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The theory of the thermal resistivity of dielectric crystals at ordinary and high temperatures in terms
of anharmonic three-phonon interactions is reformulated. The resistivity is similar in form to that
obtained by Leibfried and Schlomann, but larger by a factor of 6.8. The theory is then extended to
crystals where the unit cell contains many atoms. To include all three-phonon interactions one sums
over all harmonics of the reciprocal-lattice vectors in an extended-zone representation. This sum
increases the scattering rate. However, the matrix elements of the three-phonon processes are reduced in

the case of large unit cells, because coherence is lost in the Fourier transform of the different bonds in
each cell. A simplified model is chosen, and in this case the latter effect cancels the former, so that
the anharmonie relaxation rate is substantially independent of the number of atoms per unit cell.
However, the zone boundaries affect the phonon dispersion curves and reduce the group velocity of
most modes; Using a model proposed by Slack, in which only the acoustic phonons of the fundamental
zone contribute to the conductivity, and invoking the independence of the relaxation time with cell size
here derived, the conductivity varies as the inverse cube root of the number of atoms per cell. The
conductivity varies inversely with temperature, even if the phonon mean free path is shorter than the
cell dimensions, because the major contribution to the anharmonic interaction comes from the highest
harmonics of the fundamental reciprocal-lattice vectors.

INTRODUCTION

It was first pointed out by Debye that the ther-
mal resistivity of dielectric solids at ordinary tem-
peratures arises from the scattering of lattice
waves by fluctuations in the elastic constants which

are due to thermal vibrations and to the fact that
solids are not perfectly harmonic. This theory was
put into its predent form by Peierls, ~ who treated
the lattice wave which is scattered on the same
footing as the lattice wave which causes the scat-
tering, and expressed the effects of anharmonicity
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in terms of three-phonon interactions. He pointed
out the difference between three-phonon umklapp
and normal processes. While the former cause
thermal resistance, the latter can contribute to the
resistivity indirectly. He showed that these pro-
cesses lead to a thermal resistivity which is pro-
portional to the absolute temperature at ordinary
and elevated temperatures, as in the Debye theory,
and in agreement with observations on many dielec-
tric crystals. 3

Peierls's theory has been the basis of almost all
subsequent theoretical work. Pomeranchuk4 con-
sidered the question of low-frequency divergencies
and invoked quartic anharmonicities to remove
their effect at high temperatures. Other investiga-
tions ' dealt with the effects of imperfections on
the thermal conductivity, important primarily at
low temperatures. All this early work was semi-
quantitative; its conclusions and the comparison
with experiments stressed the temperature depen-
dence of the thermal resistivity rather than its
magnitude. The magnitude of the intrinsic thermal
resistivity was first treated by Leibfried and Schlo-
mann, ~ that of the defect-induced resistivity by
Kle mens.

Leibfried and Schlomann's quantitative theory7
of the intrinsic thermal resistivity due to umklapp
process, particularly at high temperatures, is
based on Peierls's perturbation formalism for
three-phonon processes, but includes an estimate
of the strength of the interaction. It also takes ex-
plicit account of the crystal structure or the cor-
responding zone structure to estimate the umklapp
processes. To account for the normal processes,
i. e. , to properly solve the Boltzmann equation, the
authors developed a variational method, which in
their form is equivalent to a phonon momentum
balance subsequently used by Ziman. The formula
they derived for the high-temperature thermal con-
ductivity has since been used as a standard expres-
sion against which much experimental data has been
compared.

The present paper will consider some unsolved
questions. The most trivial of these is the numer-
ical reliability of the Leibfried-Schlomann formula.
This depends on the choice of the perturbation Ham-
iltonian. We shall use the estimate of Klemens,
which appears to give better results for the related
problem of anharmonic phonon scattering by static
strain fields. The main purpose of the present pa-
per, however, is to attempt to treat the influence
of crystal structure, and to investigate the limits
of validity of the reciprocal temperature depen-
dence of the thermal conductivity, which all ver-
sions of the Peierls theory predict at elevated tem-
peratures.

We shall see that as long as only cubic anhar-
monicities need to be considered, and provided the

crystal is free of imperfections, the 1/T variation
of the thermal conductivity should persist even if
the temperature is high enough and the crystal
structure complex enough that the repeat distance
is comparable to or larger than the phonon mean
free path.

' The present extension of the theory may thus
prove useful not only to explain existing experimen-
tal data —which is in any case sometimes of doubt-
ful validity at elevated temperatures —but more im-
portantly to extrapolate thermal-conductivity data
to higher temperatures, where measurements are
difficult and good data scarce.

THREE-PHONON INTERACTIONS

Following the notations of Ref. 10 one can write
the unperturbed Hamiltonian, corresponding to the
structurally perfect and completely harmonic crys-
tal, as

2~~ (q 1)'I.a'(q, j) a(q, j)+a(q, i) a'(q iH .1

(1)

q and & are the wave vector and frequency of a lat-
tice wave of polarization index j, M is the mass of
a unit cell, and g~ and g are the phonon creation and
annihilation operators of the dimension of displace-
ment and are explicitly given by

a = (e/~ )'"X'"
a' = (h/M(o) (N+ 1)

where N is the number of phonons in a mode. The
perturbation Hamiltonian due to cubic anharmonici-
ties can be expressed in the form

e'= Z C, (q, q', q") a(q), a'(q') a'(q"), (3)
a&a &a

where the summation extends over all triplets of
normal modes, including cases where creation and
annihilation operators are interchanged, and where
the polarization index is understood to be included
in the specification of modes q, etc. From the reg-
ularity of the crystal lattice and the fact that all
unit cells contribute to H' it follows that the coeffi-
cient C~(q, q', q' ') vanishes unless the wave vectors
of the three participating modes satisfy an inter-
ference condition of the form

q+5 = q'+ q",
where b is a reciprocal-lattice vector. Processes
of the type 6=0 are normal processes; other pro-
cesses are umklapp processes.

The rate of change of the number of phonons N in
mode q is given by time-dependent perturbation
theory
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X [(N+1)N'N" N-(N'+1) (N" +1)], (5)

where

+CO = (0 —CO —(0 11 (6)

In the above summation, different polarizations
must be included. The possibility of phonon q com-
bining with q' to form a phonon q" must also be in-
cluded by changing the sign of z' and interchanging
the factors N' and N'+1.

The average occupation number of each mode q
is now obtained from the Boltzmann equation de-
scribing the steady state in the presence of a tem-
perature gradient; i.e. ,

This balances the rate of change due to interac-
tions and the rate of change due to a temperature
gradient VT. The rate of change due to interac-
tions depends on the departure of the average occu-
pation number of the various modes from thermal
equilibrium. Let this departure be n(q) for mode

q, etc. To a good approximation, (dN/dt)„, is lin-
ear in n, n', and n", the deviation of the modes par-
ticipating in (5). . All these deviations are propor-
tional to V T and, in the steady state, n'/n, n "/n,
etc. , form definable ratios. One can thus define
an effective relaxation time r(q) for each normal
mode by

(6)

Substituting this into (7), n is formally proportion-
al to ~. From this solution of the Boltzmann equa-
tion one can obtain the heat current and finally the
thermal conductivity x. One finds in terms of Car-
tesian components, l, n:

x=2 ~v, v„C(q)

The perturbation Hamiltonian is given by Eq.
(3). The coefficient C2 depends on the nature of
the anharmonic forces. An extension of the Grun-
eisen model to the case when the dilatation is inho-
mogeneous leads to the following expression

[2y/(3Q)1/2] ~v P/f

or, disregarding the anisotropy of the thermal con-
ductivity,

x=-2' J~v2C((u)d(u, (10)

where C(q) is the contribution of mode q to the spe-
cific heat and C(~) d+ the contribution to the spe-
cific heat per unit volume of modes in the frequen-
cy interval w, d(d.

APPROXIMATE EVALUATION OF RELAXATION TIME

where y is the Gruneisen constant. The coefficient
C, is given by (11) provided (4) is satisfied; it van-
ishes otherwise.

Substituting (11) into (5) one obtains

dN ~-» 8y 5», & -cosh&tt—= ~ — &co~ ~
dt ~ g &. &" 36 Mv ~co

x [(N+1)N'N" -N(N'+1}(N" +1)] . (12)

The summation extends over all b and q' with q"
given by (4). It also extends over all polarizations
of q' and q", subject, however, to the restriction
implied by 6= 0. This is because the resonance
factor (1-cos r a&t)//b, ~ restricts the significant
contributions to interactions for which h~= 0. This
condition, together with (4), forces all contributing
triplets to be such that q' lies on a surface or a set
of surfaces which in the isotropic continuum are
surfaces of revolution about q+b. Since there are
three different values for j' and j", there will be
nine such surfaces (only four distinct ones in an
isotropic continuum), but some of these surfaces
will not be real.

For example, if q decays into two phonons q' and
q" and if q is longitudinal, the locus of q' will be
an ellipsoid of revolution if q' and q" are both
transverse, and a more complex set of figures" if
one is transverse and the other longitudinal.

The summation over q' in (12) can be replaced
by an integration

3

Z
2 2 dS'(~ V.,bQ7~) d(4(d), (13)

qs

where a3 is the atomic volume and dS' is an ele-
ment of the surface 6(d = 0 in q' space. If q is lon-
gitudinal and q' and q" transverse, the summation
over j' and j"introduces a factor of 4. The inte-
gration of the resonance factor over b,~ introduces
a factor gt.

Let us assume for simplicity that all modes are
occupied by their equilibrium number of phonons
N (q'), etc. , except for the mode q under investi-
gation for which

N(q)=N (q)+n(q) . (14)

Substituting into the factor in (12)enclosed in square
brackets, then all terms independent of n, the de-
viation from equilibrium, vanish for each interac-
ting triplet. This is a consequence of the form of
N together with the requirement that b, &g= 0. The
remaining terms in the square brackets can be
written

(N+ 1)N' N" N(N'+ 1)(N"+-1)

= -n(q)[N (q')+N (q")+1] . (15)

Now, because 6~ = 0 and N = (c"-1) ', where x
= f/&u/KT (K is the Boltzmann constant),



5382 MICHE LINE ROUFOSSE AND P. G. KLE MENS

X' (q'}+N'(4")+1= X' (q') Xo (q"}/~o(q),
(16)

and in the high-temperature limit, this expression
can be approximated by KT&u/ff ru'~".

Dividing (12) by nt to get the relaxation rate as
defined by (8), one obtains the inverse of the "re-
laxation time of a single mode, "..e. , the expres-
sion obtained assuming that n' and g" vanish or at
least vanish in the average.

Finally, since the relaxation rate (12) involves
a summation over all q', it will depend on the na-
ture of the locus of all q' which satisfy ~(d = 0 and
the wave-vector relation (4). This dependence
arises from (13). In general, the loci of q' are
complicated. In an isotropic continuum, they
would be surfaces of revolution about q. If the
zone structure did not modify the dispersion rela-
tions they wouM be surfaces of revolution about
q+b. In the simple case of a process where a lon-
gitudinal mode q decays into two transverse modes,
the locus is an eQipsoid of revolution. This, in
turn, may be approximated by a sphere.

In order to obtain a rough estimate of the relax-
ation rate, and in order to obtain an estimate of
the effectiveness of the different umklapp proces-
ses, each associated with a reciprocal-lattice vec-
tor b, we shall make the following assumptions:
(i) The locus of q' is replaced by a sphere of radi-
us —, I q+Gl for each value of b. (ii} The summation
ovel' g Rnd f introduces R fRctol' of 4. (111) The
value of IV,,(n,+) I occurring in the integrand of (13)
is replaced by v'2v; this corresponds to the value
at the points of the ellipsoid where the projection
of q' and q" on (q+6) are equal in magnitude. The
summation (13) can thus be approximated by

4Ga' (q+6)' 1

(»)' 4 42v

Substituting this into (12), integrating over the res-
onance factor, and using (15) and (16), one finally
obtains the following expression for the single-
mode relaxatlon rate:

1 g~ a KT (d

s 3m~2 &vs v

where the summation extends over all reciprocal-
lattice vectors'.

If we require that q' and q" belong to the funda-
mental zone then we must consider three different
b vectors in the summation over all umklapp pro-
cesses. In a simple cubic lattice, all 6's have the
same magnitude 2s/a, where as is the volume of
the unit cell. Neglecting cross terms when aver-
aging over all angles between q and b, we write

~ q+b
'= q'+4v'/as . (I~)

If we further neglect qa relative to b~, we can write,
in place of (18),

(20b)

HIGH-TEMPERATURE THERMAL CONDUCTIVITY

If we identify v of (20) with the relaxation time in
the expression for the conductivity [Eq. (10}], we
obtain at elevated temperatures, where

C((u) = 31C(os/2xsvs, (21)

the following expression for the thermal conductiv-
ity:

3 Mv~ v~ 3.

4vs+2 ys a T
(22)

where» is the Debye frequency. %e may com-
pare this with the expression obtained by Leibfried
and Schlomann, ~ incorporating a correction of a
numerical error as noted by Julian ~:

24 (4)"' Its, 9
20 ' (2v)'a' T

(23)

Using the relation v /a'= zv/(6x')', we can re-
write our present result in the form

3 X 30&= 21ls 41s s (2 )s8s
(22')

with the variational method yielding the lower con-
ductivity. All other factors being equal, one would
thus expect Leibfried and Schlomann's estimate of
the conductivity to exceed the present one by a fac-
tor of 16&& 9

= 8. 9. The actual discrepancy between
(23) and (22') is only 6. 8. The remaining factor of
1.3 must be attributed to differences in the approx-
imations made in the summation over all q' [Eqs.
(13) and (1V)]. Considering the nature of these
approximations, the disagreement between the two
methods is not too serious.

so that the conductlvlty glvell by (22) Rnd (23) is 111

the ratio 1 to 6, 8. Some of this discrepancy can be
traced to basic differences in the calculations.
Leibfried and Schlomann used an interaction Ham-
iltonian for three-phonon interactions which differs
by a factor of 4 from the one used here~0; this
should increase their conductivity relative to (22)
by a factor of 16. On the other hand, they took
account of normal processes by a variational, meth-
od, while (22) was obtained by identifying ~ with
the single-mode relaxation time. This decreases
their conductivity relative to (22). If I/1 is
proportional to w and T & 0, one can readily
see that the two methods yieM conductivities in
the ratio
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)(,/a' =8,/8=% I,C 0 C (26}

where (ca is the conductivity given by (22). This
variation with the size of the unit cell seems rough-
ly borne out by Slack's measurements. On the oth-
er hand, it may be argued that the relaxation time
itself decreases with increasing ¹ in that case
one should expect a somewhat more rapid variation
with cell size. A simple scaling of the parameters
a83 in (23) would lead to a variation of the conduc-
tivity as N ~~3.

We shall now investigate the effect of the addi-
tional zone boundaries on the x elaxation time it-
self. %'e shall assume that the additional zone
boundaries introduce additional scattering proces-

We have assumed, so far, that the crystal struc-
ture is simple cubic, while Leibfried and Schlomann
based their calculations on a face-centered-cubic
lattice. The crystal structure determines the posi-
tion of the zone boundaries in reciprocal space.
The introduction of additional zone boundaries has
two effects. First, they modify the phonon disper-
sion curve ln RQ appreciable frRctlon of reciprocal
space, and hence the phonon group velocities. Sec-
ond, they give rise to additional umklapp processes,
leading to a shorter relaxation time due to Rnhar-
monic processes. This effect is complicated by
the modification of the dispersion curves, which
modify the loci of interacting mode (I' in the sum-
mation (13). This makes the proper treatment of
the lattice thermal conductivity of complex crystals
a formidable undertaking.

Slaekls simplified this problem by assuming that
the group velocity of all nonacoustical modes is
sufficiently small so that their contribution to the
thermal conductivity can be neglected. Only the
acoustical modes in the fundamental zone are con-
sidex ed to contribute. This is a good approxima-
tion if the different atoms in each unit cell have
masses which differ substantially or if the bonds
differ substantially, so that the new zone bounda-
ries lead to wide gaps in the dispersion curves.
Based on this assumption, the following argument
yields the variation of thermal conductivity with
the size of the unit cell.

One can define a reduced Debye temperature e,
related to the velocity of sound and the volume of
the fundamental zone analogously to the Debye tem-
perature 8 which is related to the volume of the ex-
tended zone, defined for a unit cell containing one
atom. If the unit cell contains N atoms, then

(25)

Substituting (20) into (10) with C((d) given by (21),
but with the integral cutoff at a frequency K8,/if,
we obtain

ses, and that this tends to shorten the relaxation
time. We shall disregard the fact that the changes
in the dispersion relations due to the zone bounda-
ries tend to change the loci in q' space of the al-
lowed interactions. Our model thus applies mainly
to complex crystals where all atoms have the same
or similar mass, and whexe differences in the var-
ious bonds and in their orientations affect the an-
harmonic components more than the harmonic com-
ponents.

Let us consider a complex dielectric crystal con-
taining N atoms per unit cell. Let us further as-
sume that within each cell the positions of the var-
ious atoms follow some random pattern, but that
this pattern is, of course, reproduced from cell to
cell. Because the unit cell is now larger, a new
set of reciprocal lattice vectors can now be defined
by

b( = (2v/N, a()N;,

where ¹a,. is one of the bnear dimensions of the
new unit cell NzN~~ = N, and n, is an integer rang-
ing from 0 to N(. For. simplicity we shall choose
Nl=N&=%3=%=K, and also al=aa=a3=a. Twol/3

modifications must therefore be made to the pre-
vious theory:

The interaction matrix element must be recal-
culated, taking into account the spatial distribution
of the anharmonic bonds within the unit cell.

The summation appearing in E(l. (18) must be ex-
tended to include all reciprocal-lattice vectors de-
fined by (2V).

The matrix element can be approximated as fol-
lows. Analogously to (11)we express C~ in the
form

Cs= Mv qq'q" —Z e'" ~

Co at. ~

where x is an atomic site, and the sum is over all
atoms in the crystal. Let there be Go atoxns in the
crystRl Rnd 6 =KG where G ls the number of
cells and N the number of atoms in each cell. The
sum over all atoms can now be broken up into a
sum over all unit cells, and a sum over all sites
in each unit cell, i.e. ,

&((q-e'w") ~ x Q P &4(p7 a' p7")'(x+r)
atoms cells sites (29)

where R denotes the coordinate of a cell and r de-
notes a coordinate of an atomic site in the cell.
From the suIQmRtloQ over cells ox' X we obtainy Rs
before, that C3 vanishes unless the interference
condition (4) is satisfied. For processes of recip-
rocal-lattice vector b the matrix element Cs will
contain the factor

(So)
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in the approximation which gives equal weight to
all atom sites. This expx ession can readily be
generalized to the case where different sites have
associated bonds of different degree of anharmoni-
city. The present approximation has the virtue
that it yields the same xesult as we had for a mon-
atomic lattice in the case b= 0 (normal processes),
and leads to the same Gruneisen hypothesis in the
case when q- 0. More generally, C,(8) is given

by the 8th Fourier component of the spatial distri-
bution of the anharmonicity.

Although in principle each cx'ystal structure must
be Fourier 1nvex'ted to get the matrix 818Dlents, so
that the structural details of each solid must be
fully considered, we shall attempt to understand
general trends by making the approximation that
the positions of the atoms in the unit ceD form a
raridom array. This array must of course be
faithfully repeated from cell to cell. Thus the sum
over r in (30) consists of N terms, each of the
same magnitude, but with a random-phase factor.
This sum thus behaves like the square root of N,
or xather its square in I CS I

z behaves as ¹ Thus
the term I C3 I appearing- in the relaxation rate
wiQ be reduced, relative to the value for a mona-
tomic crystal, by a factor ¹ %8 thus have, in
place of Eq. (18), the foQowing expression for the
relaxation rate:

(31)

As a first step, we shall consider that the wave
number q is smaQer than all reciprocal-lattice
vectors and focus our attention upon the summation
over all reciprocal-lattice vectors neglecting q.
Replacing b by (2V) in the expression for the re-
laxation rate, we can derive

a ETye 4m
,2 ~ s ~ ~s z &(s~)'. (82)

This summation can be carried out explicitly only

for small values of n&, i.e. , when the number of
atoms per unit ceQ is smaQ. In the case of one

atom per unit ceQ, the only three possibilities are
n~= 1, nz=0, ~=0, and the two others are found by
cyclic per mutations. Therefore

1 4m . ~ z 12m

XX"'a' ~"' az

When N= 8, the contributions for a hemisphere
amount to'

1 4~ m z 39~ 5
NNz/3~~n4-8 z = z .

%hen N=27, we have

4m g 6m

g~s/8 8 + ng z ~

When X=64, we have

When M=125, we have

(3V)

On another hand, where the number of atoms per
unit'cell becomes laxge, we can replace the sum-
mation over reciprocal-lattice vectors by an inte-
gration

B~4
Qb'-4v ~ db,

0 50

where B is defined by

yvB /b =4N

and bo by

b =4 /N isa

The summation is thus equivalent to

(38)

(40)

(41)

and the relaxation rate (32) can be written

1 a &T y(u Qn~

3v/2 Mv' u a

or in the form 1/a=A'v T, whe. re

A'= (8v/q2) (a/v) q' If/m~' .

(42)

(48)

The coefficient A' is thus substantially inde-
pendent of the number of atoms per unit ceQ, and

about 4 of the value of 4 of Eq. (20b). This inde-
pendence is due to the cancellation of two factors.
The summation over all reciprocal-lattice vectors
increases the relaxation rate by a factor N, the
number of atoms per unit cell. However, the an-

harmonic matrix element Cz is reduced because
the unit cell is enlarged. Jn the case of one atom

per unit cell, each atom site contributes coherent-

ly to the bth Fourier component of the anharmonic-

ity. In the px'esent case howevex' each gx'oup of
N atoms contributes incoherently, even though there
is constructive interference between the contribu-
tions from each such group or unit cell. This re-
duces I C3 I by a factor N, compensating for the
increase due to the sum over all zone boundaries.
Note that a in (43) is defined by letting a be the
volume per atom; this quantity is less variable
among solids than the volume per unit cell. The
latter is Na in our notation.

We can turn to the quantity j neglected in (81)
and study how it can affect the relaxation. rate. We

can see that the term g~ (q + b ) appearing in the
relaxation. rate will behave as
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(44)

In the limiting case where q becomes large, only
those reciprocal-lattice vectors b which are of
comparable magnitude need be counted in the sum-
mation. All smaller b's can be neglected without
appreciable effect. Taking into account the numeri-
cal factor 5 it can be deduced that all b's whose
magnitude is smaller than 1.3q will not participate
significantly in the summation. However in the
case of extremely large q, where all b's could be
neglected in the summation, the result would be
affected by a factor of ~ at most.

In intermediate cases both q and b must be in-
cluded in the expression for the relaxation rate
and the thermal conductivity. The relaxation rate
is written

1 , 5 q sm t'4v

3 4m' I3 (45)

The thermal conductivity given by (10), making
use of (21) for C(&u), becomes

3K 5 a )I'4 &

2~'vA. 'T 3 4~2v2 ~~ 3 &

or (46)

4 Ql&~= 2 ~(Q+ b)
~

V . (48)

The external limit will be determined by the mag-
nitude of the reciprocal-lattice vector. For the
sake of symmetry we choose

+blv (49)

Consequently, the relaxation rate is proportional
to

(50)

The time can be replaced by the first-order ap-
proximation for the relaxation time so= (A&a T) '.
The integral cannot be calculated exactly. It will
be approximated as follows.

3fC, &S&"'&4v "' ~~
~=2,.vA, Z

tan 'IP]l

Making use of the relation q~a = 6m, we find that
tan v'yfjw) 13 ~va/2vv=0. 67 while the value of
the argument was 0. 81. This would therefore pro-
duce a slight decrease of the thermal conductivity.

HIGH-TEMPERATURE EFFECTS ON THE THERMAL
CONDUCTIVITY

At high temperatures, the resonant factor
1 —(cosh ~t)/4&a has a finite thickness in q' space
and consequently the range of &~ is restricted.
The inner limit will be determined by the size of
the locus

In the case of very large integration limits, we
let &~ vary from minus to plus infinity. Then

'o. (51)

We therefore arrive at the following conclusions.
When one considers a complex dielectric crys-

tal it is impossible to make any well-defined pre-
dictions about the matrix e1.ements unless one
knows the exact structure of the crystal under con-
sideration. A statistical distribution of atoms
within a unit cell has been chosen as a simplifica-
tion; this leads to a matrix element inversely
proportional to the square root of the number of
atoms contained in the unit cell. The relaxation
rate, on the other hand, will also include a sum-
mation over all reciprocal-lattice vectors. These
factors tend to cancel and when the number of at-
oms per unit cell increases, the relaxation rate
and therefore the resistivity increase slightly at
first and then tend towards a constant independent
of the number of atoms per unit cell.

On the other hand, one must also consider the
effect of the zone boundaries on the group velocity
of the modes. Using the model of Slack, who
disregarded the contribution of all modes except
the fundamental acoustical modes to the thermal
conductivity, one finds that the thermal conduc-
tivity varies inversely as the cube root of N, the
number of atoms per unit cell [see Eq. (26)]. This
result was based on the assumption that the an-
harmonic relaxation rate is independent of ¹ we
now see that this assumption is roughly justified.

In the case of very small integration limits, we
can develop the integrand in Taylor series keeping
only first-order terms. Then

I= ~ i
g+b

i
v7'0. (52)

Intermediate cases can be treated by joining
smoothly these two extreme behaviors. The in-
verse-tangent function is best suited to such inter-
polation. Then

f=2r, tan'(-,' lg+b Ivy, ) (53)

In the case of complex dielectric crystals, zone
structure has been taken into account by summing
over all participating reciprocal-lattice vectors.
At high temperature, not all reciprocal-lattice
vectors will participate in the summation. We
must disregard all loci whose dimensions are
smaller than or equal to their thickness. Thus
all loci whose radii & tq+ b t are smaller or equal
to «u/v = (A&u /v) 7 must be rejected. However,
due to the factor b appearing in the summation
(38) which determines the relaxation rate, the
exclusion of the few smaller loci will not lead to
a significant change.

SUMMARY
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The second part of this work deals with the ef-
fects of elevated temperatures upon the thermal
resistivity of complex crystals. Theoretically,
it is understood that a locus will participate in
the summation over reciprocal-lattice vector only
when its thickness does not exceed its size. Prac-
tically, however, this effect is not dramatic owing
to the fact that the summation over reciprocal-
lattice vectors can be replaced by an integral which
diverges like b . Consequently, if the lower limit
of integration is replaced by b „defined by A&a T/v
instead of zero, no net effect will be observed.

Early work by Eucken' pointed towards a de-
parture from the l/T dependence of the thermal
conductivity at elevated temperatures. We con-

elude that this should not be an intrinsic effect.
For example, experimental thermal- conductivity
curves of naphthalene by Lees showed aweaktem-
perature dependence, not inconsistent with ~~x: T
However, recent work on naphthalene, as well as
an-earlier measurement, shows that the thermal
resistivity is directly proportional to temperature.
The weak temperature dependence observed by
Lees is now believed to be due to defects. We now

expect that in structurally perfect crystals the
1/T dependence should hold until the temperature
is high enough so that the phonon mean free path
is short enough to approach interatomic distances.
At those temperatures, however, the melting point
has been exceeded in most cases.
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doctoral work of Micheline Roufosse at the University of
Connecticut.
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The author reports fairly extensive new investigations of the electronic structure of one-dimensional

disordered systems. A formalism is developed in the tight-binding approximation that includes

nearest-neighbor correlation. This formalism is used to calculate density of states and two kinds of
localization lengths for several model systems. In the uncorrelated binary alloy good agreement is found

with Monte Carlo calculations performed recently by Bush. The results in the study of the
disorder-induced metal-nonmetal transition confirm the model of Cohen and Sak.

I. INTRODUCTION

One-dimensional disordered systems have been
extensively studied for the last two decades. The
propagation of phonons as well as electrons in one-
dimensional random chains and lattices have oc-
cupied many researchers, such as Dyson, Mott,
Borland, and Hori et al. ' In almost all cases,
the problem was treated in the framework of a
single-particle Hamiltonian with random potential.
The problem has been of relatively little physical

interest, because many of the results were true
only for one dimension, and therefore were of little
use for real physical systems. Recently, however,
the problem acquired considerable physical im-
portance after the discovery and experimental study
of a number of very interesting solids. ' These
solids consist of long conducting stacks of planar
organic or metallo-organic ions. These stacks in-
teract very weakly with each other. The propaga-
tion of electrons is thus largely confined to indi-
vidual stacks and is nearly one dimensional. Many


