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The second part of this work deals with the ef-
fects of elevated temperatures upon the thermal
resistivity of complex crystals. Theoretically,
it is understood that a locus will participate in
the summation over reciprocal-lattice vector only
when its thickness does not exceed its size. Prac-
tically, however, this effect is not dramatic owing
to the fact that the summation over reciprocal-
lattice vectors can be replaced by an integral which
diverges like b . Consequently, if the lower limit
of integration is replaced by b „defined by A&a T/v
instead of zero, no net effect will be observed.

Early work by Eucken' pointed towards a de-
parture from the l/T dependence of the thermal
conductivity at elevated temperatures. We con-

elude that this should not be an intrinsic effect.
For example, experimental thermal- conductivity
curves of naphthalene by Lees showed aweaktem-
perature dependence, not inconsistent with ~~x: T
However, recent work on naphthalene, as well as
an-earlier measurement, shows that the thermal
resistivity is directly proportional to temperature.
The weak temperature dependence observed by
Lees is now believed to be due to defects. We now

expect that in structurally perfect crystals the
1/T dependence should hold until the temperature
is high enough so that the phonon mean free path
is short enough to approach interatomic distances.
At those temperatures, however, the melting point
has been exceeded in most cases.
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The author reports fairly extensive new investigations of the electronic structure of one-dimensional

disordered systems. A formalism is developed in the tight-binding approximation that includes

nearest-neighbor correlation. This formalism is used to calculate density of states and two kinds of
localization lengths for several model systems. In the uncorrelated binary alloy good agreement is found

with Monte Carlo calculations performed recently by Bush. The results in the study of the
disorder-induced metal-nonmetal transition confirm the model of Cohen and Sak.

I. INTRODUCTION

One-dimensional disordered systems have been
extensively studied for the last two decades. The
propagation of phonons as well as electrons in one-
dimensional random chains and lattices have oc-
cupied many researchers, such as Dyson, Mott,
Borland, and Hori et al. ' In almost all cases,
the problem was treated in the framework of a
single-particle Hamiltonian with random potential.
The problem has been of relatively little physical

interest, because many of the results were true
only for one dimension, and therefore were of little
use for real physical systems. Recently, however,
the problem acquired considerable physical im-
portance after the discovery and experimental study
of a number of very interesting solids. ' These
solids consist of long conducting stacks of planar
organic or metallo-organic ions. These stacks in-
teract very weakly with each other. The propaga-
tion of electrons is thus largely confined to indi-
vidual stacks and is nearly one dimensional. Many



ELEC TRON LOCALIZATION AND ATOMIC CORRELATION IN. . . 5387

of these solids also contain an element of random-
ness in their structure, affecting the electronic
motion. Thus the conduction electrons in these
materials effectively move in a one-dimensional
random potential, making the previous theoretical
work on such systems of greater physical interest
and raising the question of whether further work
is required.

The solution of the problem requires, in prin-
ciple, the explicit knowledge of the Hamiltoniag. of
the system. In the present case, the potential is
random and therefore varies from system to sys-
tem. The only knowledge we can possibly have of
it is that the potential is a member of a statistical
ensemble of potentials. Given the properties of
the ensemble, we are interested either in quantities
that are sharply distributed and therefore indepen-
dent of the particular member of the ensemble, or
in ensemble averages of others not sharply distrib-
uted. An example of a sharply distributed quantity
is the density of states of the infinitely long
system. In a tight-binding representation, the
density of states per site p„(E), of a system of N

sites, is expressed as —(I/m)g, (I/N)im(l I G(E)l I).
By letting the system become infinitely long
(N-~), we sample all possible configurations con-
tributing to (I I G(E) I I), and therefore at that limit
the expression (I/N)g, (I I G(E)I I) is sharply dis-
tributed around the value ((i I G(E) I i)),„, i.e. , the
ensemble average of one of its terms, implying
directly the sharp distribution of p„(E). There are
two methods of calculation for the sharply distrib-
uted quantities. The first method makes explicit
use of the fact that the quantity is independent of
the specific member of the ensemble, and calcu-
lates the quantity in a particular member of the
ensemble, generated in the computer. The other
method is the probabilistic approach which applies
equally well for quantities sharply or not sharply
distributed. This method uses statistical tech~
niques to derive tractable equations for ensemble
averages and the width of distribution of different
quantities. We use the latter to calculate the den-
sity of states and characteristics of the eigenfunc-
tions of the infinitely long disordered system.

At this point the notion of localization of eigen-
functions is introduced. The definition of the term
localization has been discussed by many authors.
It was conjectured in 1961 by Mott and Twose and
was rigorously proved subsequently by Borland
that in a one-dimensional random system all eigen-
functions are exponentially localized. This means
that each eigenfunction is appreciable in some re-
gion of space, associated with a particular potential
fluctuation there, and that its envelope decays ex-
ponentiaj. ly far away from the potential fluctuation.
The rate of decay in the tails of an eigenfunction is
of great interest, especially in the case of phonon-

assisted dc conductivity. Therefore that rate of de-
cay must be studied and its statistical behavior
determined. We call L„(E)the characteristic
length entering the expression e ~' ' that de-
scribes the asymptotic decay of the envelope, and
we shall prove that it is sharply distributed in the
infinite system. The length over which the eigen-
function remains appreciable before it starts de-
caying to zero is another quantity of interest.
Probabilistic considerations indicate that this
length is not sharply distributed unless special dy-
namical correlations are present. We call this
length l„and we shall calculate its ensemble av-
erage L,(E).

As mentioned in the beginning, a considerable
amount of work has been done concerning one-di-
mensional random systems. Review articles such
as Ref. 9 and books such as Refs. 1 and 2 have col-
lected this work for the interested. Nevertheless,
the literature is inadequate in the following re-
spects: (a) No work has been reported on L,(E) or
has included effects of short-range order. (b) Very
little work has been done on L~(E) and numerical
procedures, and results are not sufficiently de-
tailed or accurate even for the density of states.
(c) Finally, the difference between one-dimensional
disordered systems (all states localized for any de-
gree of disorder~), and two and three dimensions
(all states localized for disorder greater than a
certain degree ) may have been overemphasized.
Strong parallels remain, as pointed out by Econo-
mou and Cohen, ' and we can exploit these to learn,
inter alia, about the disorder-induced metal-non-
metal transition.

Accordingly, in the present paper fairly exten-
sive new investigations of the electronic structure
of one-dimensional disordered systems is re-
ported. In Sec. II, a formalism is presented
which is, in its first part, an extension of the
Economou-Cohen theory. ' In Sec. III, explicit
solutions of the equations for several model sys-
tems, for the density of states, and for both local-
ization lengths are presented and interpreted. For
the uncorrelated binary-alloy case (Sec. IIIC),
good agreement is found with the Monte Carl. o cal-
culations performed recently by Bush. The re-
sults in the correlated binary-alloy case (Sec.
III E) confirm the model of Cohen and Sak'4 for
metal-semiconductor transitions in liquid and
amorphous alloys.

II. FORMALISM

In the present section, the mathematical formal-
ism developed for this problem is presented. In
order to maintain generality throughtout the anal-
ysis, we specify only those properties of the sys-
tem that are necessary. for the definition of the
model. This way, we can treat the widest possible
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v, , = v(~, , ~,)(5,,,„+5,.„,), (2. 1)

where V(c, , e&) is a function of the values of &,. and

&& and obeys the relation

V(e), E))= V(E(, e() (2. 2)

in order to maintain the Hermiticity of H, i. e. ,
H;& = H,.; for eal H;& . The model Hamiltonian is
then

H« = E 5 )+ V(e;, &)) (6) q,g+5) ) g) .
Following Economou and Cohen' we use a

Green's-function approach. The Green's function
G(Z) has its poles on the real axis, the poles being
the eigenvalues E„ofH, and has matrix elements
G,&(z) = [(Z —H) ],&

. Its diagonal elements G«(Z)
define a set of functions 6,(z) through the relation

G, ,(Z) = [Z —~,. - t,.(Z)]-', (2. 4)

each associated with the corresponding site i,
usually called "the self-energy of i." One can
write a renormalized perturbation expansion (RPE)
for b,, (z) ' when the Hamiltonian is defined as in
(2. S). Terms in the RPE are the contributions
from all self-avoiding paths starting from and end-
ing at site i and only connecting nearest neighbors
(because in it only nearest neighbors interact). A
factor V, &

[see (2. 1)] corresponds to each step
from site i to site j, and a factor G«"'(Z) corre-
sponds to each site i&n. [G",.';"'(Z) represents the
i-i matrix element of the Green's function corre-
sponding to a Hamiltonian differing from (2. 2) in
that e~ = , k denoting every site preceding i in the
particular path under consideration. ] Applying
the above rule for 6;(Z), one sees that there are
only two self-avoiding paths starting from and end-
ing at site i for nearest neighbor V,.J (see Fig. 1)
and, therefore only two terms in its RPE. We
have

which we write as

+ V;, ; gG;'g, ;.g(z)V; g, , (2. 5)

class of physical systems to which this formalism
can be applied. We thus consider a set of sites
located on an infinite non-self-intersecting curve
(the one-dimensional periodic array being a special
case). We label these sites sequentially with in-
tegers, and define the Hamiltonian H in a Wannier-
like representation. Its matrix elements i and j
are H, &

= &,.5;,. + V... where &,. and V,, are all real.
We further restrict the elements V, ~ to nearest
neighbors:

Following Economou and Cohen we write (2. 7) as
a continued fraction

2

P (Z) 4 ~ «1
Z-e„g —V„g „g(Z —~, ,— ~ ~ )

(2. s}'
from which the relation

(2. s')

follows immediately.
From the above analysis it is obvious that the

set (e;] of the diagonal elements of our Hamiltonian,
plus the functional form of V(e, , c~) are sufficient
to determine H and, therefore, the whole problem.
It is only at this point that we introduce random-
ness by requiring the (e;] to be a set of random
variables and by assuming their joint probability
distribution P((&,] ) to be known. As mentioned in
the Introduction, the quantities of interest are av-
erages over the ensemble of fe,], and for their
evaluation one needs certain probability distribu-
tion functions. The joint probability distribution
P((e,J ) and the functional form of V(&, , e&) shouM
be the only input for the evaluation of those other
probability distributions required. Certain assump-
tions about the form of P((e, ] ) are necessary to
make the solution of the problem feasible. Econo-
mou and Cohen' treated the first part of our prob-
lem in the case of (e, ) independent random vari-
ables. We generalize their work to (e, ] such that
nearest neighbors are statistically correlated, and
such that the joint probability distribution
P(c;, e;.,) of two nearest neighbors does not de-
pend on the position i and, moreover that it is sym-
metric in them, i.e. , P(e, , c,,,) = P(q, „,e,). Then
one easily sees that

P(c, ) = J „P(c„e)de, (2. 9)

and that

~k+1) P(~f)P (~f+l~~i) P(~k+1)P(~ f~k+1)'
(2. 1O)

where P, (&~/c, ) is the probability density of &~,
under the condition that at site l we have a fixed

Under the above assumptions, the probability
density P(c;.„z;„&, . . . , &, „a,) of successive
neighbors from sites i —k to i can be expressed as

( «) ~(~a-&~~~) ~(~~-2f~&-&)''' ~(~l-~~~~-~+&)~

and so the entire P({e,] ) can be expressed this
way. We shall need, in addition, the joint prob-
ability distribution f (&, , t, ; Z) of e, and t, for given.

n.,(z) = t,'(Z)+ t, (z},
where [using (2. 5) and (2. 2)]

2t', (z) = v, ,„,G', a „q(z) .

(2. 5)

(2. 7) I 2 I

I )+1 t+2

i+1 1+2

FIG. 1. Two diagrams
for the RPE of the self-
energy 6;(E), when only
nearest-neighbor coupling
is present.
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energy S, where t, is t, or I;, , the functional form
being the same in both cases as shown below. In
(2.8') we have t', expressedinterms of e, , &«„and

Using standard mathematical techniques,
we write

p +00 2 II' (««~1)
Z —c]~j —t g~g

I

x5(gt —«, )f(&«1, t';,1, Z)

f(~, , t'„z)=

XPq(t1/E«1) dt's d&«1 dt «1 y (2. 11)

where t'„, does not enter the conditional probability
for g,.' because the latter is independent of it [see
(2. 8)]. Using the translational invariance of
P(e, , e,.l) and its symmetry in &, and e;.1, we
easily see that P,(c,/e, .l) = P, (e,/e, 1) when

&,,z=&,. &, or in other words, the two conditional
probability densities have the same functional de-
pendence on &, . Because of that, it follows from
(2. 11) that f (&, , t ', ; Z) and f (e, , t, ; Z) have the
same functional dependence on their t, 's. To sim-
plify notation, we shall call "t," the t,' and deal
with the (+) case without any loss of generality.
Integrating trivially over c,' in (2. 11), we get

+OO

ye/
( t Z) 5 t 1 I +11)

Z —E']+g —t.+g

xf (&„„ t,.„Z)P,(&,/~, ,1)d~, .l dt;.1 . (2. 12)

Equation (2. 12), as stated before, is an extension
of the Economou-Cohen theory. Here, too, one
easily sees, after performing integrations over
de, .l and dt, „in both sides of (2. 12), that

f f(f1) t1p Z)d61dt1

= f f(&1+1~ t&+li Z)d&&+ldt1+1 ~

which means that the kernel of the integral equa-
tion has indeed the eigenvalue 1, as implied by
(2. 12). From here on, f(&, , t, ; Z) will be consid-
ered known, as given by the solution of (2. 12) nor-
malized to 1, i.e. ,

f„ f(&, , t„Z)de, dt, =l . (2. 13)

Here we start the evaluation of quantities of in-
terest. We deal first with the average density of
states per site, p(z}, which is given by

t (Z) = —(I/v) 1m[(I/X) TrG„(Z}],
for a system of N sites and one state per site. The
ensemble average for the infinite (N- ~ ) random
system is given by

t1(Z) = —(I/w) Im(G„(Z))„, (2. 14)

where { },„denotes average over all configurations.
In (2. 14) we identify lim„(1/N) TrGN(z), the
average over sites, with the ensemble average for
a site. Using (2. 4) and(2. 6) we write

f,(t;/~„ t'„. z) =f,(t;./~, ; z) .
Combining (2. 16) and (2. IV} with the identity

(2. 17)

(2. 18)

where P(«) is given by (2. 9), we get the final ex-
pression fol' P(61, t;, t1):

P(a, , t,', t, ) = f(~„t(, E)f(c„t, ; z) P '(c,},
(2. 18)

and therefore (2. 15') becomes

p(E) = f 6(z —z, —t; —t,)f (c, , t'„z)

xf(~„ t, ; E)P '(a;) de, dt,'dt, . (2. 20)

One can easily cheek the condition

f p(z) dz = 1 (2. 21)

(because we assumed one state per site). Indeed
using (2. 13), (2. 18), and (2. 20), one verifies
(2. 21). Finally we shall see that (2. 20) simplifies
considerably in certain special cases.

In Sec. I the concepts of two localization lengths
I.„(z) and 1.,(z) were introduced. I,~(z) was intro-
duced to describe the rate of decay of the envelope
of a state, far away from the fluctuation with which
lt ls associated. I (E) was introduced 'to describe
the average length of the potential fluctuations as-
sociated with states around a given energy E, or
in other words, the average length over which the
envelope of a state remains roughly unchanged be-
fore it starts decaying quasiexponentially to zero.
In order to put these quantities into mathematical
terms, one must return to the Green's-function
formalism. Following Anderson, one can use a
perturbation expansion for G, o(Z) expressed as the
contributions of all paths starting from site 0 and
ending at site l. One then has

p(Z) = —(I/v) Im( [Z —~, —t,.'(Z) —t;(Z)]-'},.
or, explicitly,

P(c;, t,', t, )de, dt,'dt,
pIE) = ——Im ~ g+ g]

~~co (2. 15)
where p(&;, t'„ t, ) is the joint probability distribu
tion of c, , t&, and t, . Using the Cauchy identity
in (2. 15), we write

P(E) = f 5 (E —e1 —t1 —t, ) P(e;, t1, t1) d&1dt1'dt's .
(2. 15')

P(e„ t;', t, ) is identically written

P(«, t;, t, ) =f (e„t,'; E)f, (t,/e, , t,'; z),
(2. 18)

f,(t,/c„ t,'; E) being again a conditional probability
for t, . From (2. 8'} one sees that t, depends only
on the t 's, and so it is independent of t&, which
means
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G011~ ~ ~ ~ I 1(Z) GI 1(Z) (2. 22')

One easily verifies the above by writing each side
of (2. 22') in terms of the corresponding self-en-
ergy (G"-"' I(Z)-[Z-e —ZP ' "' '(Z)] '
G', , '(Z)= [Z —8, —il;'(Z)] ] and observing that in
both cases the self-energy is expressed as a con-
tinued fraction (2. 8), and thus &.' ""' (Z)

(Z). Using (2. l) and (2. 7) in the form

v, „,G*,„„,(z) = f,'(z)/VI . I,
and (2.22'), we have

(2. 28)

I -1 i+{Z)
GI0(z) = 000(z) 'Q *,I & I . (2. 24)

V &I ~ &)+I)

We now express G in terms of the eigenstates iE„)
of the Hamiltonian

( ) p IE„)(E„l
~-&n

Hence we have [denoting by ItI, (E„)the overlap of
IE„)with site i]

G (z) g 40{E }40(E )
00 g

G (Z) g A{E.)40(E.)
Z -E„ (2. 27)

In order to simplify notation, we write (2. 24) in
the form

G„(z)=G (z)J„(z),
where [using (2. 24)]

i;.(z)&.(Z)= II
I-o V&;~&I.I) '

Combining (2. 26)-(2. 28) we get

g 9& (En)40{E ) g &I 0(z)40(En)40 (En)
Z E„Z E

(2. ae)

(2. 29)

(2.30)
We observe that E,0(z) has no common poles with

G„(Z) and G00(Z), and that G, 0(Z) and 600(Z) have

exactly the same poles, the eigenenergies of II.
Equating the residues of each pole in (2. 30), one

gets

I,(E.)g(E.)=E„(E.)s.(E.)g(E.) . (2. »}
At this point one can argue that the probability of
llRvlllg $0(E„)= 0 fol' Rll elgeIlstR'te E„ ls zel'o. Tllls
means that $0{E„)II 0 for all configurations (e„},
apart from some of measure zero. %e can then
write (2. 3) in a form that holds with probability l:

E,0(E)= e, {E.}/e0{E.) (2.82)

G„(z}= G„(z)v, ,G,', ,(z)

&&V G ' (Z)V ''' V I G ' '"'-' (Z) . (2. 22)
0

%e observe that

and E=E„. Next we rewrite (2. 30) in the form

~ (E) g II(E.)to(E.)

(2.34)
For each member of the ensemble, ~, obeys the
relation

I;(E)=
~ y, (E„)/y0(E„)

~
(2.84')

[see (2. 82)]. The above analysis convinces us-
that 7,(E) is the proper statistical quantity for our
study of the localization lengths.

We start wlt11 Lg(E}. F01' 'that, we 1188d to k11ow

the behavior of rI(E) as I-~. We shall prove that
'TI (E) 1s sllR1'ply dlstrlbuted around the value
e "~&'~' as E-~. For that purpose we study the

(2. 33)
Relation (2. 32) simply says that when E = E„, the
term &I (En)&~0 (En)/(E -E„)dominates completely
over all the other terms in the numerator of
(2. 88), and similarly the term y0(E„)y(~) {E„)/(E—E„)
dominates completely in the denominator. The
same relation (2. 32) holds approximately for E0(E)
when E is different from E„, but in a sufficiently
narrow neighborhood of w'idth

RATE„around

the
pole E„[i.e. , E c (E„—r1E„,E„+I1E„)]. The width
2~„and, consequently, the statistical weight of
the pole E„decxeases exponentially as e @~ ~~' &'

vrhen the corresponding eigenstate is peaked
around site l~ outside the intex val [0, I]. When the
pole E„corresponds to such a remote state, the
probability that the energy E lies outside the ex-
ponentially narrow interval is' high. For E outside
that interval, the terms that dominate in the ex-
pression (2. 83}for E (IE0) come from eigenstates
that are peaked around site 0 (in the denominator)
or, at most, in the interval {0,I) {in the nu-

merator), and have eigenenergy E„closest to E.
Since eigenstates neighboring in energy are
widely separated in space, expression (2. 33) is
dominated by only one eigenstate for small I' s,
and EI0(E) is still given by (2. 32), where ((E„)
is now the dominant eigenstate which is peaked
around zero and of energy closest to E.

Now we consider tile probablllty dlstr1butlon of
the values of E, (E0) for the different systems,
members of the ensemble. The above analysis
demonstrated that the probability distribution of

EI0(E}is dominated by the behavior of eigenstates
of energy around E that are peaked around site
zero or, at most, in the interval (0, I). Our pur-
pose is to study the ensemble average behavior of
the envelope of an eigenstate of energy around E.
Therefore we introduce the statistical quantity
vI(E), defined by the relation
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variable T, (E) given by the relation

T, (E)-=(1jl)ln7, (E) .

Combining this with (2. 34) we have

(2. s5)

l 2

T)&z)=-& [lnl«'«)I-»I ««« ~)l].
(2. 38)

Applying again standard mathematical techniques,
we can express the probability distribution of 7; as

l 1 l 1

P(T))= 5 T) - -, Z [» I«'I-»
I

v&~() ~(.~) I] P&(«} 9(})«(Q'«(«»,
«=0 «=0

(2. 37)

where P((c(}, fl;})is the joint probability distribution of all the random variables involved in (2. 37) ex-
cept T,. Starting from (2. 37) we may compute moments of the distribution. We have

~ + I'~
1 ) 1

T P(T )dT = ' -Z [»lt; I-»I v(~(, ~(.() I]P((~(} (t(})d~rr d~(«(,
«=0 «=0

(2.38)

~-2

( )' ) =
I)

T J )))d1='') ) (In) t() —)n~ ) (a, eg z)l)) P((c ), (t ))de Q 'dt dt

(2. 39)
Working on (2. 38) first, we have

&-2 1 «-2

&T &
=-~ »It'IP(&~} (t})d~ IId~ dt — Z lnl V(e, , c, ,q)IP((e, }, ft,'})de, Q da, dt,'.

«=0

In each term of the sum, the integrals over all variables but t'„c„and E„2 are straightforward, and the
above relation simplifies to

»lt'(If(4; E)d« ——, Z »I V(~; ~(.i) IP(~( s(.x)dt(ds;.a, (2.40)

where

(2.41)

(i. e. , we identify the left-hand side of the expres-
sion with the average of its individual terms).
From (2. 39) we clearly see that

and f(z(, t,'; E) and P(«, e„()are as defined pre-
viously. Since f(t,'; E) is obviously independent
of i, each of the integrals in (2.40) is independent
of i and (2.40) simplifies to

&T)(z)&.,= »I tlf(t; E)dt
J--

lim (T,'(E)),„=(T(Z)&,',
gazoo

It follows that

P((& }(t,'. })«

)(g da, dt,'=(T(E)&0, ~

«-"0

lnl v(c', E")IP(s', e")de'd0" . (2.40')

We observe that &T,(E))~ does not depend on I.
Therefore its limit trivially exists:

lim(T, (E)&
= (T(E)& (2.40")

$ m OO

where (T(E))„is given by the right-hand side of
(2.40'). In order to examine the sharpness of the
distribution as l-~, we examine its variance

(E) = &T', (E)&., —&T,(z)&.', (2.42)

to see whether it goes to zero as E-~. For that,
we simply observe that

t-2
bm —Q [lnl t,'. (E)l -lnl V(e„e„,)l]=(T(z)&„

lim o, (E)= 0,
$~(o

(2.4s)

where E„ is an eigenenergy of the system. The
characteristic decay length I~(E) obeys the rela-
tion

lim
I y, (z„)/y0&z„)

I
=e '"0""

'«a 00

on an eigenenergy E„and [using (2.40'), (2.40"),

and T, (E) is sharply distributed at infinity around
the value (T(E)&„. Recalling the definition of T)(E)
[see (2. 35)] and the relation (2. 34') as well as the
discussion given there, we have

v'( n hm ~)T) (En) )(r(sn) )n~ (2, 44).'(E )
40(En) t
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and (2.44)] is given as

L,(E)=-[J'„"Initif(t; E)dt
&",(E)&„= II

l-Q 1» I+I

xP((el), (t;))de, g de;dt; . (2. 46)
i-"0

The above probability distribution has a tail which
extends to infinity. This tail is unrelated to the be-
havior of the eigenfunctions because it is due to the
poles of EIQ (E)—all of which are created by zeros
of GQQ(E) [see (2. 28), (2. 29) and (2. 34)] and there-
fore are physically unimportant. However, this
tail is responsible for the nonexistence of the posi-
tive moments of the distribution, since it causes
the divergence of the integral. s that compute those
moments. Therefore one cannot study P(r, ) by cal-
culating its moments. There are several ways to
overcame this difficulty. One possibility suggested
by Anderson' is to study the most probable value
of the distribution. Another approach would be to
truncate P(I'I ) as to eliminate the tail and then
study the behavior of the moments. The latter ap-
proach is followed in the present study. The trun-
cation is fixed by requiring the calculated value for
I„(E)to agree with the exact value in one of the
limiting cases whe're the exact result is known (see
Sec. IIID). A volume of information can be ob-
tained from the truncated P(r, ), because it has
well-defined moments that are directly related to
the shape of P(ri) for finite v'I and, therefore, di-
rectly related to the behavior of the eigenfunctions.
%e deal below with the first moments of the trun-
cated probability distribution of vl(E). The trun-
cation is implicit in the formalism and is properly
taken into account in the numerical part (Sec. III
D). We start with (r, (E))„and (r21(E)&~, which are
given by

(r",(E)&„=)f r", (E) P(T (E))dr, (E), n = 1, 2
~00

Using (2. 46) we write
~»~ l 1 t+(E)

4

2

xP([2,), ft', )) de, dk, dt;,
i~Q

(2. 4V)

—J„»IV(&', 2")IP(' ~ )««] (2 45)

in number of sites rather than length.
Finally we come to the study of L,(E), which we

will define later on. For the time being, we re-
turn to (2. 33) and (2. 34) and study the probability
distribution of ri(E), 1) 1. As before, we now

have

p(»i(c)) = «i(c) -n
) )

» +~ . l-1 tI(E)
V e&, f;+I P([s&)» 9~»)) P( I» el-l» t l 1» -i-2» tt-2» ~ ~ ~ » &2» tQ)

(2.49)
This can be written in our previous manner

PH~I), A;)) =P(el, el „t,-)

c( 1-2» tl 2/&l -I» t'l--1)

XP, (sQ, tQ/&„ t', ) . (2. 50)

The reason why the conditional probabilities can
be written in this fashion lies in the way we have
constructed the ensemble ((s,), (t', ))[see (2. 8 )].
That is, once a pair of values (s;, t;.) is fixed, the

probability of the pair (e,.„.tt I) depends only on
these values and on nothing that comes after them.
In order to derive the final form for P((el), (tt)),
we have to express P(e„e, „tl I) and P,(s„ t 'f/

e„„t t,l) explicitly. Using our previous technique,
we write

Pc(s(»'t»/'el+I» 4+I ) ~I
5 'll E +

XP (s/6c1~1) ds . (2. 51)

Integrating trivially over e we get

~ (. » i«) =» () - ~(» "')
~i+1 'i+1 j

xP, (c,/~;, I) (2. 52)

FOI' P(&„e, „t; I) we write

P(el» el I» tl' I) =P(gl» ql-I) Pc(t'l-l/&I» &) I)
(2. 53)

P (tl-1/~i ~i-I)—
Z —q —t'

m OO

XPc(t I/E'I» Kl I)dtl (2. 54)

and

P,(tt/~„e, I) =P, (t', /2, ) =f(e„ t;; E) P '(2,),
(2. 55)

because g', does not depend on things that precede
it, such as &, 1. Combining (2. 10) and (2. 53)-
(2. 55), we have

xP(fe },(t'})ds, g ds dt' . (2. 48)
i=0

The final step towards an explicit expression for
(v', (E)),„and (r2)(E)&,„ is to express P({e&), (t',.)) in
terms of known functions such as P(e, , e„i), f(e, ,
t ';; E), or those that are derived from them [like
P(sl) given by (2. 9), etc. ]. Writing explicitly the
set of variables in P((el}, (t;.)), we have
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P(h„«9 t 1-1) P(.(« g/-«) uted quantity because its variance

1 g ~ t+

xf(h„ t;; E) Ct;. (2. 56}

&', (E) = (~,'(E)) —(~, (E))',„, I = I. (2. 62)

Combining (2. 50), (2. 52), and (2. 56), we express
PK~hbl]) ~

+00

P((~,];(t',.})=l~ c&;f( h„ t;; E)
mOO

&-1

&II5 t(- E
" ",. IP.(«/~~. i) (2 57)

]=0 & &g+g t g+g]

Using (2. 57), the relations (2.47) and (2.48) final-
ly become

t- j. +

(~(E))„= f(hg f)p E)c«c& Q (
'

)&=0

x5 t] —
~ ~

'P E] 6'] g d&g dt) 2. 58
+j, g+g)

and
+ 00' l-1 t+ 2

(v', (E() fflc=„ t;; R)da, d(; II
&= 0, ~ ~g~ &~+ia OO

t+- " '+~ —P, &; e... d dP 2 5S

The quantity of interest is (r, (E)),„as a func-
tion of /. It is obvious that (r, (E))„=1. Also,
the l- ~ behavior of (~, (E))„ is known from the
analysis for L~(E), i.e. , (r, (E))„-exp(-I/L„(E))
as l-~. Between i=0 and l = ~ there should be a
region in which (r, (E))„will be appreciable, of the
order 1, before it starts decaying exponentially to
zero with increasing I. We choose to define L,(E)
as the effective number, of sites l, that satisfies
the condition

&~,,(E)&.,=1 . (2. 60)

L,.(E) = &, (2. 61)

[given, as with L~(E), as an effective number of
sites]. L,(E) is, in general, not a sharply distrib-

If condition (2. 60) happens to be satisfied by more
than one I„thus defining more than one I.,(E), we
choose to take their arithmetic average as an ef-
fective L,(E). Since (v, (E)) is an average over
configurations, condition (2. 60) means that a large
percentage of states have about equally large am-
plitudes at 0 and E„and therefore are appreciable
inside an interval (0, l, ), a justificationfor thedefini-
tion [see (2.32), (2. 34'), and relevant discussion
there]

is in most cases much larger than zero. It is
only limP', (E) as l- ~ which vanishes.

In summary, three quantities of interest have
been defined and given closed mathematical expres-
sions. The formulas become simple and computa-
tionally easier in certain special cases that are
solved numerically in Sec. III.

III. NUMERICAL SOLUTIONS

A. Numerical Method

The three quantities of interest given by (2.20),
(2.45), and (2. 58) and (2. 60) are straightforward
integrals over the probability distribution functions
P(«, «.~) (which is the input function in our prob-
lem), f(&„ f, ; Z) [which is obtained from the solu-
tion of (2. 12)], and a few others that are derived
straightforwardly from those two. The main com-
putational problem is to solve numerically the in-
tegral equation (2. 12) for f(h„ t„Z).

For this, vie first integrate over the variable
&„„making use of the presence of the 5 function.
Thus we are left with an integral equation for the
variable 5 „which is solved for different values
of the variable &, as parameter. We then make a
change of variables inside the integral, changing
f„,to A+ 8 tang„, „and so are left with an in-
tegral from - -,'m to ~~ instead of from -~ to +~.
Next we go from a continuous to a discrete prop-
erly normalized kernel, subdividing the interval
(- ,'n, —,'m) into a s—uitable number of subdivisions.
We are then left with a matrix equation of the form
Kl'x) = Ix). This is solved by iteration, starting
with an initial guess l xo) o-

I 1) and iterating to the
point Zl x„)=

I x„,q), where I x„), component by com-
ponent, differs from ix„.,) by less than a very
small number (e.g. , 10 ~}. This iteration proce-
dure should always converge to a solution, as
Economou and Cohen proved in their work for a
special case of our problem, ~~ and indeed we have
found it to converge. The over-all accuracy of
this procedure can be very high, depending on the
capabilities of the computer. We have limited our-
selves to 2-4% over-all accuracy, good enough for
on~ purposes.

B. Anderson's Distribution

In this section we give numerical results for
p(E) and L~(E) when the following conditions are
satisfied: (i) Nearest neighbors onthe chainareun-
correlated. (ii) The probability distribution P(h, ) is
continuous. (iii) The off-diagonal element is a con-
stant V&0.

Under these conditions, the formalism simplifies
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considerably. At first (2. 8) becomes

t', (z)= z —«„t—;„(z)
Also, because of condition (ii) we have

P, (a& /a, +&)
= P,(«/«&) = P(s;)~

(S. 1)

(S.2)

one with small n (n = 0.4) (Fig. 2) and one with
large n (n =4. 0) (Fig. 3). In both cases, the stan-
dard features are present-like the broadening of
the band and the decrease of L„(E)towards the
band edges. In the present case, the rigorous band
edges (Lifshitz limits) are at E/V=+2. 4 (Fig. 2)
and at E/V= + 6. 0 (Fig. 3), as given by

(3.11)

f( z„ t f; Z) =f(t„Z)P(«), (s. 3)

where f(t;; Z) coincides with the function defined

by (2.41). Using (3.1)-(3.3), we simplify (2. 12)
as follows:

&(f(t„g,' Z)P(&),g) d«, ddt)„g . (3.4)

Performing the integration over the 5 function, we
obtain

f(t, ; z) = (v'/t, ') f p(z —t...—(v'/t, ))

xf(t ),~,
' Z) d t (,g (s. 5)

The above relation is identical to the one derived
by Economou and Cohen under essentially the
same assumptions as above. Here too, we can
use f(tf; Z) to calculate quantities of interest.
For p(E) we start from (2. 20) and we use (3.3) to
write

p(E) = f 5(E —« -t'. t;)f(t;; E).

xf(t q,
' E)P(tq)dt's dt's . (3.6)

Performing an integration over &„we get

p(E) = f„P(E-t;-t-)f(t f; E)f(t,; E)dt;dt;
(3.7)

and changing the varia51e t', to V~ /x and using (3. 5),
we easily obtain

p(E)= f f(x; E)f((V'/x); E) dx . (3.8)

Finally L~(E), given by (2.45), reduces to'5

Lg(E) = —[ f„»~ t
~
f(t; E) dt —ln V]

' . (3.9)

At this point we assume that P(c,) is a rectangular
distribution (the so-called Anderson's distribution)
given by

P(~) = -', (& V} ' for
~

~/V~ = n

P(~) = 0 for
I
~/Vl ~ o. ,

(s. lo)

where e characterizes the degree of randomness
in the system. At the limit z-0, the problem re-
duces to the periodic one. We study two cases,

From the above we see that in this case, t', is not
correlated with e, , so that f(«, t;; Z) can be written

I I I I I
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FIG. 2. Density of states p(E) and localization length
L„(E) in number of sites vs energy/V, for a rectangular
distribution of width 20. = 0.8.

It is worthwhile to note that in both cases the den-
sity of states is practically zero before the rigor-
ous band edges —a common feature in disordered
systems —which simply means that the density of
states in the deep tails is negligibly small.

Also, it is very important to notice the agree-
ment of the behavior of the present system with
the predictions of the Mott-CFO model for its
three-dimensional analog. According to the
Mott-CFO model, there are two critical energies,
called mobility edges, that separate the region of
extended states (in the middle of the band) from
the region of localized states (at the band edges)
(Fig. 4). Moreover, the region of extended states
narrows with increasing randomness and vanishes
at a certain value of randomness (the Anderson
transition), making all states in the band localized.
In one-dimensional systems, of course, all states
are localized. 7 However, one can distinguish
qualitatively between two kinds of localization:
one very strong [L,(E) of the order of few sites],
corresponding to three-dimensional localized
states, and one very weak [L~(E) containing many
sites], corresponding to three-dimensional extend-
ed states.

Then one clearly sees in the case c, =0.4 (Fig.
2) such a region of "pseudoextended states" in the
middle of the band and a smooth transition around
two "pseudomobility edges, " close to the band edges,
to the region of "localized states. " This transition
will gradually become abrupt as we approach the
periodic case. Also, one sees in the case z =4.0
(Fig. 3) that all states are "localized, " which
means that at that high randomness the system has
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FIG. 3. Density of states p(E) and localization length
I&(E) in number of sites vs energy/V, for a rectangular
distribution of width 2e = 0.8.

undergone a "pseudo-Anderson-transition. " Sim-
ilar remarks were made by Economou and Cohen
earlier, but on the basis of momentum matrix ele-
ments, a less satisfactory basis than the present
calculation of localization length.

A final remark about the results is that as ~ in-
creases, the shape of the probability distribution
tends to dominate the shape of the density of states.
This is quite clearly seen in the case &= 4.0, and
is easily understood because ~- ~ should be equiv-
alent to V-O.

C. Uncorrected Binary Alloy

In this section we give numerical results for
p(E) and L„(E)when the following conditions are
satisfied: (i) Nearest neighbors on the chain are
uncorrelated. (ii) The probability distribution
P(&I) is a binary-alloy distribution, i. e. , of the
form

P(e) = X„5(~—&„)+ Xs 5 (& —cs),
X~+ X~ —1

where A and S are the two types of atoms in the
alloy. (iii) The off-diagonal element is a constant

V& P.
The above assumptions are the same as in Sec.

III B, except for P(&I). The formulas for this case
are trivially obtained from those of Sec. III B.
Using (3.5) and (3. 12) it follows that

f(t, ; z) = " f(z- ~„—v'/f;z)

The quantities p(E) and L„(E) are given by (S.&)
and (3.9), respectively. To follow the usual con-
vention for alloys, we introduce the quantity

5= (~,—e„)/v, (3.15)

ag ——g5V, &~- z5 V1 1 (3.16)

Figure 5 presents the results for a 10-at. /o con-
centration of impurities E (~s = 0. I) and 5 =1.0.

The standard features of a binary alloy are ex-
hibited. The first is the existence of an impurity
subband mell separated, at this value of 5, from
the band of the host atom A. The second is the
existence of a marked structure in the density of
states p(E) and the localization length L~(E), ap-
parent in both the host and impurity subbands.
The structure in the impurity subband as men-
tioned in the Introduction was first demonstrated
by Dean mith his Monte Carlo calculations for the
vibrational spectrum. Subsequent work ' has
confirmed the existence of this marked structure
of the spectrum and has interpreted it as owing to

which represents the relative scattering strength
and, together with the concentration X„, constitutes
a measure of the randomness in the system.

For numerical convenience we use 5 as our pa-
rameter, and we put

I—
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FIG. 4. Sketch of the average density of states vs
energy for two different degrees of randomness. In (a),
according to the Mott-CFO model for a small degree of
randomness, the mobility edges E~ separate regions of
localized states (shaded) from those of extended states.
In (b), all states are localized for randomness'larger
than a critical value.
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I&I) in number of sites vs energy/V, for an uncorrelated
binary alloy with X~=0.1 and 6 =1.0.
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impurity atom clusters. The present results not
only agree, in the density of states, with those
mentioned above, but they also show the existence
of structure in the host band (not previously identi-
fied), as well as a similar structure in the localiz-
ation length. Moreover the method presented here
shows that these peaks, in certain cases, are
much sharper than has been previously anticipated.
This is due to the fact that this method computes
the density of states directly and not its integral
over energy, thus being more accurate when close
to sharp peaks. The interpretation of the struc-
ture of the impurity subband is carried out follow-
ing Agacy and Borland, and the strong peaks
around the values E/V= 1.V63, 2, and 2. 166'1 are
attributed to states bound around clusters of the
form B, BB, and BBB, respectively.

The structure inside the host cannot arise from
states bound to impurity clusters embedded in an
environment of host atoms A. A completely dif-
ferent physical origin is indicated. We studied the
reflection coefficients of different mAnB clusters,
replacing A atoms in an A crystal, as functions of
energy. Figure 6 shows the behavior of the re-
flection coefficients for the clusters BB, BAB,
and BBB. The reflection coefficient for each of
those clusters becomes zero at least once inside
the host band. This fact, combined with the qual-
itative argument saying that localization is caused
by successive incoherent reflections on impurities,
explains why at those energies we should expect,
and indeed we find (Fig. 5), a localization length
larger than at neighboring energies, i.e. , a peak
in the localization length.

An extensive study of the reflection coefficient
for several classes of clusters revealed that for
each energy E/V= —1.5, —0. 5, and 0. 5, there is
a different infinite set of clusters whose reflection
coefficient vanishes. These are the B(A+3nA)B,

).0

~ 0.9
l- 0.8

0.7
0.6

8 0.5
~ 0.4
~ 0.5
~ 0.2

0-2.5 -2 -l.5 -I -Q.5 0 0.5 l l.5

E/V

FIG. 6. Reflection coefficient )R ) vs energy/V for
different clusters. The energies lie in the host-atom
band of the binary alloy.

BB(2nA)B, and B(3nA)B, n = 0, 1, 2, . . . , respec-
tively, for E/V= —1.5, —0. 5, and 0.5. This
explains why at those energies the peaks are much
stronger than at E/ V = —1.9812, or —0. 1889,
where the BAAB cluster is the only relatively
probable configuration with vanishing reflection
coefficient.

The final step needed to explain fully the struc-
ture in both p(E) and L~(E) as well as the fact that
the peaks appear at exactly the same energies in
both p(E) and L,(E) is the following: Cohen and
Sak' have argued that the density of states at
some energy is roughly proportional to the "avail-
able volume" of the corresponding wave functions,
as they call it. They have successfully used this
argument to explain the appearance of a mobility
gap in certain metallic alloys (we will return to
that in greatest detail in Sec. III E). According to
this argument, we should find a peak in the density
of states at every place in the spectrum where
there is a peak in the degress of localization of the
states there, and vice versa. The results we have
obtained are in exact agreement with this argu-
ment; they are clearly understood through it and

confirm it at the same time.
There is one detail in the behavior of p(E) and

L„(E)that cannot be explained through the simple
picture of nonreflecting special clusters. This is
a discontinuity in the localization length and, at
the same time, in the density of states, which oc-
curs exactly at the middle of the host band
(E/V= —0. 5). For its explanation, one should
make an "average-reflection-coefficient" study,
because the effect is due to multiple contributions
from a whole class of special clusters. One cal-
culates the average reflection coefficient
( I R(E) I ), i.e. , the reflection coefficient that
is obtained as the sum of the reflection coefficients
of each special cluster weighted with the probabil-
ity of having that cluster. The result of importance
iS

d—( ~
R(E)

~ ) = —~ for E/V = —0. 5
dE

This result is obtained by expressing (d/dE)
( I R(E) I ) in the fashion described above. We
find that all members of the group B(nA)BB have
vanishing reflection coefficients at E = —0. 5V, so
we neglect that group. We consider the quantity

«.= , (IR(E)
~

B2nAB+—0.9
I
R(E) IB(8n+1)AB I

(3.IV)

for the remaining two important groups of clusters
(groups with more than three B's are very un-
probable). At E= —0. 5V, AR„has a negative value
decreasing rapidly with increasing n (e. g. , —0.4
and —0. 36 for n=0, 1). Expressing ( IR(E) I )
in the fashion described above, we have [using
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(3. I'l)3

„—(f R(Z) )
)=O. l' Z0. 9a"~R„.

n-"0
(3. 18)

Observing that LR„ is negative and decreases
rapidly with n, which means for bR„.&,/AR„» 1,
we obtain (0.9) b R„,t/6 R„&1. Consequently each
term of our series is larger in absolute value
than that of a diverging geometric series. Equa-
tion (3. 18) therefore diverges at the center of the
host band. This behavior of ( I R(E} I }around
E/V= —0. 5 is shown in Fig. 7, and tells us that
we should expect the reciprocal behavior for the
localization length and, by the "available-volume"
argument, for the density of states as well. This,
we believe, completes the explanation.

D. Behavior of I.,(E) for Binary AHoys

In this section numerical values of I,,(E) are
presented for the first time. The calculations
are performed for the case of the uncorrelated
binary alloy (see Sec. III C). Under the assump-
tions (i), (ii), and (iii) introduced in the beginning
of Sec. III B, formulas (2. 58) and (2. 59) for
( v, ( E) },„and (7~a(E))„, respectively, simplify con-
siderably. In that case, V is a constant, indepen-
dent of the c's; therefore the integrations over the
e's can easily be performed in (2. 58) and (2. 59).
Making use of (3. 2) and (2. 40), as well as (3. 5),
Eqs. (2. 58) and (2. 59) finally become

f'+ ao

f(t'.i, E) 'V' «'1
m so

t yaxg & —,, P(Z-t,'., —V'/t;)dt, ', (3.»)
x=0 V'

(IRI &

I

E=-0.5 V

FIG. 7. Behavior of the average reQection coefficient
(IB I ) for energies around the anomaly at -0.SV. Ls(E)
should behave as (IR I') '.

g 3 +

—,,s P(Z —t,'„V'/t„') «,'. (S. 2O)

%e observe that a simple algorithm permits the
calculation of successive {7;),„'s or (v, )„'s as well
as any higher moment of the distribution. One can
easily check and see that the following relations
are equivalent to (3.19) and (3.20):

2", —= J „ i
t/V

i E," (t)dt, (3.21)

F,"(t)= (V /t') J„-i t'/v
i

P(E —t' —V'/t)

xl", , (t') «', (s. 22)

(3.23)F",(t) =-f(t; z),
where A" stands for (v", (E)),„. In the case of a
binary alloy, P(e) is given by (3. 12) and (3. 13), so
that (3.22) becomes simply

x v ~z —& -(v/t)" „& ( /)&x v E & (v/t)X t/' t E-e —V
V

~A
V

(3.24)

Values for (~,(E))„and (v f(E)}„/(~,(E)}a are
presented in Fig. 8 for 5=1, X&=0.15, and
E= —0. 4V. According to the definition for L,(E)
given by (2. 60) and (2. 61), we obtain in this par-
ticular case a value L,( 0.4V)=167 si-tes.

Three important characteristics appear in
Fig. 8. The first is the high value of (r, (E))„/
(~,(E})„,of the order of 500, which proves that
r, (E) is broadly distributed for small I' s. Equiv-
alently, this means that I„ the length over which
the amplitude remains appreciable, is also a
broadly distributed quantity. Therefore our defini-
tion of I.,(E), which relates only indirectly to the
average of I, over all configurations, may give
only part of the information needed for the cal-

l

culation of observable properties, like conduc-
tivity. The second characteristic is the presence
of oscillating values of the averages in the region
of small /'s. These oscillations have the wave-
length of a Bloch wave corresponding to the value
of E used, and they are dumped to zero as I in-
creases. The presence of these oscillations cre-
ates some ambiguity in the value of L, in certain
cases of small I.„by passing through 1 more than
once inside a narrow interval of I' s. The third
characteristic of the behavior of L,(E) is the ex-
ponential-like decay of the average toward zero
after the initial region of oscillation. The rate of
decay is not constant. For (v, (E)),„we find,
in all cases, a rate of decay two times slower
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FIG. 8. Values for
(v&}~ and (r,')~/(v&)~ vs
number of sites g for an
uncorrelated binary alloy
with X&=0.15, g =1.0,
and E=-0.4 V. Accord. -
ing to the definition (2.60)
and (2.61), 1.,(-0.4V)
= 167 sites.

(3.25)2I.„(E

[we subtract 5 in order to incorporate the fact that
with the above calculation, the decay described by
(3. 25) starts in between 0 and 10]. Formula (3. 25)
is combined with (2. 60) and (2.61) to yield

. I, (E) = 5+2Lq(Z)in', o. (3.26)

In all cases checked, the above formula is only a
few percentage points off the actual value. It even
works in those cases where the presence of (y, )„'s
oscillating around 1 creats some ambiguity about
the value of L,(Z).

than the one described by the corresponding asymp-
totic decay length I,,(E).~9 This can be qualitatively
understood, since the decay of (v, (E))„is expected
to be intermediate between that of states decaying
as e —f/L~(E) and of states remaining roughly
constant in that region, e.g. , a decay of the form
e —f/2 L~(E), taking a crude average between Q and
—1/I„(E). The decay becomes faster as l in-
creases and presumably goes to —f /L, (E) as 1-~.

This last property of (r, (Z)),„permits the ap-
proximate calculation of L, (Z) without actually
having to perform the calculation of all successive
(v, )„'s to the point (v,)„=1. Figure 6, by itself,
suggests the method. The idea is that even in the
region of oscillating values, (7,}„decays on the
average. Therefore one needs, say, the average
value A, o of the first ten &r,)„'s and, of course,
the decay length L„(E)given by (3.9). Then one

says that

Extensive study of L,(E) has revealed another
important property, shown in Fig. 9. In that fig-
ure, L,(E) is plotted versus L~(E) for a fairly ran-
dom selection of parameters (energy/P, concen-
tration Xs of impurities 8, and scattering strength
5). Remarkably enough, the points all lie on a
straight line passing approximately through zero
for a wide range of I,„(E). It is only at the limit

0 that we find deviations from the above be-
havior. At that limit, the values of L, (E) depend
on the parameters directly and not simply through

A 8 C 0 E F 6 H I
I.Q I.Q l.94 l.4 I.94 5.0 5.0 5.0 5.0

'V -0.4 -0.4 -0.85 -0.6 -0.85-2.2l -0.6 -0.52 -0.6

8 O. l O.I5 0.05 O. l O. l 0.05 0.05 0.05 O. l

200-

I 50—

L,{E)
I00—

50 —
6 .

H Agy

20~i
I I l I I I I I I I

0 20 40 60 80 l00
Ld{E &

FIG. 9. I~I) vs I&(E) (both in number of sites), for
afairlyrandom. selection of parameters 5, E/V, and

X~. The parameters for the different points A, 8, C. ..
are given by the associated table. Note the agreement of
the behavior at I & 0, with (3.27).
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the dependence of L„(E)on them. " This is to be
expected; it is the physically correct behavior and
justifies our definition for L,,(E) at the same time.
One can see that by considering a binary alloy with
high 5. At the limit 5-~, it is obvious that L~(E)

0 and that states are localized between neighbor-
ing impurities, which at that limit act as infinitely
high potential barriers. The average extent of a
state is obviously the average impurity separation
which goes as Xa' independently of the energy.
Therefore

lim L,(E)=Xs'. (3. 27)

We have examined this limit by fixing the concen-
tration and increasing 5. We used the case Xa
= 0. 15 in order to fix the truncation for the present
calculation. The behavior of our L,(E) is in agree
ment with (3.27). Because of computational prob-
lems, we cannot go beyond 5= 5 or below L&= 5;
but to that extent we obtain the correct behavior
for Xa = 0.05 and 0. 10, where we approach L, = 20
and 10, respectively, as L„-O.

In conclusion, there seems to be a simple pro-
portionality between the two localization lengths:
For binary alloys, we obtain L,(E) = 2. 35L~(E) out-
side regions of strong localization. This propor-
tionality breaks down when strong localization is
present; in that limit, simple physical arguments
are confirmed through our calculation.

E. Metal-Nonmetal Transition Induced by Randomness

As pointed out in Sec. III C, special configura-
tions of atoms are responsible for many features
of the electronic structure of a binary alloy. Con-
sequently, by creating or destroying such special
configurations or clusters, as we call them, one
can influence certain physical properties of an
alloy. Experimentally it is found that some me-
tallic alloys, like liquid Te-Tl and amorphous Mg-
Bi, exhibit a strong dependence of their transport
properties on composition. Specifically, their
conductivity goes through a sharp minimum in a
concentration range centered around a hypothetical
compound composition TI~Te and MgzBi„respec-
tively. A successful explanation of the above be-
havior has been given through the special cluster
picture. ' ' ' The idea is that compound formation
at these concentrations drastically affects the prob-
ability of existence of different configurations,
favoring the ones that form compound clusters.
The result of this short-range order2~ is a semi-
conductorlike density of states, with impurity states
inside a gap that separates a valence from a con-
duction band. Cohen and Sak' employed this idea
to present a semiclassical treatment of the trans-
port properties of those alloys. For an electron
with energy lyiag inside that semiconducting gap,

Pg~+Pag- 1,

P~a+Paa= 1;

Xx Pz~+Xa Pza =X

X~Pa~+Xa Paa =Xa ~

(3. 31)

(3. 32)

(3. 33)

(3. 34)

These relations hold because according to (2.9) the
form of P(s) must be the same, given by (3.12),
whether we integrate (3.28) over s, or over s&.
One sees easily that only three of those are lin-
early independent, because X„and Xs obey (3. 13).

the compound clusters were treated as excluded
volumes, and the whole problem was thus reduced
to a semiclassical percolation one. The main re-
sult of their analysis is that the "available volume"
for a state inside the semiconducting gap is small
(passing through a minimum at the compound com-
position) and as a result of it the state can be local-
ized. In the same picture, one sees how the de-
crease of the available volume is by itself responsi-
ble for the decrease of the density of states, creat-
ing what we have called the semiconducting gap.
Therefore their analysis predicts not a real gap,
but rather a mobility gap or Mott pseudogap (i.e. ,
an energy interval in which all states are localized),
that appears for concentrations around the com-
pound concentration and is responsible for the non-
metallic behavior of the system at those concentra-
tions. The Cohen-Sak treatment of the problem
seems to explain the experimental results. Never-
theless, a first-principles justification of their
basic assumptions is desirable because of the po-
tentially broad applicability of similar models to
related problems, and to reveal any features wiped
out by the semiclassical treatment. Our model
can be applied to solve the corresponding one-di-
mensional problem. The results fully justify their
analysis e

We present the results obtained under the follow-
ing assumptions: (i) The probability distribution
P(s, ) is that of a binary alloy (see Sec. III C), and
(ii) nearest neighbors on the chain are correlated.
In the case of a binary alloy, the correlation be-
tween nearest neighbors is fully described by a
single parameter. One can see this by writing
(2. 10) in the form

P(s„s,) =X„5(s,-s„)P,(s, /s„)
+Xs 5(s) —ss)P (sg/ss), (3. 28)

P, (s, /sg) =Pg„5(sy -sg)+Ps„5(sg —se), (3.29)

P, (sg/ss) =P~ 5(sq —s„)+Pss 5(s~ ss), (3. 30—)

where the parameter P», for example, means the
probability of having a site of type A when its near-
est neighbor is a site of type 3. The four param-
eters P~, P~, P», and Paa are not indepen-
dent. They obey four relations:
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f (s, t; Z ) = P(s )f, (t/s; Z)

=X+,(tjs&, Z) 5 (s —s„)
'+Xs f,(t/s s; Z) 6 (s -ss).

For simplicity of notation, we define

f.(tjs~'Z) = f~(t'Z-)

f (t/ss'Z) = fs(tiZ—)

(3.35)

(3. 36)

Therefore, out of the four parameters that de-
scribe the correlation between nearest neighbors,
only one is independent.

We now rewrite (2. 12) in a form more suitable
for numerical calculations. First, we observe that
in the present case, the off-diagonal element
V(s, , s&) reduces to three constants V„„, V»,
and V»=Vs„[because of (2. 2)]. We further write

f(s, t; Z) =X+~(t; Z) 6 (& —s„)
+Xsfs (t; Z) 6(s -ss). (3.37)

We also write

P (c ) /c; g)
= P(cg /s g~g) 5 (t) —'f g)

+P(sB /s A I) 6 (s I sB)s (3' 38)

where the coefficients P (s, /s, „)are the previously
introduced constants P„„,~ ~ ~ ~ P». We use (3.37)
and (3.38) in (2. 12), and then we perform the in-
tegrations over &„,on its right-hand side. Next
we integrate both sides of (2. 12) over s „ first
around &A and then around gB. We thus obtain a
system of two equations:

x~f~(«' z)= '

ao

Xsfs(t & i Z) = I
00

XAPAA 6 t) E — —t A tJ+1t g +XBPAB ~ ~f —
g g

B ~i+1t ~ dpi+1
VAA

&-&B -~&+1)~e

(3. 39)

XBPBA5 t; —
A t),1, g +XBPBB5. t; — B t;,1,' Z dt), 1.Vs~ Vss

lm ~ - ~B —~~+1)

Integrating over t,.„,we finally obtain

V2 V2
XAfjk(tt Z) =X~PAA tz fA(E CA (V»/t)y Z)+XB PAB tZ fB(E CB(- VAB jt);Z),

V2 V2
Xsfs(t; Z)=X~Ps„, fx(E-sx-(Vs&/t);Z)+XsPss 3 fs(z-ss(- Vas jt);Z).

(3.40)

The density of states p(E) is given by (2. 15') com-
bined with (2. 16) and (2. 17). Making use of (3. 36)
and (3.37) and integrating out the 6 functions, we
obtain

p(z)=X„J „f„(t;E)f„(z s„t; z)dt--
+Xs f„fs(t; E) fs(E-ss —t; E)dt. (3.41)

The decay length L~(E) is given by (2.45). Using
(2. 41) and (3.37) for f(t; E), and the expression
(3. 28) for P(s', s"), we obtain

L„(z)=-[f '„ lnltl[x„f„(t; z)+x,f,(t; E)]dt

X~(P» ln
I
V»-I +Ps &»

I
V»

I
)

Xs(P» ln
I
V»-IP» ln

I
V» I )]

' (3 4 )

The degree of correlation is given by parameter
PAB. When P» =XA, we obviously have the com-
pletely uncorrelated case. When PAB &X» we
favor the formation of Ag clusters, i.e. , com-
pound formation in the alloy. When P»= 1 (we as-
sume X„&xs), we have either (AB)" clusters em-
beded in a matrix of A (when X„&xs), or a periodic
sequence ABABAB. .. (whenx„=xs). We assume
one electron per atom, i.e. , a half-filled band. lf

I

P» = 1 (full correlation), at X„=xs= 0. 5 we have
an AJ3ABAB. .. crystal. We know from elementary
analysis that the density of states splits into two

subbands of extended (Bloch type) states separated
by a gap of width 5V (from E = —~~5V to E = —,'6V).
Since we assumed a half-filled band, the system is
an insulator. As we change the concentration to
XA & 0. 5, we immediately introduce strongly local-
ized impurity states in the gap, which is the one-
dimensional analog of the mobility gap mentioned
before. On the other hand, if P»=X„(no correla-
tion), then for concentrations close to 0. 5 the den-
sity of states in the same region of energies as
before is fairly flat and the localization length L„
is fairly long, the one-dimensional analog of me-
tallic behavior. Through our calculations, we can
display the continuous change of character of our
system by changing the correlation parameter PAB
from XA to 1. We solve numerically the case X„
=0. 55. For simplicity we take VAA VAB VB
= VBB&0. The results are shown in Fig. 10. One
indeed sees a transition from metallic behavior
forP»=0. 55 (flatdensityof states aroundE=O, i. e. ,
where the Fermi energy lies, and fairly extended
states) to insulating behavior for P»= 1.0 (low

density of states inside the gap and strong localiza-
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FIG. |,0. Density of states p(E), (a), and localization
length L„(E) in number of sites, (b), vs energy/V for a
correlated binary alloy (X&=0.55, g =1). Increasing the
short-range order (parameter P~) from complete ab-
sence (P~ =0.55) to complete AB compound formation
(P~=1.0), the behavior changes from "metallic" to
'hnsulating. " Dashed, solid, and dash-dot lines in {b)
same as in (a).

tion —a mobility gap). It is interesting to note the
gradual formation of the peaks as we increase P~
from 0.-55 to 1.0. Those peaks become very pro-
nounced at P» = l.0, approaching the square-root
singularity of the periodic case, at E/V= -0.5
and 0. 5.

In conclusion, we have demonstrated the correct-
ness of the idea of the central role of special clus-
ters [in this case the (AB) clusters] in the random-
ness-induced metal-nonmetal transition.

IV. DISCUSSION

I.et us now discuss the results presented above
and other cases of interest that could be treated
with the present formalism as it stands, as well
as indicate possible extensions of the theory in
order to deal with other important physical prob-
lems. The first point that deserves some atten-
tion is the resemblance of certain aspects of the
behavior of these systems to the behavior of their
thx ee-dimensional analogs. The agreement of the
results with the predictions of the Mott-CFO mod-

el (Fig. 4) is apparent in the cases of Anderson's
distribution (Fig. 2) of the uncorrelated binary.
alloy (Fig. 5, note especially the presence of a
pseudo-Anderson-transition in the impurity sub-
band), and of the mobility gap studied in Sec. IIIE.
The standard impurity subband, present in many
real binary-alloy systems, is also present here
(see Sec. IIIC). Finally, the role of special
clusters in affecting important properties of the
system, and idea proposed to explain the elec-
tron. c behavior ln certRin reR1 alloys~, ' is Rlso
presented here. The second point that deserves
some attention is the existence of real random sys-
tems with one-dimensional character. In all cases
in which the tight-binding approximation is good,
those systems can be analyzed and their random-
ness-dependent properties fully studied with our
formalism. An example is the case of the N-me-
thylphenazinium tetracyanoguinodimethane (NMP-
TCNQ) salt. A simple analysis shows that the
tight-binding single-site potential has a random
component with Gaussian distribution and Gaussian
correlation with neighboring site. The general
formulas of Sec. II would then give the expressions
for p(E), I.„(E), and 1.,(E), although computational-
ly it is harder than the cases calculated here. The
third point is the inclusion of off-diagonal random-
ness in the calculation. As seen in the formulas of
Sec. Q, the formalism can treat a certain kind of
off-diagonal randomness. Thus the off-diagonal
randomness in the binary alloy and the correlated
binary alloy case can be studied starting from for-
mulas of sec. III E and with only a minor computa-
tional complication. The fourth point is the ap-
plication of the formalism to one-dimensional pho-
non systems. A simple change of variables'3
transforms the phonon Hamiltonian to that used in
our model [Ecl. (2.3)]. Therefore one can easily
translate the results obtained for the electronic
cases to solve the corresponding phonon problems.
Finally I would like to point out the possibility that
many-body effects can be treated, in the presence
of randomness, with a modification of the present
formalism. The formalism seems to be a cove-
nient starting point for the study of the metal-in-
sulator transition in the disordered Hubbard model
using the method of Gaussian random fields to treat
the electron-electron interaction.
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