 , U)—
+ (9)

((3 (1) (4 (2) (4 4) (4 4) ($4 h2) ((4 4) )
where $, ~ s 4 are defined in (6) and f(x) = (1+e ") '. The chemical potential p is determined from the follow-
ing equation:

k
(half-zone)

&y(», —~)», (», —U) (2», -2U+ «),I(». —i )».(». —U) (2», —2U+ «)
(» —» ) (» —» )(» —» ) (» —» ) (» —» ) (» —» )

+ f(» g)» (»g ——U) (2» —2U+ Un) g(»4 p)» (»4 ——U) (2»4 —2U+ U&)+ (10)
(», —», ) (», », ) (», »—,) — (», —g, )(», —», ) (&, —», )

III. ANALYSIS OF SELF-CONSISTENCY CRITERION

A.

Ceasel

The self-consistency criterion can be rigorously
analyzed at any arbitrary temperature 7.' for the
case of g= 1. Since the work of Befs. 2-4 is main-
ly restricted to showing the absence of a second-
order transition temperature, it might be argued
that a self-consistent antiferromagnetic solution
might still exist exhibiting other kinds of phase
transitions. We show below that Eq. (9) for g= 1
has no solution with a finite g.

First, we observe that for @= 1, the quartic
equation (6) can be solved analytically and that the
chemical potential p, determined from (10), is
—,'U. Incidentally, this result is exact. The self-
consistency equation reduces to the following form:

where

1U2 2

+ ' tatt)t —')tt ), (11)

», =-'. ((~,+ [~,'+ U'(1 —
y.')]"'P+U'X')"', (12)

k + +

2 1 U

&(t +1.) (tt'+tt' .')"')
2 ~ 1 1
N k P+$ U

Noting that each term of the integrand and $, and

are positive definite, we have

k
(hal f -zone)

f$, —4U
( q „p) ~

— ' ' —tanh2p»,

The last step follows from the fact that the inte-
grand takes its maximum value of 1/U for s~ = 0.
Thus for 0& y & 1, Eqs. (11)has no nontrivial solu-
tion.
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B. Case2

For arbitrary n, Eq. (9) determines y as a func-
tion of the parameters U, T, and lt). Let X40 be
a solution to (9) at T=O'K. Then, if g has a tem-
perature dependence, it must decrease with T, and
one can then determine the temperature T~ at which

g goes to zero. If the transition were of second
order, then T„is the Noel temperature, i. e. , the
temperature at which g goes to zero continuously.
On the other hand, the transition would be of first
order if g decreases with T and drops to zero dis-
continuously. In this case T„would not be the tran-
sition temperature but would represent the inter-
cept of the analytic continuation of g(T) on the tem-
perature axis. In other words, a. first-order tran-
sition is viewed as an interrupted second-order
transition. Existence of a positive real T„is ob-
viously a necessary condition for the occurrence of

l

1 ' 1
U N

(half -sone)

/f»(+s p) -f»(+a —0)
i [(U- ~a) +2«~~]

[(U+ s,)'-2U«, ]"']
(14)

1 p f»(nm —0) -f»(~& —g)
[(U- &,) +2U«, ] ~

(tul1 mone)

where
~, ,=-.(~, + U)+-,' [(U- s,)'+2U«, ]"',
a, ,, =-.'(- ~„+U) ~-.' [(U+~,)'-2U«, ]"' .

(18)

The chemical potential at T„is then determined by
the following equation:

even a first-order transition.
The condition (9) then goes into the following con-

dition for determining the Noel temperature:

2 p (ng —U+zUn)f»(o'f p) (n0 U+2Un)f»(cta —g)
N [(U —e„)'+2U«]"'

f»(&2 4)
N f [U +ea —2UEa(l —~)l i (18a)

Thus, instead of solving (9) for g at an arbitrary
temperature, we analyze the equivalent condition
(15) for T„.The following is a brief outline of the
method by which we show that a self-consistent
solution to (15) does not exist: First, we establish
that there exists no real positive T„(0&T„&~) for
which (15) has a solution. This then implies that
if a nonzero g satisfied (9) at T=O'K, it cannot
vanish at any T (0& T& ~) and, in particular, must
remain finite for T= 0(T»), where T» is the degen-
eracy temperature. However, for T= O(Tz) all the
four Fermi functions tend to one-half, and it can
easily be verified in this case that the right-hand
side of (9) vanishes identically. Thus the only solu-
tion is the trivial one, g = 0, which we canceled out
from both sides in the process of deriving (9).

Result 1. We establish that for 1 —I/v 3 & ~ & 1
+ I/v 3, there does not exist a real positive T„
(0 & T„&~) which will satisfy (15) for any value of
the parameters U and I tI .

Proof. Consider the right-hand side of (15):

1 p f»(+a
N .„[U+g„—2' (1 —n)]'

(18b)

1 t' 1
2N g l([U +s~ —2Ugq(1 —g)]

[U + &&+ 2'&(1 —tt)]

(18c)
(18d)& 1/U for 1 —I/&3 & n & 1 + I/&3 .

in going from (18b) to (18c)we have made use of
the fact that for every q, there is a —

&~ in the sum
over f. In arriving at the inequality (18d) we have
made use of the fact that the integrand takes its
maximum value at v,„=0, if n lies between 1 —I/v 3
and 1+ I/v S.

The upper bounds established above are not suf-
ficient to prove similar results for g outside this
range. We proceed differently.

Result 2. We now show that for 0& n& 1- 1/v 3
and 61tl /U& 2/v 3 there is no solution to (15) for
a real positive T„(0&T» & ~).

Proof. We compare Eq. (15) with (1V) and show
that both equations cannot be satisfied simulta-
neously. Let us rewrite the equation determining
the chemical potential in the following form:

1 1
U N g

(2/n —1 —2o.+Un) f„(ag—p, ) + (2mg/Ue 2/e+ 1)f» -(-~ —g)
[U +sq+2U&q(m —1)]'

It is straightforward to verify that (a) 2n, /Un
—2/g+ I & 0 for all U, l tl, and n (0 & n & 2) and

(b) 2/n —1 —2n, /Un & 1 for 6 l tl /U& 2/WS and n in

l

the range 0 & n & 1 —1/WS. Thus each term in (19)
is greater than a corresponding term in (15).
Thus the right-hand side of (15) is less than 1/U.
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Result 3. The above result can easily be ex-
tended to n&1+1/v 3. Thus we show, below, that
for 2& n& I+ITS and 61tl/U& 2/v 3 there is no posi-
tive real T„(0& T„&~) that satisfies (15).

Define z' = 2 —z. The self-consistency equation

is written in the form

1 1 g [1-f„(n,—g)] —[I -f~((y, —p)]
U N f, [U + e~ —2vs~(n' —1)]

The equation for p, can be written in the form

(20)

1 1
U N g

(2n, /U~ —1) [1 f„(n—, —p)] + (1 —2o., /Un' ) [1 —f„(o., —p, )]
[V'+ &,

' 2Vv.,(n-' —1)]"' (21)

[U'+ s,' —2 Vs, (I n)]"'—
(inner hal f -sone)

1 1 p U(1 —n) —s(k) & 1
2 N f, [g„+U —2ve~(1 —n)] 2

(inner half -zone)

(22)
The last step follows from the fact that in the in-
ner half-zone q~ & 0. Hence for g & 0. 5 the chemi-
cal potential p & nz (q~ = 0). This has the effect of
restricting the sum over k in (18) to the inner half-
zone at low temperatures. Hence the right-hand
side of (18) is now bounded by

f(~a - u) f(~~ ~)-
N, [v'+&,'+zv&, (I —~)]"'

1
N k

(inner hal f-mone 6~( 0)

1
[U +eq —2veq(1 —n)]

We note that (a) 1 f„(n——Iu) & 0, (b) 1 —2o.z/Un'
& 0 for 0 & ~' & 2, and (c) 2n& /Un' —1 & 1 for n' & 1
—I/WS and 6~ t~/U& 2/v 3. Thus the right-hand side
of (21) is greater than the right-hand side of (20).

Thus we have established so far that in the Hub-
bard truncation scheme there is no antiferromag-
netic solution for any value of n (0& n& 2) as long
as 6!f1 /U& 2/v 3. Furthermore, we extended this
result for any value of Pand I tt provided that pg

lies between 1 —I/WS& n & 1+ 1/WS. It is worth
pointing out that the Hubbard truncation scheme is
probably incorrect for 6[ t~/U& 2/WS, as was shown

by Hubbard. ' For 61tl/U&2/v 3, Hubbard, in his
improved calculations, has shown that the two
bands merge into one and that there is no gap in the
density of single-particle states. If we accept this
conclusion, we can then state that within the range
of validity of Hubbard's truncation scheme, no self-
consistent antiferromagnetic solution is obtained
for any value of n (0& m& 2).

In spite of the physical arguments given above to
discard the range 6l tl /U& 2/WS from our discus-
sion, we can still show that Ej. (18) has no solu-
tion for T„in the range n& 1 —I/O 3 or n& I+I/&3
and 6 I tl/U& 2/V 3.

Consider n&1 —I/v 3. We first show that p lies
in the lower band az(k) such that p& oz (q~=0). For
n & 1 the total number of states n 2 available in the
inner half of the Brillouin zone is given by

2 p o.z(k) —U+ —,Un

1(———
~ (23)

For finite T~, one can use the Sommerfeld expan-
sion and the correction terms are O((1/U)(T„ /
U) ) for 6)tl/U& 1. Thus for T„«vthe correction
terms are negligible and (15) can still not be satis-
fied. Also we have seen that for T„&Uthe Fermi
functions f(n, —p, ) and f(nz —p) can both be re-
placed by —,', and thus the sum on the right-hand
side of (15) vanishes.

Finally, for n& 1+ I/v 3 one can give an argument
very similar to the above to rule out antiferromag-
netism. Here the chemical potential lies in the up-
per band in such a way that for n& 1.5, p & n, (s~
=0). Writing Eg. (15) in terms of 1 f(~ —g) in--
stead of f(n —p), one can easily verify that the
argument given in the preceding paragraph goes
through.

IV. SUMMARY

We have shown that Hubbard's simple decoupling
scheme fails to show an antiferromagnetic solution
for the system with one electron per lattice. For
arbitrary electron density, we have established
that a stable antiferromagnetic solution that exhib-
its either a first- or a second-order phase transi-
tion does not exist. These results are contrary to
the properties of this model in the Hartree-Pock
scheme, and it should be emphasized that the Hub-
bard scheme does not reduce to the Hartree —Fock
scheme under any circumstances as was implied
by Arai. This point has been already noted in Ref.
3. For z1, it is possible that there may still
exist a solution with finite magnetization that tends
to zero asymptotically as T- ~. Our analysis for
&=1 shows that this is cleary impossible. Even if
such a solution exists, it would clearly give a tran-
sition temperature T„=O(T~), where T~ is the de-
generacy temperature. The properties of such a
solution would be essentially those of Slater's split-
band model and certainly not the ones envisaged in
Ref. 5.
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Irreversibility in Paramagnetic Spin System: Free-Induction Decay and Line Shape
In CaF2
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Complementary data about arguments presented in an earlier paper concerning free-induc-
tion decay are discussed. The results of a new scheme of resummation are presented and the
line shape is computed.

I. INTRODUCTION

In a previous paper' (herea(ter I) we obtained
a kinetic equation for the free-induction-decay
(FID) signal, which was

&, r(t)= f G(t-~)r(~)dv,

where

F(t) Tr(e-IF I/I Sxe+fv I/li Sty)

and V is the secular part of the dipolar coupling.
Since then, a lot of effort has been made by many
people in order to obtain a better agreement be-
tween theory and experiment. A non-negligible
test certainly lies in the fitting of the long-time
data of Lowe et al. by a theory. a'3 The situation
in the field has recently been reviewed by Lado,
Memory, and Parker. The aim of this note is
twofold. Firstly, we wish to clarify some argu-
ments presented in I, which it seems to us have
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